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SURFACE LOCALIZATION IN IMPURITY BAND WITH ARBITRARY

SINGULAR DISORDER AND LONG–RANGE POTENTIALS

VICTOR CHULAEVSKY

(Communicated by G. Teschl)

Abstract. We consider a variety of Anderson-type random Hamiltonians in disordered media
with a special layer of nonzero co-dimension (“surface” models), and prove spectral and strong
dynamical localization in such models, with exponential decay of eigenfunctions and sub-expo-
nential decay of eigenfunction correlators. The main novelty is that we allow arbitrarily singular
disorder, and assume that the media-particle interactions feature a power-law decay at infinity.

1. Introduction

1.1. Motivation

In the mathematical theory of disordered media, a vast majority of works consider
the models where disorder, usually understood as randomness (or some form of almost
periodicity), is more or mess evenly distributed over the configuration space where
quantum particles or waves, acoustic or electromagnetic (cf., e.g., [17, 18, 19]), are
localized, contrary to the situation where the fundamental properties of the ambient
media sample evolve periodically, as in perfect crystals. There are by now several
excellent monographs where the principal technical tools, analytic and probabilistic,
are presented in full detail; cf., e.g., [1, 28, 32].

The so-called surface localization models have also been explored over the last
two decades, but to a lesser extent. Perhaps, the terminology used in this area deserves
a few comments. In applications to physical models, there are indeed situations where
a geometrical boundary of a large sample has properties different from those of the
sample’s bulk. Such a boundary may be two-dimensional (in 3D samples) or one-
dimensional (in thin, quasi-two-dimensional films). However, one can also artificially
design samples where a thin inner layer of codimension 1 (in 3D or 2D samples) or
2 (a quasi-one-dimensional channel in 3D samples) carries atoms different from those
constituting the bulk, or is otherwise made special. In certain aspects, such inner layers
share some common properties with the genuine boundary layers. The questions of
physical motivation for such models have been addressed, e.g., in the paper [23].

From the spectral point of view, the disorder may be created by the local poten-
tials induced by constitutive atoms (or ions), often referred to as “scatterer” or “bump”
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potentials, and/or by structural properties (substitutions/displacements). One can also
consider the “strips” or “wires” with ragged border; cf. e.g., the paper [24] on ragged
waveguides, and the references therein.

Until now, a majority of mathematical works consider the models of disordered
systems where the local scatterer potentials are compactly supported. In such a case, it
suffices to make use only of the sites close to the surface to obtain satisfactory Wegner-
type estimates (in the framework of multi-scale analysis) or bounds on fractional mo-
ments of resolvents (in the framework of the Aizenman–Molchanov method). The lat-
ter, when applicable, provides the strongest possible (viz. exponential) decay estimates.
Jakšić and Molchanov used this approach long ago in [22] and proved spectral local-
ization in the discrete case with the help of the Simon–Wolff criterium [30].

The work [27] addressed a continuous model, and strong dynamical localization
was proved with the help of multi-scala analysis. The variant of the MSA used in
[27], pre-dating the bootstrap MSA introduced in [21], resulted in power-law decay of
eigenfunction correlators. The reader can find in [27] a general discussion of surface
models along with a number of useful references. In their work, only the surface layer
carries randomness, while in the rest of the space, one has a non-random constant or,
more generally, periodic non-negative potential.

Apart from random surface Hamiltonians, almost periodic (viz. quasi-periodic)
surface models have also been considered in the past. In our paper, we do not address
this class of surface models.

Much less is known about the disordered systems with infinite-range scatterer po-
tentials. The present paper is a follow-up of the author’s works [7, 6, 8] where long-
range models have been studied. As in [7], we treat the case where the technical diffi-
culties due to the infinite range of the scatterer potentials are combined with those due
to an arbitrarily singular nature of the random amplitudes modulating these potentials,
thus creating the disorder in the system at hand. However, unlike [7], we address several
types of surface localization models.

One of the messages conveyed by the present work is that, on the technical level,
the difference between the “surface” Anderson Hamiltonians and their more classical
counterparts with “bulk” disorder is less pronounced in the models with infinite-range
media-particle interactions than in the case of short-range interactions.

1.2. The models

We consider two classes of models: in Rd and in Zd , with d � 2: at least one
dimension required for the “surface”, and the latter has a nonzero co-dimension.

In Rd , we consider the random Schrödinger operators of the form

H(ω ,ϑ) = −hΔ +V(x;ω ;ϑ) , h > 0, (1.1)

acting in the Hilbert space L2(Rd) . Quite often, one puts a factor g > 0 (coupling
constant) in front of the potential, but up to a change of the energy scale, the operator
−hΔ +V is equivalent to −Δ + gV with g = h−1 . In the latter case, g measures the
strength of disorder, so h � 1 corresponds to a weak disorder.
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To specify the structure of the random potential x �→ V (x;ω ;ϑ) , introduce the
following conventions and notations. We assume that a periodic lattice with d linearly
independent generators is chosen in Rd ; for definiteness, we choose the integer lattice
Zd ⊂ Rd , but our results can be easily adapted to more general lattices. The sites of the
lattice Zd carry local potentials (often called scatterer, or bump, potentials).

It is to be stressed from the beginning that all local potentials have infinite range,
and we shall specify below some conditions on the rate of their decay at infinity.

For clarity, we denote the “surface” layer by Zd0 instead of Zd0 . Specifically,
Zd0 =

{
b ∈ Zd : b = (a,0) ∈ Zd0 ×Zd−d0

}
, this allows us to write Zd \Zd0 instead

of a more ambiguous expression Zd \Zd0 .
Section 2, building on the results of [7], is devoted to the Wegner-type estimates,

i.e., to the eigenvalue concentration analysis. The estimates obtained here can be easily
adapted to various models considered in this paper.

In Sections 3–5, we study a base model (model 1) in Rd ; its discrete analog
(model 2) is considered in Section 6. Further extensions are discussed in Section 7.

The base model: sparse surface impurities in non-ergodic bulk

In all models considered in the present paper, we work with two types of scatterer
potentials, u+ and u− . The potential V induced by any sample without “impurities” is
non-negative, while an impurity at b ∈Zd0 (implemented by a site potential u−(·− b))
produces a negative potential well in a ball Br0(b) of some radius r0 . We assume that
this negative well cannot be destroyed by any configuration of atom types and random
scatterers with centers outside some neighborhood of the site b. For this and some
other reasons, all scatterer amplitudes are uniformly bounded.

Further, we assume in the base model that some periodic sub-lattice Ẑd0 ⊂ Zd0

carries only positive random potentials ωb u+(·− b) , so the impurities can appear only
in the complement Zd0 \ Ẑd0 . Such an assumption is quite realistic from the physical
point of view: if a crystal is composed of n � 2 types of atoms, then it may happen that
the impurity atoms could replace only a specific kind of atoms, and not all. Technically,
this assumption simplifies application of crucial Wegner-type estimates established in
our prior work [7], but it can be significantly relaxed; see Section 7.

The disorder in our models is represented by two independent random fields:

• ω : Ω×Zd → [0,s] ; in other terms, a family of random variables (often abbre-
viated to r.v.)

{
ωb , b ∈ Zd

}
with values in an interval [0,s] , defined on a probability

space (Ω,FΩ,PΩ) ; see the hypothesis (V1(1)) below. Here Ω = [0,s]Z
d
, and FΩ is the

cylindric σ -algebra induced by the Lebesgue σ -algebra on [0,s] .

• ϑ : Θ×Zd0 → {0,1} , i.e., a family of r.v.
{

ϑb , b ∈ Zd0
}

with values 0 and
1, on some probability space (Θ,FΘ,PΘ) ; see the hypothesis (V3(1)) below.

Clearly, one can define both random fields on a common, product probability space
([0,s]Z

d ×Θ,FΩ ×FΘ,PΩ ×PΘ) , so we keep the same notation P for the probability
of various events relative to ω and/or ϑ .

In order to make more transparent comparison of several models with specific sets
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of assumptions, we use a double numeration of hypotheses, where the second, smaller
number in parentheses indicates the model number. For example, in Section 6, we
introduce the hypotheses (V1(2))–(V4(2)).

