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NONADDITIVE COMMUTING MAPPINGS

ON TRIANGULAR n–MATRIX RINGS

LEI LIU ∗ AND ZHIXUAN CHEN

(Communicated by M. Omladič)

Abstract. Let A be any ring. A nonadditive mapping ϕ : A →A is said to be commuting if
[ϕ(a),b] = [a,ϕ(b)] for all a,b ∈ A . In this paper, we mainly describe the general form of
nonadditive commuting mappings on triangular n -matrix rings. The result is then applied to
triangular rings.

1. Introduction and preliminaries

Let A be an associative ring (or an algebra over a field F) and Z(A) be the center
of A . Recall that an additive (a linear) mapping ϕ : A → A is called commuting
if [ϕ(a),a] = 0 for all a ∈ A . Clearly, in the case of A 2-torsion free, the additive
(linear) mapping ϕ is commuting if and only if [ϕ(a),b] = [a,ϕ(b)] for all a,b ∈ A .
A commuting mapping ϕ of A is called proper if it is of the form ϕ(a) = za+τ(a) for
all a∈A , where z∈Z(A) and τ is an additive (a linear) mapping from A into Z(A) .
There is a well-written survey paper [2], in which the author presented the development
of the theory of commutingmappings and their applications in detail. Brešar [2] showed
that both commuting mappings on simple unital algebras and commuting mappings on
prime algebras are proper. Cheung in [4] discussed commuting mappings on triangular
algebras and determined the class of triangular algebras for which every commuting
linear mapping is proper. Xiao and Wei [11] considered the sufficient and necessary
conditions for commuting mappings of the generalized matrix algebras to be proper.
For other related results on additive or linear commuting mappings, see [1, 5, 6, 8, 10]
and the references therein.

In the case of nonadditive mapping, we say that a nonadditive mapping ϕ from a
ring A into itself is commuting if [ϕ(a),b] = [a,ϕ(b)] for all a,b ∈ A . In [9], Qi and
Feng gave a characterization of nonadditive commuting mappings on a class of ring.
More precisely, suppose that A is a unital ring with a nontrivial idempotent e1 and A
satisfies the following conditions:{

e1ae1 · e1Ae2 = {0} = e2Ae1 · e1ae1 ⇒ e1ae1 = 0,

e1Ae2 · e2ae2 = {0} = e2ae2 · e2Ae1 ⇒ e2ae2 = 0,
(∗)
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for all a ∈ A , where e2 = I − e1 . Then every nonadditive commuting mapping of A
can be represented the sum of a proper form and two special central-valued maps.

Recently, Ferreira [7] defined a class of ring called triangular n -matrix ring as
follows.

DEFINITION 1.1. ([7]) Let R1, R2, . . . ,Rn be unital rings and Mi j be (Ri, R j)-
bimodules with Mii = Ri for all 1 � i � j � n . Let ϕi jk : Mi j ⊗R j M jk → Mik

be (Ri, Rk)-bimodules homomorphisms with ϕii j : Ri ⊗Ri Mi j → Mi j and ϕi j j :
Mi j⊗R j R j →Mi j the canonical multiplication maps for all 1 � i � j � k � n . Write
ab = ϕi jk(a⊗b) for all a ∈Mi j and b ∈M jk . Assume that Mi j is faithful as a left
Ri -module and faithful as a right R j -module for all 1 � i < j � n . Moreover, suppose
that a(bc) = (ab)c for all a∈Mik , b ∈Mkl and c ∈Ml j with 1 � i � k � l � j � n .
The set

T = Tn(Ri;Mi j)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

r11 m12 · · · m1(n−1) m1n

0 r22 · · · m2(n−1) m2n
...

...
. . .

...
...

0 0 · · · r(n−1)(n−1) m(n−1)n
0 0 · · · 0 rnn

⎞
⎟⎟⎟⎟⎟⎠ : rii ∈Ri,mi j ∈Mi j,1 � i < j � n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

under the usual matrix operations is called triangular n -matrix ring.

Note that triangular n -matrix rings do not satisfy the condition (∗) in [9]. So it
is nature to ask what is the structure of nonadditive commuting mappings on triangular
n -matrix rings. The purpose of the present paper is to characterize the general form of
nonadditive commuting mappings on triangular n -matrix rings.

In the rest part of this paper, we shall use the following result.

