NONADDITIVE COMMUTING MAPPINGS ON TRIANGULAR *n*-MATRIX RINGS

LEI LIU* AND ZHIXUAN CHEN

(Communicated by M. Omladič)

Abstract. Let \mathcal{A} be any ring. A nonadditive mapping $\varphi : \mathcal{A} \to \mathcal{A}$ is said to be commuting if $[\varphi(a),b] = [a,\varphi(b)]$ for all $a,b \in \mathcal{A}$. In this paper, we mainly describe the general form of nonadditive commuting mappings on triangular *n*-matrix rings. The result is then applied to triangular rings.

1. Introduction and preliminaries

Let \mathcal{A} be an associative ring (or an algebra over a field \mathbb{F}) and $\mathcal{Z}(\mathcal{A})$ be the center of \mathcal{A} . Recall that an additive (a linear) mapping $\varphi : \mathcal{A} \to \mathcal{A}$ is called commuting if $[\varphi(a), a] = 0$ for all $a \in \mathcal{A}$. Clearly, in the case of \mathcal{A} 2-torsion free, the additive (linear) mapping φ is commuting if and only if $[\varphi(a), b] = [a, \varphi(b)]$ for all $a, b \in \mathcal{A}$. A commuting mapping φ of \mathcal{A} is called proper if it is of the form $\varphi(a) = za + \tau(a)$ for all $a \in \mathcal{A}$, where $z \in \mathcal{Z}(\mathcal{A})$ and τ is an additive (a linear) mapping from \mathcal{A} into $\mathcal{Z}(\mathcal{A})$. There is a well-written survey paper [2], in which the author presented the development of the theory of commuting mappings and their applications in detail. Brešar [2] showed that both commuting mappings on simple unital algebras and commuting mappings on prime algebras are proper. Cheung in [4] discussed commuting mappings on triangular algebras and determined the class of triangular algebras for which every commuting linear mapping is proper. Xiao and Wei [11] considered the sufficient and necessary conditions for commuting mappings of the generalized matrix algebras to be proper. For other related results on additive or linear commuting mappings, see [1, 5, 6, 8, 10] and the references therein.

In the case of nonadditive mapping, we say that a nonadditive mapping φ from a ring \mathcal{A} into itself is commuting if $[\varphi(a), b] = [a, \varphi(b)]$ for all $a, b \in \mathcal{A}$. In [9], Qi and Feng gave a characterization of nonadditive commuting mappings on a class of ring. More precisely, suppose that \mathcal{A} is a unital ring with a nontrivial idempotent e_1 and \mathcal{A} satisfies the following conditions:

$$\begin{cases} e_1 a e_1 \cdot e_1 \mathcal{A} e_2 = \{0\} = e_2 \mathcal{A} e_1 \cdot e_1 a e_1 \Rightarrow e_1 a e_1 = 0, \\ e_1 \mathcal{A} e_2 \cdot e_2 a e_2 = \{0\} = e_2 a e_2 \cdot e_2 \mathcal{A} e_1 \Rightarrow e_2 a e_2 = 0, \end{cases}$$
(*)

Mathematics subject classification (2020): Primary 16W10; Secondary 47B47.

^{*} Corresponding author.

Keywords and phrases: Triangular n-matrix rings, triangular rings, commuting mappings.

for all $a \in A$, where $e_2 = I - e_1$. Then every nonadditive commuting mapping of A can be represented the sum of a proper form and two special central-valued maps.

Recently, Ferreira [7] defined a class of ring called triangular n-matrix ring as follows.

DEFINITION 1.1. ([7]) Let $\mathcal{R}_1, \mathcal{R}_2, ..., \mathcal{R}_n$ be unital rings and \mathcal{M}_{ij} be $(\mathcal{R}_i, \mathcal{R}_j)$ bimodules with $\mathcal{M}_{ii} = \mathcal{R}_i$ for all $1 \leq i \leq j \leq n$. Let $\varphi_{ijk} : \mathcal{M}_{ij} \otimes_{\mathcal{R}_j} \mathcal{M}_{jk} \to \mathcal{M}_{ik}$ be $(\mathcal{R}_i, \mathcal{R}_k)$ -bimodules homomorphisms with $\varphi_{iij} : \mathcal{R}_i \otimes_{\mathcal{R}_i} \mathcal{M}_{ij} \to \mathcal{M}_{ij}$ and $\varphi_{ijj} : \mathcal{M}_{ij} \otimes_{\mathcal{R}_j} \mathcal{R}_j \to \mathcal{M}_{ij}$ the canonical multiplication maps for all $1 \leq i \leq j \leq k \leq n$. Write $ab = \varphi_{ijk}(a \otimes b)$ for all $a \in \mathcal{M}_{ij}$ and $b \in \mathcal{M}_{jk}$. Assume that \mathcal{M}_{ij} is faithful as a left \mathcal{R}_i -module and faithful as a right \mathcal{R}_j -module for all $1 \leq i < j \leq n$. Moreover, suppose that a(bc) = (ab)c for all $a \in \mathcal{M}_{ik}, b \in \mathcal{M}_{kl}$ and $c \in \mathcal{M}_{lj}$ with $1 \leq i \leq k \leq l \leq j \leq n$. The set

$$\mathcal{T} = \mathcal{T}_n(\mathcal{R}_i; \mathcal{M}_{ij})$$

$$= \left\{ \begin{pmatrix} r_{11} \ m_{12} \ \cdots \ m_{1(n-1)} \ m_{1n} \\ 0 \ r_{22} \ \cdots \ m_{2(n-1)} \ m_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ r_{(n-1)(n-1)} \ m_{(n-1)n} \\ 0 \ 0 \ \cdots \ 0 \ r_{nn} \end{pmatrix} : r_{ii} \in \mathcal{R}_i, m_{ij} \in \mathcal{M}_{ij}, 1 \leqslant i < j \leqslant n \right\}.$$

under the usual matrix operations is called triangular *n*-matrix ring.

Note that triangular *n*-matrix rings do not satisfy the condition (*) in [9]. So it is nature to ask what is the structure of nonadditive commuting mappings on triangular *n*-matrix rings. The purpose of the present paper is to characterize the general form of nonadditive commuting mappings on triangular *n*-matrix rings.

In the rest part of this paper, we shall use the following result.

