NONADDITIVE COMMUTING MAPPINGS ON TRIANGULAR n-MATRIX RINGS

Lei Liu* and Zhixuan Chen

(Communicated by M. Omladič)

Abstract

Let \mathcal{A} be any ring. A nonadditive mapping $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be commuting if $[\varphi(a), b]=[a, \varphi(b)]$ for all $a, b \in \mathcal{A}$. In this paper, we mainly describe the general form of nonadditive commuting mappings on triangular n-matrix rings. The result is then applied to triangular rings.

1. Introduction and preliminaries

Let \mathcal{A} be an associative ring (or an algebra over a field \mathbb{F}) and $\mathcal{Z}(\mathcal{A})$ be the center of \mathcal{A}. Recall that an additive (a linear) mapping $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is called commuting if $[\varphi(a), a]=0$ for all $a \in \mathcal{A}$. Clearly, in the case of \mathcal{A} 2-torsion free, the additive (linear) mapping φ is commuting if and only if $[\varphi(a), b]=[a, \varphi(b)]$ for all $a, b \in \mathcal{A}$. A commuting mapping φ of \mathcal{A} is called proper if it is of the form $\varphi(a)=z a+\tau(a)$ for all $a \in \mathcal{A}$, where $z \in \mathcal{Z}(\mathcal{A})$ and τ is an additive (a linear) mapping from \mathcal{A} into $\mathcal{Z}(\mathcal{A})$. There is a well-written survey paper [2], in which the author presented the development of the theory of commuting mappings and their applications in detail. Brešar [2] showed that both commuting mappings on simple unital algebras and commuting mappings on prime algebras are proper. Cheung in [4] discussed commuting mappings on triangular algebras and determined the class of triangular algebras for which every commuting linear mapping is proper. Xiao and Wei [11] considered the sufficient and necessary conditions for commuting mappings of the generalized matrix algebras to be proper. For other related results on additive or linear commuting mappings, see [1, 5, 6, 8, 10] and the references therein.

In the case of nonadditive mapping, we say that a nonadditive mapping φ from a ring \mathcal{A} into itself is commuting if $[\varphi(a), b]=[a, \varphi(b)]$ for all $a, b \in \mathcal{A}$. In [9], Qi and Feng gave a characterization of nonadditive commuting mappings on a class of ring. More precisely, suppose that \mathcal{A} is a unital ring with a nontrivial idempotent e_{1} and \mathcal{A} satisfies the following conditions:

$$
\left\{\begin{array}{l}
e_{1} a e_{1} \cdot e_{1} \mathcal{A} e_{2}=\{0\}=e_{2} \mathcal{A} e_{1} \cdot e_{1} a e_{1} \Rightarrow e_{1} a e_{1}=0 \tag{*}\\
e_{1} \mathcal{A} e_{2} \cdot e_{2} a e_{2}=\{0\}=e_{2} a e_{2} \cdot e_{2} \mathcal{A} e_{1} \Rightarrow e_{2} a e_{2}=0
\end{array}\right.
$$

[^0]for all $a \in \mathcal{A}$, where $e_{2}=I-e_{1}$. Then every nonadditive commuting mapping of \mathcal{A} can be represented the sum of a proper form and two special central-valued maps.

Recently, Ferreira [7] defined a class of ring called triangular n-matrix ring as follows.

DEFINITION 1.1. ([7]) Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{n}$ be unital rings and $\mathcal{M}_{i j}$ be $\left(\mathcal{R}_{i}, \mathcal{R}_{j}\right)$ bimodules with $\mathcal{M}_{i i}=\mathcal{R}_{i}$ for all $1 \leqslant i \leqslant j \leqslant n$. Let $\varphi_{i j k}: \mathcal{M}_{i j} \otimes_{\mathcal{R}_{j}} \mathcal{M}_{j k} \rightarrow \mathcal{M}_{i k}$ be $\left(\mathcal{R}_{i}, \mathcal{R}_{k}\right)$-bimodules homomorphisms with $\varphi_{i i j}: \mathcal{R}_{i} \otimes_{\mathcal{R}_{i}} \mathcal{M}_{i j} \rightarrow \mathcal{M}_{i j}$ and $\varphi_{i j j}$: $\mathcal{M}_{i j} \otimes_{\mathcal{R}_{j}} \mathcal{R}_{j} \rightarrow \mathcal{M}_{i j}$ the canonical multiplication maps for all $1 \leqslant i \leqslant j \leqslant k \leqslant n$. Write $a b=\varphi_{i j k}(a \otimes b)$ for all $a \in \mathcal{M}_{i j}$ and $b \in \mathcal{M}_{j k}$. Assume that $\mathcal{M}_{i j}$ is faithful as a left \mathcal{R}_{i}-module and faithful as a right \mathcal{R}_{j}-module for all $1 \leqslant i<j \leqslant n$. Moreover, suppose that $a(b c)=(a b) c$ for all $a \in \mathcal{M}_{i k}, b \in \mathcal{M}_{k l}$ and $c \in \mathcal{M}_{l j}$ with $1 \leqslant i \leqslant k \leqslant l \leqslant j \leqslant n$. The set

$$
\begin{aligned}
\mathcal{T} & =\mathcal{T}_{n}\left(\mathcal{R}_{i} ; \mathcal{M}_{i j}\right) \\
& =\left\{\left(\begin{array}{ccccc}
r_{11} & m_{12} & \cdots & m_{1(n-1)} & m_{1 n} \\
0 & r_{22} & \cdots & m_{2(n-1)} & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & r_{(n-1)(n-1)} & m_{(n-1) n} \\
0 & 0 & \cdots & 0 & r_{n n}
\end{array}\right): r_{i i} \in \mathcal{R}_{i}, m_{i j} \in \mathcal{M}_{i j}, 1 \leqslant i<j \leqslant n\right\} .
\end{aligned}
$$

under the usual matrix operations is called triangular n-matrix ring.
Note that triangular n-matrix rings do not satisfy the condition (*) in [9]. So it is nature to ask what is the structure of nonadditive commuting mappings on triangular n-matrix rings. The purpose of the present paper is to characterize the general form of nonadditive commuting mappings on triangular n-matrix rings.

In the rest part of this paper, we shall use the following result.
Proposition 1.2. ([3, Lemma 2.1]) Let $\mathcal{T}=\mathcal{T}_{n}\left(\mathcal{R}_{i} ; \mathcal{M}_{i j}\right)$ be a triangular n matrix ring. The center of \mathcal{T} is

$$
\mathcal{Z}(\mathcal{T})=\left\{\bigoplus_{i=1}^{n} r_{i i} \mid r_{i i} m_{i j}=m_{i j} r_{j j} \text { for all } m_{i j} \in \mathcal{M}_{i j}, i<j\right\}
$$

Moreover, $\mathcal{Z}(\mathcal{T})_{i i} \cong \pi_{\mathcal{R}_{i}}(\mathcal{Z}(\mathcal{T})) \subseteq \mathcal{Z}\left(\mathcal{R}_{i}\right)$, and there exists a unique ring isomorphism τ_{i}^{j} from $\pi_{\mathcal{R}_{i}}(\mathcal{Z}(\mathcal{T}))$ to $\pi_{\mathcal{R}_{j}}(\mathcal{Z}(\mathcal{T})) i \neq j$ such that $r_{i i} m_{i j}=m_{i j} \tau_{i}^{j}\left(r_{i i}\right)$ for all $m_{i j} \in$ $\mathcal{M}_{i j}$.