PROPOSITION 1.2. ([3, Lemma 2.1]) Let T = Tn(Ri;Mi j) be a triangular n-
matrix ring. The center of T is

Z(T ) =

{
n⊕

i=1

rii

∣∣∣∣riimi j = mi jr j j for all mi j ∈Mi j, i < j

}
.

Moreover, Z(T )ii
∼= πRi(Z(T ))⊆Z(Ri) , and there exists a unique ring isomorphism

τ j
i from πRi(Z(T )) to πR j (Z(T )) i 	= j such that riimi j = mi jτ j

i (rii) for all mi j ∈
Mi j .

Here,
n
⊕
i=1

rii denotes the element

⎛
⎜⎜⎜⎝

r11 0 · · · 0
r22 · · · 0

. . .
...

rnn

⎞
⎟⎟⎟⎠ ,
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and πRi : T →Ri (1 � i � n) is the natural projection defined by πRi(mi j) = rii .
Fix any i ∈ {1,2, . . . ,n} . Let Ei stand for the nontrivial idempotent in T with

(i, i) position 1 and other positions 0. Write Pi = E1 +E2 + · · ·+Ei and Qi = I −Pi .
Denote by Ai = PiT Pi , Bi = QiT Qi and Mi = PiT Qi . Hence, T = Ai +Mi +Bi .
Furthermore, for any Ai ∈ Ai , Mi ∈Mi and Bi ∈ Bi , we identify

Ai
∼=

⎛
⎜⎜⎜⎝

r11 m12 · · · m1i

0 r22 · · · m2i
...

...
. . .

...
0 0 · · · rii

⎞
⎟⎟⎟⎠ , Mi

∼=

⎛
⎜⎜⎜⎝

m1,i+1 m1,i+2 · · · m1n

m2,i+1 m2,i+2 · · · m2n
...

...
. . .

...
mi,i+1 mi,i+2 · · · min

⎞
⎟⎟⎟⎠

and

Bi
∼=

⎛
⎜⎜⎜⎝

ri+1,i+1 mi+1,i+2 · · · mi+1,n

0 ri+2,i+2 · · · mi+2,n
...

...
. . .

...
0 0 · · · rnn

⎞
⎟⎟⎟⎠ .

We define two natural projections πAi : T →Ai and πBi : T → Bi by

πAi(Ai +Mi +Bi) = Ai

and
πBi(Ai +Mi +Bi) = Bi.

Then πAi(Z(T )) ⊆Z(Ai) and πBi(Z(T )) ⊆Z(Bi) .

PROPOSITION 1.3. ([3, Lemma 2.2]) Let T = Tn(Ri;Mi j) be a triangular n-
matrix ring. Then there exists a unique ring isomorphism π : πAi(Z(T ))→ πBi(Z(T ))
such that AiMi = Miπ(Ai) for all Mi ∈Mi and Ai ∈ πAi(Z(T )) , and moreover, Ai +
π(Ai) ∈ Z(T ) .

2. Result and proof

In this section, we mainly discuss the general structure of nonadditive commuting
mappings on triangular n -matrix rings. The main result is the following.

THEOREM 2.1. Let T be a 2 -torsion free triangular n-matrix ring. Assume that
Z(P[n/2]T P[n/2]) = Z(T )P[n/2] and Z(Q[n/2]T Q[n/2]) = Z(T )Q[n/2] . Then a nonaddi-
tive mapping ϕ : T → T is commuting if and only if it has the form

ϕ(T ) = ZT + f (T )+h(P[n/2]TQ[n/2])Q[n/2]

for all T ∈ T , where Z ∈ Z(T ) , f : T → Z(T ) is a map and h : M[n/2] →Z(T ) is
an additive mapping satisfying h(M[n/2])M[n/2] = 0 for all M[n/2] ∈M[n/2] . Here, [k]
is the integer part of k .
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Proof. For the “if” part, assume that ϕ(T ) = ZT + f (T )+ h(P[n/2]TQ[n/2])Q[n/2]
for all T ∈ T , where Z ∈ Z(T ) , f : T → Z(T ) is a map and h : M[n/2] → Z(T )
is an additive mapping satisfying h(M[n/2])M[n/2] = 0 for all M[n/2] ∈ M[n/2] . Let
T = A[n/2] + M[n/2] +B[n/2] and S = A′

