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SOME INEQUALITIES FOR EIGENVALUES

AND POSITIVE LINEAR MAPS

RAVINDER KUMAR AND VIDHI BHATIA ∗

(Communicated by F. Kittaneh)

Abstract. In this paper, we demonstrate some inequalities for positive linear maps on matrices.
Moreover, we discuss lower bounds for the spread of nonnegative matrices which provides im-
provement over the existing bounds.

1. Introduction

Let Mn denote the algebra of all n×n complex matrices. Let A∈Mn . We denote
tr(A) and σ (A) by the trace of A and the set of all eigenvalues in this paper. Let
A ∈ Mn , (n � 3) , and let λ1(A),λ2(A), . . . ,λn(A) be the eigenvalues of A . The spread
of A denoted spd (A) , is defined by spd (A) = maxi, j

∣∣λi(A)−λ j(A)
∣∣ . This quantity

first was introduced by Mirsky [14]. In literature, inequalities for spreads have been
studied by several authors; see [1, 12, 14, 15, 17]. A linear map Φ : Mn −→Mk is called
positive if Φ(A) is positive semidefinite (Φ(A) � O) whenever A � O , and strictly
positive if Φ(A) > O is positive whenever A > O . It is called unital if Φ(In) = Ik .
We use the symbol ϕ for a linear functional from Mn into C . Inequalities involving
positive linear maps, and spreads have been obtained by many authors in literature;
see [2, 3, 4, 5, 6, 10, 11, 18, 19]. For example, Kadison [10] proved that if A is any
Hermitian element of Mn , then

Φ(A2) � (Φ(A))2 . (1)

An inequality complementary to (1) was obtained by Bhatia and Davis [2]. They
proved that if the eigenvalues of a Hermitian matrix A are contained in the interval
[λmin (A) , λmax (A)] , then

Φ(A2)− (Φ(A))2 � 1
4

(spd (A))2 I, (2)

for every unital positive linear map. Moreover, they also proved that if A > 0, then

Φ(A−1) � (λmin (A)+ λmax (A))2

4λmin (A)λmax (A)
(Φ(A))−1 . (3)

Mathematics subject classification (2020): 15A42, 15A45.
Keywords and phrases: Trace, eigenvalues, positive linear maps, nonnegative matrices.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-17-66

1011

http://dx.doi.org/10.7153/oam-2023-17-66


1012 R. KUMAR AND V. BHATIA

In [19], Sharma et al. proved that if A is any Hermitian element of Mn , then

ϕ(B4) � 1
12

(spd (A))4 , (4)

where ϕ is any unital positive linear functional and B = A−ϕ(A)I .
Wolkowicz and Styan [20] proved that if A ∈ Mn has real eigenvalues contained

in the interval [λmin (A) , λmax (A)] , then

λmin (A) � tr(A)
n

− 1√
n−1

√
tr
(
A2
)

n
−
(

tr(A)
n

)2
(5)

and

λmax (A) � tr(A)
n

+
1√

n−1

√
tr
(
A2
)

n
−
(

tr(A)
n

)2

. (6)

The inequalities (5) and (6) were sharpened by Sharma et al. [19]; that is,

λmin (A) � tr(A)
n

−
(

n2−3n+3
n3(n−1)3

) 1
4 tr

(
B2
)

(tr(B4))
1
4

(7)

and

λmax (A) � tr(A)
n

+
(

n2−3n+3
n3(n−1)3

) 1
4 tr

(
B2
)

(tr(B4))
1
4

, (8)

where B = A− tr(A)
n I .

In Section 2 we discuss some inequalities involving eigenvalues and unital posi-
tive linear maps; see Theorems 1–6 and Corollaries 1–2. In Section 3 we present lower
bounds for the spread of nonnegative matrices; see Theorem 7, Corollary 3, Remark 3
and Theorem 8.

2. Inequalities involving eigenvalues and positive linear maps

We begin with the following proposition of [3].

PROPOSITION 1. Let P, Q be strictly positive matrices. Then the block matrix[
P X
X∗ Q

]
is positive if and only if P � XQ−1X∗ .

