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A SYNCHRONOUS NPA HIERARCHY WITH APPLICATIONS

TRAVIS B. RUSSELL

(Communicated by I. Klep)

Abstract. We present an adaptation of the NPA hierarchy to the setting of synchronous correla-
tion matrices. Our adaptation improves upon the original NPA hierarchy by using smaller certifi-
cates and fewer constraints, although it can only be applied to certify synchronous correlations.
We recover characterizations for the sets of synchronous quantum commuting and synchronous
quantum correlations. For applications, we show that the existence of symmetric informationally
complete positive operator-valued measures and maximal sets of mutually unbiased bases can be
verified or invalidated with only two certificates of our adapted NPA hierarchy.

1. Introduction

Technological advances in quantum computing and quantum communication have
accelerated in recent years, putting a number of high-stakes applications in the realm
of the potential near future. One such application is quantum key distribution, a proto-
col in which a secret key is distributed to two distant parties through the measurement
of entangled particles. The security of device-independent quantum key distribution is
based on the laws of quantum mechanics when entanglement is present in the particles
measured [24]. Moreover, this entanglement can be verified by considering the prob-
ability distributions generated by the measurement devices used in the key generation
process. These probability distributions are called quantum correlations. However,
many open questions remain regarding precisely which probability distributions can be
certified as quantum correlations (e.g. see [6]).

The best known method for distinguishing quantum correlations from other kinds
of probability distributions is the NPA hierarchy, developed in [15]. Roughly, the NPA
hierarchy is an infinite sequence of semidefinite programs which yield positive semidef-
inite matrices certifying that a given probability distribution may be a quantum correla-
tion. If the given probability distribution p yields a complete infinite sequence of cer-
tificates, then that distribution is certified as a quantum commuting correlation, meaning
that p was potentially generated by a valid quantum measurement scenario according
to the Haag-Kastler axioms of relativistic quantum mechanics [9], though the Hilbert
space required may have infinite dimension. In practice, one cannot generate an infinite
sequence of certificates directly. However, if there exists a certificate Γm+1 extending
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the previous certificate Γm and having the same rank, then the hierarchy can be termi-
nated and the correlation can be certified as a quantum correlation arising from a finite
dimensional Hilbert space. The NPA Hierarchy can also be developed using the theory
of universal C*-algebras (see Section 3 of [18]), and it was recently generalized to the
setting of prepare-and-measure scenarios (see [25]).

The distinction between quantum commuting correlations and quantum correla-
tions would be of less practical importance if it were possible to approximate an ar-
bitrary quantum commuting correlation with a quantum correlation. The question of
whether or not this was possible remained open for many years and generated tremen-
dous research interest, eventually becoming tied to a long-standing problem in math-
ematics known as Connes’ embedding problem. These questions were finally settled
recently in the paper [11], which showed that some quantum commuting correlations
cannot be approximated by quantum correlations. Their methods required only syn-
chronous quantum correlations, which are the subject of this paper.

In this paper, we present an adaptation of the NPA hierarchy for certifying syn-
chronous quantum and quantum commuting correlations. While a synchronous corre-
lation can be verified using the original NPA hierarchy as well, our adaptation has some
advantages. The certificates produced by the hierarchy are smaller than those produced
in the original NPA hierarchy. Moreover, there are fewer linear constraints imposed on
the certificate, as one only needs to check that the certificates satisfy a kind of cyclic
symmetry. See Remark 4 below for more details. Our adapted hierarchy yields new
characterizations for the sets of synchronous quantum and quantum commuting corre-
lations. To further motivate these tools, we demonstrate how one can verify or invalidate
two major open problems in quantum information theory, namely the existence of sym-
metric informationally-complete positive operator-valued measures (SIC-POVMs) and
maximal sets of mutually unbiased bases (MUBs) in each dimension, using only two
certificates of our adapted NPA hierarchy.

We conclude this introduction by mentioning some related work. The certifi-
cates in our adapted NPA hierarchy are examples of tracial Hankel matrices, positive-
semidefinite matrices indexed over words in a finite alphabet satisfying certain cyclical
constraints. These have been used previously in the literature to certify the existence
of tracial states on C*-algebras (see, for example, Section 4.5 of [13] or the paper [1]).
The existence of flat extensions is also considered in [13]. Consequently, we do not
expect the results of Sections 3 and 4 to be surprising to experts. However, we are not
aware of any reformulation of the NPA hierarchy for certifying the existence of syn-
chronous correlations in the literature and we feel the advantages outlined in Remark
4, and especially the applications in Section 5, provide sufficient motivation for sharing
the details of this reformulation. We thank J. W. Helton and the anonymous referee for
pointing out these references to the author.

Our results on SICs and MUBs rely on Theorem 6 and Theorem 8 below. These
are algebraic characterizations of the C*-algebras generated by projections associated
to a SIC-POVM or a maximal family of mutually unbiased bases. The definitions are in-
spired by the similarly defined MUB algebra of [16, Theorem 21.3]. The MUB algebra
is used in [8] to give another characterization for MUBs in terms of semidefinite pro-
grams. There, the authors use different techniques, relying on wreath product symme-
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tries of certain groups to produce moment matrices. For MUBs in the six-dimensional
Hilbert space, these moment matrices would correspond to at least order five certificates
in our adapted NPA Hierarchy (see Table 2 and Table 3 of [8]) as opposed to order two
certificates using our approach (in any dimension). We thank the anonymous referee
for pointing out these references to the author.

2. Preliminaries

We begin with an overview of the notation and mathematical prerequisites for the
paper. We let N,R , and C denote the sets of positive integers, real numbers, and
complex numbers, respectively. Given λ ∈ C , we let λ denote its complex conjugate.
For each n ∈ N , we let Mn denote the set of n×n matrices with entries in C .

For each N ∈ N , let [N] = {1,2, . . . ,N} . Given a set A , we let A∗ denote the set
of all words in A , including the empty word which we denote 0. For each w ∈ A∗ , we
let |w| denote the length of w , with the convention that |0| = 0. For every k ∈ N , let
Ak denote the set of all words of length at most k . For example, [N]k denotes all words
of length at most k in the symbols {1,2, . . . ,N} .

We assume basic familiarity with the theory of Hilbert spaces over C and bounded
linear operators on Hilbert spaces. Given a Hilbert space H , we sometimes use the
notation 〈h,k〉 to denote the inner product of vectors h,k ∈ H , and we assume the
inner product is linear in the second component and conjugate-linear in the first. We
also employ bra-ket notation whenever convenient, for example letting |φ〉 , |ψ〉 denote
vectors in a Hilbert space and 〈ψ |φ〉 denote their inner product. We use the notation �v
whenever regarding vectors as column matrices in the finite-dimensional Hilbert space
Cn . We let B(H) denote the set of operator norm bounded operators on a Hilbert space
H , and we let T † denote the adjoint of an operator T ∈ B(H) . By a C*-algebra, we
mean a norm-closed †-closed subalgebra of B(H) . A state on a unital C*-algebra A is
a linear functional φ : A→ C mapping the identity to 1 and mapping positive elements
of A to positive real numbers. A state φ : A → C is tracial if φ(ab) = φ(ba) for all
a,b ∈ A . A state φ is faithful if φ(x†x) > 0 whenever x �= 0. An element P ∈ A is
called a projection if P = P† = P2 . A set of projections {P1,P2, . . . ,PN} ⊆ A is called
a projection-valued measure if each Pi is a projection and if ∑N

i=1 Pi = I . We use freely
well-known results about C*-algebras and Hilbert space operators throughout the paper,
and we refer the reader to [4] for an in-depth introduction to these topics.