PROPOSITION 1.2. ([3, Lemma 2.1]) Let $\mathcal{T} = \mathcal{T}_n(\mathcal{R}_i; \mathcal{M}_{ij})$ be a triangular *n*-matrix ring. The center of \mathcal{T} is

$$\mathcal{Z}(\mathcal{T}) = \left\{ \bigoplus_{i=1}^{n} r_{ii} \middle| r_{ii} m_{ij} = m_{ij} r_{jj} \text{ for all } m_{ij} \in \mathcal{M}_{ij}, i < j \right\}.$$

Moreover, $Z(T)_{ii} \cong \pi_{\mathcal{R}_i}(Z(T)) \subseteq Z(\mathcal{R}_i)$, and there exists a unique ring isomorphism τ_i^j from $\pi_{\mathcal{R}_i}(Z(T))$ to $\pi_{\mathcal{R}_j}(Z(T))$ $i \neq j$ such that $r_{ii}m_{ij} = m_{ij}\tau_i^j(r_{ii})$ for all $m_{ij} \in \mathcal{M}_{ij}$.

Here, $\bigoplus_{i=1}^{n} r_{ii}$ denotes the element

$$\begin{pmatrix} r_{11} & 0 & \cdots & 0 \\ & r_{22} & \cdots & 0 \\ & & \ddots & \vdots \\ & & & r_{nn} \end{pmatrix},$$

and $\pi_{\mathcal{R}_i}: \mathcal{T} \to \mathcal{R}_i \ (1 \leq i \leq n)$ is the natural projection defined by $\pi_{\mathcal{R}_i}(m_{ij}) = r_{ii}$.

Fix any $i \in \{1, 2, ..., n\}$. Let E_i stand for the nontrivial idempotent in \mathcal{T} with (i, i) position 1 and other positions 0. Write $P_i = E_1 + E_2 + \cdots + E_i$ and $Q_i = I - P_i$. Denote by $\mathcal{A}_i = P_i \mathcal{T} P_i$, $\mathcal{B}_i = Q_i \mathcal{T} Q_i$ and $\mathcal{M}_i = P_i \mathcal{T} Q_i$. Hence, $\mathcal{T} = \mathcal{A}_i + \mathcal{M}_i + \mathcal{B}_i$. Furthermore, for any $A_i \in \mathcal{A}_i$, $M_i \in \mathcal{M}_i$ and $B_i \in \mathcal{B}_i$, we identify

$$A_{i} \cong \begin{pmatrix} r_{11} \ m_{12} \ \cdots \ m_{1i} \\ 0 \ r_{22} \ \cdots \ m_{2i} \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \cdots \ r_{ii} \end{pmatrix}, \quad M_{i} \cong \begin{pmatrix} m_{1,i+1} \ m_{1,i+2} \ \cdots \ m_{1n} \\ m_{2,i+1} \ m_{2,i+2} \ \cdots \ m_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ m_{i,i+1} \ m_{i,i+2} \ \cdots \ m_{in} \end{pmatrix}$$

and

$$B_{i} \cong \begin{pmatrix} r_{i+1,i+1} & m_{i+1,i+2} & \cdots & m_{i+1,n} \\ 0 & r_{i+2,i+2} & \cdots & m_{i+2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}.$$

We define two natural projections $\pi_{\mathcal{A}_i}: \mathcal{T} \to \mathcal{A}_i$ and $\pi_{\mathcal{B}_i}: \mathcal{T} \to \mathcal{B}_i$ by

$$\pi_{\mathcal{A}_i}(A_i+M_i+B_i)=A_i$$

and

$$\pi_{\mathcal{B}_i}(A_i + M_i + B_i) = B_i.$$

Then $\pi_{\mathcal{A}_i}(\mathcal{Z}(\mathcal{T})) \subseteq \mathcal{Z}(\mathcal{A}_i)$ and $\pi_{\mathcal{B}_i}(\mathcal{Z}(\mathcal{T})) \subseteq \mathcal{Z}(\mathcal{B}_i)$.

PROPOSITION 1.3. ([3, Lemma 2.2]) Let $\mathcal{T} = \mathcal{T}_n(\mathcal{R}_i; \mathcal{M}_{ij})$ be a triangular *n*-matrix ring. Then there exists a unique ring isomorphism $\pi : \pi_{\mathcal{A}_i}(\mathcal{Z}(\mathcal{T})) \to \pi_{\mathcal{B}_i}(\mathcal{Z}(\mathcal{T}))$ such that $A_i M_i = M_i \pi(A_i)$ for all $M_i \in \mathcal{M}_i$ and $A_i \in \pi_{\mathcal{A}_i}(\mathcal{Z}(\mathcal{T}))$, and moreover, $A_i + \pi(A_i) \in \mathcal{Z}(\mathcal{T})$.

2. Result and proof

In this section, we mainly discuss the general structure of nonadditive commuting mappings on triangular n-matrix rings. The main result is the following.

THEOREM 2.1. Let \mathcal{T} be a 2-torsion free triangular *n*-matrix ring. Assume that $\mathcal{Z}(P_{[n/2]}\mathcal{T}P_{[n/2]}) = \mathcal{Z}(\mathcal{T})P_{[n/2]}$ and $\mathcal{Z}(Q_{[n/2]}\mathcal{T}Q_{[n/2]}) = \mathcal{Z}(\mathcal{T})Q_{[n/2]}$. Then a nonadditive mapping $\varphi: \mathcal{T} \to \mathcal{T}$ is commuting if and only if it has the form

$$\varphi(T) = ZT + f(T) + h(P_{[n/2]}TQ_{[n/2]})Q_{[n/2]}$$

for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T})$, $f : \mathcal{T} \to \mathcal{Z}(\mathcal{T})$ is a map and $h : \mathcal{M}_{[n/2]} \to \mathcal{Z}(\mathcal{T})$ is an additive mapping satisfying $h(M_{[n/2]})M_{[n/2]} = 0$ for all $M_{[n/2]} \in \mathcal{M}_{[n/2]}$. Here, [k]is the integer part of k. *Proof.* For the "if" part, assume that $\varphi(T) = ZT + f(T) + h(P_{[n/2]}TQ_{[n/2]})Q_{[n/2]}$ for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T})$, $f: \mathcal{T} \to \mathcal{Z}(\mathcal{T})$ is a map and $h: \mathcal{M}_{[n/2]} \to \mathcal{Z}(\mathcal{T})$ is an additive mapping satisfying $h(M_{[n/2]})M_{[n/2]} = 0$ for all $M_{[n/2]} \in \mathcal{M}_{[n/2]}$. Let $T = A_{[n/2]} + M_{[n/2]} + B_{[n/2]}$ and $S = A'_{[n/2]} + M'_{[n/2]} + B'_{[n/2]}$. Since h is additive and $h(M_{[n/2]})M_{[n/2]} = 0$ for all $M_{[n/2]}$ in $\mathcal{M}_{[n/2]}$, it is easy to check that

