COMMUTING MAPS ON STRICTLY UPPER TRIANGULAR MATRIX RINGS

Shu-Wen Ko and Cheng-Kai Liu*

(Communicated by E. Poon)

Abstract

Let R be either a ring with 1 or a semiprime ring not necessarily with 1 and let $N_{n}(R)$ be the $n \times n$ strictly upper triangular matrix ring over R, where $n \geqslant 3$ is an integer. We completely characterize additive maps $f: N_{n}(R) \rightarrow N_{n}(R)$ satisfying $[f(x), x]=0$ for all $x \in N_{n}(R)$. Our theorem naturally generalizes a recent result obtained by Bounds [3] for strictly upper triangular matrix rings over a field of characteristic 0 .

1. Introduction and results

Throughout here, R denotes an associative ring with center $Z(R) . R$ is called prime if for any $a, b \in R, a R b=0$ implies $a=0$ or $b=0$ and R is called semiprime if for any $a \in R, a R a=0$ implies $a=0$. For $a, b \in R$, we let $[a, b]=a b-b a$ be the commutator of a and b. A map $f: R \rightarrow R$ is called additive if $f(x+y)=f(x)+f(y)$ for all $x, y \in R$. A map $f: R \rightarrow R$ is said to be commuting if $[f(x), x]=0$ for all $x \in R$. The usual goal when treating a commuting map is to describe its form. The study of additive commuting maps was initiated by Divinsky and Posner. In 1955 Divinsky [12] proved that if a simple artinian ring R admits a commuting automorphism σ, then either R is commutative or σ is the identity map. On the other hand, in 1957 Posner [22] proved that if a prime ring R admits a commuting derivation d, then either R is commutative or $d=0$. In 1993 Brešar [4] extended above two results to general additive maps and proved that if R is a prime ring with the extended centroid C and $f: R \rightarrow R$ is an additive commuting map, then f must be of the form $f(x)=\lambda x+\mu(x)$ for all $x \in R$, where $\lambda \in C$ and $\mu: R \rightarrow C$ is an additive map. This influential result has been extended to semiprime rings, superalgebras, von Neumann algebras, C^{*}-algebras, Lie algebras and matrix algebras etc. We refer the reader to the book [5] for the development of the theory of commuting maps. Recently, additive commuting maps on subrings or subsets of matrix rings have been widely investigated in the literature (see [7]-[11], [13]-[21], [23]-[28] for instance). In 2000 Beidar, Brešar and Chebotar [1] proved that if $T_{n}(F)$ is the ring of all $n \times n$ upper triangular matrices over a field F and $f: T_{n}(F) \rightarrow T_{n}(F)$ is a linear commuting map, where $n \geqslant 2$ is an integer, then f is of

[^0]the form $f(x)=\lambda x+\mu(x)$ for all $x \in T_{n}(F)$, where $\lambda \in F$ and $\mu: T_{n}(F) \rightarrow Z\left(T_{n}(F)\right)$ is a linear map. This result was later extended to linear commuting maps on the ring of all upper triangular matrices over a commutative ring with 1 by Cheung in [6] and extended to additive commuting maps on the ring of all upper triangular matrices over an arbitrary ring with 1 by Eremita in [13]. In 2016 Bounds [3] successfully characterized linear commuting maps on the ring of all strictly upper triangular matrices over a field of characteristic 0 . As usual, let R be a ring with 1 , let $M_{n}(R)$ be the ring of all $n \times n$ matrices over R and let $\left\{e_{i, j} \mid 1 \leqslant i, j \leqslant n\right\}$ be the set of matrix units in $M_{n}(R)$. Precisely, Bounds proved the following:

THEOREM JB. ([3]) Let $n \geqslant 4$ be an integer and let $N_{n}(F)$ be the ring of all $n \times n$ strictly upper triangular matrices over a field F of characteristic 0 . Suppose that $f: N_{n}(F) \rightarrow N_{n}(F)$ is a linear map such that $[f(x), x]=0$ for all $x \in N_{n}(F)$. Then there exist $\lambda \in F$ and a linear map $\mu: N_{n}(F) \rightarrow \Omega$ such that $f(x)=\lambda x+\mu(x)$ for all $x \in N_{n}(F)$, where $\Omega=\left\{\alpha e_{1, n-1}+\beta e_{1, n}+\gamma e_{2, n}: \alpha, \beta, \gamma \in F\right\}$.

The proof of Theorem JB depends heavily on the well-known fact about the centralizers of a nonderogatory matrix over a field F of characteristic 0 . Up to now, it is still an open problem whether Theorem JB holds true for any field F of positive characteristic $p \geqslant 2$.

Problem 1. Let $n \geqslant 4$ be an integer and let F be a field of characteristic $p \geqslant 2$. Assume that $f: N_{n}(F) \rightarrow N_{n}(F)$ is a linear commuting map. Can we describe the form of f ?

The goal of this paper is to give an affirmative answer to Problem 1. Moreover, we extend Theorem JB to strictly upper triangular matrix rings over an arbitrary ring R with 1. Precisely, we prove the following:

THEOREM 1.1. Let R be a ring with 1 and with center $Z(R)$. Let $N_{n}(R)$ be the ring of all $n \times n$ strictly upper triangular matrices over R with center \mathcal{Z}, where $n \geqslant 3$ is an integer. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map. Then $[f(x), x]=0$ for all $x \in N_{n}(R)$ if and only if there exist $\lambda \in Z(R)$, an additive map $\mu: N_{n}(R) \rightarrow \mathcal{Z}$, and an additive map $v: N_{n}(R) \rightarrow \Omega$ such that $f(x)=\lambda x+\mu(x)+v(x)$ for all $x \in N_{n}(R)$, where $\Omega=\left\{\alpha e_{1, n-1}+\beta e_{2, n}: \alpha, \beta \in R\right\}$ and v is defined by some $a \in R$ such that

In case R is a semiprime ring not necessarily with 1 , we prove the following:
THEOREM 1.2. Let R be a semiprime ring with the multiplier ring $M(R)$ and with the centroid $C(R)$. Let $N_{n}(R)$ be the ring of all $n \times n$ strictly upper triangular matrices over R with center \mathcal{Z}, where $n \geqslant 3$ is an integer. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map. Then $[f(x), x]=0$ for all $x \in N_{n}(R)$ if and only if there exist $\lambda \in C(R)$, an additive map $\mu: N_{n}(R) \rightarrow \mathcal{Z}$, and an additive map $v: N_{n}(R) \rightarrow \Omega$ such that $f(x)=\lambda x+\mu(x)+v(x)$ for all $x \in N_{n}(R)$, where $\Omega=\left\{\alpha e_{1, n-1}+\beta e_{2, n}: \alpha, \beta \in R\right\}$ and v is defined by some $a \in M(R)$ such that $v(x)=e_{1,1} x a e_{2, n-1}+e_{2, n-1}$ axe $e_{n, n}$ for all $x \in N_{n}(R)$.