Here, $\underset{i=1}{\stackrel{n}{\oplus}} r_{i i}$ denotes the element

$$
\left(\begin{array}{cccc}
r_{11} & 0 & \cdots & 0 \\
& r_{22} & \cdots & 0 \\
& & \ddots & \vdots \\
& & & r_{n n}
\end{array}\right)
$$

and $\pi_{\mathcal{R}_{i}}: \mathcal{T} \rightarrow \mathcal{R}_{i}(1 \leqslant i \leqslant n)$ is the natural projection defined by $\pi_{\mathcal{R}_{i}}\left(m_{i j}\right)=r_{i i}$.
Fix any $i \in\{1,2, \ldots, n\}$. Let E_{i} stand for the nontrivial idempotent in \mathcal{T} with (i, i) position 1 and other positions 0 . Write $P_{i}=E_{1}+E_{2}+\cdots+E_{i}$ and $Q_{i}=I-P_{i}$. Denote by $\mathcal{A}_{i}=P_{i} \mathcal{T} P_{i}, \mathcal{B}_{i}=Q_{i} \mathcal{T} Q_{i}$ and $\mathcal{M}_{i}=P_{i} \mathcal{T} Q_{i}$. Hence, $\mathcal{T}=\mathcal{A}_{i}+\mathcal{M}_{i}+\mathcal{B}_{i}$. Furthermore, for any $A_{i} \in \mathcal{A}_{i}, M_{i} \in \mathcal{M}_{i}$ and $B_{i} \in \mathcal{B}_{i}$, we identify

$$
A_{i} \cong\left(\begin{array}{cccc}
c_{11} & m_{12} & \cdots & m_{1 i} \\
0 & r_{22} & \cdots & m_{2 i} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & r_{i i}
\end{array}\right), \quad M_{i} \cong\left(\begin{array}{cccc}
m_{1, i+1} & m_{1, i+2} & \cdots & m_{1 n} \\
m_{2, i+1} & m_{2, i+2} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{i, i+1} & m_{i, i+2} & \cdots & m_{i n}
\end{array}\right)
$$

and

$$
B_{i} \cong\left(\begin{array}{cccc}
r_{i+1, i+1} & m_{i+1, i+2} & \cdots & m_{i+1, n} \\
0 & r_{i+2, i+2} & \cdots & m_{i+2, n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & r_{n n}
\end{array}\right) .
$$

We define two natural projections $\pi_{\mathcal{A}_{i}}: \mathcal{T} \rightarrow \mathcal{A}_{i}$ and $\pi_{\mathcal{B}_{i}}: \mathcal{T} \rightarrow \mathcal{B}_{i}$ by

$$
\pi_{\mathcal{A}_{i}}\left(A_{i}+M_{i}+B_{i}\right)=A_{i}
$$

and

$$
\pi_{\mathcal{B}_{i}}\left(A_{i}+M_{i}+B_{i}\right)=B_{i} .
$$

Then $\pi_{\mathcal{A}_{i}}(\mathcal{Z}(\mathcal{T})) \subseteq \mathcal{Z}\left(\mathcal{A}_{i}\right)$ and $\pi_{\mathcal{B}_{i}}(\mathcal{Z}(\mathcal{T})) \subseteq \mathcal{Z}\left(\mathcal{B}_{i}\right)$.

PROPOSITION 1.3. ([3, Lemma 2.2]) Let $\mathcal{T}=\mathcal{T}_{n}\left(\mathcal{R}_{i} ; \mathcal{M}_{i j}\right)$ be a triangular $n-$ matrix ring. Then there exists a unique ring isomorphism $\pi: \pi_{\mathcal{A}_{i}}(\mathcal{Z}(\mathcal{T})) \rightarrow \pi_{\mathcal{B}_{i}}(\mathcal{Z}(\mathcal{T}))$ such that $A_{i} M_{i}=M_{i} \pi\left(A_{i}\right)$ for all $M_{i} \in \mathcal{M}_{i}$ and $A_{i} \in \pi_{\mathcal{A}_{i}}(\mathcal{Z}(\mathcal{T}))$, and moreover, $A_{i}+$ $\pi\left(A_{i}\right) \in \mathcal{Z}(\mathcal{T})$.

2. Result and proof

In this section, we mainly discuss the general structure of nonadditive commuting mappings on triangular n-matrix rings. The main result is the following.

THEOREM 2.1. Let \mathcal{T} be a 2 -torsion free triangular n-matrix ring. Assume that $\mathcal{Z}\left(P_{[n / 2]} \mathcal{T} P_{[n / 2]}\right)=\mathcal{Z}(\mathcal{T}) P_{[n / 2]}$ and $\mathcal{Z}\left(Q_{[n / 2]} \mathcal{T} Q_{[n / 2]}\right)=\mathcal{Z}(\mathcal{T}) Q_{[n / 2]}$. Then a nonadditive mapping $\varphi: \mathcal{T} \rightarrow \mathcal{T}$ is commuting if and only if it has the form

$$
\varphi(T)=Z T+f(T)+h\left(P_{[n / 2]} T Q_{[n / 2]}\right) Q_{[n / 2]}
$$

for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T}), f: \mathcal{T} \rightarrow \mathcal{Z}(\mathcal{T})$ is a map and $h: \mathcal{M}_{[n / 2]} \rightarrow \mathcal{Z}(\mathcal{T})$ is an additive mapping satisfying $h\left(M_{[n / 2]}\right) M_{[n / 2]}=0$ for all $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$. Here, $[k]$ is the integer part of k.

Proof. For the "if" part, assume that $\varphi(T)=Z T+f(T)+h\left(P_{[n / 2]} T Q_{[n / 2]}\right) Q_{[n / 2]}$ for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T}), f: \mathcal{T} \rightarrow \mathcal{Z}(\mathcal{T})$ is a map and $h: \mathcal{M}_{[n / 2]} \rightarrow \mathcal{Z}(\mathcal{T})$ is an additive mapping satisfying $h\left(M_{[n / 2]}\right) M_{[n / 2]}=0$ for all $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$. Let $T=A_{[n / 2]}+M_{[n / 2]}+B_{[n / 2]}$ and $S=A_{[n / 2]}^{\prime}+M_{[n / 2]}^{\prime}+B_{[n / 2]}^{\prime}$. Since h is additive and $h\left(M_{[n / 2]}\right) M_{[n / 2]}=0$ for all $M_{[n / 2]}$ in $\mathcal{M}_{[n / 2]}$, it is easy to check that

$$
h\left(M_{[n / 2]}\right) M_{[n / 2]}^{\prime}+h\left(M_{[n / 2]}^{\prime}\right) M_{[n / 2]}=0
$$