THEOREM 1. Let Φ : Mn −→ Mk be an unital positive linear map. Let A be any
normal element of Mn . Then

Φ((A∗A)r) � Φ
((

A+A∗
2

)2r
)

�
(

Φ
((

A+A∗
2

)r))2
, (9)
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holds for all positive integers r . Furthermore, if A ∈ Mn is any nonsingular normal
matrix, then

Φ
((

A+A∗
2

)2s
)

� Φ((A∗A)s) , (10)

holds for all negative integers s.

Proof. By the spectral theorem of normal matrices, we have

A = ∑n
k=1 λk(A)Pk, A∗ = ∑n

k=1 λk(A)Pk, A∗A = ∑n
k=1 |λk(A)|2Pk,

where λk(A) are the eigenvalues of A and Pk are the corresponding orthogonal projec-
tions with ∑n

k=1 Pk = I . Therefore, using unital positive linear maps we have

Φ((A∗A)r) = ∑n
k=1 |λk(A)|2rΦ(Pk), Φ

((
A+A∗

2

)r)
= ∑n

k=1

(
λk(A)+λk(A)

2

)r
Φ(Pk),

where r is any positive integer, and

∑n
k=1 Φ(Pk) = Ik.

For a normal matrix A , the eigenvalues of A+A∗
2 are the real parts of the eigenvalues

of A . Therefore, for all positive integers r ; |λk(A)|2r � (ℜλk(A))2r . Now multiplying
this inequality by orthogonal projection Pk and summing the resulting inequality for
k = 1,2, . . . ,n , and then applying unital positive linear map Φ , we have

n

∑
k=1

|λk(A)|2rΦ(Pk) �
n

∑
k=1

(
λk(A)+ λk(A)

2

)2r

Φ(Pk),

which gives the left-hand side inequality of (9). The right-hand side inequality in (9)
follows immediately using (1) because A+A∗

2 is Hermitian. Equality holds in the left-
hand side of (9) when A is Hermitian.

To prove (10), we will use the same arguments that we used above. We have

n

∑
k=1

(
λk(A)+ λk(A)

2

)2s

Φ(Pk) �
n

∑
k=1

|λk(A)|2sΦ(Pk),

holds for any negative integer s , and hence the inequality (10). �

REMARK 1. If in Theorem 1 we choose r = 1 and A is any Hermitian element of
Mn , then (9) is equivalent to (1).

THEOREM 2. Let Φ : Mn −→ Mk be an unital positive linear map. Let A and
B be Hermitian matrices such that AB = BA. Then

Φ
(

Am+Bm

2

)
�
(

Φ(AB)
m
4

)2
, (11)

where m is any positive even integer.
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Proof. We will prove (11) using the tensor product of matrices. Since matrices A
and B are commuting and Hermitian, therefore by the spectral theorem of Hermitian
matrices, we have

A =
n

∑
k=1

λk(A)Pk, B =
n

∑
k=1

μk(A)Pk,

where λk(A) and μk(B) are the eigenvalues of A and B , respectively, and Pk are the
corresponding orthogonal projections for both the commuting Hermitian matrices A
and B . Also using unital positive linear maps, we have⎡

⎣Φ
(

Am+Bm

2

)
Φ
(
(AB)

m
4

)
Φ
(
(AB)

m
4

)
I

⎤
⎦

= ∑n
k=1

[
(λk(A))m+(μk(A))m

2 (λk(A)μk(A))
m
4

(λk(A)μk(A))
m
4 1

]
⊗Φ(Pk).

(12)

Now for any even integer m , each summand in (12) is positive and, so is the sum on
right-hand side. Finally, apply Proposition 1 to the left-hand side of (12) to obtain
(11). �

THEOREM 3. Let ϕ be a strictly positive unital linear functional, and let A be a
positive definite matrix with λmin (A) I � A � λmax (A) I . Then

ϕ(A2)(ϕ(A))−2 � (λmin (A)+ λmax (A))2

4λmin (A)λmax (A)
. (13)

Proof. The matrices A−λmin (A) I and λmax (A) I −A are positive and commute
with each other. So, (A−λmin (A) I)(λmax (A) I−A) � O . This gives

A2 � (λmin (A)+ λmax (A))A−λmin (A)λmax (A) I,

and hence

ϕ(A2) � (λmin (A)+ λmax (A))ϕ(A)−λmin (A)λmax (A) .