2.1. Quantum correlations

Let n,k ∈ N . A tuple of real numbers {p(a,b|x,y)}a,b∈[k],x,y∈[n] is a correlation if
it satisfies the relation

∑
a,b∈[k]

p(a,b|x,y) = 1

for all x,y ∈ [n] . A correlation p(a,b|x,y) is called nonsignalling if the quantities

pA(a|x) = ∑
b∈[k]

p(a,b|x,y) and pB(b|y) = ∑
a∈[k]

p(a,b|x,y)
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are well-defined, meaning that the sum expressing pA(a|x) is independent of the choice
of y ∈ [n] and the sum expressing pB(b|y) is independent of the choice of x ∈ [n] .
Nonsignalling correlations model a scenario where two parties, traditionally named
Alice and Bob, are provided questions x and y , respectively, from a referee. With-
out communicating with each other, Alice produces an answer a and Bob produces
an answer b with probability p(a,b|x,y) . The lack of communication between Alice
and Bob can be verified after many trials by checking that the quantities pA(a|x) and
pB(b|y) are well-defined; i.e. by checking that p(a,b|x,y) is nonsignalling.

Nonsignalling correlations arise in quantum communication protocols, such as
quantum key distribution [24]. In these scenarios, Alice and Bob produce their answers
by performing measurements on particles emitted from a common source. These par-
ticles may be entangled, yielding observable differences from correlations which arise
in classical scenarios [2]. Mathematically, a correlation {p(a,b|x,y)} is called a quan-
tum correlation if there exists a finite dimensional Hilbert space H , projection-valued
measures {Ex,a}k

a=1,{Fy,b}k
b=1 ⊂ B(H) , and a unit vector |φ〉 ∈ H ⊗H such that

p(a,b|x,y) = 〈φ |Ex,a⊗Fy,b |φ〉 . (1)

In this formulation, Alice and Bob apply measurements corresponding to the projection-
valued measures {Ex,a}k

a=1 and {Fy,b}k
b=1 to their respective copies of the Hilbert space

H upon receiving questions x and y , respectively, from the referee. The laws of quan-
tum mechanics dictate that they obtain answers a and b , respectively, with probability
p(a,b|x,y) as described in Equation (1).

Quantum correlations can be equivalently defined in terms of finite-dimensional
C*-algebras. A correlation {p(a,b|x,y)} is a quantum correlation if and only if there
exists a finite dimensional C*-algebra A , projection-valued measures

{Ex,a}k
a=1,{Fy,b}k

b=1 ⊆ A

for which each Ex,a commutes with each Fy,b , and a state φ : A→C such that p(a,b|x,y)
= φ(Ex,aFy,b) . If we eliminate the restriction that the C*-algebra be finite dimensional,
we obtain a quantum commuting correlation. It was an open question for many years
whether or not an arbitrary quantum commuting correlation can be approximated by
quantum correlations [23]. Indeed, this question was shown to be equivalent to the
Connes’ embedding problem [3] of operator algebras (See [12], [5], and [17]). The
recent results of [11] imply that some quantum commuting correlations cannot be ap-
proximated by quantum correlations, thus solving the Connes’ embedding problem.

2.2. The NPA Hierarchy

The NPA hierarchy is an infinite sequence of semidefinite programs developed by
Navascues-Pironio-Acin in [15]. Each semidefinite program in the NPA hierarchy takes
as input a correlation {p(ab|xy)} and returns a certificate in the form of a positive-
semidefinite matrix, provided that the semidefinite program with input {p(ab|xy)} is
feasible. It is shown in [15] that a correlation {p(ab|xy)} is quantum commuting if and
only if every semidefinite program in the NPA hierarchy returns a postive-semidefinite
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certificate. When {p(ab|xy)} is a quantum correlation, only finite many levels of the
NPA hierarchy are needed to certify that {p(ab|xy)} is a quantum correlation. How-
ever, there is no known efficient method for distinguishing quantum correlations for
quantum commuting correlations using the NPA hierarchy. We summarize here the
basic elements of the NPA hierarchy and refer the reader to [15] for more details.

Let A and B be finite sets, and let C = A∪B denote the disjoint union of A and
B . The set A will represent projections belonging to Alice and the set B will represent
projections belonging to Bob. Given a word w ∈C∗ , let wA = aα1

1 aα2
2 . . .aαn

n ∈ A∗ and

wB = bβ1
1 bβ2

2 . . .bβm
m ∈ B∗ , where wA is obtained from w by concatenating the letters of

w which belong to A in order from left to right with ak �= ak+1 for each k , and similarly
obtaining wB from the remaining letters of w . If wA = aα1

1 aα2
2 . . .aαn

n ∈ A∗ and wB =
bβ1

1 bβ2
2 . . .bβm

m ∈B∗ , we define r(w) = a1a2 . . .anb1b2 . . .bm . We write w∼w′ if r(w) =
r(w′) . Finally, for any word w = c1c2 . . .cn−1cn ∈C∗ we let w† = cncn−1 . . .c2c1 .

Now fix n ∈ N and assume A = ∪n
x=1Ax and B = ∪n

y=1By , where the sets

A1, . . . ,An,B1, . . . ,Bn

are mutually disjoint. For words w,v ∈C∗ , we write w ⊥ v if

r(w†v) = a1a2 . . .amb1b2 . . .bm′

with ai,ai+1 ∈ Ax for some x∈ [n] and some index i ; or b j,b j+1 ∈ By for some y∈ [n] ,
and some index j . Let Γk = (Γw,v) be a matrix indexed by words w,v ∈Ck . Then Γk

is a certificate of order k for a tuple {p(a,b)}a∈A1,b∈B1 if Γk is positive-semidefinite
and satisfies

1. Γ0,0 = 1 (unitality),

2. Γw,v = Γw′v′ whenever w†v ∼ (w′)†v′ ,

3. Γw,v = 0 if w ⊥ v (orthogonality)

and Γa,b = p(a,b) for all a ∈ A1 and b ∈ B1 .

THEOREM 1. ([15]) Suppose that a tuple {p(a,b)} has an order k certificate
for every k ∈ N . Then there exists a C*-algebra A , projections {Ea : a ∈ A} and
{Fb : b ∈ B} in A with [Ea,Fb] = 0 for all a ∈ A and b ∈ B, and a state φ : A → C

such that
p(a,b) = φ(EaFb)

for all a ∈ A1 and b ∈ B1 , where E0 = F0 = I . Moreover

∑
a∈Ax

Ea � I and ∑
b∈By

Fb � I

for all x,y ∈ [n] .
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Suppose {p(a,b)} satisfies the conditions of Theorem 1. Let {Ea}a∈A and {Fb}b∈B

be the corresponding projections and φ the corresponding state. Then for each x,y ∈
[n] ,

{Ea}a∈Ax ∪{I− ∑
a∈Ax

Ea} and {Fb}b∈By ∪{I− ∑
b∈By

Fb}

define projection valued measures. On the other hand, if we are given projection-valued
measures {Ex,a}k

a=1 and {Fy,b}k
b=1 in A with [Ex,a,Fy,b] = 0 and a state φ on A , we

can produce certificates by setting

Γα ,β = φ((Pα1 . . .Pαm)†Pβ1
. . .Pβm′ )

where α,β are strings in the letters {e(x,a), f (y,b) : x,y∈ [n],a,b∈ [k−1]}∪{0} , and
where Pe(x,a) = Ex,a , Pf (y,b) = Fy,b , and P0 = I . The missing projections Ex,k and Fy,k

can be recovered as
I− ∑

a∈Ax

Pa and I− ∑
b∈By

Pb

where Ax = {e(x,a) : a ∈ [k−1]} and By = { f (y,b) : b ∈ [k−1]} .

REMARK 1. A quantum correlation can be equivalently determined by a sequence
of certificates Γk where the entries satisfy completeness conditions corresponding to the
relations

k

∑
a=1

Ex,a = I and
k

∑
b=1

Fy,b = I.

However, this imposes more constraints on the set of certificates than is needed, since
the correlation can be determined entirely from the values {p(ab|xy) : a,b∈ [k−1];x,y
∈ [n]} together with the values of the marginal densities {pA(a|x), pB(b|y)} .