2. Preliminaries

The following lemma is essential to our proof.
LEMMA 2.1. Let R be either a ring with 1 or a semiprime ring and let $Z(R)$ be the center of R. Suppose that $g: R \rightarrow R$ is an additive map. If $x g(x)=0$ for all $x \in R$, then $g=0$. Similarly, if $g(x) x=0$ for all $x \in R$, then $g=0$.

Proof. By assumption,

$$
\begin{equation*}
x g(x)=0 \tag{2.1}
\end{equation*}
$$

for all $x \in R$. Assume first that $1 \in R$. Setting $x=1$ in (2.1), we have $g(1)=0$. Replacing x with $x+1$ in (2.1) and using $g(1)=0=x g(x)$, we obtain $g(x)=0$ for all $x \in R$, as desired. Assume now that R is semiprime. Replacing x with $x+y$ in (2.1) and using $x g(x)=y g(y)=0$, we obtain

$$
\begin{equation*}
x g(y)+y g(x)=0 \tag{2.2}
\end{equation*}
$$

for all $x, y \in R$. Replacing y with $z y$ in (2.2), we obtain $x g(z y)+z y g(x)=0$ for all $x, y, z \in R$. Multiplying (2.2) by z from the left, we obtain $\operatorname{zxg}(y)+z y g(x)=0$ for all $x, y, z \in R$. The difference of the last two equations yields

$$
\begin{equation*}
x g(z y)-z x g(y)=0 \tag{2.3}
\end{equation*}
$$

for all $x, y, z \in R$. Replacing x with $w x$ in (2.3), we obtain $w x g(z y)-z w x g(y)=0$ for all $x, y, z, w \in R$. Multiplying (2.3) by w from the left, we obtain $w x g(z y)-w z x g(y)=0$ for all $x, y, z, w \in R$. The difference of the last two equations yields $(z w-w z) \operatorname{xg}(y)=0$ for all $x, y, z, w \in R$. Thus $(g(y) w-w g(y)) x(g(y) w-w g(y))=0$ for all $x, y, w \in R$. By semiprimeness of $R, g(y) w-w g(y)=0$ for all $y, w \in R$. This implies that $g(y) \in Z(R)$ for all $y \in R$. Using $g(x) \in Z(R)$ and $0=x g(x)=g(x) x$ for all $x \in R$, by (2.2), we have $0=g(x)(x g(y)+y g(x))=g(x) y g(x)$ for all $x, y \in R$. By semiprimeness of $R, g(x)=0$ for all $x \in R$. This proves the lemma.

Throughout the rest of this section, R denotes either a ring with 1 or a semiprime ring not necessarily with $1, M_{n}(R)$ denotes the ring of all $n \times n$ matrices over $R, N_{n}(R)$ denotes the ring of all $n \times n$ strictly upper triangular matrices over R, where $n \geqslant 3$ is an integer and $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, that is,

$$
\begin{equation*}
f(x) x=x f(x) \tag{2.4}
\end{equation*}
$$

for all $x \in N_{n}(R)$. Replacing x with $x+y$ in (2.4), we obtain

$$
\begin{equation*}
f(x) y-y f(x)=x f(y)-f(y) x \tag{2.5}
\end{equation*}
$$

for all $x, y \in N_{n}(R)$. As usual, we let $\left\{e_{i, j} \mid 1 \leqslant i, j \leqslant n\right\}$ be the set of matrix units in $M_{n}\left(R^{*}\right)$, where $R^{*}=R$ if $1 \in R$ and R^{*} is the ring extension of R adjoint with 1 if $1 \notin R$. Then $N_{n}(R)=\sum_{i, j=1, i<j}^{n} R e_{i, j}$ and the center $Z\left(N_{n}(R)\right)$ of $N_{n}(R)$ coincides with $R e_{1, n}$. For two distinct integers i, j with $1 \leqslant i<j \leqslant n$, we write

$$
f\left(\alpha e_{i, j}\right)=\sum_{s, t=1, s<t}^{n} c_{s, t}^{i, j}(\alpha) e_{s, t}
$$

for all $\alpha \in R$, where each $c_{s, t}^{i, j}: R \rightarrow R$ is an additive map.
LEMMA 2.2. Let i, j be distinct integers such that $1 \leqslant i<j \leqslant n$. Then $c_{\ell, i}^{i, j}=0$ for every integer ℓ with $1 \leqslant \ell<i$ and $c_{j, \ell}^{i, j}=0$ for every integer ℓ with $j<\ell \leqslant n$.

Proof. Setting $x=\alpha e_{i, j}$ in (2.4), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \alpha e_{i, j}=\alpha e_{i, j} f\left(\alpha e_{i, j}\right) \tag{2.6}
\end{equation*}
$$

for all $\alpha \in R$. Let ℓ be an integer such that $1 \leqslant \ell<i$. Multiplying (2.6) by $e_{\ell, \ell}$ from the left and by $e_{j, j}$ from the right, we obtain $e_{\ell, \ell} f\left(\alpha e_{i, j}\right) \alpha e_{i, j}=0$. This implies $c_{\ell, i}^{i, j}(\alpha) \alpha=0$ for all $\alpha \in R$. By Lemma 2.1, $c_{\ell, i}^{i, j}=0$. Let ℓ be an integer such that $j<\ell \leqslant n$. Multiplying (2.6) by $e_{i, i}$ from the left and by $e_{\ell, \ell}$ from the right, we obtain $0=\alpha e_{i, j} f\left(\alpha e_{i, j}\right) e_{\ell, \ell}$. This implies that $\alpha c_{j, \ell}^{i, j}(\alpha)=0$ for all $\alpha \in R$. By Lemma 2.1, $c_{j, \ell}^{i, j}=0$.

LEMMA 2.3. Let $n \geqslant 4$ be an integer and let i, j be distinct integers such that $1 \leqslant i<j \leqslant n-2$. Then $c_{\ell, k}^{i, j}=0$ for every integers ℓ, k with $j<\ell<k \leqslant n$.

Proof. Let ℓ, k be integers with $j<\ell<k \leqslant n$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{j, \ell}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{j, \ell}-\beta e_{j, \ell} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{j, \ell}\right)-f\left(\beta e_{j, \ell}\right) \alpha e_{i, j} \tag{2.7}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (2.7) by $e_{j, j}$ from the left and by $e_{k, k}$ from the right, we obtain $-\beta e_{j, \ell} f\left(\alpha e_{i, j}\right) e_{k, k}=0$. This implies that $\beta c_{\ell, k}^{i, j}(\alpha)=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, k}^{i, j}=0$.

LEMMA 2.4. Let i, j be distinct integers such that $1 \leqslant i<j \leqslant n$. Then $c_{i, \ell}^{i, j}=0$ for every integer ℓ with $i<\ell<j$.