Now we turn to the formal description of the base model. The random potential
has the form V (x,ω ,ϑ) = V (B)(x)+V (S)(x;ω ;ϑ) where

V (B)(x) = ∑
b∈Zd\Zd0

sb u+(|x− b|) � 0 , sb ∈ [0,s] , (1.2)

with some fixed, non-random amplitudes sb , and

V (S)(x;ω ;ϑ) = ∑
b∈Ẑd0

ωbu
+(|x− b|)

+ ∑
Zd0\Ẑd0�b:ϑb=0

u+(|x− b|)+ ∑
Zd0\Ẑd0�b:ϑb=1

u−(|x− b|) . (1.3)

Apart from sb ∈ [0,s] , no additional assumption on sb is made, so the function b �→ sb

on Zd may be constant, or periodic. However, in general, with arbitrarily chosen sb ,
one cannot rely on the so-called Lifshits tails phenomenon (cf. [25]) providing the
initial length scale estimate (serving as the base of the scale induction; cf. Section 4)
for arbitrarily large h > 0 in H = −hΔ +V , i.e., for an arbitrarily weak disorder.

Until Section 6, our main hypotheses are as follows.

(V1(1)) The random variables
{

ωb , b ∈ Zd0
}

are IID (independent and identically
distributed). The support of their common probability measure μ contains at least two
points, and one has 0 ∈ suppμ ⊂ [0,s] .

(V2(1)) For r � 1/2 and some A = 3d +2γ , γ > 0 ,

−u−(r) = |u−(r)| � C1r
−A , C1 ∈ (0,+∞) ; (1.4)

u+(r) = r−A . (1.5)

For r ∈ [0,1/2] , u+(r) = c̃+ � 0 and u−(r) = c̃− < 0.

(V3(1)) The random field ϑ , independent of ω , satisfies the following conditions:

P
{

card
{

b ∈ Zd0 : ϑb = 1
}

= +∞
}

= 1; (1.6)

ρ := sup
b∈Zd0

P{ϑb = 1} ∈ (0,1) . (1.7)

(V4(1)) There exist E∗ < 0 , E > E∗ , r0 ∈ (0,1) , and φ ∈ L2(Rd) , with ‖φ‖2 = 1 and
suppφ ⊂ Br0(0) , such that, denoting φa = φ(·− a) , one has

sup
a∈Zd0\Ẑd0

(
φa,

[
−hΔ +u−(|x− a|)+ ∑

b∈Zd\{0}
su+(|x− b|)

]
φa

)
< E∗ , (1.8)

inf
a∈Zd

inf
x∈B1(a)

∑
b∈Zd0\{a}

u−(|x− b|) � E∗ +E . (1.9)
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Comments. • The values assigned to u±(r) for 0 � r � 1/2 are of little importance;
they only affect implicitly (1.8)–(1.9) but do not play any role in the proofs.

• Clearly, the condition (1.6) is rather weak: we assume neither ergodicity nor even
translation invariance of the random field ϑ . Also, (1.7) is essentially the definition
of an important parameter ρ to be used in the hypotheses of Theorem 1, except that it
says that ϑb is not a.s. (almost surely) equal to 1. In the terminology of random point
fields, (1.7) is an upper bound on the first correlation function of the field ϑ . A reader
not interested in a great generality can replace (V3(1)) with a simpler condition:

(V3’(1)) The random field ϑ on Zd0 has IID values, independent of ω , with

ρ := P{ϑb = 1} = 1−P{ϑb = 0} ∈ (0,1). (1.10)

• The condition (1.8) is deterministic, so the variational inequality (1.8) holds true
almost surely, if the parameters sb are replaced with ωb . The assumption (1.8) guaran-
tees the a.s. existence of nontrivial essential spectrum of H(ω ,ϑ) in (−∞,E∗) , owing
to (1.7)–(1.8). Since ‖V (·,ω ,ϑ)‖∞ < +∞ , H(ω ,ϑ) is deterministically semi-bounded
and has a nontrivial spectrum in some bounded interval I∗ ⊂ (−∞,E∗) .

On the other hand, (1.9) guarantees a gap of size at least E > 0 between (−∞,E∗)
and the spectrum of a restriction HB(ω ,ϑ) of H(ω ,ϑ) to any cube B with no impu-
rities inside it, hence only with positive potentials x �→ sb u+(|x− b|) , b ∈ B, even if
all the sites b ∈ Zd0 \B carry negative potentials u−(|x− b|) , and even if sb = 0 for
all b 
∈ Zd0 . If we had considered a model where sb � c+ > 0, (1.9) should have been
replaced with

inf
a∈Zd

inf
x∈B1(a)

(
c+u+(|x− a|)+ ∑

b∈Zd0\{a}
u−(|x− b|)

)
� E∗ +E . (1.11)

In the setting of model 1, sb ∈ [0,s] , so we must allow also for sb = 0, thus rely
exclusively on a nonzero decay of |u−(|x|)| between B1/2(0) , where u−(|x|) takes a
constant negative value, and Rd \B1(0) . This decay must result in a gap of size E > 0
in the cumulative potential induced by all negative scatterers. In turn, this makes the
“bulk” Rd \∪b∈Zd0 B1(b) a forbidden zone for particles with energy below E∗ .

• In the second sum in the RHS of (1.3), one could also have put random amplitudes
ωb in front of u+(|x− b|) with b ∈ Zd0 \ Ẑd0 such that ϑb = 0. This would have no
impact on the Wegner-type estimates, for we would have included these terms in the
“background” operator H0 and condition on the σ -algebra generated by the respective
ωb . In essence, more randomness carried by ωbu

+(|x− b|) such that ϑb = 0 would be
only welcome, but its contribution would not be crucial to the final results.

• Our techniques and results can be adapted to the models where random amplitudes
modulate both types of scatterer potentials, u+ and u− , or only u− . However, in the
latter case, u− must have a specific analytic form; a mere upper bound on its decay
would be insufficient. Indeed, a compactly supported function fulfills any decay condi-
tion, but the eigenvalue concentration estimates in Theorems 2 and 3 require both upper
and lower decay bounds.
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1.3. Main results

THEOREM 1. Under the assumptions (V1(1))–(V4(1)), there exist ρ̂ > 0 and an
interval I∗ ⊂ (−∞,0) such that the following holds with ρ ∈ (0, ρ̂] (cf. (1.7)).

(A) With probability one, the spectrum of H(ω ,ϑ) in the interval I∗ is nontrivial and
pure point, and all its eigenfunctions ψ of H(ω ,ϑ) with eigenvalues Eψ ∈ I∗
decay exponentially at infinity: for some m > 0 one has

∀x ∈ Zd |ψ(x,ω ,ϑ)| � Cψ (ω ,ϑ)e−m|x| . (1.12)

(B) Let χx = 1B1(x) , x ∈ Rd . For any ζ ∈ (0,1/3) and some Cζ ∈ (0,+∞) , one has:

E
[

sup
φ∈B(I∗)

∥∥χx φI∗(H(ω ,ϑ)) χy
∥∥ ]

� Cζ e−|x−y|ζ , (1.13)

where B(I∗) is the set of Borel functions φ with suppφI∗ ⊂ I∗ and ‖φI∗‖∞ � 1 .

REMARK 1. The condition ρ � ρ̂ is used only in Lemma 2. Since ϑ and ω are
independent, we shall pick any ϑ required for Lemma 2, and work mainly with the
random operator ω �→ H(ω ,ϑ) , ϑ being sometimes dropped from notation.

2. Wegner-type estimates

Introduce some useful notations. Given a point u = (u1, . . . ,ud)∈Rd and L∈R+ ,
we define an open cube centered at u of radius L by

BL(u) =
{

x ∈ Rd : |x−u|∞ < L
}

, |x|∞ = max
1�i�d

|xi|. (2.1)

We also define the “boundary” of a cube BL(u) by ∂BL(u) := BL(u)\BL−2(u) .
The spectrum of an operator H is denoted by Σ(H) , and ΣI(H) stands for the

restriction Σ(H)∩ I , I ⊂ R .
The two main results of this section, Theorems 2 and 3, provide two kinds of

Wegner-type estimates required for the multi-scale analysis in its various forms. The-
orem 2 is crucial to the fixed-energy scale induction (see Section 4); it suffices for the
proof of decay bounds on the Green functions in cubes of growing sizes Lk , k � 0. The
latter rule out the almost sure a.c. (absolutely continuous) spectrum of the Hamiltonian
H(ω ,ϑ) in L2(Rd) (cf. [26]). Theorem 3 is required to derive spectral and strong
dynamical localization from the decay of the Green functions; see Section 5.

These theorems are minor adaptations of similar results proved in [7], so their
proofs are omitted (see the Figures 1–2). However, it seems instructive to give here the
proof of a simpler result, Lemma 1, also proved in [7] in a lattice context, for it presents
the main tools of the harmonic analysis of infinite convolutions of singular measures.
The latter relies only on the random scatterer potentials ωb u+(| ·−b|) , while the rest
of V (·,ω ,ϑ) including ϑb u−(| · −b|) is irrelevant to this analysis. As was said, the
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probability bounds relative to the random field ϑ are used only in the initial length
scale estimates (Lemma 3). For this reason, we fix a random sample ϑ as required in
Lemma 3, and then work with it in the rest of the proof, often dropping it from notation.