$$h(M_{[n/2]})M'_{[n/2]} + h(M'_{[n/2]})M_{[n/2]} = 0$$

holds for all $M_{[n/2]}, M'_{[n/2]} \in \mathcal{M}_{[n/2]}$. Furthermore, we have

$$\begin{split} [\varphi(T),S] &= [ZT + f(T) + h(M_{[n/2]})Q_{[n/2]},S] \\ &= Z[T,S] + [h(M_{[n/2]})Q_{[n/2]},M'_{[n/2]}] \\ &= Z[T,S] - M'_{[n/2]}h(M_{[n/2]})Q_{[n/2]} \\ &= Z[T,S] - h(M_{[n/2]})M'_{[n/2]} \end{split}$$

and

$$\begin{split} [T, \varphi(S)] &= [T, ZS + f(S) + h(M'_{[n/2]})Q_{[n/2]}] \\ &= Z[T, S] + [M_{[n/2]}, h(M'_{[n/2]})Q_{[n/2]}] \\ &= Z[T, S] + M_{[n/2]}h(M'_{[n/2]})Q_{[n/2]} \\ &= Z[T, S] + h(M'_{[n/2]})M_{[n/2]}. \end{split}$$

Combining the above three equalities, we obtain that

$$[\varphi(T), S] = [T, \varphi(S)]$$

for all $T, S \in \mathcal{T}$, as desired.

For the "only if" part, we shall organize the proof in a series of claims.

CLAIM 1. For any T and $S \in T$, the following statements hold:

(i) $[\phi(T), T] = 0;$

(ii) the map $(T,S) \rightarrow [\varphi(T),S]$ is double additive.

Since $[\varphi(T), T] = [T, \varphi(T)]$ and \mathcal{T} is 2-torsion free, we have

 $[\varphi(T), T] = 0$

for all $T \in \mathcal{T}$.

Clearly, we only need to show that the map is additive with respect to the first component. Indeed, for any T, W and S in \mathcal{T} , we have

$$\begin{split} [\varphi(T+W),S] &= [T+W,\varphi(S)] \\ &= [T,\varphi(S)] + [W,\varphi(S)] \\ &= [\varphi(T),S] + [\varphi(W),S] \\ &= [\varphi(T) + \varphi(W),S]. \end{split}$$

Hence the map is additive with respect to the first component.

CLAIM 2. The following statements hold: (i) $\varphi(P_i) \in \mathcal{A}_i + \mathcal{B}_i, i \in \{1, 2, ..., n - 1\};$ (ii) $\varphi(Q_i) \in \mathcal{A}_i + \mathcal{B}_i, i \in \{1, 2, ..., n - 1\}.$

By Claim 1 (i), we have $[\varphi(P_i), P_i] = 0$, which implies that $P_i \varphi(P_i) Q_i = 0$. Then $\varphi(P_i) \in A_i + B_i$.

Similarly, one can obtain $\varphi(Q_i) \in \mathcal{A}_i + \mathcal{B}_i$.

CLAIM 3. For any $A_i \in A_i$, $B_i \in B_i$, $i \in \{1, 2, ..., n-1\}$, the following statements hold:

(i) $P_i \varphi(A_i) Q_i = P_i \varphi(B_i) Q_i = 0;$ (ii) $[P_i \varphi(A_i) P_i, A_i] = [Q_i \varphi(B_i) Q_i, B_i] = 0;$ (iii) $P_i \varphi(B_i) P_i \in \mathcal{Z}(\mathcal{A}_i);$ (iv) $Q_i \varphi(A_i) Q_i \in \mathcal{Z}(\mathcal{B}_i).$

Since $[\varphi(A_i), P_i] = [A_i, \varphi(P_i)]$ and $\varphi(P_i) \in A_i + B_i$, we have

$$-P_i\varphi(A_i)Q_i = A_iP_i\varphi(P_i)P_i - P_i\varphi(P_i)P_iA_i.$$

Multiplying Q_i from the right side of the above equation, we arrive at $P_i \varphi(A_i) Q_i = 0$. Similarly, we have $P_i \varphi(B_i) Q_i = 0$.

By Claim 1 (i), we have $[\varphi(A_i), A_i] = 0$. This together with the fact $\varphi(A_i) \in A_i + B_i$ implies that $[P_i \varphi(A_i) P_i, A_i] = 0$. Similarly, we get $[Q_i \varphi(B_i) Q_i, B_i] = 0$.

By Claim 1 (i)–(ii) and Claim 3 (ii), we have

$$\begin{aligned} 0 &= [\varphi(A_i + B_i), A_i + B_i] \\ &= [\varphi(A_i) + \varphi(B_i), A_i + B_i] \\ &= [\varphi(A_i), B_i] + [\varphi(B_i), A_i] \\ &= [Q_i \varphi(A_i) Q_i, B_i] + [P_i \varphi(B_i) P_i, A_i], \end{aligned}$$

which implies $Q_i \varphi(A_i) Q_i \in \mathcal{Z}(\mathcal{B}_i)$ and $P_i \varphi(B_i) P_i \in \mathcal{Z}(\mathcal{A}_i)$.

In particular, it follows from Claim 3 (iii)–(iv) that $Q_{[n/2]}\varphi(P_{[n/2]})Q_{[n/2]} \in \mathcal{Z}(\mathcal{B}_{[n/2]})$ and $P_{[n/2]}\varphi(Q_{[n/2]})P_{[n/2]} \in \mathcal{Z}(\mathcal{A}_{[n/2]})$. By the assumption of theorem, we see that there exists some $Z(P_{[n/2]})$, $Z(Q_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$ such that

$$Q_{[n/2]}\varphi(P_{[n/2]})Q_{[n/2]} = Z(P_{[n/2]})Q_{[n/2]}$$

and

$$P_{[n/2]}\varphi(Q_{[n/2]})P_{[n/2]} = Z(Q_{[n/2]})P_{[n/2]}$$

CLAIM 4. The following statements hold: (i) $P_i \varphi(P_i) P_i \in \mathcal{Z}(\mathcal{A}_i), i \in \{1, 2, ..., n-1\};$ (ii) $Q_i \varphi(Q_i) Q_i \in \mathcal{Z}(\mathcal{B}_i), i \in \{1, 2, ..., n-1\}.$ For any $A_i \in A_i$, by Claim 2 (i) and Claim 3 (i), we have

[

$$P_i \varphi(P_i) P_i, A_i] = [\varphi(P_i), A_i]$$
$$= [P_i, \varphi(A_i)]$$
$$= P_i \varphi(A_i) Q_i$$
$$= 0,$$

which means $P_i \varphi(P_i) P_i \in \mathcal{Z}(\mathcal{A}_i)$.

