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NONADDITIVE COMMUTING MAPPINGS
ON TRIANGULAR n-MATRIX RINGS

LEILIU* AND ZHIXUAN CHEN

(Communicated by M. Omladic)

Abstract. Let A be any ring. A nonadditive mapping ¢ : A — A is said to be commuting if
[@(a),b] = [a,p(b)] for all a,b € A. In this paper, we mainly describe the general form of
nonadditive commuting mappings on triangular n-matrix rings. The result is then applied to
triangular rings.

1. Introduction and preliminaries

Let A be an associative ring (or an algebra over a field ') and Z(.A) be the center
of A. Recall that an additive (a linear) mapping ¢ : A — A is called commuting
if [p(a),a] =0 for all a € A. Clearly, in the case of A 2-torsion free, the additive
(linear) mapping ¢ is commuting if and only if [@(a),b] = [a,@(b)] for all a,b € A.
A commuting mapping ¢ of A is called proper if it is of the form ¢(a) = za+ t(a) for
all a € A, where z € Z(A) and 7 is an additive (a linear) mapping from A into Z(A).
There is a well-written survey paper [2], in which the author presented the development
of the theory of commuting mappings and their applications in detail. BreSar [2] showed
that both commuting mappings on simple unital algebras and commuting mappings on
prime algebras are proper. Cheung in [4] discussed commuting mappings on triangular
algebras and determined the class of triangular algebras for which every commuting
linear mapping is proper. Xiao and Wei [11] considered the sufficient and necessary
conditions for commuting mappings of the generalized matrix algebras to be proper.
For other related results on additive or linear commuting mappings, see [1, 5, 6, 8, 10]
and the references therein.

In the case of nonadditive mapping, we say that a nonadditive mapping ¢ from a
ring A into itself is commuting if [@(a),b] = [a, @ (b)] for all a,b € A. In [9], Qi and
Feng gave a characterization of nonadditive commuting mappings on a class of ring.
More precisely, suppose that .4 is a unital ring with a nontrivial idempotent ¢; and A
satisfies the following conditions:

ejaey -ejAey = {0} = ex Aey - ejae) = ejae; =0, )
*
e1Aey - eraer = {0} = erae; - ex Ae) = erae, =0,
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for all a € A, where e, =1 —e;. Then every nonadditive commuting mapping of A
can be represented the sum of a proper form and two special central-valued maps.

Recently, Ferreira [7] defined a class of ring called triangular n-matrix ring as
follows.

DEFINITION 1.1. ([7]) Let Ry, Ra,...,R, be unital rings and M;; be (R;, R;)-
bimodules with M;; = R; forall 1 <i<j<n. Let ¢ : M;j®@r; Mj — Mlk
be (Ri, Ri)-bimodules homomorphisms with @;;; : R; ®%; M;j — M;; and @;j;
M;j®@r; Rj— Mij the canonical multiplication maps forall 1 <i< j<k<n. Write
ab = @jr(a®b) forall a € M;; and b € M ;. Assume that M;; is faithful as a left
‘Ri-module and faithful as a right R j-module for all 1 <i < j <n. Moreover, suppose
that a(bc) = (ab)c forall a € My, b € My and c € M;; with 1 <i<k<I<j<n.
The set

T =T,(Ri; Mij)
ripmp s Mi(p—1) Mmin
0 rn - myp-yy  may

: : :riiERi7mij€Mij,l<i<j<n
0 0 - TF(n—1)(n—1) M(n—1)n
o 0 - 0 Tn

under the usual matrix operations is called triangular n-matrix ring.

Note that triangular n-matrix rings do not satisfy the condition () in [9]. So it
is nature to ask what is the structure of nonadditive commuting mappings on triangular
n-matrix rings. The purpose of the present paper is to characterize the general form of
nonadditive commuting mappings on triangular n-matrix rings.

In the rest part of this paper, we shall use the following result.

PROPOSITION 1.2. ([3, Lemma 2.1]) Let 7 = T,(Ri;M;j) be a triangular n-
matrix ring. The center of T is

Z(T) = {érﬁ

i=1

riimij = Mj;r;; for all mij € M,‘j, i< ]} .