THEOREM 2. (Cf. [7, Thm. 2.5]) Fix some A > 3d , τ > 8d , κ > 0 , and a cube
B = BL(u) , and let B := BL(1+κ)τ (u) . Then for some κ ′ > κ + 1

3A , one has:

P
{

ωB

∣∣∃ω⊥
B

: dist
(

Σ(HB(ωB + ω⊥
B
), E

)
� L−(1+κ)Aτ

}
� L−Aκ ′τ+d . (2.2)

BL(u)

u

bk ∈ Ẑd0 + ed0+1

Lτ � L

Zd0

Figure 1: Example for Theorem 2. Here d0 = 1 , d = 2 , ed0+1 = e2 = (0,1) , so Ẑd0 + e2 ⊂
Zd \Zd0 . The sites bk ∈ Zd0 + ed0+1 carry the random potentials ωbk

u+
0 (· − bk) . In the

proof, one makes use of a collection of random potentials supported by the elements of BL =
{ bk, 1 � k � n} such that n � diamBL � L� with 0 < � < 1 . The light gray dots represent the
sites b ∈Zd0 \ Ẑd0 which may carry impurities with nonrandom potentials u−1 .

REMARK 2. In this paper, we set

κ := 1.

In [7, Thm. 2.5], there is no special “surface” layer, and one has a bound applicable to
our model, with any fixed sample of the random field ϑ :

P
{

ωB

∣∣∃ω⊥
B

: dist
(

Σ(HB(ωB + ω⊥
B
), E

)
� εL

}
� L−A(κ+ �

2A )τ+d .

Here an auxiliary value � can be chosen in (0,1− τ−1) . We assume τ > 8d , so one
can take 2

3 < � < 7
8 , getting κ ′ = κ + 1

3A +υ , υ > 1
10A . Thus (2.2) takes the form used

in the rest of the paper:

P
{

ωB

∣∣∃ω⊥
B

: dist
(

Σ(HB(ωB + ω⊥
B
, ϑ), E

)
� L−2Aτ

}
� L− τ

10A L−(A+ 1
3 )τ+d , (2.3)

for L large enough and with fixed ϑ . Consequently, the above RHS is of order of

o
(
L−(A+ 1

3 )τ+d
)

, hence we are free to replace the first factor L− τ
10A with any positive

constant, if required. �

The next Theorem will not be used until Section 5.1, in the context different from
Section 4 where the scale induction is carried out; see Remark 3 and the discussion in
Section 5.1, where the main difference between Theorems 2 and 2 is explained.
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THEOREM 3. (Cf. [7, Thm. 2.7]) Let be given two cubes B′ = BL(u′) , B′′ = BL(u′′)
with |u′ − u′′| = Lσ , 1 < σ < τ/2 , τ > 8d , and denote H ′ = HB′ , H ′′ = HB′′ . Let
A∗ := A+1+ σ τ−1

(
1− 1

3A

)
. Then for any κ > 0 and ε � L−A∗(κ+1)τ ,

P
{

dist
[
Σ(H ′),Σ(H ′′)

]
� ε

}
� LA∗τ+2dε . (2.4)

BL(u′′) u′′

BL(u′)

u′

L⊥
bk ∈ Ẑd0

L

Figure 2: Example for Theorem 3. Here d0 = 2 , and the drawing is made in projection onto
Rd0 ⊃ Zd0 . The sites b ∈ Ẑd0 ⊂ Zd0 carry the random potentials ωbu

+
0 (·− b) . By hypotheses

of Theorem 3, here L � |u′ − u′′| � Lσ � |x̂− u′| � Lτ . In the proof, one makes use of a
collection of random potentials supported by the elements of BL = { bk, 1 � k � n} such that
n � diamBL � L� with 0 < � < 1 . L is the affine line passing though u′ and u′′ , and L⊥ is an
affine hyperplane in Rd0 orthogonal to L .

REMARK 3. ε � L−A∗(κ+1)τ implies that LA∗+2d � ε−c , with

c <
A∗τ +2d

A∗τ(κ +1)
<

1+ 2d
A∗τ

κ +1
<

1+ 1
4A

κ +1
, (2.5)

(we used A∗ > A and τ > 8d ), so with κ = 1 and A > 3d � 3,

P
{

dist
[
Σ(H ′),Σ(H ′′)

]
� ε

}
� εb , b >

1
3
. (2.6)

Unlike Theorem 2 where one needs strong non-resonance (SNR) property of the Hamil-
tonians in the balls of size Lk , k � 0, Section 5.1 operates with NR (non-resonance)
condition and not its stronger counterpart, SNR. For this reason, the value of τ can be
chosen arbitrarily large, resulting in admissible values of ε = L−A∗(κ+1)τ = L−2A∗τ (if
one sets κ = 1) with arbitrarily large τ > 1, hence arbitrarily small ε > 0. Concluding,
we shall use in Section 5.1 a particular case (2.6) of (2.4). �

REMARK 4. Later, we will assume that τ > max
[
8d, 2d+2

A−3d

]
.

The next statement will be used in Section 6 where we shall prove a variant of the
initial length scale bound for a lattice model (cf. Lemma 10).
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LEMMA 1. Let be given a family of IID random variables with zero mean,

Xn,k(ω), n ∈ N∗, 1 � k � Kn , Kn � nd−1, d � 1.

Assume that their common characteristic function ϕX(t) = E
[
eitX•,•

]
obeys

∀ s ∈ [−s0,s0] ln
∣∣ϕX(s)

∣∣−1 � Cϕ s2, s0 ∈ (0,+∞). (2.7)

Let S(ω)= ∑n�1 ∑Kn
k=1 an,kXn,k(ω) ,an,k � n−A and SM,N(ω)= ∑N

n=M ∑Kn
k=1 an,kXn,k(ω) ,

M � N . Then the following holds true.

(A) There exist some C,c∈ (0,+∞) such that ∀t ∈R
∣∣E[

eitS(ω) ]∣∣ �Ce−c|t|d/A
. There-

fore, S(ω) admits a probability density pS ∈ C∞(R) .
(B) For N � (1+ c′)M � 1 with c′ > 0 , and |t|M−A � s0 ,

ln
∣∣E[

eitSM,N (ω) ]∣∣−1 � M−2A+d t2 . (2.8)

(C) For any ε � N−A , supa∈R P{SM,N(ω) ∈ [a,a+ ε]}� MA− d
2 ε .

Here and below, we use the notations “�”, “�”, and “�” for comparison of
functions of some parameter. For example, f (t) � g(t) means that f (t) � Cg(t) for
some C ∈ (0,+∞) , “�” is its counterpart for upper bounds, and f (t) � g(t) ⇐⇒(
f (t) � g(t) � f (t)

)
.

In applications of Lemma 1 to model 2 (cf. Section 6), we operate with Xn,k =
ωbn,k , and the sequences (bn,k),an,k are defined as follows. First, decompose the

family of the scatterers’ sites
{

ωb , 0 
= b ∈ Zd
}

into a union of sub-families An :=
{ωb : |b| ∈ [n,n+1) } , n ∈ N∗ . Next, for each n ∈ N , order An in some way and
denote its elements by bn,k , 1 � k � Kn � nd−1 . Further, let an,k = u+(|bn,k −0|) , so
that for all bn,k with fixed n � 1, one has an,k ∼ u+(n) = n−A .

The condition (2.7) is valid for all probability measures with finite moment of
order 3. We assume (V1(1)), so the r.v. ω•,• have finite moments of all orders.

Proof. (A) Let ϕS(t) := E
[

exp
(
it ∑n�1 ∑Kn

k=1 an,kXn,k

)]
. Let Nt = Cϕ |t|1/A (cf.