Similarly, we can get $Q_i \varphi(Q_i) Q_i \in \mathcal{Z}(\mathcal{B}_i)$, as desired.

In particular, we see that $P_{[n/2]}\varphi(P_{[n/2]})P_{[n/2]} \in \mathcal{Z}(\mathcal{A}_{[n/2]})$ and $Q_{[n/2]}\varphi(Q_{[n/2]})Q_{[n/2]} \in \mathcal{Z}(\mathcal{B}_{[n/2]})$. By the assumption of theorem, there exists some $Z'(P_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$ and $Z'(Q_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$ such that

$$P_{[n/2]}\varphi(P_{[n/2]})P_{[n/2]} = Z'(P_{[n/2]})P_{[n/2]}$$

and

$$Q_{[n/2]}\varphi(Q_{[n/2]})Q_{[n/2]} = Z'(Q_{[n/2]})Q_{[n/2]}$$

CLAIM 5. For any
$$M_{[n/2]} \in \mathcal{M}_{[n/2]}$$
, the following statements hold:
(i) $P_{[n/2]}\varphi(M_{[n/2]})Q_{[n/2]} = (Z'(P_{[n/2]}) - Z(P_{[n/2]}))M_{[n/2]}$;
(ii) $P_{[n/2]}\varphi(M_{[n/2]})Q_{[n/2]} = M_{[n/2]}(Z'(Q_{[n/2]}) - Z(Q_{[n/2]}))$;
(iii) $P_{[n/2]}\varphi(M_{[n/2]})P_{[n/2]} = Z(M_{[n/2]})P_{[n/2]}$ for some $Z(M_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$;
(iv) $Q_{[n/2]}\varphi(M_{[n/2]})Q_{[n/2]} = Z'(M_{[n/2]})Q_{[n/2]}$ for some $Z'(M_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$.

For any $M_{[n/2]} \in \mathcal{M}_{[n/2]}$, we have $[\varphi(M_{[n/2]}), P_{[n/2]}] = [M_{[n/2]}, \varphi(P_{[n/2]})]$. This together with Claim 3 (iv) and Claim 4 (i) leads to

$$\begin{aligned} -P_{[n/2]}\varphi(M_{[n/2]})Q_{[n/2]} &= M_{[n/2]}\varphi(P_{[n/2]})Q_{[n/2]} - P_{[n/2]}\varphi(P_{[n/2]})M_{[n/2]} \\ &= M_{[n/2]}Z(P_{[n/2]}) - Z'(P_{[n/2]})M_{[n/2]} \\ &= (Z(P_{[n/2]}) - Z'(P_{[n/2]}))M_{[n/2]}. \end{aligned}$$

Similarly, one can check that (ii) is true.

For any $A_{[n/2]} \in \mathcal{A}_{[n/2]}$, by Claim 1 (i)–(ii), we have

$$\begin{split} 0 &= [\varphi(A_{[n/2]} + M_{[n/2]}), A_{[n/2]} + M_{[n/2]}] \\ &= [\varphi(A_{[n/2]}) + \varphi(M_{[n/2]}), A_{[n/2]} + M_{[n/2]}] \\ &= [\varphi(A_{[n/2]}), M_{[n/2]}] + [\varphi(M_{[n/2]}), A_{[n/2]}] \\ &= P_{[n/2]}\varphi(A_{[n/2]})P_{[n/2]}M_{[n/2]} - M_{[n/2]}Q_{[n/2]}\varphi(A_{[n/2]})Q_{[n/2]} \\ &+ [P_{[n/2]}\varphi(M_{[n/2]})P_{[n/2]}, A_{[n/2]}] - A_{[n/2]}P_{[n/2]}\varphi(M_{[n/2]})Q_{[n/2]}. \end{split}$$

This leads to $[P_{[n/2]}\varphi(M_{[n/2]})P_{[n/2]}, A_{[n/2]}] = 0$. Thus

$$P_{[n/2]}\varphi(M_{[n/2]})P_{[n/2]} \in \mathcal{Z}(\mathcal{A}_{[n/2]}).$$

By the assumption of theorem, there exists some $Z(M_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$ such that

$$P_{[n/2]}\varphi(M_{[n/2]})P_{[n/2]} = Z(M_{[n/2]})P_{[n/2]}.$$

So (iii) is true.

Similarly, one can get (iv).

CLAIM 6. Let $Z = (Z'(P_{[n/2]}) - Z(P_{[n/2]}))P_{[n/2]} + (Z'(Q_{[n/2]}) - Z(Q_{[n/2]}))Q_{[n/2]}$. We claim that $Z \in \mathcal{Z}(\mathcal{T})$.

In fact, for any $T \in \mathcal{T}$, we have

$$[\varphi(I),T] = [I,\varphi(T)] = 0,$$

which means $\varphi(I) \in \mathcal{Z}(\mathcal{T})$, then $\varphi(P_{[n/2]}) + \varphi(Q_{[n/2]}) \in \mathcal{Z}(\mathcal{T})$. It follows that

$$\begin{split} & Z = (Z'(P_{[n/2]}) - Z(P_{[n/2]}))P_{[n/2]} + (Z'(Q_{[n/2]}) - Z(Q_{[n/2]}))Q_{[n/2]} \\ & = P_{[n/2]}\varphi(P_{[n/2]})P_{[n/2]} - Z(P_{[n/2]})P_{[n/2]} \\ & + Q_{[n/2]}\varphi(Q_{[n/2]})Q_{[n/2]} - Z(Q_{[n/2]})Q_{[n/2]} \\ & = \varphi(P_{[n/2]}) - Z(P_{[n/2]})Q_{[n/2]} - Z(P_{[n/2]})P_{[n/2]} \\ & + \varphi(Q_{[n/2]}) - Z(Q_{[n/2]})P_{[n/2]} - Z(Q_{[n/2]})Q_{[n/2]} \\ & = \varphi(P_{[n/2]}) + \varphi(Q_{[n/2]}) - Z(P_{[n/2]}) - Z(Q_{[n/2]})Q_{[n/2]} \end{split}$$

as desired.