holds for all $M_{[n / 2]}, M_{[n / 2]}^{\prime} \in \mathcal{M}_{[n / 2]}$. Furthermore, we have

$$
\begin{aligned}
{[\varphi(T), S] } & =\left[Z T+f(T)+h\left(M_{[n / 2]}\right) Q_{[n / 2]}, S\right] \\
& =Z[T, S]+\left[h\left(M_{[n / 2]}\right) Q_{[n / 2]}, M_{[n / 2]}^{\prime}\right] \\
& =Z[T, S]-M_{[n / 2]}^{\prime} h\left(M_{[n / 2]}\right) Q_{[n / 2]} \\
& =Z[T, S]-h\left(M_{[n / 2]}\right) M_{[n / 2]}^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
{[T, \varphi(S)] } & =\left[T, Z S+f(S)+h\left(M_{[n / 2]}^{\prime}\right) Q_{[n / 2]}\right] \\
& =Z[T, S]+\left[M_{[n / 2]}, h\left(M_{[n / 2]}^{\prime}\right) Q_{[n / 2]}\right] \\
& =Z[T, S]+M_{[n / 2]} h\left(M_{[n / 2]}^{\prime}\right) Q_{[n / 2]} \\
& =Z[T, S]+h\left(M_{[n / 2]}^{\prime}\right) M_{[n / 2]} .
\end{aligned}
$$

Combining the above three equalities, we obtain that

$$
[\varphi(T), S]=[T, \varphi(S)]
$$

for all $T, S \in \mathcal{T}$, as desired.
For the "only if" part, we shall organize the proof in a series of claims.
Claim 1. For any T and $S \in \mathcal{T}$, the following statements hold:
(i) $[\varphi(T), T]=0$;
(ii) the map $(T, S) \rightarrow[\varphi(T), S]$ is double additive.

Since $[\varphi(T), T]=[T, \varphi(T)]$ and \mathcal{T} is 2-torsion free, we have

$$
[\varphi(T), T]=0
$$

for all $T \in \mathcal{T}$.
Clearly, we only need to show that the map is additive with respect to the first component. Indeed, for any T, W and S in \mathcal{T}, we have

$$
\begin{aligned}
{[\varphi(T+W), S] } & =[T+W, \varphi(S)] \\
& =[T, \varphi(S)]+[W, \varphi(S)] \\
& =[\varphi(T), S]+[\varphi(W), S] \\
& =[\varphi(T)+\varphi(W), S] .
\end{aligned}
$$

Hence the map is additive with respect to the first component.

Claim 2. The following statements hold:
(i) $\varphi\left(P_{i}\right) \in \mathcal{A}_{i}+\mathcal{B}_{i}, i \in\{1,2, \ldots, n-1\}$;
(ii) $\varphi\left(Q_{i}\right) \in \mathcal{A}_{i}+\mathcal{B}_{i}, i \in\{1,2, \ldots, n-1\}$.

By Claim 1 (i), we have $\left[\varphi\left(P_{i}\right), P_{i}\right]=0$, which implies that $P_{i} \varphi\left(P_{i}\right) Q_{i}=0$. Then $\varphi\left(P_{i}\right) \in \mathcal{A}_{i}+\mathcal{B}_{i}$.

Similarly, one can obtain $\varphi\left(Q_{i}\right) \in \mathcal{A}_{i}+\mathcal{B}_{i}$.

Claim 3. For any $A_{i} \in \mathcal{A}_{i}, B_{i} \in \mathcal{B}_{i}, i \in\{1,2, \ldots, n-1\}$, the following statements hold
(i) $P_{i} \varphi\left(A_{i}\right) Q_{i}=P_{i} \varphi\left(B_{i}\right) Q_{i}=0$;
(ii) $\left[P_{i} \varphi\left(A_{i}\right) P_{i}, A_{i}\right]=\left[Q_{i} \varphi\left(B_{i}\right) Q_{i}, B_{i}\right]=0$;
(iii) $P_{i} \varphi\left(B_{i}\right) P_{i} \in \mathcal{Z}\left(\mathcal{A}_{i}\right)$;
(iv) $Q_{i} \varphi\left(A_{i}\right) Q_{i} \in \mathcal{Z}\left(\mathcal{B}_{i}\right)$.

Since $\left[\varphi\left(A_{i}\right), P_{i}\right]=\left[A_{i}, \varphi\left(P_{i}\right)\right]$ and $\varphi\left(P_{i}\right) \in \mathcal{A}_{i}+\mathcal{B}_{i}$, we have

$$
-P_{i} \varphi\left(A_{i}\right) Q_{i}=A_{i} P_{i} \varphi\left(P_{i}\right) P_{i}-P_{i} \varphi\left(P_{i}\right) P_{i} A_{i} .
$$

Multiplying Q_{i} from the right side of the above equation, we arrive at $P_{i} \varphi\left(A_{i}\right) Q_{i}=0$. Similarly, we have $P_{i} \varphi\left(B_{i}\right) Q_{i}=0$.

By Claim 1 (i), we have $\left[\varphi\left(A_{i}\right), A_{i}\right]=0$. This together with the fact $\varphi\left(A_{i}\right) \in$ $\mathcal{A}_{i}+\mathcal{B}_{i}$ implies that $\left[P_{i} \varphi\left(A_{i}\right) P_{i}, A_{i}\right]=0$. Similarly, we get $\left[Q_{i} \varphi\left(B_{i}\right) Q_{i}, B_{i}\right]=0$.

By Claim 1 (i)-(ii) and Claim 3 (ii), we have

$$
\begin{aligned}
0 & =\left[\varphi\left(A_{i}+B_{i}\right), A_{i}+B_{i}\right] \\
& =\left[\varphi\left(A_{i}\right)+\varphi\left(B_{i}\right), A_{i}+B_{i}\right] \\
& =\left[\varphi\left(A_{i}\right), B_{i}\right]+\left[\varphi\left(B_{i}\right), A_{i}\right] \\
& =\left[Q_{i} \varphi\left(A_{i}\right) Q_{i}, B_{i}\right]+\left[P_{i} \varphi\left(B_{i}\right) P_{i}, A_{i}\right],
\end{aligned}
$$

which implies $Q_{i} \varphi\left(A_{i}\right) Q_{i} \in \mathcal{Z}\left(\mathcal{B}_{i}\right)$ and $P_{i} \varphi\left(B_{i}\right) P_{i} \in \mathcal{Z}\left(\mathcal{A}_{i}\right)$.
In particular, it follows from Claim 3 (iii)-(iv) that $Q_{[n / 2]} \varphi\left(P_{[n / 2]}\right) Q_{[n / 2]} \in \mathcal{Z}\left(\mathcal{B}_{[n / 2]}\right)$ and $P_{[n / 2]} \varphi\left(Q_{[n / 2]}\right) P_{[n / 2]} \in \mathcal{Z}\left(\mathcal{A}_{[n / 2]}\right)$. By the assumption of theorem, we see that there exists some $Z\left(P_{[n / 2]}\right), Z\left(Q_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$ such that

$$
Q_{[n / 2]} \varphi\left(P_{[n / 2]}\right) Q_{[n / 2]}=Z\left(P_{[n / 2]}\right) Q_{[n / 2]}
$$

and

$$
P_{[n / 2]} \varphi\left(Q_{[n / 2]}\right) P_{[n / 2]}=Z\left(Q_{[n / 2]}\right) P_{[n / 2]} .
$$

CLAim 4. The following statements hold:
(i) $P_{i} \varphi\left(P_{i}\right) P_{i} \in \mathcal{Z}\left(\mathcal{A}_{i}\right), i \in\{1,2, \ldots, n-1\}$;
(ii) $Q_{i} \varphi\left(Q_{i}\right) Q_{i} \in \mathcal{Z}\left(\mathcal{B}_{i}\right), i \in\{1,2, \ldots, n-1\}$.