Moreover, Z(T )i = nr,(Z(T)) C Z(Ri), and there exists a unique ring isomorphism
) from nr,(Z(T)) to mr;(Z(T)) i # j such that rymij = m;t! (rii) for all m; €
Mij.

Here, 69 ri; denotes the element

i=1

rp 0 -+ 0
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and g, : 7 — R; (1 <i < n) is the natural projection defined by 7r,(m;;) = ri;.

Fix any i € {1,2,...,n}. Let E; stand for the nontrivial idempotent in 7 with
(i,i) position 1 and other positions 0. Write b, =E| +FE;+---+E; and Q; =1 —P,.
Denote by A; = PTP;, Bi = Q;7Q; and M; = P,TQ;. Hence, T = A;+ M; + B;.
Furthermore, for any A; € A;, M; € M; and B; € B;, we identify

riL My e my; Mg M2 * My

0 ryp ---my My i1 M2 =+ My
A=l . ], M=

0 0 - ri Mijr1 Mijyd == Min

and
Fit i+l Mip1i42 = Mitin
0 7ig2i2 - Migon

0 0 - rm
We define two natural projections w4, : 7 — A; and mg, : T — B; by
Ta(Ai+Mi+Bi) = A
and
ng;(Ai+M;+ B;) = B;.
Then 74, (Z(7)) C Z(A;) and 7p,(Z2(7T)) C Z(By).
PROPOSITION 1.3. ([3, Lemma 2.2]) Let T = T,(Ri;M,;) be a triangular n-
matrix ring. Then there exists a unique ring isomorphism 1w : 7w, (Z(7T)) — ng,(Z(7))

such that AiM; = M;it(A;) for all M; € M; and A; € wa,(Z(T)), and moreover, A;+
n(A;) € Z(T).

2. Result and proof

In this section, we mainly discuss the general structure of nonadditive commuting
mappings on triangular n-matrix rings. The main result is the following.

THEOREM 2.1. Let T be a 2-torsion free triangular n-matrix ring. Assume that
Z(P[n/z]TP[n/2]) = Z(T)P[n/z] and Z(Q[H/Q]TQ[H/z]) = Z(T)Q[H/Q] . Then a nonaddi-
tive mapping @ : T — T is commuting if and only if it has the form

O(T) =ZT + f(T) + h(Ppj2 T Qjns2)) Qlny2)

forall T €T, where Z€ Z(T), f:T — Z(T) isamap and h: M, 5 — Z(T) is
an additive mapping satisfying h(M,2))M|, 5y = 0 for all M}, ;5 € M|, s). Here, [k]
is the integer part of k.
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Proof. For the “if” part, assume that @(7') = ZT + f(T) + h(Py, /21T Qp/2)) Qjn /2]
forall T € T, where Z€ 2(7), f:7 — 2(7) isamap and h: M,y — 2(7)
is an additive mapping satisfying h(M[n 12))M, /2] =0 for all Mjj5 € My, g Let
T = Apy) + Mo+ Byyo) and S = A[n/2] +M[n/2] +B [n/2] Since h is additive and

(M[,, /2]) in/2) = 0 forall M}, 5 in M|, ), itis easy to check that
(M) My )+ (M ) M) = 0

holds for all M, ), an /2 € M|, /). Furthermore, we have

[(T),S] = [ZT + f(T) + h(M}/2)) Qjn /2 S]
=Z[T.S|+[h (M[n/2])Q[n/2]a /2]
= Z[T, 8] = M}, ) )h (M}, 121) Qju 2
= Z[T,S] = h(Mj )M, )

and

(T, @(S)] = [T.ZS + f(S) + h(M[, }2) Q2]
= Z[T, S|+ [M} 21, A(M{, 15) Q2]
= Z[T, 8]+ Mjyh(M], 1)) Qjn 2]
=Z[T, 8]+ h(M], )5 )Mp -
Combining the above three equalities, we obtain that
[o(T),S] = [T, 0(5)]
forall T, S € T, as desired.

For the “only if” part, we shall organize the proof in a series of claims.