Proof. Let ℓ be an integer such that $i<\ell<j$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{\ell, j}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{\ell, j}-\beta e_{\ell, j} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{\ell, j}\right)-f\left(\beta e_{\ell, j}\right) \alpha e_{i, j} \tag{2.8}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Note that $\alpha e_{i, j} f\left(\beta e_{\ell, j}\right) e_{j, j}=e_{i, i} f\left(\beta e_{\ell, j}\right) \alpha e_{i, j}=0$ as $f\left(\beta e_{\ell, j}\right) \in$ $N_{n}(R)$. Multiplying (2.8) by $e_{i, i}$ from the left and by $e_{j, j}$ from the right, we obtain $e_{i, i} f\left(\alpha e_{i, j}\right) \beta e_{\ell, j}=0$. This implies that $c_{i, \ell}^{i, j}(\alpha) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{i, \ell}^{i, j}=0$.

LEMMA 2.5. Let i, j be distinct integers such that $1 \leqslant i<j \leqslant n$. Then $c_{\ell, k}^{i, j}=0$ for every integers ℓ, k with $i<\ell<j$ and $\ell<k \leqslant n$.

Proof. Let ℓ, k be integers such that $i<\ell<j$ and $\ell<k \leqslant n$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{i, \ell}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{i, \ell}-\beta e_{i, \ell} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{i, \ell}\right)-f\left(\beta e_{i, \ell}\right) \alpha e_{i, j} \tag{2.9}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Note that $e_{i i} f\left(\beta e_{i, \ell}\right) \alpha e_{i, j}=0$ as $f\left(\beta e_{i, \ell}\right) \in N_{n}(R)$. Multiplying (2.9) by $e_{i, i}$ from the left and by $e_{k, k}$ from the right, we obtain

$$
\begin{equation*}
-\beta e_{i, \ell} f\left(\alpha e_{i, j}\right) e_{k k}=\alpha e_{i, j} f\left(\beta e_{i, \ell}\right) e_{k, k} \tag{2.10}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Assume first that $k \leqslant j$. Then $\alpha e_{i, j} f\left(\beta e_{i, \ell}\right) e_{k, k}=0$ as $f\left(\beta e_{i, \ell}\right) \in$ $N_{n}(R)$. With this, by (2.10), we obtain $\beta e_{i, \ell} f\left(\alpha e_{i, j}\right) e_{k, k}=0$. This implies that $\beta c_{\ell, k}^{i, j}(\alpha)$ $=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, k}^{i, j}=0$, as desired. Assume now that $k>j$. In this case, $i<\ell<j<k \leqslant n$. By (2.10), $-\beta c_{\ell, k}^{i, j}(\alpha)=\alpha c_{j, k}^{i, \ell}(\beta)$ for all $\alpha, \beta \in R$. In view of Lemma 2.3, $c_{j, k}^{i, \ell}=0$. So we have $\beta c_{\ell, k}^{i, j}(\alpha)=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, k}^{i, j}=0$, as desired.

LEMMA 2.6. Let $n \geqslant 4$ be an integer and let i, j be distinct integers such that $3 \leqslant i<j \leqslant n$. Then $c_{\ell, k}^{i, j}=0$ for every integers ℓ, k with $1 \leqslant \ell<k<i$.

Proof. Let ℓ, k be integers such that $1 \leqslant \ell<k<i$. Clearly, $1 \leqslant \ell<k<i<j \leqslant n$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{k, i}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{k, i}-\beta e_{k, i} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{k, i}\right)-f\left(\beta e_{k, i}\right) \alpha e_{i, j} \tag{2.11}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (2.11) by $e_{\ell, \ell}$ from the left and by $e_{i, i}$ from the right, we obtain $e_{\ell, \ell} f\left(\alpha e_{i, j}\right) \beta e_{k, i}=0$. This implies that $c_{\ell, k}^{i, j}(\alpha) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, k}^{i, j}=0$.

LEMMA 2.7. Let $n \geqslant 4$ be an integer and let i, j be distinct integers such that $2 \leqslant i<j \leqslant n$. Then $c_{\ell, k}^{i, j}=0$ for every integers ℓ, k with $1 \leqslant \ell<i<k<j$.

Proof. Let ℓ, k be integers such that $1 \leqslant \ell<i<k<j$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{k, j}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{k, j}-\beta e_{k, j} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{k, j}\right)-f\left(\beta e_{k, j}\right) \alpha e_{i, j} \tag{2.12}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (2.12) by $e_{\ell, \ell}$ from the left and by $e_{j, j}$ from the right, we obtain $e_{\ell, \ell} f\left(\alpha e_{i, j}\right) \beta e_{k, j}=-e_{\ell, \ell} f\left(\beta e_{k, j}\right) \alpha e_{i, j}$. This implies that $c_{\ell, k}^{i, j}(\alpha) \beta=-c_{\ell, i}^{k, j}(\beta) \alpha$ for all $\alpha, \beta \in R$. By Lemma 2.6, $c_{\ell, i}^{k, j}=0$ as $\ell<i<k<j$. Thus we have $c_{\ell, k}^{i, j}(\alpha) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, k}^{i, j}=0$.

LEMMA 2.8. Let $n \geqslant 4$ be an integer and let i, j be distinct integers such that $2 \leqslant i<j \leqslant n-1$. Then $c_{\ell, k}^{i, j}=0$ for every integers ℓ, k with $1 \leqslant \ell<i<j \leqslant k \leqslant n-1$.

Proof. Let ℓ, k be integers such that $1 \leqslant \ell<i<j \leqslant k \leqslant n-1$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{k, n}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{k, n}-\beta e_{k, n} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{k, n}\right)-f\left(\beta e_{k, n}\right) \alpha e_{i, j} \tag{2.13}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (2.13) by $e_{\ell, \ell}$ from the left and by $e_{n, n}$ from the right, we obtain $e_{\ell, \ell} f\left(\alpha e_{i, j}\right) \beta e_{k, n}=0$. This implies that $c_{\ell, k}^{i, j}(\alpha) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, k}^{i, j}=0$.

LEMMA 2.9. Let $n \geqslant 4$ be an integer and let i, j be distinct integers such that $2 \leqslant i<j \leqslant n-1$. Then $c_{i, k}^{i, j}=0$ for every integer k with $j<k \leqslant n$.

Proof. Let k be an integer such that $j<k \leqslant n$. Clearly, $2 \leqslant i<j<k \leqslant n$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{1, i}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{1, i}-\beta e_{1, i} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{1, i}\right)-f\left(\beta e_{1, i}\right) \alpha e_{i, j} \tag{2.14}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (2.14) by $e_{1,1}$ from the left and by $e_{k, k}$ from the right, we obtain $-\beta e_{1, i} f\left(\alpha e_{i, j}\right) e_{k, k}=0$. This implies that $\beta c_{i, k}^{i, j}(\alpha)=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{i, k}^{i, j}=0$.