Let Γk be a certificate of order k . Then Γk has a rank loop if the submatrix
(Γaw,bv) indexed by words w,v ∈ Ck−1 beginning with letters a ∈ A1 and b ∈ B1 has
the same rank as the full matrix Γk .

THEOREM 2. ([15]) Suppose that the tuple {p(a,b)} has an order k certificate
with a rank loop. Then there exists a finite-dimensional C*-algebra A , projections
{Ea : a ∈ A} and {Fb : b ∈ B} in A with [Ea,Fb] = 0 for all a ∈ A and b ∈ B, and a
state φ : A → C such that

p(a,b) = φ(EaFb)

for all a ∈ A1 and b ∈ B1 , where E0 = F0 = I . Moreover

∑
a∈Ax

Ea � I and ∑
b∈By

Fb � I

for all x,y ∈ [n] .
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Theorem 2 identifies quantum correlations among the set of quantum commuting
correlations using rank loops. One instance in which a rank loop arises is when there
exists a k -order certificate Γk which is a flat extension of an order k−1 certificate Γk−1

(i.e. rank(Γk) = rank(Γk−1)) . In this case, Γk is identified as the submatrix of (Γaw,bv)
with a = b = 0, forcing the rank of the larger submatrix to equal the rank of Γk . As
remarked in Section 4 of [15], there are no known efficient methods for producing such
flat extensions.

2.3. Synchronous correlations

A correlation p(a,b|x,y) is called synchronous if p(a,b|x,x) = 0 whenever a �=
b . The following characterization of synchronous quantum and quantum commuting
correlations comes from [18].

THEOREM 3. (Corollary 5.6 of [18]) Let p(a,b|x,y) be a synchronous correla-
tion. Then p(a,b|x,y) is a quantum commuting (resp. quantum) correlation if and only
if there exists a (resp. finite-dimensional) C*-algebra A , projection valued measures
{Ex,a}k

a=1 ⊆ A , and a tracial state τ : A → C satisfying

p(a,b|x,y) = τ(Ex,aEy,b).

For another characterization in terms of affine slices of projections of the completely
positive semidefinite cone, see Corollary 5.5 of [22].

REMARK 2. In Theorem 3, we may assume without loss of generality that τ is
faithful. This is because whenever A is a C*-algebra and τ : A → C is a tracial state,
we can define a new tracial state τ̂ on the C*-algebra B = A/J , where

J = {x ∈ A : τ(x∗x) = 0}
by setting τ̂(x+J ) = τ(x) . The subspace J ⊆ A is a self-adjoint ideal in A so that
B is a C*-algebra. It is clear that τ̂ is faithful on B . If P,Q ∈ A are projections, then
P̂ := P+J ,Q̂ := Q+J ∈ B are projections and τ(PQ) = τ̂(P̂Q̂) .

We will make use of a family of matrices which are closely related to the set of
synchronous correlations. The following definitions were introduced in [14].

DEFINITION 1. Let n ∈ N . Let Dqc(n) be the set of tuples of real numbers
{p(x,y)}x,y∈[N] for which there exists a C*-algebra A and projections P1,P2, . . . ,Pn ∈
A , and a faithful tracial state τ : A → C such that p(x,y) = τ(PxPy) for each x,y ∈ [n] .
We say that {p(x,y)} ∈ Dq(n) if the same conditions are met, but with the restriction
that A is finite-dimensional.

It was shown in [14] that the set Dq(n) (resp. Dqc(n)) is affinely isomorphic to
the set of a synchronous quantum correlations (resp. quantum commuting correlations)
with n questions and k = 2 answers. For k > 2, it was shown in [21] and [10] that
a particular affine slice of the set Dq(nk) (resp. Dqc(nk)) is affinely isomorphic to



908 T. B. RUSSELL

the set of synchronous quantum correlations (resp. quantum commuting correlations)
with parameters n and k . Consequently, characterizing the structure of the set Dq(N)
(resp. Dqc(N)) with N = nk is equivalent to characterizing the structure of the set of
synchronous quantum (resp. quantum commuting) correlations. Therefore, we will
focus our attention for the rest of the paper on the sets Dq(N) and Dqc(N) .

3. A synchronous NPA hierarchy

In this section, we will characterize, for each N ∈N , the set of correlations Dqc(N)
in terms of positive semidefinite matrices indexed over the set [N]∗ .

LEMMA 1. Let N ∈ N and let Γ be a matrix indexed by words [N]∗ . Suppose
that for each k ∈ N , the finite matrix Γk = (Γα ,β )α ,β∈[N]k is positive-semidefinite. Then
there exist a sequence of finite dimensional Hilbert spaces H1,H2, . . . and a sequence
of isometric linear maps W1 : H1 → H2,W2 : H2 → H3, . . . such that for every k ∈ N ,

1. the Hilbert space Hk is spanned by a set of vectors {|α,k〉 : α ∈ [N]k} ⊆ Hk

2. for every α ∈ [N]k , Wk |α,k〉 = |α,k+1〉 , and

3. for every α,β ∈ [N]k , Γα ,β = 〈β ,k|α,k〉 .

Proof. Let k ∈ N . By the Gram decomposition of the postive semidefinite matrix
Γk , there exists a finite dimensional Hilbert space Hk and vectors {|α,k〉 : α ∈ [N]k} ⊆
Hk spanning Hk such that for every γ,β ∈ [N]k , 〈γ,k|β ,k〉 = Γγ,β . Likewise, there
exists a Hilbert space Hk+1 spanned by vectors {|β ,k+1〉 : β ∈ [N]k+1} such that for
every γ,β ∈ [N]k+1 , 〈γ,k+1|β ,k+1〉= Γγ,β . Define a function Wk from from the set
{|α,k〉 : α ∈ [N]k} to the set {|α,k+1〉 ,α ∈ [N]k} by Wk |α,k〉 = |α,k+1〉 for each
α ∈ [N]k . We first show that Wk extends to a linear map from Hk to Hk+1 . To see this,
observe that for every set of scalar coefficients {tα ,rβ : α,β ∈ [N]k} ,

〈(∑ tα |α,k+1〉),(∑ rβ |β ,k+1〉)〉 = ∑tαrβ 〈α,k+1|β ,k+1〉
= ∑tαrβ 〈α,k+1|β ,k+1〉
= ∑tαrβ Γα ,β

= ∑tαrβ 〈α,k|β ,k〉
= 〈(∑tα |α,k〉),(∑ rβ |β ,k〉)〉.

Thus, if ∑ tα |α,k〉 = 0, then

0 = 〈(∑ tα |α,k〉),(∑ tα |α,k〉)〉 = 〈(∑ tα |α,k+1〉),(∑ tα |α,k+1〉)〉.

It follows that setting Wk(∑ tα |α,k〉) = ∑tα |α,k+1〉 yields a well-defined linear ex-
tension of Wk . To see that Wk is an isometry from Hk to Hk+1 , it suffices to check
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that W †
k Wk is the identity on Hk . This follows from the observation that for every set

of scalar coefficients {tα ,rβ : α,β ∈ [N]k}

〈(∑ tα |α,k〉),W †
k Wk(∑rβ |β ,k〉)〉 = 〈Wk(∑ tα |α,k〉),Wk(∑rβ |β ,k〉)〉

= 〈(∑ tα |α,k+1〉),(∑ rβ |β ,k+1〉)〉
= 〈(∑ tα |α,k〉),(∑ rβ |β ,k〉)〉.