CLAIM 1. Forany T and S € 7, the following statements hold:

() [o(T),T] =0;
(ii) the map (T,S) — [@(T),S] is double additive.

Since [@(T),T] =[T,9(T)] and 7 is 2-torsion free, we have
[o(T),T] =0

forall T €T.
Clearly, we only need to show that the map is additive with respect to the first
component. Indeed, for any 7,W and S in 7, we have

[p(T+W),S]=[T+W,¢(S)]
=[T,0(5)] + W, 0(S)]
= [o(T),S]+ [p(W),S]
= [o(T) +o(W),S].

Hence the map is additive with respect to the first component.



NONADDITIVE COMMUTING MAPPINGS ON TRIANGULAR 7n-MATRIX RINGS 943

CLAIM 2. The following statements hold:
(i) oP)e Ai+B;,ie{1,2,....n—1};
(i) 9(Qi)) E Ai+Bi, i€ {1727...,n—1}.

By Claim 1 (i), we have [@(P;),P;] =0, which implies that P, (P;)Q; = 0. Then
o(P) € Ai+Bi.
Similarly, one can obtain @(Q;) € A; + B;.

CLAIM 3. Forany A; € A;, Bi€ B, i€{1,2,...,n—1}, the following statements
hold:

(i) P,op(A;))Qi = Pio(B;)Q; =0;

(i) [Po(Ai) P, Al = [Qi@(B;)Qi,Bi] = 0;

(iii) Po(B))P, € Z(A;);

(iv) Qip(Ai)Qi € Z(B 1)'

Since [@(A;),P] = [A;,o(P)] and @(P;) € A;+ B;, we have

—P,o(A;) Qi = AiPio(P,) P — Pio(P;)PA

Multiplying Q; from the right side of the above equation, we arrive at P,p(A;)Q; = 0.
Similarly, we have P,@(B;)Q; =0.

By Claim 1 (i), we have [@(A;),A;] = 0. This together with the fact @(A;) €
A; + B; implies that [P,¢(A;)P;,A;] = 0. Similarly, we get [Q;¢(B;)Q;,Bi] =0

By Claim 1 (i)(ii) and Claim 3 (ii), we have

which implies Q;@(A;)Q; € Z(B;) and Po(B;)P; € Z(A;).

In particular, it follows from Claim 3 (iii)—(iv) that O}, /210 (P/2)) Qju/2) € Z (Bjuy2))
and P, /219(Qjn/2))Pinj2) € Z(Ajnj2)) - By the assumption of theorem, we see that there
exists some Z(Py, /), Z(Qjn/2)) € Z(7) such that

Oln/21?(Pin/21)Cin/2) = Z(Pins2)) Qpn/2)

and
P21 9(Qln21)Pinj2) = Z(Q1ny2))Pins2)-

CLAIM 4. The following statements hold:
() Bo(P)P € Z(A),i€{1,2,...,n—1};
(i) Qip(Qi)Qi € Z(B ),16{1,2,---,11—1}-
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For any A; € A;, by Claim 2 (i) and Claim 3 (i), we have

[Po(P)PA] = [@(P),Al
= [P, 0(A))]
= Pio(Ai)Q;
= O,
which means P,¢(P)P; € Z(A;).
Similarly, we can get Q;¢(Q;)Q; € Z(5;), as desired.

In particular, we see that Py, 21 0(Py,/2)) P j2) € Z(Apya)) and Qpy /21 9(Qpn/2)) Q2]
€ Z(By,/5). By the assumption of theorem, there exists some Z'(P,,»)) € Z(7) and
Z/(Q[n/z]) S Z(T) such that

P2 @ (P2 Pinj2) = Z' (Puj2) ) Plaa)

and
Qin/21?(Qins21)Cins2l = Z'(Qpuy2) iy

CLAIM 5. For any My, /5 € M, 5, the following statements hold:

() Pluj2) 9 (Miuj2)) Qoo = (2 (Pnj2)) = Z(Piny2) ) My

() Puy2) @ (Min2)) Qpuj2) = Miny2) (Z' () = Z(Qpuj2)) 5

(iii) Py /2@ (Mjn2))Pluja) = Z(My/21) Py ) for some Z(M, ) € Z(7T);

(V) Q2P (My/2)Qlnj2) = Z' (Min2)) Qpnj2) for some Z'(M, ) € Z(7).