LEMMA 2.10. Let $n \geqslant 5$ be an integer and let i, j be distinct integers such that $3 \leqslant i<j \leqslant n-1$. Then $c_{\ell, n}^{i, j}=0$ for every integer ℓ with $2 \leqslant \ell<i$.

Proof. Let ℓ be an integer such that $2 \leqslant \ell<i$. Clearly, $2 \leqslant \ell<i<j \leqslant n-1$. Setting $x=\alpha e_{i, j}$ and $y=\beta e_{1, \ell}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{1, \ell}-\beta e_{1, \ell} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{1, \ell}\right)-f\left(\beta e_{1, \ell}\right) \alpha e_{i, j} \tag{2.15}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (2.15) by $e_{1,1}$ from the left and by $e_{n, n}$ from the right, we obtain $-\beta e_{1, \ell} f\left(\alpha e_{i, j}\right) e_{n, n}=0$. This implies that $\beta c_{\ell, n}^{i, j}(\alpha)=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, n}^{i, j}=0$.

3. Proof of Theorems $\mathbf{1 . 1}$ and $\mathbf{1 . 2}$

Lemma 3.1. Let R be either a ring with 1 or a semiprime ring. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, where $n \geqslant 4$ is an integer. Then for every distinct integers i, j with $2 \leqslant i<j \leqslant n-1$, there exist additive maps $c_{i, j}^{i, j}, c_{1, n}^{i, j}: R \rightarrow R$ such that $f\left(\alpha e_{i, j}\right)=c_{i, j}^{i, j}(\alpha) e_{i, j}+c_{1, n}^{i, j}(\alpha) e_{1, n}$ for all $\alpha \in R$.

Proof. Let i, j be two distinct integers such that $2 \leqslant i<j \leqslant n-1$. Write $f\left(\alpha e_{i, j}\right)$ $=\sum_{s, t=1, s<t}^{n} c_{s, t}^{i, j}(\alpha) e_{s, t}$ for all $\alpha \in R$, where each $c_{s, t}^{i, j}: R \rightarrow R$ is an additive map. By Lemmas 2.2, 2.4 and 2.9, $c_{s, i}^{i, j}=c_{i, t}^{i, j}=0$ for all integers s, t with $1 \leqslant s<i<t \leqslant n$ and $t \neq j$. Next by Lemmas 2.2, 2.5 and 2.8, $c_{s, j}^{i, j}=c_{j, t}^{i, j}=0$ for all integers s, t with $1 \leqslant s<j<t \leqslant n$ and $s \neq i$. Finally, by Lemmas 2.3, 2.5, 2.6, 2.7, 2.8 and $2.10, c_{s, t}^{i, j}=0$ for all integers s, t with $1 \leqslant s<t \leqslant n, s, t \notin\{i, j\}$ and $(s, t) \neq(1, n)$. With these, we obtain $f\left(\alpha e_{i, j}\right)=c_{i, j}^{i, j}(\alpha) e_{i, j}+c_{1, n}^{i, j}(\alpha) e_{1, n}$ for all $\alpha \in R$, as desired.

Lemma 3.2. Let R be either a ring with 1 or a semiprime ring. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, where $n \geqslant 4$ is an integer. Then the following conditions hold:
(1) There exist additive maps $c_{1, n}^{1, n}, c_{2, n}^{2, n}, c_{1, n}^{2, n}: R \rightarrow R$ such that $f\left(\alpha e_{1, n}\right)=c_{1, n}^{1, n}(\alpha) e_{1, n}$ and $f\left(\alpha e_{2, n}\right)=c_{2, n}^{2, n}(\alpha) e_{2, n}+c_{1, n}^{2, n}(\alpha) e_{1, n}$ for all $\alpha \in R$;
(2) There exist additive maps $c_{n-1, n}^{n-1, n}, c_{2, n}^{n-1, n}, c_{1, n}^{n-1, n}: R \rightarrow R$ such that $f\left(\alpha e_{n-1, n}\right)=$ $c_{n-1, n}^{n-1, n}(\alpha) e_{n-1, n}+c_{2, n}^{n-1, n}(\alpha) e_{2, n}+c_{1, n}^{n-1, n}(\alpha) e_{1, n}$ for all $\alpha \in R$;
(3) If $n \geqslant 5$, then for every integer i with $3 \leqslant i \leqslant n-2$, there exist additive maps $c_{i, n}^{i, n}, c_{1, n}^{i, n}: R \rightarrow R$ such that $f\left(\alpha e_{i, n}\right)=c_{i, n}^{i, n}(\alpha) e_{i, n}+c_{1, n}^{i, n}(\alpha) e_{1, n}$ for all $\alpha \in R$.

Proof. (1) Applying Lemmas 2.4 and 2.5 to $f\left(\alpha e_{1, n}\right)$ and applying Lemmas 2.2, 2.4, 2.5 and 2.7 to $f\left(\alpha e_{2, n}\right)$, we are done.
(2) By Lemmas 2.2 and 2.6, $f\left(\alpha e_{n-1, n}\right)=\sum_{\ell=1}^{n-1} c_{\ell, n}^{n-1, n}(\alpha) e_{\ell, n}$, where each $c_{\ell, n}^{n-1, n}:$ $R \rightarrow R$ is an additive map. If $n=4$, then $n-1=3$ and then

$$
\begin{aligned}
f\left(\alpha e_{n-1, n}\right) & =\sum_{\ell=1}^{n-1} c_{\ell, n}^{n-1, n}(\alpha) e_{\ell, n}=\sum_{\ell=1}^{3} c_{\ell, n}^{n-1, n}(\alpha) e_{\ell, n} \\
& =c_{n-1, n}^{n-1, n}(\alpha) e_{n-1, n}+c_{2, n}^{n-1, n}(\alpha) e_{2, n}+c_{1, n}^{n-1, n}(\alpha) e_{1, n}
\end{aligned}
$$