In the sequel, Z is the central element in Claim 6.

Now, for any $T = A_{[n/2]} + M_{[n/2]} + B_{[n/2]} \in T$, we define two mappings $\phi : T \to T$ and $\gamma : T \to T$ by

$$\begin{split} \phi(T) &= P_{[n/2]} \varphi(A_{[n/2]}) P_{[n/2]} - \pi^{-1} (Q_{[n/2]} \varphi(A_{[n/2]}) Q_{[n/2]}) \\ &+ Q_{[n/2]} \varphi(B_{[n/2]}) Q_{[n/2]} - \pi (P_{[n/2]} \varphi(B_{[n/2]}) P_{[n/2]}) + \varphi(M_{[n/2]}) \end{split}$$

and

$$\gamma(T) = \varphi(T) - \phi(T)$$

for all $T \in \mathcal{T}$. Thus, by Claim 1 (iii) and Proposition 1.3, we have

$$\begin{split} \gamma(T) &= Q_{[n/2]} \varphi(A_{[n/2]}) Q_{[n/2]} + \pi^{-1} (Q_{[n/2]} \varphi(A_{[n/2]}) Q_{[n/2]}) \\ &+ P_{[n/2]} \varphi(B_{[n/2]}) P_{[n/2]} + \pi (P_{[n/2]} \varphi(B_{[n/2]}) P_{[n/2]}) \\ &+ \varphi(T) - \varphi(A_{[n/2]}) - \varphi(B_{[n/2]}) - \varphi(M_{[n/2]}) \in \mathcal{Z}(T) \end{split}$$

for all $T = A_{[n/2]} + M_{[n/2]} + B_{[n/2]} \in \mathcal{T}$ So ϕ is a commuting mapping on \mathcal{T} . Moreover, we see that $\phi(A_{[n/2]}) \in \mathcal{A}_{[n/2]}, \phi(B_{[n/2]}) \in \mathcal{B}_{[n/2]}$.

CLAIM 7. ϕ is additive on $\mathcal{A}_{[n/2]}$ and $\mathcal{B}_{[n/2]}$.

For any $A_{[n/2]}$, $A'_{[n/2]} \in \mathcal{A}_{[n/2]}$ and $M_{[n/2]} \in \mathcal{M}_{[n/2]}$, we have

$$[\phi(A_{[n/2]} + A'_{[n/2]}) - \phi(A_{[n/2]}) - \phi(A'_{[n/2]}), M_{[n/2]}] = 0.$$

Since \mathcal{M}_{ij} is a faithful left \mathcal{R}_i -module, the above equation implies

$$E_i(\phi(A_{[n/2]} + A'_{[n/2]}) - \phi(A_{[n/2]}) - \phi(A'_{[n/2]}))E_i = 0$$
(2.1)

for all i = 1, 2, ..., [n/2]. Moreover, let $i \in \{1, 2, ..., [n/2] - 1\}$. On the one hand, we have

$$\begin{split} [\phi(Q_i), A_{[n/2]} + A'_{[n/2]}] &= [Q_i, \phi(A_{[n/2]} + A'_{[n/2]})] \\ &= -P_i \phi(A_{[n/2]} + A'_{[n/2]}) Q_i. \end{split}$$

On the other hand,

$$\begin{split} [\phi(Q_i), A_{[n/2]} + A'_{[n/2]}] &= [\phi(Q_i), A_{[n/2]}] + [\phi(Q_i), A'_{[n/2]}] \\ &= [Q_i, \phi(A_{[n/2]})] + [Q_i, \phi(A'_{[n/2]})] \\ &= -P_i(\phi(A_{[n/2]}) + \phi(A'_{[n/2]}))Q_i. \end{split}$$

Comparing these two equations, we get

$$P_i(\phi(A_{[n/2]} + A'_{[n/2]}) - \phi(A_{[n/2]}) - \phi(A'_{[n/2]}))Q_i = 0$$
(2.2)

for all i = 1, 2, ..., [n/2] - 1. So Eqs. (2.5)–(2.6) together imply that

$$\phi(A_{[n/2]} + A'_{[n/2]}) = \phi(A_{[n/2]}) + \phi(A'_{[n/2]})$$

which means ϕ is additive on $\mathcal{A}_{[n/2]}$.

Similarly, one can verify that ϕ is additive on $\mathcal{B}_{[n/2]}$.

CLAIM 8. The following statements hold: (i) $\phi(A_{[n/2]}) = ZA_{[n/2]}$ for all $A_{[n/2]} \in \mathcal{A}_{[n/2]}$; (ii) $\phi(B_{[n/2]}) = ZB_{[n/2]}$ for all $B_{[n/2]} \in \mathcal{B}_{[n/2]}$.

We only need to check (i), and the proof of (ii) is similar. For any $A_{[n/2]} \in \mathcal{A}_{[n/2]}$, $M_{[n/2]} \in \mathcal{M}_{[n/2]}$, since

$$[\phi(A_{[n/2]}), M_{[n/2]}] = [A_{[n/2]}, \phi(M_{[n/2]})],$$

we have

$$\begin{split} \phi(A_{[n/2]})M_{[n/2]} &= [A_{[n/2]}, \phi(M_{[n/2]})] \\ &= [A_{[n/2]}, P_{[n/2]}\phi(M_{[n/2]})Q_{[n/2]}] \\ &= A_{[n/2]}P_{[n/2]}\phi(M_{[n/2]})Q_{[n/2]} \\ &= A_{[n/2]}ZM_{[n/2]}, \end{split}$$

which implies

$$(\phi(A_{[n/2]}) - ZA_{[n/2]})M_{[n/2]} = 0$$

Note that \mathcal{M}_{ij} is a faithful left \mathcal{R}_i -module. It follows that

$$E_i(\phi(A_{[n/2]}) - ZA_{[n/2]})E_i = 0, \ i = 1, 2, \dots, [n/2].$$
(2.3)

Writing $A_{[n/2]} = (a_{kl})_{[n/2] \times [n/2]}$, we get

$$A_{[n/2]} = \sum_{1 \leqslant k \leqslant l \leqslant [n/2]} A_{kl}$$

where A_{kl} is the matrix with (k,l) position a_{kl} and other positions 0. Since ϕ is additive on $\mathcal{A}_{[n/2]}$, one only needs to check that

$$\phi(A_{kl}) = ZA_{kl}$$
 for all $1 \leq k \leq l \leq \lfloor n/2 \rfloor$.