For any M,/5 € M2, we have [@(M},/3)),Plujz] = [Mjn/2), @(Pins2))]. This
together with Claim 3 (iv) and Claim 4 (i) leads to

—Puj219(Miuy2)) Qlnj2) = Miny21 9 (Plaj2)) Qlny2) — P21 9 (Pluj2) M2
= My Z(Pyy2)) = Z' (Plujo) )M
= (Z(Pyy2)) = Z'(Pyy2)) Y Mpn )

Similarly, one can check that (ii) is true.
For any A, /2] € A[u/2), by Claim 1 (i)~(ii), we have

0 = [@(Aj/2) + Miny2))s A2y + Mp 2]
= [0(Apy2) + (M j21) s Apy2) + Miy 2]
= [@(Ap2): M) + [@ (M) A 2)]
= P21 (A2 Piaj2iMins2) — Miny2)Qiny2) 9 (Ajns2)) Olny2)
+ [Pay219 (M j2)) Pins2)s Alny2)] = Apny21Piny2)9 (M y2) Q-

This leads to [P[H/Q]QD(M[,,/2])P[”/2] ,A[n/z]] =0. Thus

P20 (Mpy2)) P2 € Z(Ajya)-
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By the assumption of theorem, there exists some Z(My, »)) € Z(7) such that

Piny2)9(Mjyj2)) Py j2) = Z(Min2)) Pl 2)-

So (iii) is true.
Similarly, one can get (iv).

CLAIM 6. Let Z = (Z'(Py/2)) — Z(Pyuj2)) P2 + (Z'(Qpuy2)) — Z(Qiny2))) Q) -
We claim that Z € Z(7T).

In fact, forany T € 7, we have

[(p(l)’T] - [17(p(T)] =0,

which means ¢(7) € Z(7), then @(Py,/5)) + ¢(Qjn/2) € Z(7). It follows that

Z = (Z'(Pys2)) = Z(Pos2)) Py + (Z' Qi) = Z(Q1ns2))) Q2

= Piu219(Pins2))Pinj2) — Z(Pj2)) Pinj2)
+ Qpny219(Qpny2)) i y2) — Z(Qpns2)) Cny2)

= @(Puy2)) = Z(Puj2)Qny2) — Z(Pnj2)) P2y
+©(Qpny2) — Z(Qpny2)Pus2) — Z(Qpny2)) Qi)

= @(Puy2) + @(Qpny2) — Z(Pry2)) — Z(Qpuy2y) € 2(T),

as desired.
In the sequel, Z is the central element in Claim 6.

Now, forany 7' = Ay, /5 + M, 2)+ Bjy2) € T , we define two mappings ¢ : 7 — T
and v: 7 — 7 by

O(T) = P2 @(Apy2) Prusa) — & (Qpy2) @A) Qpns2))
+ Q21 P(Blny2)) Qiny2) — T (Piny2 9 (Bpuy2)) Pruj2)) + @ (M 2))
and
WT)=o(T)—o(T)
forall T € 7. Thus, by Claim 1 (iii) and Proposition 1.3, we have
Y(T) = Qpuy2j9(Apy2) Qinja) + 7 (Qpuya) (A2 Q)
+ P29 (Bjny2))Pinj2) + 7 (Piny2)9 (Bl y2)) Pins2))
+0(T) = @(Apy2) — @(Bjnya) — @M )) € Z(T)

forall T =Ay, 2+ M2+ Bjnj2 €T So ¢ is acommuting mapping on 7 . Moreover,
we see that ¢’(A[n/2]) € .A[n/z] , ¢(B[n/2]) € B[n/2] .