So W †
k Wk is the identity map on Hk . �
We briefly describe the construction for an inductive limit of a sequence of fi-

nite dimensional Hilbert spaces. Let {(Hk,Wk)}∞
k=0 be a sequence of pairs, each pair

consisting of a finite dimensional Hilbert space Hk and an isometry Wk : Hk → Hk+1 .
Whenever k < l we let Wk,l := Wl−1Wl−2 . . .Wk+1Wk : Hk → Hl . Let Ĥ denote the
disjoint union ∪kHk . Then we can define a pre-inner product on Ĥ via 〈xl ,xk〉 =
〈xl,Wk,lxk〉 for each xl ∈Hl and xk ∈Hk when k � l and 〈xl ,xk〉= 〈Wl,kxl,xk〉 for each
xl ∈ Hl and xk ∈ Hk when l < k . Let N = {x ∈ Ĥ : 〈x,x〉 = 0} . Let limk Hk denote
the completion of Ĥ/N with respect to this inner product. Then limk Hk is a Hilbert
space with dimension limk dim(Hk) . Moreover, for each k ∈ N , there exists a natural
isometry Vk : Hk → limk Hk such that VlWk,lHk = VkHk for each k < l . Informally, we
can use the Wk ’s to identify Hk as a subspace of Hk+1 and Vk to identify Hk as a
subspace of limk Hk , so that we have H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ limk Hk .

From the above construction and Lemma 1 we get the following corollary.

COROLLARY 1. Let Γ be a matrix indexed by words in [N]∗ . Assume that for
each k ∈ N , the finite matrix Γk = (Γα ,β )α ,β∈[N]k is positive-semidefinite. Then there
exists a Hilbert space H and vectors {|α〉 : α ∈ [N]∗} ⊆ H such that for each α,β ∈
[N]∗ , Γα ,β = 〈α|β 〉 .

As in the original NPA hierarchy, we will be interested in positive semidefinite ma-
trices Γ indexed by words in [N]∗ whose entries satisfy certain relations. We will keep
track of these relations by introducing an equivalence relation ∼ on [N]∗ × [N]∗ . In the
following, for each γ ∈ [N]∗ with γ = g1g2 . . .gk and each permutation σ of the set
[k] , we let σ(γ) denote the word gσ(1)gσ(2) . . .gσ(k) . We define γ† := gkgk−1 . . .g2g1 ;
i.e. γ† is the word γ written in reverse order.

DEFINITION 2. Let α ∈ [N]k and assume α = ar1
1 ar2

2 . . .arn
n where r1,r2, . . . ,rn ∈

N with ∑i ri � k and ai �= ai+1 for each i = 1,2, . . . ,n− 1. Then we define η(α) :=
a1a2 . . .an ∈ [N]n when a1 �= an and η(α) := a1a2 . . .an−1 ∈ [N]n−1 otherwise. Given
pairs (α,β ),(γ,δ ) ∈ [N]∗ × [N]∗ , we say that (α,β ) ∼ (γ,δ ) if and only if η(α†β ) =
σ(η(γ†δ )) for some cyclic permutation σ .

EXAMPLE 1. We have (32,1412)∼ (3221,14) , since

η((32)†(1412))= η(231412)= 23141 and η((3221)†(14)= η(122314)= 12314,

which are equivalent by a cyclic permutation.
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REMARK 3. Definition 2 is motivated by the properties of projections and tracial
states. For example, suppose that A is a C*-algebra, τ : A → C is a tracial state, and
P1,P2,P3,P4 ∈ A are projections. Then

τ((P3P2)†P1P4P1P2) = τ(P2P3P1P4P1) = τ(P1P2P3P1P4) = τ((P3P2P2P1)†P1P4).

This equality corresponds to the relation (32,1412)∼ (3221,14) demonstrated in Ex-
ample 1.

The following Theorem characterizes the elements of Dqc(N) .

THEOREM 4. Let N ∈ N . Then {p(x,y)} ∈ Dqc(N) if and only if there exists an
infinite matrix Γ indexed by the elements of [N]∗ with Γ0,0 = 1 satisfying the following
properties:

1. For each k ∈ N , the finite matrix Γk = (Γα ,β )α ,β∈[N]k is positive semidefinite.

2. Whenever (α,β ) ∼ (δ ,γ) we have Γα ,β = Γδ ,γ .

3. For each x,y ∈ [N] we have p(x,y) = Γx,y .

Proof. First assume that {p(x,y)} ∈ Dqc(N) . Then there exists a C*-algebra A ,
projections

P1,P2, . . . ,PN ∈ A,

and a tracial state τ : A→ C such that for every x,y ∈ [N] , p(x,y) = τ(PxPy) . For each
α = a1a2 . . .ak ∈ [N]∗ , let Pα := Pa1Pa2 . . .Pak , and let P0 := I . For each α,β ∈ [N]∗ let
Γα ,β = τ(P†

αPβ ) . Then Γ0,0 = τ(I) = 1. To prove (1), it suffices to check that the matrix

of products (P†
αPβ )α ,β is positive in Mn(A) , where n = |[N]k| , since τ is completely

positive (c.f. Proposition 3.8 of [19]). However, this follows from the observation that

(P†
αPβ )α ,β = R†R

where R ∈ M1,n(A) is the row operator given by R = [Pα1Pα2 . . .Pαn ] and {α1, . . . ,αn}
is an enumeration of [N]k . To prove (2), we observe that whenever (α,β ) ∼ (γ,δ ) we
have τ(P†

αPβ ) = τ(P†
γ Pδ ) since τ is cyclic and each Pi satisfies P2

i = Pi (see Remark
3). It is clear that (3) is satisfied. Therefore a matrix Γ with the desired properties exists
whenever {p(x,y)} ∈ Dqc(N) .

Now assume that we are given a matrix Γ indexed over [N]∗ with Γ0,0 = 1 and
satisfying properties (1) and (2). For each x,y ∈ [N] , let p(x,y) = Γx,y . We will show
that {p(x,y)} ∈ Dqc(N) .

By Corollary 1, there exists a Hilbert space H and vectors {|α〉 : α ∈ [N]∗} ⊆ H
with dense span in H such that for every α,β ∈ [N]∗ , Γα ,β = 〈α|β 〉 . For each x∈ [N] ,
let Px denote the orthogonal projection onto the subspace of H densely spanned by the
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vectors {|xα〉 : α ∈ [N]∗} . Clearly Px |xα〉 = |xα〉 for each α ∈ [N]∗ . Moreover, if
α,β ∈ [N]∗ then

〈xβ |α〉 = Γxβ ,α

= Γxβ ,xα

= 〈xβ |xα〉

since (xβ ,α)∼ (xβ ,xα) . Since the range of Px is densely spanned by the set of vectors
{|xβ〉 : β ∈ [N]∗} , we conclude that Px |α〉 = Px |xα〉 = |xα〉 for each α ∈ [N]∗ .

As before, whenever α = a1a2 . . .ak ∈ [N]k , let Pα denote the product Pa1Pa2 . . .Pak .
Because Px |β 〉 = |xβ 〉 for each x ∈ [N] and β ∈ [N]∗ , we see that Pα |0〉 = |α〉 for
each α ∈ [N]∗ . Hence Γα ,β = 〈0|P†

αPβ |0〉 for each α,β ∈ [N]∗ . Let A denote the
C*-algebra generated by the projections P1, . . . ,PN in B(H) and define τ : A → C by
τ(T ) = 〈0|T |0〉 for each T ∈ A . Since 〈0|0〉 = Γ0,0 = 1, τ defines a state on A .
Furthermore, notice that for each α ∈ [N]∗ and each cyclic permutation σ

τ(Pα) = 〈0|Pα |0〉
= 〈0|α〉
= Γ0,α

= Γ0,σ(α)

= 〈0|σ(α)〉
= 〈0|Pσ(α) |0〉
= τ(Pσ(α))

where we have used (0,α) ∼ (0,σ(α)) . It follows that τ is tracial on the ∗ -algebra
generated by the Px ’s and hence τ is a tracial state on A . If τ is not faithful, we can
replace τ with a faithful tracial state on a quotient A/J of A and replace each Px with
Px +J , as described in Remark 2. Therefore the identification p(x,y) := Γx,y defines
a correlation {p(x,y)} ∈ Dqc(N) since, for each x,y ∈ [N] , p(x,y) = τ(PxPy) . �

Assume that {p(x,y)} ∈ Dqc(N) and let Γ be a positive semidefinite matrix as
described in Theorem 4. Then the submatrices Γk = (Γα ,β )α ,β∈[N]k each satisfy Γk

0,0 =
1 and conditions 1, 2, and 3 of Theorem 4. In general, any matrix Γk indexed by the
elements of [N]k is called a certificate of order k for {p(x,y)} if Γk

0,0 = 1 and:

1. Γk is positive semidefinite

2. if α,β ,δ ,γ ∈ [N]k and (α,β ) ∼ (δ ,γ) , then Γk
α ,β = Γk

δ ,γ , and

3. for each x,y ∈ [N] , Γk
x,y = p(x,y) .