(2.7)), so n−A|t| � N−A
t |t| ∈ [0,s0] for all n � Nt . By independence of X•,• , we have:

ln
∣∣ϕS(t)

∣∣−1 � ∑
n�1

min
k

Kn ln
∣∣ϕω

(
an,kt

)∣∣−1

�
(

∑
n�Nt

+ ∑
n>Nt

)
nd−1 min

k
ln

∣∣ϕω
(
an,kt

)∣∣−1 =: S1(t)+S2(t) � S2(t) ,
(2.9)

since |ϕX(t)|� 1 for t ∈ R , thus ln |ϕX(t)|−1 � 0 and S1,2(t) � 0. We focus on S2(t) ,
for this suffices to prove assertion (A): with an,k ∼ n−A as n → +∞ , we obtain

S2(t) � t2 ∑
n>Nt

n−2A+d−1 � t2
∫ +∞

Cϕ |t|1/A
s−2A+d−1 ds � t2 |t|− 2A−d

A = |t|d/A . (2.10)



884 V. CHULAEVSKY

Note that, as was shown by Wintner [33], a simple equidistribution lemma by Pólya and
Szegö [29, Section II.4.1, Problem 155] implies a similar lower bound S1(t) � |t|d/A .
(B) The proof is similar:

N

∑
n=M

ln
∣∣ϕX(an,kt)

∣∣−1 � t2
∫ (1+c′)M

M
s−2A+d−1 ds � t2 M−2A+d . (2.11)

(C) We need to assess the integrals of the probability measure of S(ω) over intervals
Iε ⊂ R of length O(ε) . It suffices to consider the case where Iε = [−ε,ε] to have less
cumbersome formulae. Further, since the main estimate will be achieved in the Fourier
representation, it is customary to work with a smoothed indicator function instead of
1Iε . A convenient choice of smoothing function was found in the theory of asymptotic
expansions for the sums of independent r.v. (cf. [2, 11, 15, 16]). Specifically, given
a probability measure μ̃ on R with characteristic function ϕμ̃ , one can upper-bound
μ̃(Iε) by assessing ϕμ̃(t) only in a finite interval (cf. [2]):

μ̃(Iε) � 2ε
∫
|t|�ε−1

∣∣ϕμ̃(t)
∣∣dt . (2.12)

Recall that we have assumed the lower bound (2.7). Define a mapping

n �→ Tn = sup
{

t > 0 : ant ∼ n−At � s0
}

= C(s0)nA , (2.13)

and let Xn :=
{

x ∈ Zd : |x| ∈ [n,n+1)
}
,n ∈ N, then

∀t ∈ [−Tn,Tn] ∑
x∈Xn

ln
∣∣ϕX(ant)

∣∣−1 � t2n−2A+d−1 . (2.14)

• For |t| � TM and N � (1+ c)M with c > 0, we have by (B)

ln
∣∣ϕSM,N (t)

∣∣−1 � t2 M−2A+d . (2.15)

• For TM � |t| � TN , hence for |t| ∈ [
TM, ε−1

]
, we have, setting Nt := Cϕ |t|1/A and

assuming (1+ c)Nt � N with some c > 0,

ln
∣∣ϕSM,N (t)

∣∣−1 �
N

∑
n=Nt

Kn ln
∣∣ϕX(an,kt)

∣∣−1 � t2
N

∑
n=Nt

nd−1a2
n t2 � t2 N−2A+d

t � |t| d
A .

(2.16)
Applying (2.12), we get

μSM,N (Iε) � 2ε
∫ TM

−TM

∣∣ϕS(t)
∣∣dt +2ε

∫
TM�|t|�ε−1

∣∣ϕS(t)
∣∣dt =: J− + J+ , (2.17)

where, by (2.15),

J− � 2ε
∫ TM

−TM

∣∣ϕS(t)
∣∣dt � ε

∫
R

e−t2 Const M−2A+d
dt � MA− d

2 ε , (2.18)
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while for J+ we have a much smaller upper bound:

J+ � 2ε
∫ ε−1

TM

e−c|t|d/A
dt � e−Td/A

M ε = o
(
MA− d

2 ε
)

, as M → ∞. (2.19)

This completes the proof: μSM,N (Iε) � MA− d
2 ε , for ε � N−A . �

3. Initial length scale estimates

3.1. Basic notation and definitions

Given τ > 1 and L0 ∈ N∗ , set α = 3τ and define recursively a sequence Lk by

Lk :=
⌈
Lα

k−1

⌉
, k � 1. (3.1)

As is rather customary, in a number of calculations involving the length scales, we make
a slightly abusive substitution for Lk =

⌈
Lα

k−1

⌉
and use instead Lα

k−1 ∼
⌈
Lα

k−1

⌉
(in the

limit L0 → +∞). Further, let m0 > 0, and set for k � 0

mk := m0

k

∏
j=0

(1−η j) , ηk := 2L−c
k , c > 0, (3.2)

with c > 0 to be specified in the proof of Corollary 1. Clearly, with L0 large enough
we have a convergent product ∏ j�0(1−η j) � 1

2 , so mk � m0/2.
Given A > 3d and τ > 1, we set γ := A−3d

2 , so that A = 3d +2γ , and define two
positive sequences:

δk := e−mkLk , εk := L−2Aτ
k . (3.3)

DEFINITION 1. Let be given a cube B = BLk (u) , k � 0. A sample ω is called

(1) (E,δ )-NS (non-singular) in B iff E 
∈ Σ(HB(ω)) and∥∥∥1∂BLk
GBLk

(E,ω)1BLk/3

∥∥∥ � (3Lk)−dδ ; (3.4)

(2) (E,ε)-NR (non-resonant) in B iff

dist
[
Σ(HBLk

),E
]
� ε ; (3.5)

(3) (E,ε)-CNR (completely non-resonant) in BLk+1 iff it is (E,ε)-NR for in all balls
BL(u) with Lk � L � Lk+1 .

DEFINITION 2. Given τ > 1 and a cube B = BLk (u) , k � 0, denote B = BL2τ
k

(u)
and consider the decomposition ω = ωB +ω ⊥

B
. Let P be one of the properties (E,δ )-

NS, (E,ε)-NR, or (E,ε)-CNR relative to B. We will say that a sub-sample ωB has
a strong (or stable) property P iff for any complementary sub-sample ω ⊥

B
the full

sample ω = (ωB,ω ⊥
B
) has property P in B. Respectively, the three aforementioned

notations are replaced with (E,δ )-SNS, (E,ε)-SNR, and (E,ε)-SCNR.



886 V. CHULAEVSKY

Note that an event of the form
{

ωB has strong property P
}

is measurable with

respect to the σ -algebra FB generated by {ωb, a ∈ B} , hence any family of such
events relative to disjoint cubes BL(ui) , i ∈ �1,M� is independent.

DEFINITION 3. • A cube BLk+1(u) is called (E,δk,τ,K)-good iff it contains no
collection of K (or more) pairwise L2τ

k -distant cubes {BLk(xi),1 � i � K} , neither of
which is (E,δk)-NS.

• The cube BLk+1(u) is called (E,δk,τ,K)-strongly-good ((E,δk,τ,K)-S-good)
iff it contains no collection of K (or more) pairwise Lτ

k -distant cubes {BLk(xi),1 � i �
K} , neither of which is (E,δk)-SNS.

3.2. Initial length scale (ILS) estimate

Recall that by (V4(1)), with probability 1, the operator H(ω ,ϑ) has nontrivial
spectrum in (−∞,E∗) , hence in some interval I∗ ⊂ (−∞,E∗) of length |I∗| > 0.

LEMMA 2. (ILS for the model with sparse impurities) Let τ > 1 . There exist C,c,L∗
> 0 and an interval I∗ ⊂ (−∞,E∗) such that, for any L0 � L∗ , s > 0 , and ρ ∈(
0,ρ∗(L0,s)

)
with ρ∗(L0,s) small enough, one has, with δ0 = e−cE L0 :

sup
E∈I∗

P
{

BL0(x) is not (E,δ0 , τ)-SNS
}

� L−s
0 . (3.6)

Proof. Fix L0 ∈ N , and consider the operator HBL0 (u)(ω) . If there are no impurity

atoms in an augmented cube BL0+r0(u)), i.e., ∀ b ∈ BL0+r0 θb = 0 , then

inf
x∈BL0

(u)
V (x,ω ,ϑ) � E∗ +E ,

thus
∀E � E∗ dist

[
Σ
(
HB(ω ,ϑ)

)
,E

]
� E .

By the Combes–Thomas estimate [10], there exist some C,c ∈ (0,+∞) such that

∀E � E∗
∥∥∥1∂B GB(L0 ,u)(E)1B( 1

3 L0 ,u)

∥∥∥ � CE −1e−2cE Lk

With an appropriate choice of L∗ , this implies the (E,δ0)-non-singularity of BL0(u) ,
where δ0 = e−m0L0 and, e.g., m0 = cE > 0.

Finally, notice that if BL0(u)∩Zd0 = ∅ , then BL0(u) contains no impurity; other-
wise, one has

P
{∃ b ∈ BL0+r0(u) : θb 
= 0

}
� |BL0+r0(u)|ρ ,

and once L0 is fixed, the RHS is bounded by L−s
0 for 0 < ρ � |BL0+r0(u)|−1L−s

0 . �
Next, we consider a model briefly discussed in Section 7 (cf. model 4), where

the impurities carrying negative potentials fill the entire periodic sub-lattice Zd0 , but
the amplitudes of the positive potentials supported by the sites b ∈ Zd \Zd0 are IID
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random variables, so the random potential has the form V (x;ωωωωω) =V (B)(x;ω)+V (S)(x)
with non-random, periodic surface potential and random positive bulk potential:

V (S)(x) = ∑
b∈Zd0

u−(|x− b|) (3.7)

V (B)(x;ω) = ∑
b∈Zd\Zd0

ωb u+(|x− b|) � 0. (3.8)

We define the background operator H0 = −Δ +V (S) and let E0∗ = inf Σ(H0) .