Since, ϕ(A) > 0, therefore above inequality implies that

ϕ(A2)(ϕ(A))−2 � (λmin (A)+ λmax (A)) (ϕ(A))−1−λmin (A)λmax (A)(ϕ(A))−2 .
(14)

The right-hand side expression of (14) achieves its maximum in the interval 0 < λmin (A)
� ϕ(A) � λmax (A) at ϕ(A) = 2λmin(A)λmax(A)

λmin(A)+λmax(A) , and hence (13) follows from (14). �

THEOREM 4. Let ϕ be a strictly unital positive linear functional defined on Mn ,
and let A ∈ Mn be a Hermitian matrix with λmin (A) I � A � λmax (A) I . Then

λmin (A) � ϕ(A)−
√

ϕ(A2)− (ϕ(A))2 for γ < 0 (15)
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and

λmax (A) � ϕ(A)+
√

ϕ(A2)− (ϕ(A))2 for γ > 0, (16)

where γ = ϕ
(
(A−ϕ (A) I)3

)
.

Proof. We can write (2.20) of the paper [16] in the following equivalent form:

aϕ(P3)+

(
aϕ(P)−ϕ(P2)

)2
ϕ(P)−a

� ϕ(P3) � bϕ(P2)−
(
bϕ(P)−ϕ(P2)

)2
b−ϕ(P)

, (17)

where ϕ is any unital positive linear functional defined on Mn , and P ∈ Mn is a Her-
mitian matrix whose spectrum lies in the interval [a,b] ; since ϕ(Pr) = μ ′

r for every
positive integer r . Now, for a positive definite matrix P , a simple calculation in the
left-hand side inequality of (17) leads to the following inequality

ϕ(P3) �
(
ϕ(P2)

)2
ϕ(P)

+
m
(

ϕ(P2)− (ϕ(P))2
)(

ϕ(P2)−mϕ(P)
)

ϕ(P)(ϕ(P)−m)
. (18)

The second quantity in the right-hand side of (18) is nonnegative, and hence

ϕ(P3) �
(
ϕ(P2)

)2
ϕ(P)

. (19)

Note that A− xI is a positive definite matrix for x < λmin (A) . Therefore, we can use
(19) for a positive definite matrix P = A− xI , we get

ϕ
(
(A− xI)3

)
ϕ ((A− xI)2)

�
ϕ
(
(A− xI)2

)
ϕ(A− xI)

. (20)

Since λmin (A) I � A � λmax (A) I , therefore

λmin (A) � ϕ(A) � λmax (A) . (21)

By combining (2) and (21), we obtain that

3λmin (A)−λmax (A)
2

� ϕ(A)−
√

ϕ(A2)− (ϕ(A))2 � λmax (A) . (22)

Also, since spd(A) = λmax (A)−λmin (A) is always nonnegative, therefore we can write

λmin (A) � 3λmin (A)−λmax (A)
2

. (23)

From (22) and (23), we conclude that ϕ(A)−
√

ϕ(A2)− (ϕ(A))2 = x (say) lies in the

interval I = I1∪I2 , where I1 =
[

3λmin(A)−λmax(A)
2 , λmin (A)

)
and I2 = [λmin (A) , λmax (A)] .
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We need to prove if γ < 0, then

λmin (A) � x. (24)

If x ∈ I2 then (24) is trivially true without any condition on γ . For x ∈ I1 , we argue
contra positively, that is, if x < λmin (A) then γ � 0. Let x ∈ I1 , that is,

3λmin (A)−λmax (A)
2

� x = ϕ(A)−
√

ϕ(A2)− (ϕ(A))2 < λmin (A) .

By substituting x = ϕ(A)−
√

ϕ(A2)− (ϕ(A))2 < λmin (A) in (20), a simple calculation
leads to √

ϕ(A2)− (ϕ(A))2
[
ϕ(A3)−3ϕ(A)ϕ(A2)+2(ϕ(A))3

]
� 0. (25)

It follows from (25) that γ = ϕ(A3)−3ϕ(A)ϕ(A2)+2(ϕ(A))3 = ϕ
(
(A−ϕ (A) I)3

)
�

0; because ϕ(A2)− (ϕ(A))2 is always nonnegative. This completes the proof of (15).
The inequality (16) follows immediately, on applying (15) to the matrix −A . �

Now we present improvement in (5) and (6) under the conditions of the following
result.