COROLLARY 2. Let N ∈ N . Then {p(x,y)} ∈ Dqc(N) if and only if there exists a
sequence of certificates Γ1,Γ2, . . . for {p(x,y)} .
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Proof. Let {p(x,y)}x,y∈[N] be a tuple of real numbers. Suppose there exists a
sequence of certificates Γ1,Γ2, . . . for {p(x,y)} . We will establish the existence of
a single infinite matrix Γ indexed by words in [N]∗ which satisfies the conditions of
Theorem 4. To establish this, we mimick the arguments of Theorem 8 and Appendix
B of [15], summarized here for the sake of completeness. Let Γ̂k denote the infinite
matrix indexed by [N]∗ with

Γ̂k
α ,β =

{
Γk

α ,β α,β ∈ [N]k

0 else

regarded as an element of l∞([N]∗) . We claim that the sequence {Γ̂k}∞
k=1 admits a

convergent subsequence. This follows from the Banach-Alaoglu Theorem provided
that the sequence {Γ̂k}∞

k=1 resides in the unit ball of l∞([N]∗) . To prove this, it suffices
to establish that the diagonal elements of each certificate Γk are bounded by 1, since
each Γk is positive semidefinite. For m ∈ N with m < k , let α ∈ [N]m and x ∈ [N] .
Then since the submatrix [

Γk
α ,α Γk

α ,xα
Γk

xα ,α Γk
xα ,xα

]
is positive semidefinite, we have |Γk

x,α |2 � Γk
α ,α Γk

xα ,xα . Since (xα,xα) ∼ (xα,α) , we
have Γk

x,α = Γk
xα ,xα and hence Γk

xα ,xα � Γk
α ,α . The claim follows by induction on m ,

since Γk
0,0 = 1.

Conversely, if {p(x,y)} ∈ Dqc(N) , then Theorem 4 implies the existence of an
infinite matrix Γ indexed by [N]∗ for which the finite submatrices Γk = (Γα ,β )α ,β∈[N]k

produce a sequence of certificates for {p(x,y)} . �

REMARK 4. We conclude this section by noting some potential advantages for
using Theorem 4 to certify elements of Dqc(N) rather than Theorem 1. First, notice
that an order k certificate for the synchronous hierarchy is indexed over [N]k , whereas
the order k certificate of the NPA hierarchy is indexed over words in Ck where C
denotes the disjoint union of two copies of [N] . The set [N]k contains ∑k

n=0 Nn el-
ements, whereas Ck contains ∑k

n=0(2N)n elements. Thus the matrices considered in
the synchronous hierarchy are smaller. This difference can be narrowed by recognis-
ing that many elements of C are equivalent due to the commutativity property, but
the certificates still remain larger in general. For example, Γ1 in the synchronous hi-
erarchy is an (N + 1)× (N + 1) matrix, while it is a (2N + 1)× (2N + 1) matrix in
the original NPA hierarchy. Secondly, the orthogonality constraint that is needed in
the original NPA hierarchy is redundant in the synchronous hierarchy. This is because
whenever τ is a faithful tracial state and P and Q are projections, τ(PQ) = 0 implies
that PQ = 0, since τ(PQ) = τ(QP2Q) = τ((PQ)†(PQ)) . On the other hand, if φ is
a faithful (not necessarily tracial) state, then φ(PQ) = 0 does not imply that PQ = 0.
Therefore the orthogonality condition must be imposed in the original hierarchy to
ensure that projection-valued measures consist of mutually orthogonal projections. Fi-
nally, we note that the synchronous hierarchy also has the minor advantage that the first
certificate Γ1 is uniquely determined by the correlation {p(x,y)} . Given the matrix
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{p(x,y)} , we form the corresponding certificate Γ1 by appending a single row and col-
umn corresponding to the empty word 0. The entries Γ0,x and Γx,0 for x ∈ [N] are
uniquely determined since (x,0) ∼ (x,x) ∼ (0,x) implies Γx,0 = Γx,x = Γ0,x . The entry
Γ0,0 is determined by the requirement Γ0,0 = 1. In the original NPA hierarchy, there
are 2N2 entries of the first certificate which are not determined by the correlation.

4. The rank loop

In the original NPA hierarchy, quantum correlations are distinguished from quan-
tum commuting correlations by the existence of a rank loop in an order k certificate
Γk . As described in Subsection 2.2, a rank loop is a submatrix of the certificate Γk with
the same rank as Γk and with indices of the form (xα,yβ ) where α and β are words
of length at most k−1, x corresponds to one of Alice’s projections and y corresponds
to one of Bob’s projections. A rank loop also arises whenever rank(Γk−1) = rank(Γk) .

In the synchronous hierarchy, there is no need to index Alice and Bob’s projections
differently since they share the same set of projections. Thus the definition of the rank
loop does not extend to the synchronous hierarchy directly. Instead, we say that an
order k certificate Γk has a rank loop if the submatrix Γk−1 = (Γk

α ,β )α ,β∈[N]k−1 has

the same rank as Γk (i.e. Γk is a flat extension of Γk−1 ). We now show that in the
synchronous hierarchy, elements of Dq(N) are characterized as correlations admitting
an order k certificate with a rank loop.

THEOREM 5. Let N ∈ N . Then {p(x,y)} ∈ Dq(N) if and only if there exists an
integer m ∈ N and an order m+1 certificate Γm+1 with a rank loop. In particular, if
there exists an order m+1 certificate for {p(x,y)} with a rank loop, then there exists a
C*-algebra A , projections P1, . . . ,PN ∈ A , and a faithful tracial state τ : A → C such
that, for every x,y ∈ [N] , p(x,y) = τ(PxPy) and such that A is spanned by operators of
the form {Pa1Pa2 . . .Pam : a1a2 . . .am ∈ [N]m} (where P0 := I ).

Proof. First assume that {p(x,y)}∈Dq(N) . Then there exists a finite dimensional
C*-algebra A , projections P1,P2, . . . ,PN ∈ A and a faitful tracial state τ : A → C such
that for every x,y ∈ [N] , p(x,y) = τ(PxPy) . We may assume without loss of generality
that A is generated by the projections P1,P2, . . . ,PN as a C*-algebra. For each α ∈ [N]∗

with α = a1a2 . . .ak , set Pα = Pa1Pa2 . . .Pak , and let Γα ,β = τ(P†
αPβ ) for each α,β ∈

[N]k . By the GNS construction for C*-algebras (c.f. Chapter 1, Section 7 of [4]),
there exists a Hilbert space H , a unit vector |φ〉 ∈ H and a ∗ -homomorphism π : A →
B(H) such that τ(P†

αPβ ) = 〈φ |π(P†
αPβ ) |φ〉 for each α,β ∈ [N]∗ . Since dim(A) < ∞ ,

there exists m such that A is spanned by {Pα : α ∈ [N]m} . Let α1,α2, . . . ,αM be an
enumeration of [N]m , and let αM+1,αM+2, . . . ,αM′ be an enumeration of [N]m+1\ [N]m .
Then since

dim(span{π(Pα) |φ〉 : α ∈ [N]m}) = dim(span{π(Pα) |φ〉 : α ∈ [N]m+1})
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we must conclude that rank(Γm) = rank(Γm+1) , since

Γm =

⎡⎢⎣〈φ |P
†
α1

...
〈φ |P†

αM

⎤⎥⎦[Pα1 |φ〉 . . . PαM |φ〉] and Γm+1 =

⎡⎢⎣ 〈φ |P†
α1

...
〈φ |P†

αM′

⎤⎥⎦[Pα1 |φ〉 . . . PαM′ |φ〉
]
.