[n/2] +M′
[n/2] + B′

[n/2] . Since h is additive and
h(M[n/2])M[n/2] = 0 for all M[n/2] in M[n/2] , it is easy to check that

h(M[n/2])M
′
[n/2] +h(M′

[n/2])M[n/2] = 0

holds for all M[n/2], M′
[n/2] ∈M[n/2] . Furthermore, we have

[ϕ(T ),S] = [ZT + f (T )+h(M[n/2])Q[n/2],S]

= Z[T,S]+ [h(M[n/2])Q[n/2],M
′
[n/2]]

= Z[T,S]−M′
[n/2]h(M[n/2])Q[n/2]

= Z[T,S]−h(M[n/2])M
′
[n/2]

and

[T,ϕ(S)] = [T,ZS+ f (S)+h(M′
[n/2])Q[n/2]]

= Z[T,S]+ [M[n/2],h(M′
[n/2])Q[n/2]]

= Z[T,S]+M[n/2]h(M′
[n/2])Q[n/2]

= Z[T,S]+h(M′
[n/2])M[n/2].

Combining the above three equalities, we obtain that

[ϕ(T ),S] = [T,ϕ(S)]

for all T, S ∈ T , as desired.
For the “only if” part, we shall organize the proof in a series of claims.

CLAIM 1. For any T and S ∈ T , the following statements hold:
(i) [ϕ(T ),T ] = 0;
(ii) the map (T,S) → [ϕ(T ),S] is double additive.

Since [ϕ(T ),T ] = [T,ϕ(T )] and T is 2-torsion free, we have

[ϕ(T ),T ] = 0

for all T ∈ T .
Clearly, we only need to show that the map is additive with respect to the first

component. Indeed, for any T,W and S in T , we have

[ϕ(T +W ),S] = [T +W,ϕ(S)]
= [T,ϕ(S)]+ [W,ϕ(S)]
= [ϕ(T ),S]+ [ϕ(W),S]
= [ϕ(T )+ ϕ(W),S].

Hence the map is additive with respect to the first component.
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CLAIM 2. The following statements hold:
(i) ϕ(Pi) ∈Ai +Bi , i ∈ {1,2, . . . ,n−1} ;
(ii) ϕ(Qi) ∈ Ai +Bi , i ∈ {1,2, . . . ,n−1} .

By Claim 1 (i), we have [ϕ(Pi),Pi] = 0, which implies that Piϕ(Pi)Qi = 0. Then
ϕ(Pi) ∈ Ai +Bi .

Similarly, one can obtain ϕ(Qi) ∈ Ai +Bi .

CLAIM 3. For any Ai ∈Ai , Bi ∈Bi , i∈{1,2, . . . ,n−1} , the following statements
hold:

(i) Piϕ(Ai)Qi = Piϕ(Bi)Qi = 0;
(ii) [Piϕ(Ai)Pi,Ai] = [Qiϕ(Bi)Qi,Bi] = 0;
(iii) Piϕ(Bi)Pi ∈ Z(Ai) ;
(iv) Qiϕ(Ai)Qi ∈ Z(Bi) .

Since [ϕ(Ai),Pi] = [Ai,ϕ(Pi)] and ϕ(Pi) ∈ Ai +Bi , we have

−Piϕ(Ai)Qi = AiPiϕ(Pi)Pi−Piϕ(Pi)PiAi.

Multiplying Qi from the right side of the above equation, we arrive at Piϕ(Ai)Qi = 0.
Similarly, we have Piϕ(Bi)Qi = 0.

By Claim 1 (i), we have [ϕ(Ai),Ai] = 0. This together with the fact ϕ(Ai) ∈
Ai +Bi implies that [Piϕ(Ai)Pi,Ai] = 0. Similarly, we get [Qiϕ(Bi)Qi,Bi] = 0.

By Claim 1 (i)–(ii) and Claim 3 (ii), we have

0 = [ϕ(Ai +Bi),Ai +Bi]
= [ϕ(Ai)+ ϕ(Bi),Ai +Bi]
= [ϕ(Ai),Bi]+ [ϕ(Bi),Ai]
= [Qiϕ(Ai)Qi,Bi]+ [Piϕ(Bi)Pi,Ai],

which implies Qiϕ(Ai)Qi ∈ Z(Bi) and Piϕ(Bi)Pi ∈ Z(Ai ).
In particular, it follows from Claim 3 (iii)–(iv) that Q[n/2]ϕ(P[n/2])Q[n/2] ∈Z(B[n/2])

and P[n/2]ϕ(Q[n/2])P[n/2] ∈ Z(A[n/2]) . By the assumption of theorem, we see that there
exists some Z(P[n/2]), Z(Q[n/2]) ∈ Z(T ) such that

Q[n/2]ϕ(P[n/2])Q[n/2] = Z(P[n/2])Q[n/2]

and

P[n/2]ϕ(Q[n/2])P[n/2] = Z(Q[n/2])P[n/2].