For any $A_{i} \in \mathcal{A}_{i}$, by Claim 2 (i) and Claim 3 (i), we have

$$
\begin{aligned}
{\left[P_{i} \varphi\left(P_{i}\right) P_{i}, A_{i}\right] } & =\left[\varphi\left(P_{i}\right), A_{i}\right] \\
& =\left[P_{i}, \varphi\left(A_{i}\right)\right] \\
& =P_{i} \varphi\left(A_{i}\right) Q_{i} \\
& =0,
\end{aligned}
$$

which means $P_{i} \varphi\left(P_{i}\right) P_{i} \in \mathcal{Z}\left(\mathcal{A}_{i}\right)$.
Similarly, we can get $Q_{i} \varphi\left(Q_{i}\right) Q_{i} \in \mathcal{Z}\left(\mathcal{B}_{i}\right)$, as desired.
In particular, we see that $P_{[n / 2]} \varphi\left(P_{[n / 2]}\right) P_{[n / 2]} \in \mathcal{Z}\left(\mathcal{A}_{[n / 2]}\right)$ and $Q_{[n / 2]} \varphi\left(Q_{[n / 2]}\right) Q_{[n / 2]}$ $\in Z\left(\mathcal{B}_{[n / 2]}\right)$. By the assumption of theorem, there exists some $Z^{\prime}\left(P_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$ and $Z^{\prime}\left(Q_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$ such that

$$
P_{[n / 2]} \varphi\left(P_{[n / 2]}\right) P_{[n / 2]}=Z^{\prime}\left(P_{[n / 2]}\right) P_{[n / 2]}
$$

and

$$
Q_{[n / 2]} \varphi\left(Q_{[n / 2]}\right) Q_{[n / 2]}=Z^{\prime}\left(Q_{[n / 2]}\right) Q_{[n / 2]} .
$$

Claim 5. For any $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$, the following statements hold:
(i) $P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) Q_{[n / 2]}=\left(Z^{\prime}\left(P_{[n / 2]}\right)-Z\left(P_{[n / 2]}\right)\right) M_{[n / 2]}$;
(ii) $P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) Q_{[n / 2]}=M_{[n / 2]}\left(Z^{\prime}\left(Q_{[n / 2]}\right)-Z\left(Q_{[n / 2]}\right)\right)$;
(iii) $P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) P_{[n / 2]}=Z\left(M_{[n / 2]}\right) P_{[n / 2]}$ for some $Z\left(M_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$;
(iv) $Q_{[n / 2]} \varphi\left(M_{[n / 2]}\right) Q_{[n / 2]}=Z^{\prime}\left(M_{[n / 2]}\right) Q_{[n / 2]}$ for some $Z^{\prime}\left(M_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$.

For any $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$, we have $\left[\varphi\left(M_{[n / 2]}\right), P_{[n / 2]}\right]=\left[M_{[n / 2]}, \varphi\left(P_{[n / 2]}\right)\right]$. This together with Claim 3 (iv) and Claim 4 (i) leads to

$$
\begin{aligned}
-P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) Q_{[n / 2]} & =M_{[n / 2]} \varphi\left(P_{[n / 2]}\right) Q_{[n / 2]}-P_{[n / 2]} \varphi\left(P_{[n / 2]}\right) M_{[n / 2]} \\
& =M_{[n / 2]} Z\left(P_{[n / 2]}\right)-Z^{\prime}\left(P_{[n / 2]}\right) M_{[n / 2]} \\
& =\left(Z\left(P_{[n / 2]}\right)-Z^{\prime}\left(P_{[n / 2]}\right)\right) M_{[n / 2]} .
\end{aligned}
$$

Similarly, one can check that (ii) is true.
For any $A_{[n / 2]} \in \mathcal{A}_{[n / 2]}$, by Claim 1 (i)-(ii), we have

$$
\begin{aligned}
0= & {\left[\varphi\left(A_{[n / 2]}+M_{[n / 2]}\right), A_{[n / 2]}+M_{[n / 2]}\right] } \\
= & {\left[\varphi\left(A_{[n / 2]}\right)+\varphi\left(M_{[n / 2]}\right), A_{[n / 2]}+M_{[n / 2]}\right] } \\
= & {\left[\varphi\left(A_{[n / 2]}\right), M_{[n / 2]}\right]+\left[\varphi\left(M_{[n / 2]}\right), A_{[n / 2]}\right] } \\
= & P_{[n / 2]} \varphi\left(A_{[n / 2]}\right) P_{[n / 2]} M_{[n / 2]}-M_{[n / 2]} Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]} \\
& +\left[P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) P_{[n / 2]}, A_{[n / 2]}\right]-A_{[n / 2]} P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) Q_{[n / 2]} .
\end{aligned}
$$

This leads to $\left[P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) P_{[n / 2]}, A_{[n / 2]}\right]=0$. Thus

$$
P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) P_{[n / 2]} \in \mathcal{Z}\left(\mathcal{A}_{[n / 2]}\right)
$$

By the assumption of theorem, there exists some $Z\left(M_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$ such that

$$
P_{[n / 2]} \varphi\left(M_{[n / 2]}\right) P_{[n / 2]}=Z\left(M_{[n / 2]}\right) P_{[n / 2]} .
$$

So (iii) is true.
Similarly, one can get (iv).
CLaim 6. Let $Z=\left(Z^{\prime}\left(P_{[n / 2]}\right)-Z\left(P_{[n / 2]}\right)\right) P_{[n / 2]}+\left(Z^{\prime}\left(Q_{[n / 2]}\right)-Z\left(Q_{[n / 2]}\right)\right) Q_{[n / 2]}$. We claim that $Z \in \mathcal{Z}(\mathcal{T})$.