On the other hand, assume that Γm+1 is an order m + 1 certificate for {p(x,y)}
with a rank loop. By Lemma 1, there exists a Hilbert space H and vectors |α〉 ∈ H for
each α ∈ [N]m+1 such that Γα ,β = 〈α|β 〉 for each α,β ∈ [N]m+1 . Since rank(Γm) =
rank(Γm+1) we see that

dim(span{|α〉 : α ∈ [N]m}) = dim(span{|α〉 : α ∈ [N]m+1}). (2)

Therefore every vector |α〉 ∈ Hm+1 can be written as a linear combination of vectors
of the form |α〉 where α ∈ [N]m . Hence, we may identify the Hilbert spaces Hm+1

and Hm . For each x ∈ [N] , let Px : Hm → Hm denote the projection onto the subspace
spanned by the vectors |xα〉 for α ∈ [N]m . As shown in the proof of Theorem 4, we
have Px |α〉= |xα〉 for each α ∈ [N]m . Let A denote the finite-dimensional C*-algebra
generated by the operators Px in B(Hm) . The proof that τ(T ) = 〈0|T |0〉 for T ∈ A
defines a faithful trace on A is identical to the argument presented in the proof of
Theorem 4. From Equation 2, it follows that for each α ∈ [N]m+1 , Pα ∈ span{Pβ : β ∈
[N]m} . This is because if α ∈ [N]m+1 and

|α〉 = ∑
β∈[N]m

tβ |β 〉

then

τ((Pα −∑tβ Pβ )†(Pα −∑tβ Pβ )) = 〈0|(Pα −∑tβ Pβ )†(Pα −∑tβ Pβ ) |0〉 = 0

since Pα |0〉 = |α〉 = ∑ tβ Pβ |0〉 . Thus A = span{Pβ : β ∈ [N]m} . We conclude that
{p(x,y)} ∈ Dq(N) . �

5. Applications

In this section, we consider two applications, each involving d2 projections which
span the vector space Md . We begin by outlining how to characterize families of pro-
jections of this form. Throughout this section, recall that a factor is a C*-algebra A
with trivial center Z(A) , meaning that if T ∈ A commutes with every other element of
A , then T = λ I for some scalar λ . If A is a finite-dimensional factor, then A ∼= Md

for some d ∈ N .
Suppose that P1, . . . ,PN are projections which span Md where N � d2 . Let τ =

1
d Tr(·) denote the unique tracial state on Md and let P0 denote the identity. Then the
matrix Γ2 with entries

Γab,xy = τ((PaPb)†PxPy)
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indexed by a,b,x,y ∈ [N]2 must have rank at most d2 . If the submatrix (Γa,b)a,b∈[N]1

has rank d2 , then Γ2 will have a rank loop and hence satisfy the conditions of Theorem
5. Also, because Md has trivial center, we know that if T ∈ Md and [T,Pa] = 0 for
all a ∈ [N] , it follows that T is a scalar multiple of the identity. This property may
potentially be reflected by linear relations on the entries of Γ2 (we will demonstrate
this for the two cases we examine below).

Conversely, suppose we are given Γ2 with rank(Γ2) = rank(Γ1) = d2 . By Theo-
rem 5, there exists a d2 -dimensional C*-algebra A , projections P1, . . . ,PN ∈ A span-
ning A , and a faithful tracial state τ : A → C such that

Γab,xy = τ((PaPb)†PxPy)

for every a,b,x,y∈ [N] . If Γ2 satisfies sufficiently many linear constraints to guarantee
that the center of A is trivial, then A is a d2 -dimensional factor and hence A ∼= Md .
Since Md has a unique faithful tracial state, τ = 1

d Tr(·) .
In the following, we consider two situations in which the matrix algebra Md may

arise as a linear span of rank-one projections. In each situation, we will derive necessary
and sufficient conditions on an associated certificate Γ2 that guarantee the projections
producing the certificate generate a d2 -dimensional C*-algebra A with trivial center,
implying that A ∼= Md .

5.1. SIC-POVMs

Let d ∈ N . Then a set {P1,P2, . . . ,Pd2} of rank one projections in Md is called

a SIC-POVM if span{P1,P2, . . . ,Pd2} = Md , ∑d2

i=1 Pi = dId , and Tr(PiPj) = c for all
i �= j , where c is a fixed positive constant. Under these conditions, it can be shown that

Tr(PiPj) =

{
1

d+1 i �= j

1 i = j
.

It has been verified that SIC-POVMs exist in most dimensions d � 50, and numerical
evidence suggests that they also exist in most dimensions d � 150. It is currently an
open question whether or not SIC-POVMs exist in every dimension d , or if there is an
upper bound on the dimension d in which SIC-POVMs exist. See [7] for an overview
of the history and open problems related to SIC-POVMs.

Define

pd
sic(x,y) =

{
1

d(d+1) x �= y
1
d x = y

.

We first verify that pd
sic(x,y) extends to a positive semidefinite certificate Γ1 satisfying
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rank(Γ1) = d2 . The certificate Γ1 is uniquely defined and equals

Γ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
d

1
d . . . 1

d
1
d

1
d

1
d(d+1) . . . 1

d(d+1)
1
d

1
d(d+1)

1
d

1
d(d+1)

...
...

. . .
...

1
d

1
d(d+1) . . . 1

d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This matrix can be factored as

Γ1 = vvT +
1

d +1

[
0�0T

�0 I

]
− 1

d2(d +1)

[
0�0T

�0 J

]
where v =

[
1 1

d . . . 1
d

]T ∈ Md2+1,1 , �0 denotes the zero matrix in Md2,1 , I denotes the
d2 × d2 identity matrix and J denotes the d2 × d2 matrix for which every entry is 1.
Since the spectrum of J is {0,d2} , the spectrum of 1

d+1 I − 1
d2(d+1)J is { 1

d+1 ,0} . It

follows that Γ1 is positive semidefinite. To see that rank(Γ1) = d2 , notice that

1
d +1

I− 1
d2(d +1)

J =
1

d +1
(I− 1

d2 J)

and that I− 1
d2 J is a rank d2−1 projection. Moreover,

1
d +1

([
0�0T

�0 I

]
− 1

d2

[
0�0T

�0 J

])
v = 0.

It follows that the rank of Γ1 is d2 , since v , together with the d2 −1 eigenvectors for
Γ1− vvT , constitute a mutually orthogonal family of eigenvectors for Γ1 .

We now wish to consider certificates Γ2 extending Γ1 with rank d2 . We would
like such a certificate to satisfy linear relations that guarantee the underlying C*-algebra
generating Γ2 is the matrix algebra Md . The following theorem will allow us to find
such relations.

THEOREM 6. Suppose A is a C*-algebra satisfying the following conditions:

1. A = span{P1, . . . ,Pd2} where each Pi is a non-zero projection.

2. ∑Pi = dI where I is the identity of A .

3. For each P,Q ∈ {P1, . . . ,Pd2} with P �= Q, we have PQP = 1
d+1P.

Then A ∼= Md and {P1, . . . ,Pd2} is a SIC-POVM.