CLAIM 4. The following statements hold:
(i) Piϕ(Pi)Pi ∈ Z(Ai) , i ∈ {1,2, . . . ,n−1} ;
(ii) Qiϕ(Qi)Qi ∈ Z(Bi) , i ∈ {1,2, . . . ,n−1} .
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For any Ai ∈Ai , by Claim 2 (i) and Claim 3 (i), we have

[Piϕ(Pi)Pi,Ai] = [ϕ(Pi),Ai]
= [Pi,ϕ(Ai)]
= Piϕ(Ai)Qi

= 0,

which means Piϕ(Pi)Pi ∈ Z(Ai) .
Similarly, we can get Qiϕ(Qi)Qi ∈ Z(Bi) , as desired.
In particular, we see that P[n/2]ϕ(P[n/2])P[n/2] ∈Z(A[n/2]) and Q[n/2]ϕ(Q[n/2])Q[n/2]

∈ Z(B[n/2]) . By the assumption of theorem, there exists some Z′(P[n/2]) ∈ Z(T ) and
Z′(Q[n/2]) ∈ Z(T ) such that

P[n/2]ϕ(P[n/2])P[n/2] = Z′(P[n/2])P[n/2]

and
Q[n/2]ϕ(Q[n/2])Q[n/2] = Z′(Q[n/2])Q[n/2].

CLAIM 5. For any M[n/2] ∈M[n/2] , the following statements hold:
(i) P[n/2]ϕ(M[n/2])Q[n/2] = (Z′(P[n/2])−Z(P[n/2]))M[n/2] ;
(ii) P[n/2]ϕ(M[n/2])Q[n/2] = M[n/2](Z′(Q[n/2])−Z(Q[n/2])) ;
(iii) P[n/2]ϕ(M[n/2])P[n/2] = Z(M[n/2])P[n/2] for some Z(M[n/2]) ∈ Z(T ) ;
(iv) Q[n/2]ϕ(M[n/2])Q[n/2] = Z′(M[n/2])Q[n/2] for some Z′(M[n/2]) ∈ Z(T ) .

For any M[n/2] ∈ M[n/2] , we have [ϕ(M[n/2]),P[n/2]] = [M[n/2],ϕ(P[n/2])] . This
together with Claim 3 (iv) and Claim 4 (i) leads to

−P[n/2]ϕ(M[n/2])Q[n/2] = M[n/2]ϕ(P[n/2])Q[n/2]−P[n/2]ϕ(P[n/2])M[n/2]

= M[n/2]Z(P[n/2])−Z′(P[n/2])M[n/2]

= (Z(P[n/2])−Z′(P[n/2]))M[n/2].

Similarly, one can check that (ii) is true.
For any A[n/2] ∈ A[n/2] , by Claim 1 (i)–(ii), we have

0 = [ϕ(A[n/2] +M[n/2]),A[n/2] +M[n/2]]

= [ϕ(A[n/2])+ ϕ(M[n/2]),A[n/2] +M[n/2]]

= [ϕ(A[n/2]),M[n/2]]+ [ϕ(M[n/2]),A[n/2]]

= P[n/2]ϕ(A[n/2])P[n/2]M[n/2]−M[n/2]Q[n/2]ϕ(A[n/2])Q[n/2]

+ [P[n/2]ϕ(M[n/2])P[n/2],A[n/2]]−A[n/2]P[n/2]ϕ(M[n/2])Q[n/2].

This leads to [P[n/2]ϕ(M[n/2])P[n/2],A[n/2]] = 0. Thus

P[n/2]ϕ(M[n/2])P[n/2] ∈ Z(A[n/2]).
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By the assumption of theorem, there exists some Z(M[n/2]) ∈ Z(T ) such that

P[n/2]ϕ(M[n/2])P[n/2] = Z(M[n/2])P[n/2].