In fact, for any $T \in \mathcal{T}$, we have

$$
[\varphi(I), T]=[I, \varphi(T)]=0
$$

which means $\varphi(I) \in \mathcal{Z}(\mathcal{T})$, then $\varphi\left(P_{[n / 2]}\right)+\varphi\left(Q_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})$. It follows that

$$
\begin{aligned}
Z= & \left(Z^{\prime}\left(P_{[n / 2]}\right)-Z\left(P_{[n / 2]}\right)\right) P_{[n / 2]}+\left(Z^{\prime}\left(Q_{[n / 2]}\right)-Z\left(Q_{[n / 2]}\right)\right) Q_{[n / 2]} \\
= & P_{[n / 2]} \varphi\left(P_{[n / 2]}\right) P_{[n / 2]}-Z\left(P_{[n / 2]}\right) P_{[n / 2]} \\
& +Q_{[n / 2]} \varphi\left(Q_{[n / 2]}\right) Q_{[n / 2]}-Z\left(Q_{[n / 2]}\right) Q_{[n / 2]} \\
= & \varphi\left(P_{[n / 2]}\right)-Z\left(P_{[n / 2]}\right) Q_{[n / 2]}-Z\left(P_{[n / 2]}\right) P_{[n / 2]} \\
& +\varphi\left(Q_{[n / 2]}\right)-Z\left(Q_{[n / 2]}\right) P_{[n / 2]}-Z\left(Q_{[n / 2]}\right) Q_{[n / 2]} \\
= & \varphi\left(P_{[n / 2]}\right)+\varphi\left(Q_{[n / 2]}\right)-Z\left(P_{[n / 2]}\right)-Z\left(Q_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T}),
\end{aligned}
$$

as desired.
In the sequel, Z is the central element in Claim 6.
Now, for any $T=A_{[n / 2]}+M_{[n / 2]}+B_{[n / 2]} \in \mathcal{T}$, we define two mappings $\phi: \mathcal{T} \rightarrow \mathcal{T}$ and $\gamma: \mathcal{T} \rightarrow \mathcal{T}$ by

$$
\begin{aligned}
\phi(T)= & P_{[n / 2]} \varphi\left(A_{[n / 2]}\right) P_{[n / 2]}-\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right) \\
& +Q_{[n / 2]} \varphi\left(B_{[n / 2]}\right) Q_{[n / 2]}-\pi\left(P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}\right)+\varphi\left(M_{[n / 2]}\right)
\end{aligned}
$$

and

$$
\gamma(T)=\varphi(T)-\phi(T)
$$

for all $T \in \mathcal{T}$. Thus, by Claim 1 (iii) and Proposition 1.3, we have

$$
\begin{aligned}
\gamma(T)= & Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}+\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right) \\
& +P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}+\pi\left(P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}\right) \\
& +\varphi(T)-\varphi\left(A_{[n / 2]}\right)-\varphi\left(B_{[n / 2]}\right)-\varphi\left(M_{[n / 2]}\right) \in \mathcal{Z}(\mathcal{T})
\end{aligned}
$$

for all $T=A_{[n / 2]}+M_{[n / 2]}+B_{[n / 2]} \in \mathcal{T}$ So ϕ is a commuting mapping on \mathcal{T}. Moreover, we see that $\phi\left(A_{[n / 2]}\right) \in \mathcal{A}_{[n / 2]}, \phi\left(B_{[n / 2]}\right) \in \mathcal{B}_{[n / 2]}$.

CLAIm 7. ϕ is additive on $\mathcal{A}_{[n / 2]}$ and $\mathcal{B}_{[n / 2]}$.

For any $A_{[n / 2]}, A_{[n / 2]}^{\prime} \in \mathcal{A}_{[n / 2]}$ and $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$, we have

$$
\left[\phi\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right)-\phi\left(A_{[n / 2]}\right)-\phi\left(A_{[n / 2]}^{\prime}\right), M_{[n / 2]}\right]=0 .
$$

Since $\mathcal{M}_{i j}$ is a faithful left \mathcal{R}_{i}-module, the above equation implies

$$
\begin{equation*}
E_{i}\left(\phi\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right)-\phi\left(A_{[n / 2]}\right)-\phi\left(A_{[n / 2]}^{\prime}\right)\right) E_{i}=0 \tag{2.1}
\end{equation*}
$$

for all $i=1,2, \ldots,[n / 2]$. Moreover, let $i \in\{1,2, \ldots,[n / 2]-1\}$. On the one hand, we have

$$
\begin{aligned}
{\left[\phi\left(Q_{i}\right), A_{[n / 2]}+A_{[n / 2]}^{\prime}\right] } & =\left[Q_{i}, \phi\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right)\right] \\
& =-P_{i} \phi\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right) Q_{i}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
{\left[\phi\left(Q_{i}\right), A_{[n / 2]}+A_{[n / 2]}^{\prime}\right] } & =\left[\phi\left(Q_{i}\right), A_{[n / 2]}\right]+\left[\phi\left(Q_{i}\right), A_{[n / 2]}^{\prime}\right] \\
& =\left[Q_{i}, \phi\left(A_{[n / 2]}\right)\right]+\left[Q_{i}, \phi\left(A_{[n / 2]}^{\prime}\right)\right] \\
& =-P_{i}\left(\phi\left(A_{[n / 2]}\right)+\phi\left(A_{[n / 2]}^{\prime}\right)\right) Q_{i}
\end{aligned}
$$

Comparing these two equations, we get

$$
\begin{equation*}
P_{i}\left(\phi\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right)-\phi\left(A_{[n / 2]}\right)-\phi\left(A_{[n / 2]}^{\prime}\right)\right) Q_{i}=0 \tag{2.2}
\end{equation*}
$$

for all $i=1,2, \ldots,[n / 2]-1$. So Eqs. (2.5)-(2.6) together imply that

$$
\phi\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right)=\phi\left(A_{[n / 2]}\right)+\phi\left(A_{[n / 2]}^{\prime}\right),
$$

which means ϕ is additive on $\mathcal{A}_{[n / 2]}$.
Similarly, one can verify that ϕ is additive on $\mathcal{B}_{[n / 2]}$.
CLaim 8. The following statements hold:
(i) $\phi\left(A_{[n / 2]}\right)=Z A_{[n / 2]}$ for all $A_{[n / 2]} \in \mathcal{A}_{[n / 2]}$;
(ii) $\phi\left(B_{[n / 2]}\right)=Z B_{[n / 2]}$ for all $B_{[n / 2]} \in \mathcal{B}_{[n / 2]}$.

We only need to check (i), and the proof of (ii) is similar. For any $A_{[n / 2]} \in \mathcal{A}_{[n / 2]}$, $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$, since

$$
\left[\phi\left(A_{[n / 2]}\right), M_{[n / 2]}\right]=\left[A_{[n / 2]}, \phi\left(M_{[n / 2]}\right)\right],
$$

we have

$$
\begin{aligned}
\phi\left(A_{[n / 2]}\right) M_{[n / 2]} & =\left[A_{[n / 2]}, \phi\left(M_{[n / 2]}\right)\right] \\
& =\left[A_{[n / 2]}, P_{[n / 2]} \phi\left(M_{[n / 2]}\right) Q_{[n / 2]}\right] \\
& =A_{[n / 2]} P_{[n / 2]} \phi\left(M_{[n / 2]}\right) Q_{[n / 2]} \\
& =A_{[n / 2]} Z M_{[n / 2]},
\end{aligned}
$$

which implies

$$
\left(\phi\left(A_{[n / 2]}\right)-Z A_{[n / 2]}\right) M_{[n / 2]}=0 .
$$

Note that $\mathcal{M}_{i j}$ is a faithful left \mathcal{R}_{i}-module. It follows that

$$
\begin{equation*}
E_{i}\left(\phi\left(A_{[n / 2]}\right)-Z A_{[n / 2]}\right) E_{i}=0, \quad i=1,2, \ldots,[n / 2] . \tag{2.3}
\end{equation*}
$$