Now, we divide the proof into the following two steps.

Step 1. $\phi(A_{kk}) = ZA_{kk}$ for any $A_{kk} \in \mathcal{A}_{[n/2]}$, $1 \le k \le [n/2]$. In fact, replacing $A_{[n/2]}$ with A_{kk} , $k \ne i$ in Eq. (2.7), we get

$$E_i\phi(A_{kk})E_i=E_iZA_{kk}E_i=0,$$

that is,

$$E_i\phi(A_{kk})E_i = 0 , \ 1 \leq i \neq k \leq [n/2].$$

$$(2.4)$$

For any $i \in \{1, 2, ..., [n/2] - 1\}$, by Claim 3 (iv) and Claim 4 (i), we have

$$[P_i, \phi(A_{kk})] = [\phi(P_i), A_{kk}] = 0,$$

which implies

$$P_i\phi(A_{kk})Q_i = 0, \ i = 1, 2, \dots, [n/2] - 1.$$
 (2.5)

Eqs. (2.8)–(2.9) together imply that

$$\phi(A_{kk}) = ZA_{kk}, \ 1 \leq k \leq [n/2].$$

Step 2. $\phi(A_{kl}) = ZA_{kl}$ for any $A_{kl} \in \mathcal{A}_{[n/2]}$, $1 \le k < l \le [n/2]$. In fact, replacing $A_{[n/2]}$ with A_{kl} , k < l in Eq. (2.7), we have

$$E_i\phi(A_{kl})E_i=E_iZA_{kl}E_i=0,$$

that is,

$$E_i \phi(A_{kl}) E_i = 0, \ i = 1, 2, \dots, [n/2].$$
 (2.6)

For any $i \in \{1, 2, \dots, [n/2]\}$, by the fact $[\phi(A_{kl}), A_{ii}] = [A_{kl}, \phi(A_{ii})]$ and Step 1, we have

$$\phi(A_{kl})A_{ii} - A_{ii}\phi(A_{kl}) = [A_{kl}, ZA_{ii}].$$
(2.7)

If $i \neq k, l$, by taking $A_{ii} = E_i$ in Eq. (2.11), then we have

$$\phi(A_{kl})E_i - E_i\phi(A_{kl}) = 0;$$

If i = k, by taking $A_{ii} = E_k$ in Eq. (2.11), then we have

$$\phi(A_{kl})E_k - E_k\phi(A_{kl}) = -ZA_{kl};$$

If i = l, by taking $A_{ii} = E_l$ in Eq. (2.11), then we have

$$\phi(A_{kl})E_l - E_l\phi(A_{kl}) = ZA_{kl}.$$

Let $1 \le i < j \le \lfloor n/2 \rfloor$. Comparing the above three equations, we get

$$E_i \phi(A_{kl}) E_j = \begin{cases} ZA_{kl}, & \text{if } (i,j) = (k,l) \\ 0, & \text{if } (i,j) \neq (k,l) \end{cases}.$$
 (2.8)

Eq. (2.10) and Eq. (2.12) together imply that

$$\phi(A_{kl}) = ZA_{kl} , \ 1 \leq k < l \leq [n/2].$$

Now, by Step 1 and Step 2, we can infer that

$$\phi(A_{[n/2]}) = ZA_{[n/2]}.$$

The proof of the claim is completed.

CLAIM 9. $\varphi(T) = ZT + f(T) + h(P_{[n/2]}TQ_{[n/2]})Q_{[n/2]}$ for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T}), f: \mathcal{T} \to \mathcal{Z}(\mathcal{T})$ and $h: \mathcal{M}_{[n/2]} \to \mathcal{Z}(\mathcal{T})$ are two maps.

For any $T \in T$, by Claim 3 (i), (iii), (iv), Claim 5 (i), (iii), (iv) and Claim 8 (i)–(ii), we have

$$\varphi(A_{[n/2]}) = ZA_{[n/2]} + P_{[n/2]}\gamma(A_{[n/2]})P_{[n/2]} + Q_{[n/2]}\varphi(A_{[n/2]})Q_{[n/2]},$$
(2.9)

$$\varphi(M_{[n/2]}) = ZM_{[n/2]} + Z(M_{[n/2]})P_{[n/2]} + Z'(M_{[n/2]})Q_{[n/2]}, \qquad (2.10)$$

and

$$\varphi(B_{[n/2]}) = ZB_{[n/2]} + P_{[n/2]}\varphi(B_{[n/2]})P_{[n/2]} + Q_{[n/2]}\gamma(B_{[n/2]})Q_{[n/2]}.$$
(2.11)

Moreover, we see that

$$\begin{split} \gamma(A_{[n/2]}) &= \varphi(A_{[n/2]}) - \phi(A_{[n/2]}) \\ &= \varphi(A_{[n/2]}) - P_{[n/2]}\varphi(A_{[n/2]})P_{[n/2]} + \pi^{-1}(\mathcal{Q}_{[n/2]}\varphi(A_{[n/2]})\mathcal{Q}_{[n/2]}) \\ &= \mathcal{Q}_{[n/2]}\varphi(A_{[n/2]})\mathcal{Q}_{[n/2]} + \pi^{-1}(\mathcal{Q}_{[n/2]}\varphi(A_{[n/2]})\mathcal{Q}_{[n/2]}), \end{split}$$

which implies

$$P_{[n/2]}\gamma(A_{[n/2]})P_{[n/2]} = \pi^{-1}(Q_{[n/2]}\varphi(A_{[n/2]})Q_{[n/2]}).$$
(2.12)

Similarly, we have

$$Q_{[n/2]}\gamma(B_{[n/2]})Q_{[n/2]} = \pi(P_{[n/2]}\varphi(B_{[n/2]})P_{[n/2]}).$$
(2.13)