for all $\alpha \in R$, as desired. So we may assume $n \geqslant 5$. Let ℓ be an integer such that $3 \leqslant \ell \leqslant n-2$. By Lemma 3.1, $f\left(\beta e_{2, \ell}\right)=c_{2, \ell}^{2, \ell}(\beta) e_{2, \ell}+c_{1, n}^{2, \ell}(\beta) e_{1, n}$ for all $\beta \in R$, where $c_{2, \ell}^{2, \ell}, c_{1, n}^{2, \ell}: R \rightarrow R$ are additive maps. Setting $x=\alpha e_{n-1, n}$ and $y=\beta e_{2, \ell}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{n-1, n}\right) \beta e_{2, \ell}-\beta e_{2, \ell} f\left(\alpha e_{n-1, n}\right)=\alpha e_{n-1, n} f\left(\beta e_{2, \ell}\right)-f\left(\beta e_{2, \ell}\right) \alpha e_{n-1, n} \tag{3.1}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Note that $\alpha e_{n-1, n} f\left(\beta e_{2, \ell}\right) e_{n, n}=0$ as $f\left(\beta e_{2, \ell}\right) \in N_{n}(R)$. Multiplying (3.1) by $e_{2,2}$ from the left and by $e_{n, n}$ from the right, we get $-\beta e_{2, \ell} f\left(\alpha e_{n-1, n}\right) e_{n, n}=$ $-e_{2,2} f\left(\beta e_{2, \ell}\right) \alpha e_{n-1, n}$. Since $\ell \leqslant n-2<n-1$ and $f\left(\beta e_{2, \ell}\right)=c_{2, \ell}^{2, \ell}(\beta) e_{2, \ell}+c_{1, n}^{2, \ell}(\beta) e_{1, n}$, we get $e_{2,2} f\left(\beta e_{2, \ell}\right) \alpha e_{n-1, n}=0$. Thus $\beta e_{2, \ell} f\left(\alpha e_{n-1, n}\right) e_{n, n}=0$. This implies that $\beta c_{\ell, n}^{n-1, n}(\alpha)=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, n}^{n-1, n}=0$. Hence $c_{\ell, n}^{n-1, n}=0$ for every integer ℓ with $3 \leqslant \ell \leqslant n-2$. This proves the result.
(3) Let i be an integer such that $3 \leqslant i \leqslant n-2$. By Lemmas 2.2, 2.4, 2.5, 2.6 and 2.7, $f\left(\alpha e_{i, n}\right)=\sum_{\ell=1}^{i} c_{\ell, n}^{i, n}(\alpha) e_{\ell, n}$, where each $c_{\ell, n}^{i, n}: R \rightarrow R$ is an additive map. Let ℓ be an integer such that $2 \leqslant \ell<i<n-1$. By Lemma 3.1, $f\left(\alpha e_{i, n-1}\right)=c_{i, n-1}^{i, n-1}(\alpha) e_{i, n-1}+$ $c_{1, n}^{i, n-1}(\alpha) e_{1, n}$ for all $\alpha \in R$, where $c_{i, n-1}^{i, n-1}, c_{1, n}^{i, n-1}: R \rightarrow R$ are additive maps. Write $f\left(\beta e_{1, \ell}\right)=\sum_{s, t=1, s<t}^{n} c_{s, t}^{1, \ell}(\beta) e_{s, t}$ for all $\beta \in R$, where each $c_{s, t}^{1, \ell}: R \rightarrow R$ is an additive map. Setting $x=\beta e_{1, \ell}$ and $y=\alpha e_{i, n-1}$ in (2.5), we have

$$
\begin{equation*}
f\left(\beta e_{1, \ell}\right) \alpha e_{i, n-1}-\alpha e_{i, n-1} f\left(\beta e_{1, \ell}\right)=\beta e_{1, \ell} f\left(\alpha e_{i, n-1}\right)-f\left(\alpha e_{i, n-1}\right) \beta e_{1, \ell} \tag{3.2}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.2) by $e_{1,1}$ from the left and by $e_{n-1, n-1}$ from the right, we obtain $e_{1,1} f\left(\beta e_{1, \ell}\right) \alpha e_{i, n-1}=\beta e_{1, \ell} f\left(\alpha e_{i, n-1}\right) e_{n-1, n-1}$. Since $2 \leqslant \ell<i$ and $f\left(\alpha e_{i, n-1}\right)=c_{i, n-1}^{i, n-1}(\alpha) e_{i, n-1}+c_{1, n}^{i, n-1}(\alpha) e_{1, n}$, we have $e_{1, \ell} f\left(\alpha e_{i, n-1}\right) e_{n-1, n-1}=0$. Thus $e_{1,1} f\left(\beta e_{1, \ell}\right) \alpha e_{i, n-1}=0$. This implies that $c_{1, i}^{1, \ell}(\beta) \alpha=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{1, i}^{1, \ell}=0$.

Next setting $x=\alpha e_{i, n}$ and $y=\beta e_{1, \ell}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, n}\right) \beta e_{1, \ell}-\beta e_{1, \ell} f\left(\alpha e_{i, n}\right)=\alpha e_{i, n} f\left(\beta e_{1, \ell}\right)-f\left(\beta e_{1, \ell}\right) \alpha e_{i, n} \tag{3.3}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.3) by $e_{1,1}$ from the left and by $e_{n, n}$ from the right, we obtain $-\beta e_{1, \ell} f\left(\alpha e_{i, n}\right) e_{n, n}=-e_{1,1} f\left(\beta e_{1, \ell}\right) \alpha e_{i, n}$. Note that $e_{1,1} f\left(\beta e_{1, \ell}\right) \alpha e_{i, n}=$ $c_{1, i}^{1, \ell}(\beta) \alpha e_{1, n}=0$ as $c_{1, i}^{1, \ell}=0$. Thus $\beta e_{1, \ell} f\left(\alpha e_{i, n}\right) e_{n, n}=0$. This implies that $\beta c_{\ell, n}^{i, n}(\alpha)=$ 0 for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{\ell, n}^{i, n}=0$. Hence $c_{\ell, n}^{i, n}=0$ for every integer ℓ with $2 \leqslant \ell<i<n-1$. This proves the result.

Lemma 3.3. Let R be either a ring with 1 or a semiprime ring. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, where $n \geqslant 4$ is an integer. Then the following conditions hold:
(1) There exist additive maps $c_{1, n-1}^{1, n-1}, c_{1, n}^{1, n-1}: R \rightarrow R$ such that $f\left(\alpha e_{1, n-1}\right)=$ $c_{1, n-1}^{1, n-1}(\alpha) e_{1, n-1}+c_{1, n}^{1, n-1}(\alpha) e_{1, n}$ for all $\alpha \in R$;
(2) There exist additive maps $c_{1,2}^{1,2}, c_{1, n-1}^{1,2}, c_{1, n}^{1,2}: R \rightarrow R$ such that $f\left(\alpha e_{1,2}\right)=$ $c_{1,2}^{1,2}(\alpha) e_{1,2}+c_{1, n-1}^{1,2}(\alpha) e_{1, n-1}+c_{1, n}^{1,2}(\alpha) e_{1, n}$ for all $\alpha \in R ;$
(3) If $n \geqslant 5$, then for every integer j with $3 \leqslant j \leqslant n-2$, there exist additive maps $c_{1, j}^{1, j}, c_{1, n}^{1, j}: R \rightarrow R$ such that $f\left(\alpha e_{1, j}\right)=c_{1, j}^{1, j}(\alpha) e_{1, j}+c_{1, n}^{1, j}(\alpha) e_{1, n}$ for all $\alpha \in R$.