Writing $A_{[n / 2]}=\left(a_{k l}\right)_{[n / 2] \times[n / 2]}$, we get

$$
A_{[n / 2]}=\sum_{1 \leqslant k \leqslant l \leqslant n / 2]} A_{k l},
$$

where $A_{k l}$ is the matrix with (k, l) position $a_{k l}$ and other positions 0 . Since ϕ is additive on $\mathcal{A}_{[n / 2]}$, one only needs to check that

$$
\phi\left(A_{k l}\right)=Z A_{k l} \text { forall } 1 \leqslant k \leqslant l \leqslant[n / 2] .
$$

Now, we divide the proof into the following two steps.
Step 1. $\phi\left(A_{k k}\right)=Z A_{k k}$ for any $A_{k k} \in \mathcal{A}_{[n / 2]}, 1 \leqslant k \leqslant[n / 2]$.
In fact, replacing $A_{[n / 2]}$ with $A_{k k}, k \neq i$ in Eq. (2.7), we get

$$
E_{i} \phi\left(A_{k k}\right) E_{i}=E_{i} Z A_{k k} E_{i}=0,
$$

that is,

$$
\begin{equation*}
E_{i} \phi\left(A_{k k}\right) E_{i}=0,1 \leqslant i \neq k \leqslant[n / 2] . \tag{2.4}
\end{equation*}
$$

For any $i \in\{1,2, \ldots,[n / 2]-1\}$, by Claim 3 (iv) and Claim 4 (i), we have

$$
\left[P_{i}, \phi\left(A_{k k}\right)\right]=\left[\phi\left(P_{i}\right), A_{k k}\right]=0,
$$

which implies

$$
\begin{equation*}
P_{i} \phi\left(A_{k k}\right) Q_{i}=0, i=1,2, \ldots,[n / 2]-1 . \tag{2.5}
\end{equation*}
$$

Eqs. (2.8)-(2.9) together imply that

$$
\phi\left(A_{k k}\right)=Z A_{k k}, \quad 1 \leqslant k \leqslant[n / 2] .
$$

Step 2. $\phi\left(A_{k l}\right)=Z A_{k l}$ for any $A_{k l} \in \mathcal{A}_{[n / 2]}, 1 \leqslant k<l \leqslant[n / 2]$.
In fact, replacing $A_{[n / 2]}$ with $A_{k l}, k<l$ in Eq. (2.7), we have

$$
E_{i} \phi\left(A_{k l}\right) E_{i}=E_{i} Z A_{k l} E_{i}=0,
$$

that is,

$$
\begin{equation*}
E_{i} \phi\left(A_{k l}\right) E_{i}=0, \quad i=1,2, \ldots,[n / 2] . \tag{2.6}
\end{equation*}
$$

For any $i \in\{1,2, \ldots,[n / 2]\}$, by the fact $\left[\phi\left(A_{k l}\right), A_{i i}\right]=\left[A_{k l}, \phi\left(A_{i i}\right)\right]$ and Step 1 , we have

$$
\begin{equation*}
\phi\left(A_{k l}\right) A_{i i}-A_{i i} \phi\left(A_{k l}\right)=\left[A_{k l}, Z A_{i i}\right] . \tag{2.7}
\end{equation*}
$$

If $i \neq k, l$, by taking $A_{i i}=E_{i}$ in Eq. (2.11), then we have

$$
\phi\left(A_{k l}\right) E_{i}-E_{i} \phi\left(A_{k l}\right)=0 ;
$$

If $i=k$, by taking $A_{i i}=E_{k}$ in Eq. (2.11), then we have

$$
\phi\left(A_{k l}\right) E_{k}-E_{k} \phi\left(A_{k l}\right)=-Z A_{k l}
$$

If $i=l$, by taking $A_{i i}=E_{l}$ in Eq. (2.11), then we have

$$
\phi\left(A_{k l}\right) E_{l}-E_{l} \phi\left(A_{k l}\right)=Z A_{k l} .
$$

Let $1 \leqslant i<j \leqslant[n / 2]$. Comparing the above three equations, we get

$$
E_{i} \phi\left(A_{k l}\right) E_{j}=\left\{\begin{array}{cl}
Z A_{k l}, & \text { if }(i, j)=(k, l) \tag{2.8}\\
0, & \text { if }(i, j) \neq(k, l)
\end{array} .\right.
$$

Eq. (2.10) and Eq. (2.12) together imply that

$$
\phi\left(A_{k l}\right)=Z A_{k l}, 1 \leqslant k<l \leqslant[n / 2] .
$$

Now, by Step 1 and Step 2, we can infer that

$$
\phi\left(A_{[n / 2]}\right)=Z A_{[n / 2]} .
$$

The proof of the claim is completed.
CLAIM 9. $\varphi(T)=Z T+f(T)+h\left(P_{[n / 2]} T Q_{[n / 2]}\right) Q_{[n / 2]}$ for all $T \in \mathcal{T}$, where $Z \in$ $\mathcal{Z}(\mathcal{T}), f: \mathcal{T} \rightarrow \mathcal{Z}(\mathcal{T})$ and $h: \mathcal{M}_{[n / 2]} \rightarrow \mathcal{Z}(\mathcal{T})$ are two maps.

For any $T \in \mathcal{T}$, by Claim 3 (i), (iii), (iv), Claim 5 (i), (iii), (iv) and Claim 8 (i)-(ii), we have

$$
\begin{gather*}
\varphi\left(A_{[n / 2]}\right)=Z A_{[n / 2]}+P_{[n / 2]} \gamma\left(A_{[n / 2]}\right) P_{[n / 2]}+Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}, \tag{2.9}\\
\varphi\left(M_{[n / 2]}\right)=Z M_{[n / 2]}+Z\left(M_{[n / 2]}\right) P_{[n / 2]}+Z^{\prime}\left(M_{[n / 2]}\right) Q_{[n / 2]}, \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\varphi\left(B_{[n / 2]}\right)=Z B_{[n / 2]}+P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}+Q_{[n / 2]} \gamma\left(B_{[n / 2]}\right) Q_{[n / 2]} . \tag{2.11}
\end{equation*}
$$

Moreover, we see that

$$
\begin{aligned}
\gamma\left(A_{[n / 2]}\right) & =\varphi\left(A_{[n / 2]}\right)-\phi\left(A_{[n / 2]}\right) \\
& =\varphi\left(A_{[n / 2]}\right)-P_{[n / 2]} \varphi\left(A_{[n / 2]}\right) P_{[n / 2]}+\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right) \\
& =Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}+\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right),
\end{aligned}
$$

which implies

$$
\begin{equation*}
P_{[n / 2]} \gamma\left(A_{[n / 2]}\right) P_{[n / 2]}=\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right) \tag{2.12}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
Q_{[n / 2]} \gamma\left(B_{[n / 2]}\right) Q_{[n / 2]}=\pi\left(P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}\right) \tag{2.13}
\end{equation*}
$$