LEMMA 3. (ILS for periodic impurities in random bulk) Consider the Hamiltonian
−hΔ +V(x;ωωωωω) , assume the hypotheses (V1(4))–(V4(4)) (cf. Section 7), and fix τ > 1 .
Then for any q ∈ (0,1) , there exist L∗,c > 0 such that for any L0 � L∗ one has, with
B = BL0(u) and δ0 = e−m0L0 , m0 = cL−q

0 :

sup
E∈

[
E0∗ ,E0∗+L−q

0

] sup
u∈Rd

P
{

BL0(u) is not (E,δ0,τ)-SNS
}

� L−s
0 .

(3.9)

Proof. As in Lemma 2, we can apply the Combes–Thomas estimate, so it suffices
to prove that, for any q ∈ (0,1) and with L0 large enough,

P

{
ωB : inf

ω⊥
B

inf Σ
(
H(ωB + ω⊥

B
,ϑ)

)
� E∗ +2L−q

0

}
� L−s

0 . (3.10)

Since ωb � 0 for all b ∈ Zd by the hypothesis (V1(1)), we have:

∀x ∈ B inf
ω⊥

B

V (B)(x,ωB + ω ⊥
B
) = V (B)(x,ωB + /0⊥

B
),

so the claim would follow from the estimate where ω⊥
B

in the LHS of (3.10) is replaced

with the empty configuration /0⊥
B
. (As a result, the actual value of τ > 1 is irrelevant.)

Fix any h > 0 in hΔ , q ∈ (0,1) , and L0 > 1 required below to be large enough.

Pick some q′ ∈ (0,1) to be fixed later, and let l0 =
⌈
Lq′

0

⌉∼ Lq′
0 . Partition B into a union

of adjacent cubes B(i) := Bl0(ui) , i = 1, . . . ,M :=
⌊
Ld

0/ld0
⌋
, and let Λi = B(i)∩Zd . Ow-

ing to the Dirichlet–Neumann bracketing, it suffices to work with the Neumann bound-
ary conditions, so in the rest of the proof, we consider the operators ΔN

B , HN
B (ω) =

−hΔN
B +V (·,ω) (here and below, the superscript “N” stands for “Neumann”) and their

counterparts ΔN
i = ΔN

B(i)
, HN

B(i)
(ω) in smaller cubes B(i) . Since ΔN

B � ⊕M
i=1ΔN

B(i)
, we

also have HN
B � ⊕M

i=1H
N
B(i)

, for any potential V : B → R . Therefore,

inf Σ
(
HN

B

)
� min

1�i�M
inf Σ

(
HN

B(i)

)
. (3.11)
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Further, we have inf Σ
(
HN

B(i)
(ω)

)
� E∗ + infx∈B(i) V (B)(x,ω) . Since the random field

V (B)(·,ω) is translation invariant, (3.11) implies a probabilistic bound: for any ε > 0,

P
{

inf Σ
(
HN

B (ω)
)

� E∗ + ε
}

� Ld(1−q′)
0 P

{
inf

x∈Bl0
(0)

V (x,ω) � ε
}

. (3.12)

By (V1(1)), the support of the probability measure μ of the IID random variables ω• is
not a single point, so there exist s > 0 and ν ′ > 0 such that

P
{

maxb∈Λi ωb < s
}

�
(
e−ν ′)ld0 = e−ν ′Lq′d

0 . (3.13)

If maxb∈Λi ωb � h , then infx∈B(i) gV (x,ωB) � gsl−A
0 = gsL−q′A

0 , thus (3.13) implies

P
{

ωB : inf
x∈B

gV(x,ωB) < gsL−q′A
0

}
� Me−ν ′Lq′d

0 � Ld
0 e−ν ′Lq′d

0 .

Therefore, with ν = ν ′/2, q′ = (1+ c′)q/A , c′ � 1, c = q′d , and L0 large enough:

P
{

ωB : inf
x∈B(i)

gV(x,ωB) < L−q
0

}
� e−νLc

0 � L−s
0 . (3.14)

This proves (3.10), and (3.9) follows with the help of the Combes–Thomas bound. �

4. Fixed-energy multi-scale analysis of model 1

The following statement is a standard result of the multi-scale analysis originating
in [12, 31], [13, Lemma 4.2], and streamlined in [21, Section 5]. The assumptions and
the main statement are quite flexible and can be adapted various models in continuous
spaces and on graphs, including periodic lattices; see, e.g., [5, Lemma 2], [9, Lemma
3.1]. Both in continuous and discrete models, the main analytic tool is an analog of
Lieb–Simon inequality (also known as geometric resolvent inequality); cf. [21, 32].

LEMMA 4. (Conditions for non-singularity) Let u ∈ Rd , and suppose that

(i) BLk+1(u) is (E,εk+1)-NR with εk+1 � δ 1−c
k , for some εk+1,δk,c ∈ (0,1);

(ii) BLk+1(u) is (E,δk,K)-good, with K � 0 such that

N := �Lk+1/Lk�−10K�L2τ
k � � 1 . (4.1)

Then BLk+1(u) is (E,δN+c
k )-NS.

In our case δk = e−mkLk and εk+1 = e−O(lnLk+1) , hence the condition εk+1 � δ 1−c
k

in hypothesis (ii) is fulfilled for any c ∈ (0,1) and large L0 .

COROLLARY 1. (Conditions for strong non-singularity) Let be given a cube B =
BLk+1(u) , k � 0 , and suppose that

(i) B is (E,εk+1,τ)-SNR;

(ii) B is (E,δk,τ,K)-S-good, with K � 0 such that (4.1) holds.

Then B is (E,δk+1,τ)-SNS.
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Proof. Denote B = BL2τ
k+1

(u) . One has to show that, with a fixed sample ω ⊥
B

satisfying the hypotheses (i)–(ii), the cube B is (E,δk+1)-NS for the sample (ωB,ω ⊥
B
)

regardless of the complementary sample ω ⊥
B
.

First, notice that the condition (i) is already stable with respect to ω ⊥
B
.

Next, by (ii) there are at most K−1 cubes BLk (xi) which are pairwise L2τ
k -distant

and such that any ball BLk (x) with x 
∈ ∪K
i=1BL2τ

k
(xi) is (E,δk,τ)-SNS. The support

of ω ⊥
B

is outside all cubes BL2τ
k

(xi) , hence such distant samples ω ⊥
B

cannot affect the

strong non-singularity property of the cubes BLk (xi) . Applying Lemma 4, we see that
the cube B is (E, δ̃k+1)-NS with

− ln δ̃k+1 = Nk+1mkLk −C′ lnLk+1+
(
ln(3Lk+1)d − ln(3Lk+1)d

)
� LkYk+1mk

(
1− 10KL2τ

k

Lα
k

− C′′ lnLk+1

mkLk+1

)
+ ln(3Lk+1)d

� Lk+1mk(1−ηk)+ ln(3Lk+1)
d ,

(4.2)

where ηk is as in (3.2), with c = α −2τ > 0. Thus B is (E,δk+1,τ)-SNS. �

Until the end of this section, we will need to examine only the non-singularity
properties of the cubes having non-empty intersection with the sub-lattice Zd0 (the
impurity layer), since we are concerned only with energies E ∈ I∗ , and any cube outside
this layer has energies above I∗ . On any scale, we are free to choose a partition of Rd

into a union of cubes of size Lk , so can we cover first Zd0 by cubes BLk(b) with b ∈
Zd0 , and then decompose the rest of the space into Lk -cubes having empty intersection
with Zd0 . We will not repeat this fact every time again. Also, it is readily seen that the
entire bulk represents a “forbidden zone” for eigenfunctions with eigenvalues E < E∗ ,
so the latter decay exponentially, and deterministically, away from Zd0 , and we have
to prove their decay only along Zd0 .