Proof. (1) By Lemmas 2.2, 2.4 and 2.5, we are done.
(2) By Lemmas 2.2 and 2.3, $f\left(\alpha e_{1,2}\right)=\sum_{k=2}^{n} c_{1, k}^{1,2}(\alpha) e_{1, k}$ for all $\alpha \in R$, where each $c_{1, k}^{1,2}: R \rightarrow R$ is an additive map. If $n=4$, then $n-1=3$ and $f\left(\alpha e_{1,2}\right)=$ $\sum_{k=2}^{n} c_{1, k}^{1,2}(\alpha) e_{1, k}=\sum_{k=2}^{4} c_{1, k}^{1,2}(\alpha) e_{1, k}=c_{1,2}^{1,2}(\alpha) e_{1,2}+c_{1, n-1}^{1,2}(\alpha) e_{1, n-1}+c_{1, n}^{1,2}(\alpha) e_{1, n}$ for all $\alpha \in R$, as desired. So we may assume $n \geqslant 5$. Let k be an integer such that $3 \leqslant$ $k \leqslant n-2$. By Lemma 3.1, $f\left(\beta e_{k, n-1}\right)=c_{k, n-1}^{k, n-1}(\beta) e_{k, n-1}+c_{1, n}^{k, n-1}(\beta) e_{1, n}$ for all $\beta \in R$, where $c_{k, n-1}^{k, n-1}, c_{1, n}^{k, n-1}: R \rightarrow R$ are additive maps. Setting $x=\alpha e_{1,2}$ and $y=\beta e_{k, n-1}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{1,2}\right) \beta e_{k, n-1}-\beta e_{k, n-1} f\left(\alpha e_{1,2}\right)=\alpha e_{1,2} f\left(\beta e_{k, n-1}\right)-f\left(\beta e_{k, n-1}\right) \alpha e_{1,2} \tag{3.4}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Clearly, $n-1>2$. Multiplying (3.4) by $e_{1,1}$ from the left and by $e_{n-1, n-1}$ from the right, we obtain $e_{1,1} f\left(\alpha e_{1,2}\right) \beta e_{k, n-1}=\alpha e_{1,2} f\left(\beta e_{k, n-1}\right) e_{n-1, n-1}$. Recall that $3 \leqslant k$ and $f\left(\beta e_{k, n-1}\right)=c_{k, n-1}^{k, n-1}(\beta) e_{k, n-1}+c_{1, n}^{k, n-1}(\beta) e_{1, n}$. Thus we have $e_{1,2} f\left(\beta e_{k, n-1}\right) e_{n-1, n-1}=0$. So $e_{1,1} f\left(\alpha e_{1,2}\right) \beta e_{k, n-1}=0$. This implies that $c_{1, k}^{1,2}(\alpha) \beta=$ 0 for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{1, k}^{1,2}=0$. Hence $c_{1, k}^{1,2}=0$ for every integer k with $3 \leqslant k \leqslant n-2$. This proves the result.
(3) Let j be an integer such that $3 \leqslant j \leqslant n-2$. By Lemmas 2.2, 2.3, 2.4 and 2.5, $f\left(\alpha e_{1, j}\right)=\sum_{k=j}^{n} c_{1, k}^{1, j}(\alpha) e_{1, k}$, where each $c_{1, k}^{1, j}: R \rightarrow R$ is an additive map. Let k be an integer such that $3 \leqslant j<k \leqslant n-1$. Setting $x=\alpha e_{1, j}$ and $y=\beta e_{k, n}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{1, j}\right) \beta e_{k, n}-\beta e_{k, n} f\left(\alpha e_{1, j}\right)=\alpha e_{1, j} f\left(\beta e_{k, n}\right)-f\left(\beta e_{k, n}\right) \alpha e_{1, j} \tag{3.5}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.5) by $e_{1,1}$ from the left and by $e_{n, n}$ from the right, we obtain

$$
\begin{equation*}
e_{1,1} f\left(\alpha e_{1, j}\right) \beta e_{k, n}=\alpha e_{1, j} f\left(\beta e_{k, n}\right) e_{n, n} \tag{3.6}
\end{equation*}
$$

for all $\alpha, \beta \in R$. By Lemma 3.2, $f\left(\beta e_{k, n}\right)=c_{k, n}^{k, n}(\beta) e_{k, n}+c_{1, n}^{k, n}(\beta) e_{1, n}$ for all $\beta \in R$ if $k \neq n-1$ and $f\left(\beta e_{k, n}\right)=c_{k, n}^{k, n}(\beta) e_{k, n}+c_{2, n}^{k, n}(\beta) e_{2, n}+c_{1, n}^{k, n}(\beta) e_{1, n}$ for all $\beta \in R$ if $k=n-1$, where $c_{k, n}^{k, n}, c_{2, n}^{k, n}, c_{1, n}^{k, n}: R \rightarrow R$ are additive maps. Thus $e_{1, j} f\left(\beta e_{k, n}\right) e_{n, n}=0$ as $3 \leqslant j<k$. So by (3.6), $e_{1,1} f\left(\alpha e_{1, j}\right) \beta e_{k, n}=0$. This implies that $c_{1, k}^{1, j}(\alpha) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{1, k}^{1, j}=0$. Hence $c_{1, k}^{1, j}=0$ for every integer k with $j<k \leqslant n-1$. This proves the result.

Lemma 3.4. Let R be a ring with 1 and with center $Z(R)$.
(1) Let $g: R \rightarrow R$ and $h: R \rightarrow R$ be additive maps such that $g(x) y=x h(y)$ for all $x, y \in R$. Then there exists $a \in R$ such that $g(x)=x a$ and $h(x)=a x$ for all $x \in R$.
(2) Let $g: R \rightarrow R$ be an additive map such that $g(x) y=x g(y)$ for all $x, y \in R$. Then there exists $\lambda \in Z(R)$ such that $g(x)=\lambda x$ for all $x \in R$.

Proof. (1) Clearly, $g(x)=x h(1)$ and $g(1) y=h(y)$ for all $x, y \in R$. Thus $(x h(1)) y=$ $g(x) y=x h(y)=x(g(1) y)$ for all $x, y \in R$. So $h(1)=g(1)$, as desired. (2) By (1), there exists $a \in R$ such that $g(x)=a x=x a$ for all $x \in R$. Clearly, $a \in Z(R)$, as desired.

Let R be a semiprime ring. An ideal I of R is called essential if $I \cap J \neq 0$ for every nonzero ideal J of R. The symmetric Martindale ring of quotients of R, denoted by $Q_{s}(R)$, is also a semiprime ring and can be characterized as a ring satisfying the following four axioms [2, Proposition 2.2.3]:
(Q1) R is a subring of $Q_{s}(R)$.
(Q2) For any $a \in Q_{s}(R)$, there exists an essential ideal I of R such that $a I \cup I a \subseteq R$.
(Q3) If $a \in Q_{s}(R)$ and I is an essential ideal of R, then $a I=0$ if and only if $a=0$.
(Q4) Given an essential ideal I of R, a left R-module homomorphism $g: I \rightarrow R$ and a right R-module homomorphism $h: I \rightarrow R$ such that $g(x) y=x h(y)$ for all $x, y \in I$, there exists $a \in Q_{s}(R)$ such that $g(x)=x a$ and $h(x)=a x$ for all $x \in I$.