COROLLARY 1. Let A∈Mn be a Hermitian matrix with λmin (A) I � A � λmax (A) I .

Let ϕ be an unital positive linear functional defined on Mn by ϕ(A) = tr(A)
n . Then

λmin (A) � tr(A)
n

−
√

tr
(
A2
)

n
−
(

tr(A)
n

)2

for γ < 0

and

λmax (A) � tr(A)
n

+

√
tr
(
A2
)

n
−
(

tr(A)
n

)2

for γ > 0,

where γ = 1
n

(
tr
(
A− tr(A)

n I
)3
)

.

Proof. The proof follows by choosing ϕ(A) =
tr(A)

n
in Theorem 4. �

THEOREM 5. Let A ∈ Mn and B ∈ Mn be commuting positive definite matrices,
and let λi(A) and μi(B) be the eigenvalues of A and B respectively. Let Φ : Mn −→
Mk be an unital positive linear map. Then

μmin(B)Φ(A) � Φ(AB) � μmax(B)Φ(A) (26)

and
λmin(A)Φ(B) � Φ(AB) � λmax(A)Φ(B). (27)
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Proof. Since the eigenvalues of positive definite matrices are positive, therefore
without loss of generality we assume that

λmin(A) � λi(A) � λmax(A) (28)

and
μmin(B) � μi(B) � μmax(B), (29)

for all i = 1,2, . . . ,n . From (28) and (29), we find that

μmin(B)λi(A) � λi(A)μi(B) � μmax(B)λi(A),

and therefore

μmin(B)∑n
i=1 λi(A)Φ(Pi) � ∑n

i=1 λi(A)μi(B)Φ(Pi) � μmax(B)λi(A)Φ(Pi). (30)

The inequality (26) now follows immediately from (30). Likewise, (27) holds on using
similar arguments. �

COROLLARY 2. Let ϕ be any strictly positive unital linear functional defined on
Mn , and let A be a positive definite matrix with λmin (A) I � A � λmax (A) I . Then for
k ∈ N , we have

(λmin (A))k � ϕ(Ak+1)
ϕ(A)

� (λmax (A))k . (31)

Proof. The inequality (31) follows on choosing B = Ak in (26). �

THEOREM 6. Let ϕ be any strictly unital positive linear functional defined on
Mn , and Let A ∈ Mn be a Hermitian matrix with λmin (A) I � A � λmax (A) I . Then

(spd (A))2 � 3

(
ϕ(A2)−ϕ(A)2 +

(γ
2

) 2
3
)

, (32)

where γ = ϕ
(
(A−ϕ (A) I)3

)
.

Proof. Let B = A−λmin (A) I . Then B is positive semidefinite matrix whose spec-
trum is lies in [0,λmax (A)−λmin (A)] . Applying the Corollary 2 to the matrix B , and
choosing k = 2, we have

(spd (A))2 �
ϕ
(
(A−λmin (A) I)3

)
ϕ(A−λmin (A) I)

=
−(λmin (A))3 +3(λmin (A))2 ϕ(A)−3λmin (A)ϕ(A2)+ ϕ(A3)

ϕ(A)−λmin (A)
. (33)

A simple calculation in (33) leads to

(spd (A))2 � y2 + μ + γ
y , (34)
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where μ = 3
(

ϕ(A2)− (ϕ(A))2
)

and y = ϕ(A)− λmin (A) . Now (32) follows from

(34), since the function attains its minimum at y =
( γ

2

) 1
3 only when γ > 0. Similarly,

for matrix λmax (A) I−A we get the same result when γ < 0. �

We now present an example which shows the effectiveness of Theorem 3, Theorem
4 and Theorem 6.

EXAMPLE 1. Let

A =

⎡
⎣ 0.3 0.02 0.015

0.02 0.1 0.04
0.015 0.04 0.6

⎤
⎦ and B =

⎡
⎢⎢⎣

4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎤
⎥⎥⎦ .

From (3), we find
(λmin (A)+ λmax (A))2

4λmin (A)λmax (A)
� 1.0402 while Theorem 3 provides bet-

ter estimate
(λmin (A)+ λmax (A))2

4λmin (A)λmax (A)
� 1.2 for the choice of an unital linear functional

ϕ(A) = a22 .
By (7) and (8) we respectively have λmin(B) � 3.7414 and λmax(B) � 7.2586.