LEMMA 5. Let be given the real numbers A > 3d and τ > 1 . Consider a cube
BLk+1(u) and let εk+1 = L−2Aτ

k+1 . Then

P
{

ωB : ∃ω ⊥
B

BLk+1(u) is not (E,εk+1,τ)-SCNR
}

� 1
2
L
−(A+ 1

3 )τ+d+1
k+1 . (4.3)

Proof. By Definition 2, if BLk+1(u) is not (E,εk+1,τ)-SCNR, then for some R ∈
�Lk,Lk+1� the cube BR(u) is not (E,εk+1,τ)-SNR. Even the largest among them,
BLk+1(u) , is surrounded by a belt of width Lτ

k+1 , so by Theorem 2 (cf. (2.3)),

P
{

ωB : inf
ω⊥

B

dist
[
Σ
(
HBR(u)

)
, E

]
� 2εk+1

}
= o

(
L
−(A+ 1

3 )τ+d
k+1

)
� 1

2
L
−(A+ 1

3 )τ+d
k+1 ,

which proves (4.3), since R ∈ �Lk,Lk+1� takes less than Lk+1 values. �
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LEMMA 6. Assume that A = 3d +2γ , γ > 0 , and let τ > d+1
γ = 2d+2

A−3d . Set

α = 3τ , s =
(
A+ 1

3

)
τ −d−1 > Aτ −d−1 , (4.4)

then
s−αd > γτ > 0. (4.5)

Furthermore, assume that

pk := sup
x∈Rd

P
{

BLk(x) is not (E,δk,τ)-SNS
}

� L−s
k . (4.6)

Fix any integer M � 1 and assume that

1
2
Lα−2τ

0 ≡ 1
2
Lτ

0 � K :=
⌈
2M ·3sγ−1⌉ . (4.7)

Then for L0 large enough

P
{

BLk+1(u) is not (E,δk+1,K,τ)-S-good
}

� 1
2
L−Ms

k+1 . (4.8)

Proof. (4.5) follows by a simple calculation: with A = 3d +2γ and γτ > d +1,

s−αd > Aτ −d−1−3τd � 2 ·1γτ − (d +1) > γτ .

It follows from Definition 2 that the event Bx =
{

ω : BLk (x) is not (E,δk,τ)-SNS
}

is
F
(
B(L2τ

k ,(x)
)
-measurable, and so if the cubes BL2τ

k
(xi) , 1 � i � K , are disjoint, then

P
{∩K

i=1Bxi

}
=

K

∏
i=1

P{Bxi } � pK
k . (4.9)

By (4.5), we have s−αd
α > γτ

3τ = γ
3 , so with K =

⌈
6Msγ−1

⌉
, the random maximal

number S(ω) of pairwise L2τ
k -distant singular cubes BLk (xi) inside BLk+1(u) obeys

P{S(ω) � K } � CLKd
k+1pK

k � CL
−K( s

α −d)
k+1 <

1
2
L−Ms

k+1 . (4.10)

This proves the inequality (4.8). �

REMARK 5. Observe that, while (4.7) allows one to operate with any fixed M ∈
N∗ , provided L0 is large enough, one can take M = Mk by taking K = Kk , provided Kk

disjoint L2τ
k -cubes can fit into an Lk+1 -cube, with Lk+1 ∼ Lα

k = L3τ
k . This will be used

in Section 5.1 to “boost” the probability estimates obtain through the scale induction
with a fixed M . It would be pointless to do so in the course of the scale induction due
to a weaker, power-law probability bound (4.3). �
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LEMMA 7. (Scale induction) Assume that the bound

sup
x∈Rd

sup
E∈I∗

P
{

BLj (x) is not (E,δ j,τ)-SNS
}

� L−s
j , s > 0 , (4.11)

holds for j = k � 0 . Then it also holds for j = k+1 .

Proof. By Corollary 1, if the cube BLk+1(x) is not (E,δk+1,τ)-SNS, then

• either BLk+1(x) is not (E,εk+1,τ)-SNR,

• or BLk+1(x) is not (E,δk,K,τ)-S-good.

By Lemmas 5 and 6, the probabilities of both events are bounded by 1
2L−s

k+1 , so the
claim follows. �

The base of the scale induction is provided by Lemma 2, and by induction on k ,
we come to the conclusion of the multi-scale analysis of the base model.

LEMMA 8. Consider the Hamiltonian of the form (1.1) with A > 3d . There exists
an interval I∗ ⊂ R− such that H(ω ,ϑ) has a nontrivial spectrum in I∗ . In addition,
for any s > 0 , there exists L∗ ∈ N such that, if L0 � L∗ , then

∀k � 0 sup
E∈I∗

sup
x∈Rd

P
{

BLk (x) is not (E,δk,τ)-SNS
}

� L−s
k . (4.12)

5. Decay of eigenfunctions and of eigenfunction correlators

5.1. Enhancement of the MSA estimates

LEMMA 9. Under the assumptions and with notations of Lemma 8, one has for
some ζ > 0

sup
x∈Z

sup
E∈I∗

P
{

BLk+1(x) is not (E,δk+1)-NS
}

� e−Lζ
k . (5.1)

Proof. In the proof of Lemma 6, the RHS of (4.11) is obtained as a sum of the
probability bounds (4.3) and (4.8). Remark 5 shows that (4.8) can be enhanced by
making M scale-dependent. For example, with M = Mk = c(A,d)s−1Lτ

k and some
c(A,d) > 0 small enough, the RHS of (4.10) is bounded by

L
−c(A,d)s−1L2τ

k ·s
k+1 � e−c(A,d)Lα/3

k+1 � e−Lq
k+1 , 0 < q < 1/3 . (5.2)

Such an enhancement would be pointless, since (4.3), proved in the framework of the
scale induction, provides only a power-law bound on the probability of non-SNR cubes.

The weakness of (4.3) is due to the fact that, in the course of the scale induc-
tion, one needs strong non-resonance (SNR) condition for the cubes involved. Thus we
are allowed to make use of the random amplitudes ωb only in a finite cube BL2τ

k
(u) ,
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whence the lower bound ε � εLk = L−A2τ
k . However, Theorem 2, stated for an arbi-

trary cube size L , evidences that, once the restriction b ∈ BLA2τ
k

(u) on the admissible

supports of the scatterers ωb u+(·− b) is lifted, so is the constraint ε � εLk , too.
In Lemma 4, the hypothesis (i) requires that εk+1 � δ 1−c

k for some c > 0, so with

δk = e−mLk , we are allowed to assign to εk+1 any value of the form e−Lq
k+1 .

Turning to the statement of Lemma 9, note that the main event refers to the non-
resonance property and not strong non-resonance, thus one can apply Lemma 9 making
use of ωb with b in arbitrarily large ambient cube of some size L′ . Therefore, we can
apply Lemma 9 with any ε > 0, provided L′ is large enough, so that εL′ � ε . The
bound (4.3) is no longer the bottleneck, and we can choose ε > 0 as small as required
to match the quantity (5.2) (sub-exponential in Lk+1 !), replacing (4.8).

Summarizing, to prove (5.1), we use Lemma 4 instead of Corollary 1, and set

εk+1 = e−Lq
k+1 , provided 0 < q < 1/3, K = Kk+1 = 1

2L
1− 2τ

α
k+1 , and L0 is large enough.

Then the claim follows in essentially the same way as in the proof of Lemma 7. �

It is worth emphasizing that the enhancement provided by the above Theorem can
be achieved on any scale Lk only after completion of the scale induction with weaker
probability estimates. Indeed, the enhancement on scale Lk+1 relies upon the MSA
bounds on all scales 0 � k′ � k : this is only a “bootstrap”, not an independent proof.

5.2. Energy-interval estimates

Until this point, we carried out the fixed-energy multi-scale analysis. The proof of
spectral and dynamical localization requires probability estimates for pairs of Hamil-
tonians HB′ , HB′′ in distant cubes B′ and B′′ , where the spectral parameter E is no
longer fixed but ranges in a certain interval I∗ . The reduction of variable-energy MSA
estimates to their fixed-energy counterparts is well-understood by now, and various
techniques can be used for this purpose. Denote

ML,x(E) :=
∥∥∥1∂BLk

(x) GBLk
(x)(E,ω)1BLk/3(x)

∥∥∥ .

Below we build upon the results of [4] adapting the techniques proposed by Elgart et
al. [14]. Specifically [4, Theorem 3] allows for various types of probability estimates
of the form P{ML,x(E) > aL } � g(a) , including the situation where 0 < aL < e−

1
3 Lq

,
with q ∈ (0,1) , and g(a) = e−Lq

(cf. [4, Section 5]. This fits our case, so for brevity,
we present below an adaptation of the results of [4, Section 5].