We denote by $M(R)$ the multiplier ring of R, that is,

$$
M(R)=\left\{a \in Q_{s}(R) \mid a R+R a \subseteq R\right\}
$$

and by $C(R)$ the centroid of R, that is, $C(R)=Z\left(Q_{s}(R)\right) \cap M(R)$. We refer the reader to the book [2] for the basic terminology and notation.

LEMMA 3.5. Let R be a semiprime ring with the multiplier ring $M(R)$ and with the centroid $C(R)$
(1) Let $g: R \rightarrow R$ and $h: R \rightarrow R$ be additive maps such that $g(x) y=x h(y)$ for all $x, y \in R$. Then there exists $a \in M(R)$ such that $g(x)=x a$ and $h(x)=$ ax for all $x \in R$.
(2) Let $g: R \rightarrow R$ be an additive map such that $g(x) y=x g(y)$ for all $x, y \in R$. Then there exists $\lambda \in C(R)$ such that $g(x)=\lambda x$ for all $x \in R$.

Proof. (1) Clearly, $g(z x) y=z x h(y)$ and $z(g(x) y)=z(x h(y))$ for all $x, y, z \in R$. The difference of the last two equations yields $g(z x) y=z g(x) y$ for all $x, y, z \in R$. Thus $(g(z x)-z g(x)) R=0$ for all $x, z \in R$. By semiprimeness of $R, g(z x)=z g(x)$ for all $x, z \in R$. This implies that g is a left R-module homomorphism. By symmetry, h is
a right R-module homomorphism. By axiom (Q4), there exists $a \in Q_{s}(R)$ such that $g(x)=x a$ and $h(x)=a x$ for all $x \in R$. Clearly, $a R=h(R) \subseteq R$ and $R a=g(R) \subseteq R$. Hence $a \in M(R)$. (2) By (1), there exists $\lambda \in M(R)$ such that $g(x)=\lambda x=x \lambda$ for all $x \in R$. By [2, Remark 2.3.1], $\lambda \in Z\left(Q_{s}(R)\right)$. Hence $\lambda \in C(R)$.

LEMMA 3.6. Let R be a ring with 1 and with center $Z(R)$ (resp. a semiprime ring with the multiplier ring $M(R)$ and with the centroid $C(R)$). Suppose that f : $N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, where $n \geqslant 4$ is an integer. Then there exist $\lambda \in Z(R)$ (resp. $\lambda \in C(R)), a \in R$ (resp. $a \in$ $M(R))$ and additive maps $c_{1, n}^{1,2}, c_{1, n}^{n-1, n}, c_{1, n}^{i, i+1}: R \rightarrow R$ such that $f\left(\alpha e_{1,2}\right)=(\lambda \alpha) e_{1,2}+$ $(\alpha a) e_{1, n-1}+c_{1, n}^{1,2}(\alpha) e_{1, n}, \quad f\left(\alpha e_{n-1, n}\right)=(\lambda \alpha) e_{n-1, n}+(a \alpha) e_{2, n}+c_{1, n}^{n-1, n}(\alpha) e_{1, n}$ and $f\left(\alpha e_{i, i+1}\right)=(\lambda \alpha) e_{i, i+1}+c_{1, n}^{i, i+1}(\alpha) e_{1, n}$ for all $\alpha \in R$ and $2 \leqslant i \leqslant n-2$.

Proof. By Lemmas 3.2 (2) and 3.3 (2), there exist additive maps $c_{1,2}^{1,2}, c_{1, n-1}^{1,2}, c_{1, n}^{1,2}$: $R \rightarrow R$ such that $f\left(\alpha e_{1,2}\right)=c_{1,2}^{1,2}(\alpha) e_{1,2}+c_{1, n-1}^{1,2}(\alpha) e_{1, n-1}+c_{1, n}^{1,2}(\alpha) e_{1, n}$ and there exist additive maps $c_{n-1, n}^{n-1, n}, c_{2, n}^{n-1, n}, c_{1, n}^{n-1, n}: R \rightarrow R$ such that $f\left(\alpha e_{n-1, n}\right)=c_{n-1, n}^{n-1, n}(\alpha) e_{n-1, n}+$ $c_{2, n}^{n-1, n}(\alpha) e_{2, n}+c_{1, n}^{n-1, n}(\alpha) e_{1, n}$ for all $\alpha \in R$. And by Lemma 3.1, for every integer i with $2 \leqslant i \leqslant n-2$, there exist additive maps $c_{i, i+1}^{i, i+1}, c_{1, n}^{i, i+1}: R \rightarrow R$ such that $f\left(\alpha e_{i, i+1}\right)=$ $c_{i, i+1}^{i, i+1}(\alpha) e_{i, i+1}+c_{1, n}^{i, i+1}(\alpha) e_{1, n}$ for all $\alpha \in R$.

Let i be an integer such that $1 \leqslant i \leqslant n-2$. Setting $x=\alpha e_{i, i+1}$ and $y=\beta e_{i+1, i+2}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, i+1}\right) \beta e_{i+1, i+2}-\beta e_{i+1, i+2} f\left(\alpha e_{i, i+1}\right)=\alpha e_{i, i+1} f\left(\beta e_{i+1, i+2}\right)-f\left(\beta e_{i+1, i+2}\right) \alpha e_{i, i+1} \tag{3.7}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.7) by $e_{i, i}$ from the left and by $e_{i+2, i+2}$ from the right, we obtain $e_{i, i} f\left(\alpha e_{i, i+1}\right) \beta e_{i+1, i+2}=\alpha e_{i, i+1} f\left(\beta e_{i+1, i+2}\right) e_{i+2, i+2}$. This implies

$$
\begin{equation*}
c_{i, i+1}^{i, i+1}(\alpha) \beta=\alpha c_{i+1, i+2}^{i+1, i+2}(\beta) \tag{3.8}
\end{equation*}
$$