So (iii) is true.
Similarly, one can get (iv).

CLAIM 6. Let Z = (Z′(P[n/2])− Z(P[n/2]))P[n/2] + (Z′(Q[n/2])− Z(Q[n/2]))Q[n/2] .
We claim that Z ∈ Z(T ) .

In fact, for any T ∈ T , we have

[ϕ(I),T ] = [I,ϕ(T )] = 0,

which means ϕ(I) ∈ Z(T ) , then ϕ(P[n/2])+ ϕ(Q[n/2]) ∈ Z(T ) . It follows that

Z = (Z′(P[n/2])−Z(P[n/2]))P[n/2] + (Z′(Q[n/2])−Z(Q[n/2]))Q[n/2]

= P[n/2]ϕ(P[n/2])P[n/2]−Z(P[n/2])P[n/2]

+Q[n/2]ϕ(Q[n/2])Q[n/2]−Z(Q[n/2])Q[n/2]

= ϕ(P[n/2])−Z(P[n/2])Q[n/2]−Z(P[n/2])P[n/2]

+ ϕ(Q[n/2])−Z(Q[n/2])P[n/2]−Z(Q[n/2])Q[n/2]

= ϕ(P[n/2])+ ϕ(Q[n/2])−Z(P[n/2])−Z(Q[n/2]) ∈ Z(T ),

as desired.
In the sequel, Z is the central element in Claim 6.
Now, for any T = A[n/2]+M[n/2]+B[n/2] ∈ T , we define two mappings φ : T →T

and γ : T → T by

φ(T ) = P[n/2]ϕ(A[n/2])P[n/2]−π−1(Q[n/2]ϕ(A[n/2])Q[n/2])

+Q[n/2]ϕ(B[n/2])Q[n/2]−π(P[n/2]ϕ(B[n/2])P[n/2])+ ϕ(M[n/2])

and
γ(T ) = ϕ(T )−φ(T )

for all T ∈ T . Thus, by Claim 1 (iii) and Proposition 1.3, we have

γ(T ) = Q[n/2]ϕ(A[n/2])Q[n/2] + π−1(Q[n/2]ϕ(A[n/2])Q[n/2])

+P[n/2]ϕ(B[n/2])P[n/2] + π(P[n/2]ϕ(B[n/2])P[n/2])

+ ϕ(T )−ϕ(A[n/2])−ϕ(B[n/2])−ϕ(M[n/2]) ∈ Z(T )

for all T = A[n/2]+M[n/2]+B[n/2] ∈ T So φ is a commuting mapping on T . Moreover,
we see that φ(A[n/2]) ∈ A[n/2] , φ(B[n/2]) ∈ B[n/2] .

CLAIM 7. φ is additive on A[n/2] and B[n/2] .
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For any A[n/2] , A′
[n/2] ∈ A[n/2] and M[n/2] ∈M[n/2] , we have

[φ(A[n/2] +A′
[n/2])−φ(A[n/2])−φ(A′

[n/2]),M[n/2]] = 0.

Since Mi j is a faithful left Ri -module, the above equation implies

Ei(φ(A[n/2] +A′
[n/2])−φ(A[n/2])−φ(A′

[n/2]))Ei = 0 (2.1)

for all i = 1,2, . . . , [n/2] . Moreover, let i ∈ {1,2, . . . , [n/2]−1} . On the one hand, we
have

[φ(Qi),A[n/2] +A′
[n/2]] = [Qi,φ(A[n/2] +A′

[n/2])]

= −Piφ(A[n/2] +A′
[n/2])Qi.

On the other hand,

[φ(Qi),A[n/2] +A′
[n/2]] = [φ(Qi),A[n/2]]+ [φ(Qi),A′

[n/2]]

= [Qi,φ(A[n/2])]+ [Qi,φ(A′
[n/2])]

= −Pi(φ(A[n/2])+ φ(A′
[n/2]))Qi.

Comparing these two equations, we get

Pi(φ(A[n/2] +A′
[n/2])−φ(A[n/2])−φ(A′

[n/2]))Qi = 0 (2.2)

for all i = 1,2, . . . , [n/2]−1. So Eqs. (2.5)–(2.6) together imply that

φ(A[n/2] +A′
[n/2]) = φ(A[n/2])+ φ(A′

[n/2]),

which means φ is additive on A[n/2] .
Similarly, one can verify that φ is additive on B[n/2] .