From Theorem 4, λmin(B) � 2.6277 for ϕ(B) =
tr(B)

n
; and λmax(B) � 7.6955 for

ϕ(B) = b11 . Likewise using (2) and (4); spd (B) � 7.211 and spd (B) � 7.579 while
our Theorem 6 gives better estimate spd (B) � 7.6955 for ϕ(B) = b11 .

3. Inequalities for nonnegative matrices

We say M = [mi j] ∈ Mm×n is nonnegative if all mi j � 0. Denote M+
n by the

collection of all n×n nonnegative matrices. Define

ρ(M) = max{|λ (M)| : λ (M) ∈ σ(M)} ,

to be the spectral radius of M . For a nonnegative matrix ρ(M) is an eigenvalue of M
called Perron eigenvalue of M and the corresponding nonnegative eigenvector is known
as Perron eigenvector. For strictly positive matrix, Perron eigenvalue is simple eigen-
value that is strictly larger than the modulus of any other eigenvalue and corresponding
Perron eigenvector has positive components, see [9].

Notice that the spread of a nilpotent matrix is zero; and spd (cM) = |c| spd (M) for
every complex number c . Therefore, to study the spread of a matrix one can assume,
without loss of generality, that ρ(M) = 1. In the present context, Drnovšek [7] proved
that if M ∈ M

+
n with one zero diagonal element and spectral radius ρ(M) = 1 then for

n � 6,

spd (M) >
2

4+
√

2(n+3)
. (35)
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In 2021, Drnovšek [8] proved that if M ∈ Mn then for n � 2,

spd (M) >
2

2+
√

2n
(ρ(M)−m), (36)

where m = min1�i�n mii .
In this section, we present improvement of (35) and (36).
We begin with the following proposition of [7].

PROPOSITION 2. Let M ∈ M+
n with k zero diagonal elements. Then for all posi-

tive integers t
st1 � (n− k)t−1st , (37)

where st = tr (Mt) .

We now present a lower bound for the spread of a nonnegative matrix in terms of
order of matrix n with k zero diagonal elements.

THEOREM 7. Let M ∈ M
+
n with k zero diagonal elements, and let ρ(M) = 1 .

Then
spd (M) � 2

(n−1)
(

2
n +
√

4
n2 + 2

k(n−1)

) . (38)

Proof. Let λ1(M) = ρ(M),λ2(M), . . . ,λn(M) be the eigenvalues of M . Since
ρ(M) = 1, and the matrix M with k zero diagonal elements, therefore spd (M) 	= 0.
When spd (M) � 1 then result is obvious, thus here we suppose that spd (M) < 1
hence, ℜλi(M) � 0. Applying Proposition 2 by taking t = 2 in (37), we see that

(
n

∑
i=1

λi(M)

)2

= s2
1 � (n− k)s2 = (n− k)

n

∑
i=1

λ 2
i (M).

This inequality can be rewritten as

k∑n
i=1 λ 2

i (M) � ∑n−1
i=1 ∑n

j=i+1

(
λi(M)−λ j(M)

)2 � n(n−1)
2

(spd (M))2 . (39)

Also, one can easily observe that

ℜ
(
1−λ 2

i (M)
)

� |1−λ 2
i (M)| = |ρ2(M)−λ 2

i (M)| � spd
(
M2
)

(40)

and

spd
(
M2)= max

i, j
|λ 2

i (M)−λ 2
j (M)| = max

i, j
(|λi(M)−λ j(M)||λi(M)+ λ j(M)|),

which gives

spd
(
M2
)

= maxi, j |λ 2
i (M)−λ 2

j (M)| � 2 spd (M) . (41)
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Now, we write

tr
(
M2
)

= ∑n
i=1 λ 2

i (M) = ∑n
i=1 ℜλ 2

i (M) = 1+ ∑n
i=2 ℜλ 2

i (M). (42)

By combining (40), (41) and (42), a little calculation leads to

∑n
i=1 λ 2

i (M) � 1+(n−1)(1−2 spd (M)) . (43)

By using (39) and (43), we have

k [1+(n−1)(1−2 spd (M))] � n(n−1)
2

(spd (M))2 ,

which leads to the inequality

n
(
n−1

)(
spd (M)

)2 +4k
(
n−1

)
spd (M)−2nk � 0. (44)

The inequality (38) now follows immediately from (44). �

REMARK 2. By using (39) one can easily observe that for any M ∈ M+
n with k

zero diagonal elements,

spd (M) �

√
2k tr

(
M2
)

n(n−1)
.