Combining Eqs. (2.13)–(2.17), we have

$$\begin{split} \varphi(T) &= \varphi(A_{[n/2]}) + \varphi(M_{[n/2]}) + \varphi(B_{[n/2]}) + Z_{\varphi} \\ &= ZT + Q_{[n/2]}\varphi(A_{[n/2]})Q_{[n/2]} + \pi^{-1}(Q_{[n/2]}\varphi(A_{[n/2]})Q_{[n/2]}) \\ &+ P_{[n/2]}\varphi(B_{[n/2]})P_{[n/2]} + \pi(P_{[n/2]}\varphi(B_{[n/2]})P_{[n/2]}) \\ &+ Z(M_{[n/2]})P_{[n/2]} + Z'(M_{[n/2]})Q_{[n/2]} + Z_{\varphi}, \end{split}$$

where $Z_{\varphi} \in \mathcal{Z}(\mathcal{T})$. Let

$$\begin{split} f(T) &= Q_{[n/2]} \varphi(A_{[n/2]}) Q_{[n/2]} + \pi^{-1} (Q_{[n/2]} \varphi(A_{[n/2]}) Q_{[n/2]}) \\ &+ P_{[n/2]} \varphi(B_{[n/2]}) P_{[n/2]} + \pi (P_{[n/2]} \varphi(B_{[n/2]}) P_{[n/2]}) \\ &+ Z(M_{[n/2]}) + Z_{\varphi} \end{split}$$

and

$$h(M_{[n/2]}) = Z'(M_{[n/2]}) - Z(M_{[n/2]}).$$

Then

$$\varphi(T) = ZT + f(T) + h(M_{[n/2]})Q_{[n/2]}$$

for all $T \in \mathcal{T}$. It is clear that f is a map from \mathcal{T} into $\mathcal{Z}(\mathcal{T})$ and h is a map from $\mathcal{M}_{[n/2]}$ into $\mathcal{Z}(\mathcal{T})$.

CLAIM 10. h is additive and $h(M_{[n/2]})M_{[n/2]} = 0$ for all $M_{[n/2]} \in \mathcal{M}_{[n/2]}$.

For any $M_{[n/2]}$, $M'_{[n/2]} \in \mathcal{M}_{[n/2]}$, we have

$$[arphi(M_{[n/2]}),M_{[n/2]}']=[M_{[n/2]},arphi(M_{[n/2]}')]$$

and

$$\begin{split} \varphi(M_{[n/2]}) &= Z(M_{[n/2]})P_{[n/2]} + ZM_{[n/2]} + Z'(M_{[n/2]})Q_{[n/2]} \\ &= Z(M_{[n/2]}) + ZM_{[n/2]} + (Z'(M_{[n/2]}) - Z(M_{[n/2]}))Q_{[n/2]} \\ &= Z(M_{[n/2]}) + ZM_{[n/2]} + h(M_{[n/2]})Q_{[n/2]}. \end{split}$$

Combining the above two equation, we obtain that

$$\begin{split} & [Z(M_{[n/2]}) + ZM_{[n/2]} + h(M_{[n/2]})Q_{[n/2]}, M'_{[n/2]}] \\ & = [M_{[n/2]}, Z(M'_{[n/2]}) + ZM'_{[n/2]} + h(M'_{[n/2]})Q_{[n/2]}], \end{split}$$

that is,

$$[h(M_{[n/2]})Q_{[n/2]},M'_{[n/2]}] = [M_{[n/2]},h(M'_{[n/2]})Q_{[n/2]}],$$

and hence

$$h(M_{[n/2]})M'_{[n/2]} + h(M'_{[n/2]})M_{[n/2]} = 0$$
(2.14)

for all $M_{[n/2]}, M'_{[n/2]} \in \mathcal{M}_{[n/2]}$. In particular, we have

$$h(M_{[n/2]})M_{[n/2]} = 0$$

for all $M_{[n/2]} \in \mathcal{M}_{[n/2]}$.

Furthermore, for any $M_{[n/2]}, M'_{[n/2]}, M^*_{[n/2]} \in \mathcal{M}_{[n/2]}$, by Eq. (2.18), we have

$$[h(M_{[n/2]} + M^*_{[n/2]}) - h(M_{[n/2]}) - h(M^*_{[n/2]})]M'_{[n/2]} = 0.$$

So

$$[h(M_{[n/2]} + M_{[n/2]}^*) - h(M_{[n/2]}) - h(M_{[n/2]}^*)]P_{[n/2]} = 0.$$
(2.15)

Similarly, we can obtain

$$[h(M_{[n/2]} + M_{[n/2]}^*) - h(M_{[n/2]}) - h(M_{[n/2]}^*)]Q_{[n/2]} = 0.$$
(2.16)

Therefore, by Eqs. (2.19)–(2.20), we get

$$h(M_{[n/2]} + M^*_{[n/2]}) = h(M_{[n/2]}) + h(M^*_{[n/2]}).$$

Now, by Claim 9–10, we complete the proof of the theorem. \Box

If the center of triangular *n*-matrix ring $T = T_n(\mathcal{R}_i; \mathcal{M}_{ij})$ satisfies the following condition:

$$\mathcal{Z}(\mathcal{T}) = \{A + B : A \in \mathcal{Z}(P_{[n/2]}\mathcal{T}P_{[n/2]}), B \in \mathcal{Z}(\mathcal{Q}_{[n/2]}\mathcal{T}\mathcal{Q}_{[n/2]}), \\ AM_0 = M_0B \text{ forsome } M_0 \in \mathcal{M}_{[n/2]}\},$$

then we have the following result.

THEOREM 2.2. Let \mathcal{T} be a 2-torsion free triangular *n*-matrix ring. Suppose that (i) $Z(P_{[n/2]}\mathcal{T}P_{[n/2]}) = \mathcal{Z}(\mathcal{T})P_{[n/2]},$ (ii) $Z(Q_{[n/2]}\mathcal{T}Q_{[n/2]}) = \mathcal{Z}(\mathcal{T})Q_{[n/2]},$ (iii) $\mathcal{Z}(\mathcal{T}) = \{A + B : A \in \mathcal{Z}(P_{[n/2]}\mathcal{T}P_{[n/2]}), B \in \mathcal{Z}(Q_{[n/2]}\mathcal{T}Q_{[n/2]}), AM_0 = M_0B$ for some $M_0 \in \mathcal{M}_{[n/2]}\}.$

Then a nonadditive map $\varphi: \mathcal{T} \to \mathcal{T}$ is commuting if and only if $\varphi(T) = ZT + f(T)$ holds for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T})$, $f: \mathcal{T} \to \mathcal{Z}(\mathcal{T})$ is a map.