Proof. We will show that the center Z(A) of A is the scalar multiples of the
identity I ∈ A and that dim(A) = d2 . This will imply that A ∼= Md .
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We begin by showing that {P1, . . . ,Pd2} is a linearly independent set. To this end,
suppose that ∑aiPi = 0 for some scalars a1, . . . ,ad2 ∈ C . Conjugating ∑aiPi by Pj for
some j ∈ [d2] , we get (

∑
i�= j

ai

d +1
+a j

)
Pj = 0.

Since Pj �= 0, we see that ∑i�= j
ai

d+1 + a j = 0. Since this holds for every j ∈ [d2] , it
follows that

−a j =
1

d +1 ∑
i�= j

ai =
1

d +1

(
d2

∑
i=1

ai−a j

)

and thus a j = 1
d ∑d2

i=1 ai =: C . So a j = C is constant. Since 0 = ∑aiPi = C(∑Pi) and
since ∑Pi = dI , we have C = 0. Therefore {P1,P2, . . . ,Pd2} is linearly independent.

Now suppose T ∈ Z(A) . Then [T,Pk] = 0 for each k . Since A = span{Pi} ,
T = ∑αiPi for some scalars {αi} . For each k ∈ [d2] ,

TPk = PkTPk

=
d2

∑
i=1

αiPkPiPk

=
(

∑
i�=k

αi

d +1
+ αk

)
Pk.

Let λk = (∑i�=k
αi

d+1 + αk) for each k , so that TPk = λkPk . Then

T = TI =
d2

∑
k=1

1
d

TPk =
d2

∑
k=1

λkPk.

Since {P1, . . . ,Pd2} is linearly independent, we see that αk = λk for every k ∈ [d2] . It
follows that for every k ∈ [d2] ,(

d2

∑
i=1

αi

)
−αk = ∑

i�=k

αi = λk −αk = 0.

So αk = ∑d2

i=1 αi for every k ∈ [d2] . Hence

T =
d2

∑
k=1

αkPk =

(
d2

∑
i=1

αi

)
d2

∑
k=1

Pk = d

(
d2

∑
i=1

αi

)
I.

So T is a scalar multiple of I . It follows that A is a factor. Since dim(A) = d2 ,
A = Md .

Now consider the value of Tr(PQ) for P,Q ∈ {P1, . . . ,Pd2} . Since each Pi is non-
zero and since ∑Pi = dI , we have ∑Tr(Pi) = d2 . Since Tr(Pi) � 1 for any non-zero
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projection Pi ∈ Md , we must have Tr(Pi) = 1 for every i = 1,2, . . . ,d2 . So each Pi is a
rank one projection in Md . Finally, if P,Q ∈ {P1, . . . ,Pd2} and P �= Q , then

Tr(PQ) = Tr(PQP) =
1

d +1
Tr(P) =

1
d +1

.

We conclude that {P1, . . . ,Pd2} is a SIC-POVM. �
We now outline how to use Theorem 6 to define linear relations on a certificate

Γ2 . Suppose we are given a SIC-POVM {P1, . . . ,Pd2} , and consider the matrix

Γab,xy =
1
d

Tr((PaPb)†PxPy)

with a,b,x,y ∈ [d2] . If b = x and a �= b , then

Γab,xy =
1
d

Tr(PbPaPbPy) =
1

d(d +1)
Tr(PbPy) =

1
d +1

Γb,y (3)

for all y ∈ [d2] . Since Md is spanned by {P1, . . . ,Pd2} , we conclude that

PbPaPb =
1

d +1
Pb

whenever a �= b . The next theorem says that a certificate Γ2 satisfying Equation 3
always arises from a SIC-POVM.

THEOREM 7. Let d ∈ N . Suppose that there exists a positive semidefinite matrix
(Γv,w)v,w∈[d2]2 satisfying Γ0,0 = 1 , Γa,b = pd

sic(a,b) for all a,b ∈ [d2] and

1. Γv,w = Γv′,w′ whenever v†w ∼ (v′)†w′

2. rank(Γ) = d2

3. Γab,by = 1
d+1Γb,y for all a �= b and every y ∈ [d2] .

Then there exists a SIC-POVM {P1, . . . ,Pd2} ⊆ Md such that

Γab,xy =
1
d

Tr((PaPb)†PxPy)

for all a,b,x,y ∈ [d2] .

Proof. By Theorem 5, there exists a finite dimensional C*-algebra A , projections
P1, . . . ,Pd2 ∈ A which span A , and a faithful tracial state τ : A → C such that

Γab,xy = τ((PaPb)†PxPy)

for all a,b,x,y∈ [d2] . Since rank(Γ) = d2 and A is spanned by P1, . . . ,Pd2 , the vectors
P1, . . . ,Pd2 must be linearly independent (hence non-zero). Since τ is faithful, A may
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be regarded as a Hilbert space with inner product 〈a,b〉 := τ(a†b) for all a,b ∈ A .
Because A = span{P1, . . . ,Pd2} , the only vector x ∈ A satisfying 〈x,Pi〉 = 0 for all
i ∈ [d2] is x = 0.

Now suppose a,b ∈ [d2] and a �= b . Then for any y ∈ [d2] ,

〈PbPaPb,Pd〉 = τ((PaPb)†PbPy) = Γab,by =
1

d +1
Γb,y =

〈
1

d +1
Pb,Py

〉
.

It follows that 〈
PbPaPb− 1

d +1
Pb,Py

〉
= 0

for all y ∈ [d2] and hence PbPaPb = 1
d(d+1)Pb . Therefore A satisfies the conditions of

Theorem 6 and hence A = Md and {P1, . . . ,Pd2} is a SIC-POVM in Md . The statement
follows since 1

d Tr(·) is the unique faithful tracial state on Md . �

5.2. MUBs

Let H be a Hilbert space of dimension d ∈ N . Two sets {|x1〉 |x2〉 , . . . , |xd〉} and
{|y1〉 , |y2〉 , . . . , |yd〉} in H are mutually unbiased bases if they are each orthonormal
bases for H and |〈xi|y j

〉 |= 1√
d

for all i, j ∈ [d] . Letting Pi = |xi〉〈xi| and Qj = |y j〉〈y j|
for each i, j ∈ [d] we obtain projection-valued measures {Pi}d

i=1 and {Qj}d
j=1 which

satisfy Tr(PiQj) = 1
d for all i, j ∈ [d] .

It is known that a Hilbert space of dimension d can have at most d +1 mutually
unbiased bases, or MUBs. When d = pn for some prime p and some positive integer n ,
then it is also known that d +1 mutually unbiased bases exist. When d is a composite
number, it is not known if d + 1 mutually unbiased bases exist. In particular, it is
unknown whether or not there exist seven mutually unbiased bases for the Hilbert space
of dimension 6, though numerical evidence suggests that no more than three MUBs
exist in this Hilbert space [20].

Let d ∈ N . Define

pd
mub((x, i),(y, j)) =

⎧⎪⎨⎪⎩
1
d (x, i) = (y, j)
0 x = y and i �= j
1
d2 x �= y

for all (x, i),(y, j) ∈ [d + 1]× [d] . We now verify that pd
mub(x,y) extends to a positive

semidefinite certificate Γ1 satisfying rank(Γ1) = d2 . The certificate Γ1 is uniquely
defined and equals

Γ1 =

⎡⎢⎢⎢⎣
1 �v† . . . �v†

�v A B
...

. . .
�v B A

⎤⎥⎥⎥⎦ ∈ Md2+d+1
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where

�v =

⎡⎢⎣
1
d
...
1
d

⎤⎥⎦ ∈ Md,1, A =

⎡⎢⎣
1
d 0

. . .
0 1

d

⎤⎥⎦ ∈ Md , and B =

⎡⎢⎢⎣
. . . . .

.

1
d2

. .
. . . .

⎤⎥⎥⎦ ∈ Md .