CLAIM 8. The following statements hold:
(i) φ(A[n/2]) = ZA[n/2] for all A[n/2] ∈ A[n/2] ;
(ii) φ(B[n/2]) = ZB[n/2] for all B[n/2] ∈ B[n/2] .

We only need to check (i), and the proof of (ii) is similar. For any A[n/2] ∈ A[n/2] ,
M[n/2] ∈M[n/2] , since

[φ(A[n/2]),M[n/2]] = [A[n/2],φ(M[n/2])],

we have

φ(A[n/2])M[n/2] = [A[n/2],φ(M[n/2])]

= [A[n/2],P[n/2]φ(M[n/2])Q[n/2]]

= A[n/2]P[n/2]φ(M[n/2])Q[n/2]

= A[n/2]ZM[n/2],
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which implies
(φ(A[n/2])−ZA[n/2])M[n/2] = 0.

Note that Mi j is a faithful left Ri -module. It follows that

Ei(φ(A[n/2])−ZA[n/2])Ei = 0, i = 1,2, . . . , [n/2]. (2.3)

Writing A[n/2] = (akl)[n/2]×[n/2] , we get

A[n/2] = ∑
1�k�l�[n/2]

Akl,

where Akl is the matrix with (k, l) position akl and other positions 0. Since φ is
additive on A[n/2] , one only needs to check that

φ(Akl) = ZAkl forall 1 � k � l � [n/2].

Now, we divide the proof into the following two steps.
Step 1. φ(Akk) = ZAkk for any Akk ∈ A[n/2] , 1 � k � [n/2] .
In fact, replacing A[n/2] with Akk , k 	= i in Eq. (2.7), we get

Eiφ(Akk)Ei = EiZAkkEi = 0,

that is,
Eiφ(Akk)Ei = 0 , 1 � i 	= k � [n/2]. (2.4)

For any i ∈ {1,2, . . . , [n/2]−1} , by Claim 3 (iv) and Claim 4 (i), we have

[Pi,φ(Akk)] = [φ(Pi),Akk] = 0,

which implies
Piφ(Akk)Qi = 0 , i = 1,2, . . . , [n/2]−1. (2.5)

Eqs. (2.8)–(2.9) together imply that

φ(Akk) = ZAkk, 1 � k � [n/2].

Step 2. φ(Akl) = ZAkl for any Akl ∈A[n/2] , 1 � k < l � [n/2] .
In fact, replacing A[n/2] with Akl , k < l in Eq. (2.7), we have

Eiφ(Akl)Ei = EiZAklEi = 0,

that is,
Eiφ(Akl)Ei = 0, i = 1,2, . . . , [n/2]. (2.6)

For any i∈ {1,2, . . . , [n/2]} , by the fact [φ(Akl),Aii] = [Akl,φ(Aii)] and Step 1, we have

φ(Akl)Aii −Aiiφ(Akl) = [Akl,ZAii]. (2.7)

If i 	= k, l , by taking Aii = Ei in Eq. (2.11), then we have

φ(Akl)Ei −Eiφ(Akl) = 0;
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If i = k , by taking Aii = Ek in Eq. (2.11), then we have

φ(Akl)Ek −Ekφ(Akl) = −ZAkl ;

If i = l , by taking Aii = El in Eq. (2.11), then we have

φ(Akl)El −Elφ(Akl) = ZAkl .

Let 1 � i < j � [n/2] . Comparing the above three equations, we get

Eiφ(Akl)Ej =
{

ZAkl, if (i, j) = (k, l)
0, if (i, j) 	= (k, l) . (2.8)

Eq. (2.10) and Eq. (2.12) together imply that

φ(Akl) = ZAkl , 1 � k < l � [n/2].

Now, by Step 1 and Step 2, we can infer that

φ(A[n/2]) = ZA[n/2].

The proof of the claim is completed.

CLAIM 9. ϕ(T ) = ZT + f (T )+h(P[n/2]TQ[n/2])Q[n/2] for all T ∈ T , where Z ∈
Z(T ), f : T →Z(T ) and h : M[n/2] →Z(T ) are two maps.