Combining Eqs. (2.13)-(2.17), we have

$$
\begin{aligned}
\varphi(T)= & \varphi\left(A_{[n / 2]}\right)+\varphi\left(M_{[n / 2]}\right)+\varphi\left(B_{[n / 2]}\right)+Z_{\varphi} \\
= & Z T+Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}+\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right) \\
& +P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}+\pi\left(P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}\right) \\
& +Z\left(M_{[n / 2]}\right) P_{[n / 2]}+Z^{\prime}\left(M_{[n / 2]}\right) Q_{[n / 2]}+Z_{\varphi},
\end{aligned}
$$

where $Z_{\varphi} \in \mathcal{Z}(\mathcal{T})$. Let

$$
\begin{aligned}
f(T)= & Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}+\pi^{-1}\left(Q_{[n / 2]} \varphi\left(A_{[n / 2]}\right) Q_{[n / 2]}\right) \\
& +P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}+\pi\left(P_{[n / 2]} \varphi\left(B_{[n / 2]}\right) P_{[n / 2]}\right) \\
& +Z\left(M_{[n / 2]}\right)+Z_{\varphi}
\end{aligned}
$$

and

$$
h\left(M_{[n / 2]}\right)=Z^{\prime}\left(M_{[n / 2]}\right)-Z\left(M_{[n / 2]}\right) .
$$

Then

$$
\varphi(T)=Z T+f(T)+h\left(M_{[n / 2]}\right) Q_{[n / 2]}
$$

for all $T \in \mathcal{T}$. It is clear that f is a map from \mathcal{T} into $\mathcal{Z}(\mathcal{T})$ and h is a map from $\mathcal{M}_{[n / 2]}$ into $\mathcal{Z}(\mathcal{T})$.

CLaim 10. h is additive and $h\left(M_{[n / 2]}\right) M_{[n / 2]}=0$ for all $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$.
For any $M_{[n / 2]}, M_{[n / 2]}^{\prime} \in \mathcal{M}_{[n / 2]}$, we have

$$
\left[\varphi\left(M_{[n / 2]}\right), M_{[n / 2]}^{\prime}\right]=\left[M_{[n / 2]}, \varphi\left(M_{[n / 2]}^{\prime}\right)\right]
$$

and

$$
\begin{aligned}
\varphi\left(M_{[n / 2]}\right) & =Z\left(M_{[n / 2]}\right) P_{[n / 2]}+Z M_{[n / 2]}+Z^{\prime}\left(M_{[n / 2]}\right) Q_{[n / 2]} \\
& =Z\left(M_{[n / 2]}\right)+Z M_{[n / 2]}+\left(Z^{\prime}\left(M_{[n / 2]}\right)-Z\left(M_{[n / 2]}\right)\right) Q_{[n / 2]} \\
& =Z\left(M_{[n / 2]}\right)+Z M_{[n / 2]}+h\left(M_{[n / 2]}\right) Q_{[n / 2]} .
\end{aligned}
$$

Combining the above two equation, we obtain that

$$
\begin{aligned}
& {\left[Z\left(M_{[n / 2]}\right)+Z M_{[n / 2]}+h\left(M_{[n / 2]}\right) Q_{[n / 2]}, M_{[n / 2]}^{\prime}\right]} \\
& =\left[M_{[n / 2]}, Z\left(M_{[n / 2]}^{\prime}\right)+Z M_{[n / 2]}^{\prime}+h\left(M_{[n / 2]}^{\prime}\right) Q_{[n / 2]}\right],
\end{aligned}
$$

that is,

$$
\left[h\left(M_{[n / 2]}\right) Q_{[n / 2]}, M_{[n / 2]}^{\prime}\right]=\left[M_{[n / 2]}, h\left(M_{[n / 2]}^{\prime}\right) Q_{[n / 2]}\right],
$$

and hence

$$
\begin{equation*}
h\left(M_{[n / 2]}\right) M_{[n / 2]}^{\prime}+h\left(M_{[n / 2]}^{\prime}\right) M_{[n / 2]}=0 \tag{2.14}
\end{equation*}
$$

for all $M_{[n / 2]}, M_{[n / 2]}^{\prime} \in \mathcal{M}_{[n / 2]}$. In particular, we have

$$
h\left(M_{[n / 2]}\right) M_{[n / 2]}=0
$$

for all $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$.
Furthermore, for any $M_{[n / 2]}, M_{[n / 2]}^{\prime}, M_{[n / 2]}^{*} \in \mathcal{M}_{[n / 2]}$, by Eq. (2.18), we have

$$
\left[h\left(M_{[n / 2]}+M_{[n / 2]}^{*}\right)-h\left(M_{[n / 2]}\right)-h\left(M_{[n / 2]}^{*}\right)\right] M_{[n / 2]}^{\prime}=0 .
$$

So

$$
\begin{equation*}
\left[h\left(M_{[n / 2]}+M_{[n / 2]}^{*}\right)-h\left(M_{[n / 2]}\right)-h\left(M_{[n / 2]}^{*}\right)\right] P_{[n / 2]}=0 \tag{2.15}
\end{equation*}
$$

Similarly, we can obtain

$$
\begin{equation*}
\left[h\left(M_{[n / 2]}+M_{[n / 2]}^{*}\right)-h\left(M_{[n / 2]}\right)-h\left(M_{[n / 2]}^{*}\right)\right] Q_{[n / 2]}=0 . \tag{2.16}
\end{equation*}
$$

Therefore, by Eqs. (2.19)-(2.20), we get

$$
h\left(M_{[n / 2]}+M_{[n / 2]}^{*}\right)=h\left(M_{[n / 2]}\right)+h\left(M_{[n / 2]}^{*}\right) .
$$

Now, by Claim 9-10, we complete the proof of the theorem.
If the center of triangular n-matrix ring $\mathcal{T}=\mathcal{T}_{n}\left(\mathcal{R}_{i} ; \mathcal{M}_{i j}\right)$ satisfies the following condition:

$$
\begin{gathered}
\mathcal{Z}(\mathcal{T})=\left\{A+B: A \in \mathcal{Z}\left(P_{[n / 2]} \mathcal{T} P_{[n / 2]}\right), B \in \mathcal{Z}\left(Q_{[n / 2]} \mathcal{T} Q_{[n / 2]}\right),\right. \\
\left.A M_{0}=M_{0} B \text { forsome } M_{0} \in \mathcal{M}_{[n / 2]}\right\},
\end{gathered}
$$

then we have the following result.

THEOREM 2.2. Let \mathcal{T} be a 2 -torsion free triangular n-matrix ring. Suppose that
(i) $Z\left(P_{[n / 2]} \mathcal{T} P_{[n / 2]}\right)=\mathcal{Z}(\mathcal{T}) P_{[n / 2]}$,
(ii) $Z\left(Q_{[n / 2]} \mathcal{T} Q_{[n / 2]}\right)=\mathcal{Z}(\mathcal{T}) Q_{[n / 2]}$,
(iii) $\mathcal{Z}(\mathcal{T})=\left\{A+B: A \in \mathcal{Z}\left(P_{[n / 2]} \mathcal{T} P_{[n / 2]}\right), B \in \mathcal{Z}\left(Q_{[n / 2]} \mathcal{T} Q_{[n / 2]}\right), A M_{0}=M_{0} B\right.$ for some $\left.M_{0} \in \mathcal{M}_{[n / 2]}\right\}$.
Then a nonadditive map $\varphi: \mathcal{T} \rightarrow \mathcal{T}$ is commuting if and only if $\varphi(T)=Z T+f(T)$ holds for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T}), f: \mathcal{T} \rightarrow \mathcal{Z}(\mathcal{T})$ is a map.