CLAIM 7. ¢ is additive on Ay, o) and B,y -
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For any A[, /2, A{n /2 € Appy2) and My, o) € My o), we have

[0(Apnj2) + Al ) = O(Apyay) — S(AL, 2) My =

Since M;; is a faithful left R;-module, the above equation implies

Ei(@ (A + AL ) — 9(Apy2) — 9(Af, 2))Ei =0

2.1)

forall i=1,2,...,[n/2]. Moreover, let i € {1,2,...,[n/2] —1}. On the one hand, we

have
[¢(Qi)7A[n/2] +A{n/2]] = [Qi7¢(A[n/2] +A/[n/2])}
= —PO(Apyo) + Ay ) Qi
On the other hand,
[‘P(Qt)? [n/2] +A[n/2] [ (Ql A["/z]] [ (Q) /[ /2]]

);
[le¢(A[n/2])] [Qh‘P( n/2)}
= —Pi(9(Ajpj2) + ¢(AL,5))) Oi-

Comparing these two equations, we get
Pi(¢ (A2 + Al o) — 0(Apya)) — (A}, )0 =0
forall i=1,2,...,[n/2] — 1. So Egs. (2.5)—(2.6) together imply that
O (Apnj2) + A7 ) = 0(Apy2) + 0(A], ),

which means ¢ is additive on Ay, /5.
Similarly, one can verify that ¢ is additive on B, 5.

CLAIM 8. The following statements hold:
@) (b( /2] ) ZA(y )y forall Ap, ) € .A[n/g] ;
(ii) ¢(B[n/2]) = ZB[n/z] for all B[n/2] € B[n/Z] .

(2.2)

We only need to check (i), and the proof of (ii) is similar. For any A, 2 € A}, /2,

M, /21 € M), since

[0(Ap21)s Mol = [Ap 2 0 (M )],
we have
O(Apy2)Mpp o) = [Ap o) 0 (M)
= [Apy215 P21 (M j21) Qpy2]

= A2l s219 (M j2)) Qpn 2
= Aln/21ZMn 2},
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which implies
(O(Apy2) — ZA}2))My j2) = 0.
Note that M;; is a faithful left R;-module. It follows that

Ei(¢(Apya) — ZAp2))Ei =0, i=1,2,...,[n/2]. (2.3)

Writing A, /2] = (aki)[n/2)x[n/2) » We get

Api= Y, Au,

1<k<I<([n/2]

where Ay, is the matrix with (k,/) position @y and other positions 0. Since ¢ is
additive on A[n /2] » one only needs to check that

¢’(Akl) = ZAkl forall 1 < k < [ < [n/2]

Now, we divide the proof into the following two steps.
Step 1. ¢(A) = ZAy for any Ay € A[n/Z] , 1<k < [n/2].
In fact, replacing Ay, /5] with A, k # i in Eq. (2.7), we get

Ei¢(Aw)Ei = EZZARE; =0,

that is,
Ei¢(A)Ei =0, 1 <i#k<[n/2]. (2.4)

Forany i € {1,2,...,[n/2] — 1}, by Claim 3 (iv) and Claim 4 (i), we have
[Plv(p(Akk)] = [(p(Pl)aAkk] = Oa

which implies
Pl¢(Akk)Ql:O7 l:17277[n/2]_1 (2.5)

Egs. (2.8)—(2.9) together imply that
¢’(Akk) ZZAkk, 1 < k < [n/2]

Step 2. ¢(Ay) = ZAy forany Ay € ./4[,,/2], 1<k<I< [n/Z]
In fact, replacing Ay, 5] with Ay, k <1 in Eq. (2.7), we have

Ei¢(An)E; = E;ZZAWE; =0,

that is,
Ed(Ay)Ei =0, i=1.2,...,[n/2]. (2.6)

Forany i € {1,2,...,[n/2]}, by the fact [¢(Ax),Aii] = [Ax, ¢ (Aii)] and Step 1, we have
O (A )Aii — Aid (An) = [Au, ZAii]. 2.7)
If i # k,l, by taking A;; = E; in Eq. (2.11), then we have

O(Aw)Ei —Ei9p(Ay) =0;
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If i = k, by taking A;; = Ey in Eq. (2.11), then we have
¢ (Au) Ex — Exd(An) = —ZAp;
If i =1, by taking A;; = E; in Eq. (2.11), then we have
O(Au)Er — E19(Au) = ZAu.
Let 1 <i< j < [n/2]. Comparing the above three equations, we get

sor,={ 3 D200 e

Eq. (2.10) and Eq. (2.12) together imply that
O(Ay) =ZAw , 1 <k<1<[n/2].
Now, by Step 1 and Step 2, we can infer that
O (Apy2)) = ZAp -

The proof of the claim is completed.