For any T ∈ T , by Claim 3 (i), (iii), (iv), Claim 5 (i), (iii), (iv) and Claim 8 (i)–(ii),
we have

ϕ(A[n/2]) = ZA[n/2] +P[n/2]γ(A[n/2])P[n/2] +Q[n/2]ϕ(A[n/2])Q[n/2], (2.9)

ϕ(M[n/2]) = ZM[n/2] +Z(M[n/2])P[n/2] +Z′(M[n/2])Q[n/2], (2.10)

and

ϕ(B[n/2]) = ZB[n/2] +P[n/2]ϕ(B[n/2])P[n/2] +Q[n/2]γ(B[n/2])Q[n/2]. (2.11)

Moreover, we see that

γ(A[n/2]) = ϕ(A[n/2])−φ(A[n/2])

= ϕ(A[n/2])−P[n/2]ϕ(A[n/2])P[n/2] + π−1(Q[n/2]ϕ(A[n/2])Q[n/2])

= Q[n/2]ϕ(A[n/2])Q[n/2] + π−1(Q[n/2]ϕ(A[n/2])Q[n/2]),

which implies

P[n/2]γ(A[n/2])P[n/2] = π−1(Q[n/2]ϕ(A[n/2])Q[n/2]). (2.12)

Similarly, we have

Q[n/2]γ(B[n/2])Q[n/2] = π(P[n/2]ϕ(B[n/2])P[n/2]). (2.13)
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Combining Eqs. (2.13)–(2.17), we have

ϕ(T ) = ϕ(A[n/2])+ ϕ(M[n/2])+ ϕ(B[n/2])+Zϕ

= ZT +Q[n/2]ϕ(A[n/2])Q[n/2] + π−1(Q[n/2]ϕ(A[n/2])Q[n/2])

+P[n/2]ϕ(B[n/2])P[n/2] + π(P[n/2]ϕ(B[n/2])P[n/2])

+Z(M[n/2])P[n/2] +Z′(M[n/2])Q[n/2] +Zϕ ,

where Zϕ ∈ Z(T ) . Let

f (T ) = Q[n/2]ϕ(A[n/2])Q[n/2] + π−1(Q[n/2]ϕ(A[n/2])Q[n/2])

+P[n/2]ϕ(B[n/2])P[n/2] + π(P[n/2]ϕ(B[n/2])P[n/2])

+Z(M[n/2])+Zϕ

and
h(M[n/2]) = Z′(M[n/2])−Z(M[n/2]).

Then
ϕ(T ) = ZT + f (T )+h(M[n/2])Q[n/2]

for all T ∈ T . It is clear that f is a map from T into Z(T ) and h is a map from
M[n/2] into Z(T ) .

CLAIM 10. h is additive and h(M[n/2])M[n/2] = 0 for all M[n/2] ∈M[n/2] .

For any M[n/2], M′
[n/2] ∈M[n/2] , we have

[ϕ(M[n/2]),M
′
[n/2]] = [M[n/2],ϕ(M′

[n/2])]

and

ϕ(M[n/2]) = Z(M[n/2])P[n/2] +ZM[n/2] +Z′(M[n/2])Q[n/2]

= Z(M[n/2])+ZM[n/2] + (Z′(M[n/2])−Z(M[n/2]))Q[n/2]

= Z(M[n/2])+ZM[n/2] +h(M[n/2])Q[n/2].

Combining the above two equation, we obtain that

[Z(M[n/2])+ZM[n/2] +h(M[n/2])Q[n/2],M
′
[n/2]]

= [M[n/2],Z(M′
[n/2])+ZM′

[n/2] +h(M′
[n/2])Q[n/2]],

that is,
[h(M[n/2])Q[n/2],M

′
[n/2]] = [M[n/2],h(M′

[n/2])Q[n/2]],

and hence
h(M[n/2])M

′
[n/2] +h(M′

[n/2])M[n/2] = 0 (2.14)
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for all M[n/2],M
′
[n/2] ∈M[n/2] . In particular, we have

h(M[n/2])M[n/2] = 0

for all M[n/2] ∈M[n/2] .
Furthermore, for any M[n/2], M′

[n/2], M∗
[n/2] ∈M[n/2] , by Eq. (2.18), we have

[h(M[n/2] +M∗
[n/2])−h(M[n/2])−h(M∗

[n/2])]M
′
[n/2] = 0.