Proof. The "if" part is obvious. We only need to prove "only if" part.
Using Theorem 2.1, we have

$$
\varphi(T)=Z T+f(T)+h\left(P_{[n / 2]} T Q_{[n / 2]}\right) Q_{[n / 2]}
$$

for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T}), f: \mathcal{T} \rightarrow \mathcal{Z}(\mathcal{T})$ is a map, $h: \mathcal{M}_{[n / 2]} \rightarrow \mathcal{Z}(\mathcal{T})$ is a additive map satisfying $h\left(M_{[n / 2]}\right) M_{[n / 2]}=0$ for all $M_{[n / 2]} \in \mathcal{M}_{[n / 2]}$.

Now, we check that $h=0$.

Indeed, using assumption (iii) of the theorem and the fact $h\left(M_{0}\right) M_{0}=0$, we have $h\left(M_{0}\right) P_{[n / 2]} \in \mathcal{Z}(\mathcal{T})$, and hence

$$
\begin{equation*}
h\left(M_{0}\right) P_{[n / 2]}=0 . \tag{2.17}
\end{equation*}
$$

For any $M \in \mathcal{M}_{[n / 2]}$, by Eq. (2.21), we have

$$
0=h\left(M+M_{0}\right)\left(M+M_{0}\right)=h(M) M_{0} .
$$

By the assumption (iii) again, we get

$$
h(M) P_{[n / 2]}=0
$$

for all $M \in \mathcal{M}_{[n / 2]}$.
Similarly, we can obtain $h(M) Q_{[n / 2]}=0$ for all $M \in \mathcal{M}_{[n / 2]}$. Hence $h=0$.
As an application of Theorem 2.1 and Theorem 2.2, we consider the triangular ring case.

Let \mathcal{A} and \mathcal{B} be two unital rings, and let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$-bimodule, which is faithful as a left \mathcal{A}-module and also as a right \mathcal{B}-module; that is, for any $A \in \mathcal{A}$ and $B \in \mathcal{B}, A \mathcal{M}=\mathcal{M} B=\{0\}$ imply $A=0$ and $B=0$. The set

$$
\mathcal{U}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})=\left\{\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right): A \in \mathcal{A}, M \in \mathcal{M}, B \in \mathcal{B}\right\}
$$

under the usual matrix addition and formal matrix multiplication is called a triangular ring. Clearly, \mathcal{U} is unital with unit $I=\left(\begin{array}{cc}I_{\mathcal{A}} & 0 \\ 0 & I_{\mathcal{B}}\end{array}\right)$. We denote the non-trivial idempotent $P=\left(\begin{array}{rr}I_{\mathcal{A}} & 0 \\ 0 & 0\end{array}\right)$ and $Q=I-P$.

It is obvious that triangular rings are triangular 2 -matrix rings. So we have the following corollaries.

Corollary 2.3. Let $\mathcal{U}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular ring. Assume that $\mathcal{Z}(\mathcal{U}) P$ $=\mathcal{Z}(P \mathcal{U} P)$ and $\mathcal{Z}(\mathcal{U}) Q=\mathcal{Z}(Q \mathcal{U} Q)$. Then a nonadditive map $\varphi: \mathcal{U} \rightarrow \mathcal{U}$ is commuting if and only if $\varphi(X)=Z X+f(X)+h(P X Q)$ for all $X \in \mathcal{U}$, where $Z \in \mathcal{Z}(\mathcal{U}), f$: $\mathcal{U} \rightarrow \mathcal{Z}(\mathcal{U})$ is a map and $h: \mathcal{M} \rightarrow \mathcal{Z}(\mathcal{U})$ is an additive mapping satisfying $h(M) M=0$ for all $M \in \mathcal{M}$.

Corollary 2.4. Let $\mathcal{U}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular ring. Assume that $\mathcal{Z}(\mathcal{U}) P$ $=\mathcal{Z}(P \mathcal{U} P), \mathcal{Z}(\mathcal{U}) Q=\mathcal{Z}(Q \mathcal{U} Q)$ and there exists some element $M_{0} \in \mathcal{M}$ such that $\mathcal{Z}(\mathcal{U})=\left\{A+B: A \in \mathcal{Z}(\mathcal{A}), B \in \mathcal{Z}(\mathcal{B}), A M_{0}=M_{0} B\right\}$. Then a nonadditive map $\varphi: \mathcal{U} \rightarrow \mathcal{U}$ is commuting if and only if $\varphi(X)=Z X+f(X)$ for all $X \in \mathcal{U}$, where $Z \in \mathcal{Z}(\mathcal{U})$ and $f: \mathcal{U} \rightarrow \mathcal{Z}(\mathcal{U})$ is a map.

Acknowledgement. This work is supported by the National Natural Science Foundation of China (No. 12071134) and Natural Science Foundation of Shaanxi Province (No. 2021JM-119).

REFERENCES

[1] J. Bounds, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132-136.
[2] M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), 361-397.
[3] H. Chen, X. Qi, Multiplicative Lie derivations on triangular n-matrix rings, Linear Multilinear Algebra 70 (2022), 1230-1251.
[4] W. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117-127.
[5] W. Chooi, Y. Tan, A note on commuting additive maps on rank k symmetric matrices, Electron. J. Linear Algebra 37 (2021), 734-746.
[6] W. Chooi, K. Kwa, L. Tan, Commuting maps on rank k triangular matrices, Linear Multilinear Algebra 68 (2020), 1021-1030.
[7] B. Ferreira, Multiplicative maps on triangular n-matrix rings, Int. J. Math. Game Theory Algebra 23 (2014), 1-14.
[8] W. Franca, Commuting maps on rank-k matrices, Linear Algebra Appl. 438 (2013), 2813-2815.
[9] X. Qi, L. Feng, Nonadditive commuting maps of unital rings with idempotents, Rocky Mountain J. Math. 51 (2021), 989-1000.
[10] X. Tang, Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras, Comm. Algebra 45 (2017), 5252-5261.
[11] Z. XiaO, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), 2178-2197.
(Received November 21, 2022)
Lei Liu
School of Mathematics and Statistics
Xidian University
Xi'an 710126, P. R. China
e-mail: leiliu@mail.xidian.edu.cn
Zhixuan Chen
School of Mathematics and Statistics
Xidian University
Xi'an 710126, P. R. China

[^0]: Mathematics subject classification (2020): Primary 16W10; Secondary 47B47.
 Keywords and phrases: Triangular n-matrix rings, triangular rings, commuting mappings.

 * Corresponding author.