COROLLARY 3. Let M = [mi j] ∈ M+
n , m = min1�i�n mii and ρ(M) > m. Then

spd (M) � 2

(n−1)
(

2
n +
√

4
n2 + 2

n−1

) (ρ(M)−m). (45)

Proof. Let λi(M) be an eigenvalues of M . Then, one can easily observe that

maxi |λi(M)−m| � |ρ(M)−m|= ρ(M)−m,

which implies that
ρ(M−mI) � ρ(M)−m. (46)

By setting N =
M−mI

ρ(M−mI)
∈ M+

n , one can see that N has at least one zero diagonal

element, and ρ(N) = 1. Therefore, using Theorem 7 for the matrix N , we have

spd (M) � 2

(n−1)
(

2
n +
√

4
n2 + 2

n−1

)ρ(M−mI), (47)

since

spd (N) =
spd (M−mI)

ρ(M−mI)
=

spd (M)
ρ(M−mI)

.

The inequality (45) now follows on combining (46) and (47). �
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REMARK 3. If we choose at least k diagonal elements of the matrix N are zero
in the proof of Corollary 3, then one can easily obtain the following inequality:

spd (M) � 2

(n−1)
(

2
n +
√

4
n2 + 2

k(n−1)

) (ρ(M)−m). (48)

It is also notice here that for k � 2 the inequality (48) improves over (36), while for
k = 1, the inequalities (36) and (45) are independent of each other. For k = 1 and
ρ(M) = 1 the inequality (38) improves over (35).

THEOREM 8. Let A = [ai j] ∈ M+
n be a strictly positive matrix with Perron eigen-

value λ (A) and corresponding Perron eigenvector x = {xi} > 0 , and let μ(A) be any
eigenvalue of A other than λ (A) . Then

|μ(A)| � λ (A)− xm
xM

∑n
j=1 mj(A), (49)

where mj(A) = mini
{
ai j
}

, xm = mini {xi} , xM = maxi {xi} .

Proof. In [13], Lynn and Timlake have proved that:

|μ(A)| � λ (A)−∑n
j=1

(
mini

ai j
xi

)
x j, (50)

where μ(A) is any eigenvalue of A ∈ M+
n other than λ (A) . Also, one can see that

mini
ai j
xi

� mj(A)
xM

. (51)

By combining (50) and (51) we get (49). �

REMARK 4. In particular, for strictly positive (row) stochastic matrix B , that is,
all its row sum is unity, we have

|μ(B)| � 1−∑n
j=1 mj(B).

Acknowledgements. The authors would like to thank anonymous referee for many
helpful and constructive suggestions to an earlier version of this paper, which results
in a significant improvement. The first author is supported in part by the Empow-
erment and Equity Opportunities for Excellence in Science (EEQ/2019/000593), by
SERB (DST), Government of India. The research of second author is supported by the
National Institute of Technology, Jalandhar, India.



1022 R. KUMAR AND V. BHATIA

RE F ER EN C ES

[1] E. R. BARNES AND A. J. HOFFMAN, Bounds for the spectrum of normal matrices, Linear Algebra
Appl. 201 (1994), 79–90.

[2] R. BHATIA AND C. DAVIS, A better bound on the variance, Amer. Math. Monthly 107 (2000), 353–
357.

[3] R. BHATIA, Positive Definite Matrices, Princeton University Press, USA, 2007.
[4] R. BHATIA AND R. SHARMA, Some inequalities for positive linear maps, Linear Algebra Appl. 436

(2012), 1562–1571.
[5] R. BHATIA AND R. SHARMA, Positive linear maps and spreads of matrices, Amer. Math. Monthly

121 (2014), 619–624.
[6] R. BHATIA AND R. SHARMA, Positive linear maps and spreads of matrices II, Linear Algebra Appl.

491 (2016), 30–40.
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