PROPOSITION 4. Assume that the following conditions are fulfilled:

sup
E∈I∗

sup
x∈Z

P
{
ML,x(E) > e−

1
3 Lq

}
� e−Lq

, (5.3)

and for some pair of disjoint cubes BL(x) and BL(y) ,

P
{

dist
[
ΣI∗(HBL(x)) , ΣI∗ (HBL(y)) � s

]}
� sb , b ∈ (0,1]. (5.4)
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If L is large enough, then

P

{
∃E ∈ I∗ : min

z∈{x,y}
ML,z(E) > e−

1
3 Lq

}
� 3e−

1
3 Lq

. (5.5)

COROLLARY 2. For any q ∈ (0,1/3) and L0 large enough, one has

∀k ∈ N P
{∃E ∈ I∗ : BLk (x) and BLk (y) are not (E,δk)-NS

}
� 3e−

1
3 Lq

. (5.6)

With the above estimate at hand, an exponential decay of all generalized eigenfunctions
ψ with eigenvalues in I∗ (the assertion (A) of Theorem 1) can be established essentially
as in [13]; see also [7, Section 7.3, Lemma 7.9].

5.3. Strong dynamical localization

An elegant derivation of strong dynamical localization from the energy-interval
MSA estimates was proposed long ago by Germinet and Klein [21] (see also [20])
who operated with the eigenfunction correlators in the entire space. Their argument
becomes particularly simple in the situation where one proves first the decay bound for
the eigenfunction correlators in finite cubes, where it can be encapsulated in a fairly
elementary functional-analytical lemma, as was shown in our prior papers, e.g., [4, 5].

PROPOSITION 5. (Cf. [4, Thm. 7], [5, Thm. 3]) Suppose that a bound of the form

P
{∃E ∈ I∗ : BLk (x) and BLk(y) are not (E,δk)-NS

}
� f (Lk) (5.7)

holds for some function f � 0 and all k � 0 . Then for |x− y| ∈ [3Lk,3Lk+1] , one has,
recalling χx = 1B1(x) ,

E [χxφI(H(ω))χy ] � C1|x− y|d f (|x− y|α−1
)+C2e

−m|x−y|. (5.8)

Proof of Theorem 1(B). By Corollary 2, the estimate (5.7) holds in our model with
f (L) = 3e−

1
3 Lq

, where 0 < q < 1/3. It is plain that the second, exponential term in the
RHS of (5.8) is much smaller than the first one, which is sub-exponential in Lk . Thus
by a straightforward calculation, for any ζ ∈ (0,q) , we have:

∀x,y ∈ Z E [χxφI(H(ω ,ϑ))χy ] � Cζ e−|x−y|ζ , Cζ ∈ (0,+∞). (5.9)

Since 0 < q < 1/3 is arbitrary, so is ζ ∈ (0,q) . This proves the claim (1.13). �

6. Adaptation to the lattice model

Now we turn to the surface model on a lattice Zd0 ≡ Zd0 ∼= Zd0 ×{
0d−d0

}
em-

bedded into an ambient lattice Zd . Our proof of localization (in the continuous model)
under the assumption of low density of impurity sites carrying negative potentials can
be easily extended to the discrete case with minimal modifications.
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The definition of the cubes BL(u) is similar to (2.1):

BL(u) =
{

x ∈ Zd : |x−u|∞ � L
}

, |x|∞ = |x1|+ · · ·+ |xd|. (6.1)

The definition of a cube’s boundary remains unchanged: ∂BL(u) = BL(y)\BL−2(u) .
As before, we work with a sequence of length scales (Lk)k�0 defined recursively:

Lk+1 =
⌈
Lα

k

⌉
, with α = 3τ , τ > max

[
8d, 2d+2

A−3d

]
.

As pointed out in Section 4, the main toolbox of the multi-scale analysis easily
adapts to various Anderson-type Hamiltonians in Euclidean spaces and on lattices. The
principal analytic component requiring adaptation is the Simon-Lieb type inequality,
the proof of which is in fact much more elementary for the Hamiltonian on combina-
torial graphs, including the lattices Zd . It has been used in numerous earlier papers.
With this inequality at hand, the general induction scheme remains essentially the same
in continuous and lattice models. For these reasons, we do not repeat, almost verbatim,
the arguments from Section 4.

The enhancements of the probabilistic estimates provided by the fixed-energy
scale induction from Section 4, carried out in Section 5.1, also apply to the lattice
model, and so do the results of sections 5.2–5.3.

The Hamiltonian H(ω ,ϑ) is the lattice analog of its counterpart (1.1),

H(ω ,ϑ) = −hΔ +V(x;ω ;ϑ) = −hΔ +V (B)(x)+V (S)(x;ω ;ϑ) , (6.2)

acting in the Hilbert space �2(Zd) , but Δ is now the canonical graph Laplacian on Zd

endowed with the usual graph structure,

(Δ f ) (x) = ∑
y∈Zd : |y−x|∞=1

( f (y)− f (x)) .

The random potential has the form V (x,ω ,ϑ) = V (B)(x)+V (S)(x;ω ;ϑ)

V (B)(x) = ∑
∈Zd\Zd0

sb u+(|x− b|) � 0 , sb ∈ [0,s] , (6.3)

V (S)(x;ω ;ϑ) = ∑
b∈Ẑd0

ωbu
+(|x− b|) (6.4)

+ ∑
Zd0\Ẑd0�b:ϑb=0

u+(|x− b|)+ ∑
Zd0\Ẑd0�b:ϑb=1

u−(|x− b|) . (6.5)

Here, again, s : Zd \Zd0 → [0,s] is a fixed, non-random function.

Now our hypotheses are as follows.

(V1(2)) = (V1(1)) , (V3(2)) = (V3(1))

(V2(2)) For all r � 0 , u−(0) < 0 , and ∑r�1 rd−1 |u−(r)| < +∞ . u+(0) > 0 , and for
r � 1 and some A = 3d +2γ with γ > 0 , u+(r) = r−A .
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(V4(2)) Let H0 = −hΔ +V (B)(x) . There exist E∗ < 0 , E > E∗ , and φ ∈ L2(Br0(0))
with ‖φ‖2 = 1 such that

u−(0)+ ∑
b∈Zd\Zd0

u+(|0− b|) < −‖Δ‖+E∗ . (6.6)

inf
x∈Zd

∑
b∈Zd0\{x}

u−(|x− b|) � E∗ +E . (6.7)

The proof of the initial length scale estimate, analogous to Lemma 3, requires only
minor adaptations, and performing the multi-scale analysis essentially as in Sections 4–
5 (again, in the lattice setting), we come to the following

THEOREM 6. Under the assumptions (V1(2))–(V4(2)), there exist ρ̂ > 0 and an
interval I∗ ⊂ (−∞,0) such that the following holds with ρ ∈ (0, ρ̂] (cf. (1.7)).

(A) With probability one, the spectrum of H(ω ,ϑ) in the interval I∗ is nontrivial and
pure point, and all its eigenfunctions ψ of H(ω ,ϑ) with eigenvalues Eψ ∈ I∗
decay exponentially at infinity: for some m > 0 one has

∀x ∈ Z |ψ(x;ω ;ϑ)| � Cψ (ω ,ϑ)e−m|x| . (6.8)

(B) For any ζ ∈ (0,1/3) and some Cζ ∈ (0,+∞) , one has:

E
[

sup
φ∈B(I∗)

∥∥1{x} φI∗(H(ω ,ϑ)) 1{y}
∥∥ ]

� Cζ e−|x−y|ζ , (6.9)

where B(I∗) is the set of Borel functions φ with suppφI∗ ⊂ I∗ and ‖φI∗‖∞ � 1 .

7. Further extensions

The general scheme of the proof of localization for the models 3–5 remains the
same as in Sections 4–5, so we only briefly comment on required modifications.

Model 3. Strong surface disorder and periodic bulk in the lattice Zd . In this model,
the entire surface lattice carries the negative potentials u− , all modulated by random
amplitudes ω• , while the bulk sites b∈Zd \Zd0 carry the potentials u+ with a constant
amplitude, so the bulk potential is periodic. The Hamiltonian has the form H(ω ,g) =
−Δ +gV(x,ω) with V (x,ω) = V (B)(x)+V (S)(x,ω) , and we assume the following.

V (B)(x) = ∑
b∈Zd

u+(|x− b|) , (7.1)

V (S)(x;ω) = ∑
b∈Zd0

ωb u−(|x− b|) (7.2)

(V1(3)) = (V1(1)) ,



896 V. CHULAEVSKY

(V2(3)) For all r � 0 , u+(0) � 0 , and ∑r�1 rd−1 |u+(r)| < +∞ . u−(0) < 0 , and for
r � 1 and some C > 0 , A = 3d +2γ with γ > 0 , u−(r) = −Cr−A .

(V3(3)): none .