CLAIM 9. (p(T) =ZT +f(T) +h(P[n/2]TQ[n/2])Q[n/2] forall T € 7, where Z €
Z(T),f:T — Z(T) and h: My, /5 — Z(T) are two maps.

Forany T € 7, by Claim 3 (i), (iii), (iv), Claim 5 (i), (iii), (iv) and Claim 8 (i)—(ii),
we have

?O(Apnj2) = ZAps2) + Py Y(Apy2) P2 + Qny2) 9 (Alny2)) Q) (2.9)
My j2)) = ZMy 3+ Z(Mpy ) P o)+ Z' (M ) Q) (2.10)

and
@ (Bjny2)) = ZByyj2) + Piny2) 9 (Biny2)) Pinj2) + Qlny2 Y(Bluy2)) Qpny2) - (2.11)

Moreover, we see that
Y(Apy2) = 0(Ajy2) — 0(Apy2)
= @(Apy2) = Phuj2) 9(Apy2) Pusa) + 7 (Qpy2) (A2 Q)
= Q1u/219(A1/2)) Q2 + 7 (Qpuy2) (Ay2) Qpusa))-
which implies
Py Y(Apy2)Poja) = 7 (Qy2 @(Apny2) ) Qpnj2)- (2.12)

Similarly, we have

Qln/2)Y(Bin2))Qlny2) = T(Pinj21 @ (Biny2))Pins2))- (2.13)
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Combining Egs. (2.13)—(2.17), we have

O(T) = @(Apy2) + @ (Myy2) + @(Blyy) +Zo
=ZT + Q1) P(Apn/2)) Qpuya) + T (Qpy2) @(Apy2)) Q)
+ P29 (Biay2)) Pinj2) + T (Pl (Bjy2)) Pluj2))
+ Z(Mpy 2 P2y + Z' (M 12)) Qpuy2) + Zps

where Z, € Z(7T). Let

F(T) = 0210 Apy2) iy + 7 (Qpuy2) ©(Apny2) Qpay2))
+ P21 (Blny2)) Piny2) + T (Piny2) 9 (B2 ) Pruj2))
+Z(M[n/2]) +Zy
and
h(Myyj2)) = Z'(Mpy 2)) — Z(Mpy ).
Then
O(T) =ZT + f(T) + h(M})2)) Q2

forall T € 7. Itis clear that f is a map from 7 into Z(7) and & is a map from
M[n/Z] into Z(T) .
CLAIM 10. £ is additive and h(M[n/Z])M[n/2] =0 for all M[n/Z] S M[n/2]-

For any My, /), M[’n /2] € Miuj2)» we have

(@ (Mi/21), M, joy) = (M2 9(M, 1))
and
O(Mpy2) = Z(Mpyy ) Py o) + ZMpy 1)+ Z' (M, 27) Qp 2]
= Z(Mpy0) + ZMy, 3 + (Z' (Mpy 1) — Z(Mpy 21)) Qp 2
=Z(My,/2) +ZM 12+ h(Miy /2)) Oj 2y -

Combining the above two equation, we obtain that

(Z(M} ) + ZMiy 3+ h(Mpy ) Q21 My )]

= (M2, Z(Mjy 1)) + ZM}y 1) + 1M 1) Q1))
that is,

[1(M1)21) Q121 My o)) = M 2], B(M, 1)) Q2]

and hence
(M 2)) My )+ (M ) Mi ) = O (2.14)
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for all My, ) 7M[’n /) € M,/ In particular, we have
h(Mpp 2 )M j2) =0

for all M[n/Z] S M[n/2] .
Furthermore, for any M|, 5, M[’n /2 M[’; /) € M/, by Eq. (2.18), we have
[A(Mi 2y + My 1)) = h(Mip ) = h(M, 1)) IM 1y = 0.
So
(WM + My 51) = R(Mpy 2)) = R(M,, 1)) 1Py j2) = 0. (2.15)

Similarly, we can obtain
(1(Mi 2y + My ) = h (M o)) — (M 1)) Qa2 = O (2.16)
Therefore, by Egs. (2.19)—(2.20), we get
h(Mu2) + M, ) = h(Mp ) +h(M, ).