Here, we have written Γ1 with respect to the enumeration

{0,(1,1),(1,2), . . . ,(1,d),(2,1), . . . ,(2,d), . . . ,(d +1,1), . . . ,(d +1,d)}
of the set of indices {(x,a) : x ∈ [d + 1],a ∈ [d]}∪ {0} and regarding {Px,a}d

a=1 as a
projection-valued measure for each x ∈ [d +1] . Now Γ1 factors as

Γ1 = wwT +
1
d

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0
0 A′ 0
0 0 A′
...

. . .
0 A′

⎤⎥⎥⎥⎥⎥⎦ with A′ =
1
d

(
I− 1

d
J

)

where w =
[
1 �vT . . . �vT

]T ∈ C
d2+d+1 , I denotes the d × d identity matrix and J de-

notes the d × d matrix with every entry equal to 1. Since I − 1
d J is a rank d − 1

projection, Γ1 is the sum of a rank one projection and a rank (d +1)(d−1) = d2 −1
projection. Hence Γ1 is positive semidefinite. Since A′�v =�0, we see that wwT is
orthogonal to the matrix

1
d

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0
0 A′ 0
0 0 A′
...

. . .
0 A′

⎤⎥⎥⎥⎥⎥⎦
and hence Γ1 is rank d2 .

We now wish to consider certificates Γ2 extending Γ1 with rank d2 . As in the
previous subsection, we would like such a certificate to satisfy linear relations that
guarantee the underlying C*-algebra generating Γ2 is the matrix algebra Md . The
following theorem will allow us to find such relations.

THEOREM 8. Suppose A is a C*-algebra satisfying the following conditions:

1. A = span{Px,a : x ∈ [d +1];a ∈ [d]} where each Px,a is non-zero.

2. ∑d
a=1 Px,a = I for each x , where I is the identity of A .

3. For each x �= y, we have Px,aPy,bPx,a = 1
d Px,a .

Then A ∼= Md and the projection-valued measures {Px,a}d
a=1 correspond to mutually

unbiased bases.
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Proof. We proceed as in the proof of Theorem 6, although a few details will be
more tedious. We first show that A has dimension d2 . To do this, let

B := {Px,a : x ∈ [d +1],a ∈ [d−1]}∪{I}.
Since ∑k

a=1 Px,a = I for each x∈ [d+1] , B spans A . We will show that B is a linearly
independent set. To do this, suppose that

d+1

∑
x=1

d−1

∑
a=1

bx,aPx,a +b0I = 0. (4)

For each x ∈ [d +1] and each a ∈ [d−1] , conjugating expression 4 by Px,a yields(
∑
y�=x

d−1

∑
c=1

by,c

d
+bx,a +b0

)
Px,a = 0.

Since Px,a �= 0, (
∑
y�=x

d−1

∑
c=1

by,c

d

)
+bx,a +b0 = 0 (5)

for all x ∈ [d + 1] and a ∈ [d − 1] . Also, conjugating expression 4 by Px,d with x ∈
[d +1] yields (

∑
y�=x

d−1

∑
c=1

by,c

d
+b0

)
Px,a = 0

and hence

∑
y�=x

d−1

∑
c=1

by,c

d
+b0 = 0 (6)

for all x ∈ [d + 1] . Now Equation 5 together with Equation 6 imply that bx,a = 0 for
every x ∈ [d +1] and a ∈ [d−1] . This, in turn, implies that b0 = 0 by Equation 6. We
conclude that B is linearly independent. So dim(A) = d2 .

We now show that Z(A) consists of only scalar multiplies of I . Suppose that
T ∈ Z(A) , and that

T =
d+1

∑
x=1

d−1

∑
a=1

αx,aPx,a + α0I.

For each x ∈ [d +1] and a ∈ [d−1] , we have

Px,aTPx,a =

(
∑
y�=x

d−1

∑
c=1

αy,c

d
+ αx,a + α0

)
Px,a =: λx,aPx,a

and, for each x ∈ [d +1] ,

Px,dTPx,d =

(
∑
y�=x

d−1

∑
c=1

αy,c

d
+a0

)
Px,d =: λx,dPx,d .
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Now fix x ∈ [d +1] . Since I = ∑d
a=1 Px,a , and since TPx,a = Px,aT = Px,aTPx,a for each

a ∈ [d] , we have

T = TI =
d

∑
a=1

TPx,a =
d

∑
a=1

Px,aTPx,a =
d

∑
a=1

λx,aPx,a.

It follows that T ∈ span{Px,1, . . . ,Px,d−1, I} . Since this is true for every x ∈ [d +1] , and
since B is linearly independent, we must conclude that T = α0I . Therefore A is a
factor. Since dim(A) = d2 , A ∼= Md .

Finally, let x,y ∈ [d +1] with x �= y and let a,b ∈ [d] . Then

Tr(Px,aPy,b) = Tr(Px,aPy,bPx,a) =
1
d

Tr(Px,a).

Also, since ∑d
c=1 Px,c = I , we have

d = Tr(I) =
d

∑
c=1

Tr(Px,c).

Since each Px,c is non-zero and since Tr(Px,c) is an integer, we conclude that Tr(Px,a) =
1. It follows that the set of projection-valued measures {Px,a} corresponds to family of
d +1 mutually unbiased bases. �

We are now prepared to state the conditions on a certificate Γ2 which would imply
the existence of d + 1 mutually unbiased bases in Cd . To do so, we will need to
describe a matrix Γ indexed by words in the letters {(x,a) : x ∈ [d + 1],a ∈ [d]} . To
simplify notation, let Ax,d denote the set of symbols {(x,1), . . . ,(x,d)} and let Ad =
∪d+1

x=1Ax,d .

THEOREM 9. Let d ∈ N . Suppose that there exists a positive semidefinite matrix
Γ2 = (Γv,w) indexed by words in A2

d satisfying Γ0,0 = 1 , Γa,b = pd
mub(a,b) for all

a,b ∈ Ad and

1. Γv,w = Γv′,w′ whenever v†w ∼ (v′)†w′

2. rank(Γ2) = d2

3. whenever a ∈ Ax,d , b ∈ Ay,d with x �= y, and c ∈ Ad , we have Γab,bc = 1
d Γb,c .

Then there exists, for each x ∈ [d +1] , a projection-valued measure {Pa}a∈Ax,d ⊆ Md ,
and

Γab,a′b′ =
1
d

Tr((PaPb)†Pa′Pb′)

for all a,b,a′,b′ ∈ Ad . In particular, there exist d +1 mutually unbiased bases in Cd .

Proof. By Theorem 5, there exists a finite dimensional C*-algebra A , projections
{Pa : a ∈ Ad} ∈ A which span A , and a faithful tracial state τ : A → C such that

Γab,xy = τ((PaPb)†PxPy)
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for all a,b,x,y∈ Ad . Since rank(Γ2) = d2 and Γ0,a = τ(Pa) = 1
d for each a∈ Ad , each

vector Pa must be non-zero. Since τ is faithful, A may be regarded as a Hilbert space
with inner product 〈a,b〉 := τ(a†b) for all a,b ∈ A . Because A = span{Pa : a ∈ Ad} ,
the only vector x ∈ A satisfying 〈x,Pa〉 = 0 for all a ∈ Ad is x = 0.

Now suppose a ∈ Ax and b ∈ Ay and x �= y . Then for any c ∈ Ad ,

〈PbPaPb,Pc〉 = τ((PaPb)†PbPc) = Γab,bc =
1
d

Γb,c =
〈

1
d

Pb,Pc

〉
.

It follows that 〈
PbPaPb− 1

d
Pb,Py

〉
= 0

for all y ∈ [d2] and hence PbPaPb = 1
d Pb . Therefore A satisfies the conditions of Theo-

rem 8 and hence A ∼= Md , τ = 1
d Tr , and for every x ∈ [d +1] , {Pa : Ax} is a projection

valued measure consisting of rank one projections. It follows that the families {Pa : Ax}
for x ∈ [d +1] correspond to d +1 mutually unbiased bases in Md . �
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