So
[h(M[n/2] +M∗

[n/2])−h(M[n/2])−h(M∗
[n/2])]P[n/2] = 0. (2.15)

Similarly, we can obtain

[h(M[n/2] +M∗
[n/2])−h(M[n/2])−h(M∗

[n/2])]Q[n/2] = 0. (2.16)

Therefore, by Eqs. (2.19)–(2.20), we get

h(M[n/2] +M∗
[n/2]) = h(M[n/2])+h(M∗

[n/2]).

Now, by Claim 9–10, we complete the proof of the theorem. �

If the center of triangular n -matrix ring T = Tn(Ri;Mi j) satisfies the following
condition:

Z(T ) = {A+B : A ∈ Z(P[n/2]T P[n/2]), B ∈ Z(Q[n/2]T Q[n/2]),

AM0 = M0B forsome M0 ∈M[n/2]},

then we have the following result.

THEOREM 2.2. Let T be a 2 -torsion free triangular n-matrix ring. Suppose that
(i) Z(P[n/2]T P[n/2]) = Z(T )P[n/2] ,
(ii) Z(Q[n/2]T Q[n/2]) = Z(T )Q[n/2] ,
(iii) Z(T ) = {A+B : A ∈ Z(P[n/2]T P[n/2]), B ∈ Z(Q[n/2]T Q[n/2]), AM0 = M0B

for some M0 ∈M[n/2]} .
Then a nonadditive map ϕ : T →T is commuting if and only if ϕ(T ) = ZT + f (T )

holds for all T ∈ T , where Z ∈ Z(T ) , f : T → Z(T ) is a map.

Proof. The “if” part is obvious. We only need to prove “only if” part.
Using Theorem 2.1, we have

ϕ(T ) = ZT + f (T )+h(P[n/2]TQ[n/2])Q[n/2]

for all T ∈ T , where Z ∈ Z(T ) , f : T → Z(T ) is a map, h : M[n/2] → Z(T ) is a
additive map satisfying h(M[n/2])M[n/2] = 0 for all M[n/2] ∈M[n/2] .

Now, we check that h = 0.
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Indeed, using assumption (iii) of the theorem and the fact h(M0)M0 = 0, we have
h(M0)P[n/2] ∈ Z(T ) , and hence

h(M0)P[n/2] = 0. (2.17)

For any M ∈M[n/2] , by Eq. (2.21), we have

0 = h(M +M0)(M +M0) = h(M)M0.

By the assumption (iii) again, we get

h(M)P[n/2] = 0

for all M ∈M[n/2] .
Similarly, we can obtain h(M)Q[n/2] = 0 for all M ∈M[n/2] . Hence h = 0. �
As an application of Theorem 2.1 and Theorem 2.2, we consider the triangular

ring case.
Let A and B be two unital rings, and let M be a unital (A,B)-bimodule, which

is faithful as a left A-module and also as a right B -module; that is, for any A ∈ A and
B ∈ B , AM = MB = {0} imply A = 0 and B = 0. The set

U = Tri(A,M,B) =
{(

A M
0 B

)
: A ∈ A,M ∈M,B ∈ B

}

under the usual matrix addition and formal matrix multiplication is called a triangular

ring. Clearly, U is unital with unit I =
(

IA 0
0 IB

)
. We denote the non-trivial idempotent

P =
(

IA 0
0 0

)
and Q = I−P .

It is obvious that triangular rings are triangular 2-matrix rings. So we have the
following corollaries.

COROLLARY 2.3. Let U = Tri(A,M,B) be a triangular ring. Assume that Z(U)P
= Z(PUP) and Z(U)Q = Z(QUQ) . Then a nonadditive map ϕ : U → U is commut-
ing if and only if ϕ(X) = ZX + f (X)+ h(PXQ) for all X ∈ U , where Z ∈ Z(U) , f :
U →Z(U) is a map and h :M→Z(U) is an additive mapping satisfying h(M)M = 0
for all M ∈M .

COROLLARY 2.4. Let U = Tri(A,M,B) be a triangular ring. Assume that Z(U)P
= Z(PUP) , Z(U)Q = Z(QUQ) and there exists some element M0 ∈ M such that
Z(U) = {A + B : A ∈ Z(A), B ∈ Z(B), AM0 = M0B} . Then a nonadditive map
ϕ : U → U is commuting if and only if ϕ(X) = ZX + f (X) for all X ∈ U , where
Z ∈ Z(U) and f : U →Z(U) is a map.
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