Proof. The "if" part is obvious. We only need to prove "only if" part. Using Theorem 2.1, we have

$$\varphi(T) = ZT + f(T) + h(P_{[n/2]}TQ_{[n/2]})Q_{[n/2]}$$

for all $T \in \mathcal{T}$, where $Z \in \mathcal{Z}(\mathcal{T})$, $f : \mathcal{T} \to \mathcal{Z}(\mathcal{T})$ is a map, $h : \mathcal{M}_{[n/2]} \to \mathcal{Z}(\mathcal{T})$ is a additive map satisfying $h(M_{[n/2]})M_{[n/2]} = 0$ for all $M_{[n/2]} \in \mathcal{M}_{[n/2]}$.

Now, we check that h = 0.

Indeed, using assumption (iii) of the theorem and the fact $h(M_0)M_0 = 0$, we have $h(M_0)P_{[n/2]} \in \mathcal{Z}(\mathcal{T})$, and hence

$$h(M_0)P_{[n/2]} = 0. (2.17)$$

For any $M \in \mathcal{M}_{[n/2]}$, by Eq. (2.21), we have

$$0 = h(M + M_0)(M + M_0) = h(M)M_0.$$

By the assumption (iii) again, we get

$$h(M)P_{[n/2]}=0$$

for all $M \in \mathcal{M}_{[n/2]}$.

Similarly, we can obtain $h(M)Q_{[n/2]} = 0$ for all $M \in \mathcal{M}_{[n/2]}$. Hence h = 0.

As an application of Theorem 2.1 and Theorem 2.2, we consider the triangular ring case.

Let \mathcal{A} and \mathcal{B} be two unital rings, and let \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$ -bimodule, which is faithful as a left \mathcal{A} -module and also as a right \mathcal{B} -module; that is, for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$, $A\mathcal{M} = \mathcal{M}B = \{0\}$ imply A = 0 and B = 0. The set

$$\mathcal{U} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B}) = \left\{ \begin{pmatrix} A & M \\ 0 & B \end{pmatrix} : A \in \mathcal{A}, M \in \mathcal{M}, B \in \mathcal{B} \right\}$$

under the usual matrix addition and formal matrix multiplication is called a triangular ring. Clearly, \mathcal{U} is unital with unit $I = \begin{pmatrix} I_{\mathcal{A}} & 0 \\ 0 & I_{\mathcal{B}} \end{pmatrix}$. We denote the non-trivial idempotent (I + 0)

$$P = \begin{pmatrix} I_A & 0\\ 0 & 0 \end{pmatrix} \text{ and } Q = I - P$$

It is obvious that triangular rings are triangular 2-matrix rings. So we have the following corollaries.

COROLLARY 2.3. Let $\mathcal{U} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular ring. Assume that $\mathcal{Z}(\mathcal{U})P = \mathcal{Z}(P\mathcal{U}P)$ and $\mathcal{Z}(\mathcal{U})Q = \mathcal{Z}(Q\mathcal{U}Q)$. Then a nonadditive map $\varphi: \mathcal{U} \to \mathcal{U}$ is commuting if and only if $\varphi(X) = ZX + f(X) + h(PXQ)$ for all $X \in \mathcal{U}$, where $Z \in \mathcal{Z}(\mathcal{U})$, $f: \mathcal{U} \to \mathcal{Z}(\mathcal{U})$ is a map and $h: \mathcal{M} \to \mathcal{Z}(\mathcal{U})$ is an additive mapping satisfying h(M)M = 0 for all $M \in \mathcal{M}$.

COROLLARY 2.4. Let $\mathcal{U} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular ring. Assume that $\mathcal{Z}(\mathcal{U})P$ = $\mathcal{Z}(P\mathcal{U}P)$, $\mathcal{Z}(\mathcal{U})Q = \mathcal{Z}(Q\mathcal{U}Q)$ and there exists some element $M_0 \in \mathcal{M}$ such that $\mathcal{Z}(\mathcal{U}) = \{A + B : A \in \mathcal{Z}(\mathcal{A}), B \in \mathcal{Z}(\mathcal{B}), AM_0 = M_0B\}$. Then a nonadditive map $\varphi : \mathcal{U} \to \mathcal{U}$ is commuting if and only if $\varphi(X) = ZX + f(X)$ for all $X \in \mathcal{U}$, where $Z \in \mathcal{Z}(\mathcal{U})$ and $f : \mathcal{U} \to \mathcal{Z}(\mathcal{U})$ is a map.

Acknowledgement. This work is supported by the National Natural Science Foundation of China (No. 12071134) and Natural Science Foundation of Shaanxi Province (No. 2021JM-119).

L. LIU AND Z. CHEN

REFERENCES

- J. BOUNDS, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132–136.
- [2] M. BREŠAR, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), 361-397.
- [3] H. CHEN, X. QI, Multiplicative Lie derivations on triangular n-matrix rings, Linear Multilinear Algebra 70 (2022), 1230–1251.
- [4] W. CHEUNG, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117–127.
- [5] W. CHOOI, Y. TAN, A note on commuting additive maps on rank k symmetric matrices, Electron. J. Linear Algebra 37 (2021), 734–746.
- [6] W. CHOOI, K. KWA, L. TAN, Commuting maps on rank k triangular matrices, Linear Multilinear Algebra 68 (2020), 1021–1030.
- [7] B. FERREIRA, Multiplicative maps on triangular n-matrix rings, Int. J. Math. Game Theory Algebra 23 (2014), 1–14.
- [8] W. FRANCA, Commuting maps on rank-k matrices, Linear Algebra Appl. 438 (2013), 2813–2815.
- [9] X. QI, L. FENG, Nonadditive commuting maps of unital rings with idempotents, Rocky Mountain J. Math. 51 (2021), 989–1000.
- [10] X. TANG, Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras, Comm. Algebra 45 (2017), 5252–5261.
- [11] Z. XIAO, F. WEI, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), 2178–2197.

(Received November 21, 2022)

Lei Liu School of Mathematics and Statistics Xidian University Xi'an 710126, P. R. China e-mail: leiliu@mail.xidian.edu.cn

Zhixuan Chen School of Mathematics and Statistics Xidian University Xi'an 710126, P. R. China

Operators and Matrices www.ele-math.com oam@ele-math.com