(V4(3)) The potentials u− and u+ fulfill the condition

u−(0)+ ∑
b∈Zd\Zd0

su+(|0− b|) < −‖Δ‖+E∗ . (7.3)

inf
x∈Zd

∑
b∈Zd0\{x}

u−(|x− b|) � E∗ +E . (7.4)

Since only the surface sites carry negative potentials and produce eigenfunctions
with negative energies, it suffices to make use of the strong disorder in the surface
layer: the bulk represents a “forbidden zone” for such eigenfunctions, so one can use
the Combes–Thomas bound to prove ILS estimate in the bulk cubes.

LEMMA 10. (ILS under strong disorder; cf. [7, Lemma 6.5]) For any m > 0 and

s > 0 , there exist L∗ ∈ N , τ >
[

s+d+1
2(A−d) , 8d

]
, and an interval I∗ ⊂ (−∞,0) such that

for L � L∗ and some ĝ(m,s,L) > 0 , for any g � ĝ(m,s,L) , one has, with B = BL(0) ,
B = BL2τ (0) , and ω ⊥

B
= ω

Zd\B :

sup
I∗∈R

P
{

ωB : ∀ω⊥
B

min
x∈B

∣∣gV (x;ω B + ω⊥
B
)−E

∣∣ � 2emL
}

� L−s , (7.5)

so that by virtue of the min-max principle,

sup
E∈I∗

P
{

ωB : ∀ω⊥
B

dist
[
Σ
(−ΔB +gV

)
,E

]
� emL

}
� L−s . (7.6)

Consequently, with δ0 = emL , one has for ∀u ∈ Rd and E ∈ I∗ :

P
{

BL0(u) is not (E,δ0,τ)-SNS
}

� L−s . (7.7)

Proof. Decompose V (x,ω) = V (x,ω B)+V (x,ω ⊥
B
) and let Wx(ω) := V (x,ω B) ,

ζx(ω ⊥
B
) := V (x,ω ⊥

B
) , then

∀x ∈ B C1L
−2(A−d)τ �

∥∥ζx
∥∥

∞ � ηL := C−1
2 L−2(A−d)τ+1 . (7.8)

Next, let ĝ = C2L2(A−d)τ−1emL �
∥∥ζx

∥∥−1
∞ emL , then for g � ĝ and for all x ∈ BL(0) ,

sup
E

P
{

ω B : inf
ω⊥

B

|gV(x,ω B + ω⊥
B
)−E|� emL }

= sup
E ′

P
{

ω B : ∃ω⊥
B
|(W (x,ω B)−E ′)+ ζx(ω⊥

B
)| � g−1emL

}
� sup

E ′
P

{ |W (x,ω)−E ′| � ĝ−1emL + ηL
} (7.9)
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The goal of the above transformations was to eliminate infω⊥
B

from the probability

of the event in question. Now that this goal is achieved, we apply again the identity
W (x,ω) = V (x,ω)− ζx(ω) and recall that, by Lemma 1, the random variable V (x, ·)
has a bounded (indeed, C∞(R)) density, thus for any E ′ ∈ R :

P
{ |W (x,ω)−E ′| � ĝ−1emL + ηL

}
� sup

E ′
P

{ |V (x,ω)−E ′| � ĝ−1emL +2ηL
}

� sup
E ′

P
{ |V (x,ω)−E ′| � 3ηL

}
� C′′ηL � C′′′L−2(A−d)τ+1 .

(7.10)
It follows that

P
{

ω B : ∃x ∈ B inf
ω⊥

B

|gV (x,ω B + ω⊥
B
)−E|� emL }

� C′′|B|L−2(A−d)τ+1+d .

Now the claim follows from the bound τ > s+d+1
2(A−d) , so that 2(A−d)τ −d−1 > s . �

THEOREM 7. Under the assumptions (V1(3))–(V4(3)), there exists ĝ > 0 such that
the following holds for any g � ĝ and some E∗ = E∗(g) < 0 .

(A) With probability one, spectrum of H(ω ,ϑ) in the interval I∗ = (−∞,E∗] is non-
trivial and pure point. Any eigenfunction ψ(·,ω) with eigenvalue E ∈ I∗ decays
exponentially: for some m > 0 ,

∀y ∈ Z |ψx(y;ω)| � Cψ (ω)e−m|y−x| . (7.11)

(B) There exists some � > 0 such that, for all x 
= y and for any bounded Borel function
φ with suppφ ⊂ I∗ and ‖φ‖∞ � 1 , one has

E
[∥∥1{x} φ(H(ω ,ϑ)) 1{y}

∥∥]
� e−|x−y|� . (7.12)

Model 4. Homogeneous random bulk and periodic non-random surface in the con-
figuration space Rd . This corresponds to impurities in model 1 filling regularly the
entire surface lattice Zd0 with a constant amplitude of all negative scatterer potentials.
Specifically, V (x;ω) = V (B)(x,ω)+V (S)(x) , where

V (S)(x) = ∑
b∈Zd0

u−(|x− b|) , V (B)(x,ω) = ∑
b∈Zd\Zd0

ωbu
+(|x− b|). (7.13)

(V1(4)) The random variables
{

ωb , b ∈ Zd
}

are IID. The support of their common
probability measure μ contains at least two points, and 0 ∈ suppμ ⊂ [0,s] , s > 0 .

(V2(4)) = (V2(1)) , (V3(4)): none.
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(V4(4)) There exist some E∗ < 0 and φ ∈ L2(Rd) with ‖φ‖2 = 1 and suppφ ⊂ Br0(0) ,
r0 ∈ (0,1) , such that(

φ ,
(−hΔ +u−(|x|)+ ∑

b∈Zd\{0}
su+(|x− b|))φ

)
� E∗ . (7.14)

Possible variants:
(i) The potentials u+(·− b) of constant amplitude fill a sublattice Ẑd0 ⊂Zd0 .

(ii) The random potentials ωbu
+(·− b) appear only in some layer Zd0 × �1,R� ,

R � 1. Here �1,R� = [1,R]∩Z .

(iii) The potentials ωbu
+(·− b) appear on an entire periodic sublattice of Zd \Zd0 .

Model 5. Periodic non-random bulk in the configuration space Rd . The random pos-
itive potentials ωb u+(| · −b|) are carried by randomly placed sites b ∈ Zd0 where
ϑb = 0, and the remaining sites b ∈ Zd0 (with ϑb = 1) carry non-random potentials
u−(| ·−b|) . The random potential has the form V (x;ω ;ϑ) = V (B)(x)+V (S)(x,ω ,ϑ) ,
where

V (S)(x;ω ;ϑ) = ∑
b∈Zd\Zd0

u+(|x− b|).

V (B)(x) = ∑
b∈Zd0

((
1−ϑb

)
ωb u+(|x− b|)+ ϑbu

−(|x− b|)
)

,
(7.15)

(V1(4)) = (V1(1)) , (V2(4)) = (V2(1)) , (V4(4)) = (V4(1)) .

(V3(4)) The random field ϑ• on Zd0 is IID with values in {0,1} and

P{ϑb = 1} = 1−P{ϑb = 0} ∈ (0,1). (7.16)

Comments on model 5. The eigenvalue concentration analysis in this model requires
some additional probabilistic estimates, but these are quite straightforward. As pointed
out in Section 2, the proofs of Theorems 2–3, which merely adapt Theorems 2.5 and 2.7
from [7], rely on a possibility to find, for any cube BL(u) with u∈Zd0 , a collection BL

of random potentials ωbku
+(·− bk) , 1 � k � L� , where |bk −u| � Lτ and � ∈ (0,1) .

This is clearly possible when an entire periodic sublattice Ẑd0 �Zd0 carries the random
potentials ωbku

+(·− b) , so in model 5, one has to make sure such a collection can be
found. To this end, one can apply the large deviations estimates for the IID random field
ϑ• with values 0 and 1, both having strictly positive probabilities. In a set of cardinality
n � L� � 1, the number of sites carrying the value ϑb = 0 is asymptotically ρn , with
probability at least 1− e−c′n � 1− ecL�

(cf., e.g., the Chernoff estimate [3]), and such
a probability is more than sufficient for the scale induction in Section 4. Thus, from the
combinatorial point of view, the situation with model 5 is quite close to that in model
1, where the number of sites b with ϑb = 0, say, in a cube of cardinality n � L� ,
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is also asymptotically Const n with Const > 0 depending on the period of sublattice
Ẑd0 � Zd0 . �

Our final comment is that, as the reader has probably realized by now, one can
include a periodic background potential V (0) in all the models listed above and treated
in Sections 4–6. Moreover, in the models where the initial length scale bound is inferred
from a low density of impurities, as in model 1, it suffices to assume that ‖V (0)‖∞ < ∞ .

Acknowledgements. I thank the reviewer for a thorough reading of the manuscript
and making valuable suggestions which contributed to improving the clarity of presen-
tation.
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