Now, by Claim 9-10, we complete the proof of the theorem. [

If the center of triangular n-matrix ring 7" = 7,,(R;; M;;) satisfies the following
condition:

Z(T)={A+B: A€ Z(PyyTPy), BE Z(Qpu2T 0
AMy = MoB forsome My € M, 2},

then we have the following result.

THEOREM 2.2. Let T be a 2-torsion free triangular n-matrix ring. Suppose that
(i) Z(Pyuy2)T Pja)) = Z(T) Py,
(ii) Z(Qn/2)T Qpus2)) = Z(T)Qns2y.
(iii) Z(T) = {A+B:A € Z(PyyTPy) BE Z(QuaT Opya))s AMo = MoB
for some My € M3}
Then a nonadditivemap ¢ : T — T is commuting if and only if ¢(T)=ZT + f(T)
holds forall T € T, where Z€ Z(T), f:T — Z(T) is a map.

Proof. The “if” part is obvious. We only need to prove “only if” part.
Using Theorem 2.1, we have

O(T) =ZT + f(T) + h(Py 2 T Qj/2)) Q2]

forall T €T, where Z€ 2(T), f:7 — Z(T) isamap, h: M, — 2(7T) isa
additive map satisfying i (M, 5 )M}, ;) = O for all M}, 51 € M|, o) -
Now, we check that 7 =0.
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Indeed, using assumption (iii) of the theorem and the fact h(My)My = 0, we have
h(Mo)P,, /2 € Z(T), and hence

h(Mo)Py, 2 = 0. (2.17)
For any M € My, ], by Eq. (2.21), we have
0= h(M+ My)(M+ My) = h(M)M,.
By the assumption (iii) again, we get
h(M)Py, /2 =0

forall M € M|, y.
Similarly, we can obtain h(M)Qy, /5 = 0 forall M € M, 5. Hence h=0. [

As an application of Theorem 2.1 and Theorem 2.2, we consider the triangular
ring case.

Let A and B be two unital rings, and let M be a unital (A, B)-bimodule, which
is faithful as a left .4-module and also as a right B-module; that is, for any A € A and
Be B, AM = MB={0} imply A=0 and B=0. The set

U = Tri(A M, B) — {(g‘ "

) :AeA,MeM,BeB}
under the usual matrix addition and formal matrix multiplication is called a triangular
I4 0

01 ) . We denote the non-trivial idempotent
B

ring. Clearly, ¢/ is unital with unit / = (

(140 g
P= (O 0) and Q=1-P.
It is obvious that triangular rings are triangular 2-matrix rings. So we have the
following corollaries.

COROLLARY 2.3. Let U =Tri(A, M,B) be atriangular ring. Assume that Z(U )P
= Z(PUP) and Z(U)Q = Z(QUQ). Then a nonadditive map ¢ :U — U is commut-
ing if and only if (X)) =ZX+ f(X)+h(PXQ) forall X €U, where Z € Z(U), f:
U— Z(U) isamap and h: M — Z(U) is an additive mapping satisfying h(M)M =0
forall M € M.

COROLLARY 2.4. Let U =Tri(A, M,B) be atriangular ring. Assume that Z(U )P
= Z(PUP), Z(U)Q = Z(QUQ) and there exists some element My € M such that
ZU)={A+B:Ac Z(A), Be Z(B), AMy = MyB}. Then a nonadditive map
O U — U is commuting if and only if ¢(X)=ZX+ f(X) for all X € U, where
ZeZU) and f U — Z(U) is a map.
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