for all $\alpha, \beta \in R$ and $i=1, \ldots, n-2$. Since $n \geqslant 4$, by (3.8) we have $c_{1,2}^{1,2}(\alpha) \beta=$ $\alpha c_{2,3}^{2,3}(\beta)$ and $c_{2,3}^{2,3}(\alpha) \beta=\alpha c_{3,4}^{3,4}(\beta)$ for all $\alpha, \beta \in R$. By Lemma 3.4 (1) (resp. Lemma 3.5 (1)), there exist $u, v \in R($ resp. $u, v \in M(R))$ such that $c_{2,3}^{2,3}(\alpha)=u \alpha$ and $c_{2,3}^{2,3}(\alpha)=$ αv for all $\alpha \in R$. With these, we have $c_{2,3}^{2,3}(\alpha)=u \alpha=\alpha v$ and then $c_{2,3}^{2,3}(\alpha) \beta=$ $(u \alpha) \beta=u(\alpha \beta)=(\alpha \beta) v=\alpha(\beta v)=\alpha c_{2,3}^{2,3}(\beta)$ for all $\alpha, \beta \in R$. By Lemma 3.4 (2) (resp. Lemma 3.5 (2)), there exists $\lambda \in Z(R)$ (resp. $\lambda \in C(R)$) such that $c_{2,3}^{2,3}(\alpha)=\lambda \alpha$ for all $\alpha \in R$. Then $c_{1,2}^{1,2}(\alpha) \beta=\alpha c_{2,3}^{2,3}(\beta)=\alpha(\lambda \beta)=(\lambda \alpha) \beta$ for all $\alpha, \beta \in R$. Thus $\left(c_{1,2}^{1,2}(\alpha)-\lambda \alpha\right) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{1,2}^{1,2}(\alpha)=\lambda \alpha=c_{2,3}^{2,3}(\alpha)$ for all $\alpha \in R$. Similarly, we have $c_{2,3}^{2,3}(\alpha)=\lambda \alpha=c_{3,4}^{3,4}(\alpha)$ for all $\alpha \in R$. Now using (3.8) repeatedly, we obtain $c_{i, i+1}^{i, i+1}(\alpha)=\lambda \alpha$ for all $\alpha \in R$ and $i=1, \ldots, n-1$.

Setting $x=\alpha e_{1,2}$ and $y=\beta e_{n-1, n}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{1,2}\right) \beta e_{n-1, n}-\beta e_{n-1, n} f\left(\alpha e_{1,2}\right)=\alpha e_{1,2} f\left(\beta e_{n-1, n}\right)-f\left(\beta e_{n-1, n}\right) \alpha e_{1,2} \tag{3.9}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.9) by $e_{1,1}$ from the left and by $e_{n, n}$ from the right, we obtain $e_{1,1} f\left(\alpha e_{1,2}\right) \beta e_{n-1, n}=\alpha e_{1,2} f\left(\beta e_{n-1, n}\right) e_{n, n}$. This implies $c_{1, n-1}^{1,2}(\alpha) \beta=$ $\alpha c_{2, n}^{n-1, n}(\beta)$ for all $\alpha, \beta \in R$. Thus by Lemma 3.4 (1) (resp. Lemma 3.5 (1)), there exists $a \in R$ (resp. $a \in M(R)$) such that $c_{1, n-1}^{1,2}(\alpha)=\alpha a$ and $c_{2, n}^{n-1, n}(\beta)=a \beta$ for all $\alpha, \beta \in R$. This proves the lemma.

Lemma 3.7. Let R be either a ring with 1 or a semiprime ring. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, where $n \geqslant 4$ is an integer. Let λ and a be the elements described in Lemma 3.6. Then for every integer i with $2 \leqslant i \leqslant n-2$, there exists an additive map $c_{1, n}^{i, n}: R \rightarrow R$ such that $f\left(\alpha e_{i, n}\right)=(\lambda \alpha) e_{i, n}+c_{1, n}^{i, n}(\alpha) e_{1, n}$ for all $\alpha \in R$.

Proof. By Lemma 3.2 (1) and (3), for every integer i with $2 \leqslant i \leqslant n-2$, there exist additive maps $c_{i, n}^{i, n}, c_{1, n}^{i, n}: R \rightarrow R$ such that $f\left(\alpha e_{i, n}\right)=c_{i, n}^{i, n}(\alpha) e_{i, n}+c_{1, n}^{i, n}(\alpha) e_{1, n}$ for all $\alpha \in R$. Let i be an integer such that $2 \leqslant i \leqslant n-2$. By Lemma 3.6, $f\left(\beta e_{i-1, i}\right)=$ $(\lambda \beta) e_{1,2}+(\beta a) e_{1, n-1}+c_{1, n}^{1,2}(\beta) e_{1, n}$ for all $\beta \in R$ if $i=2$ and $f\left(\beta e_{i-1, i}\right)=(\lambda \beta) e_{i-1, i}+$ $c_{1, n}^{i-1, i}(\beta) e_{1, n}$ for all $\beta \in R$ if $3 \leqslant i \leqslant n-2$. In particular, $e_{i-1, i-1} f\left(\beta e_{i-1, i}\right) e_{i, n}=$ $\lambda \beta e_{i-1, n}$ as $i<n-1$. Setting $x=\alpha e_{i, n}$ and $y=\beta e_{i-1, i}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, n}\right) \beta e_{i-1, i}-\beta e_{i-1, i} f\left(\alpha e_{i, n}\right)=\alpha e_{i, n} f\left(\beta e_{i-1, i}\right)-f\left(\beta e_{i-1, i}\right) \alpha e_{i, n} \tag{3.10}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.10) by $e_{i-1, i-1}$ from the left and by $e_{n, n}$ from the right, we see that $-\beta e_{i-1, i} f\left(\alpha e_{i, n}\right) e_{n, n}=-e_{i-1, i-1} f\left(\beta e_{i-1, i}\right) \alpha e_{i, n}$. This implies that $\beta c_{i, n}^{i, n}(\alpha)=\lambda \beta \alpha$ for all $\alpha, \beta \in R$. Thus $\beta\left(c_{i, n}^{i, n}(\alpha)-\lambda \alpha\right)=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{i, n}^{i, n}(\alpha)=\lambda \alpha$ for all $\alpha \in R$, proving the lemma.

Lemma 3.8. Let R be either a ring with 1 or a semiprime ring. Suppose that $f: N_{n}(R) \rightarrow N_{n}(R)$ is an additive map such that $[f(x), x]=0$ for all $x \in N_{n}(R)$, where $n \geqslant 4$ is an integer. Let λ and a be the elements described in Lemma 3.6. Then for every distinct integers i, j with $1 \leqslant i<j \leqslant n-1$ and $(i, j) \neq(1,2)$, there exists an additive map $c_{1, n}^{i, j}: R \rightarrow R$ such that $f\left(\alpha e_{i, j}\right)=(\lambda \alpha) e_{i, j}+c_{1, n}^{i, j}(\alpha) e_{1, n}$ for all $\alpha \in R$.

Proof. By Lemma 3.1 and Lemma 3.3 (1) and (3), for every distinct integers i, j with $1 \leqslant i<j \leqslant n-1$ and $(i, j) \neq(1,2)$, there exist additive maps $c_{i, j}^{i, j}, c_{1, n}^{i, j}$: $R \rightarrow R$ such that $f\left(\alpha e_{i, j}\right)=c_{i, j}^{i, j}(\alpha) e_{i, j}+c_{1, n}^{i, j}(\alpha) e_{1, n}$ for all $\alpha \in R$. Let i, j be distinct integers such that $1 \leqslant i<j \leqslant n-1$ and $(i, j) \neq(1,2)$. By Lemmas 3.6 and 3.7, $f\left(\beta e_{j, n}\right)=(\lambda \beta) e_{j, n}+c_{1, n}^{j, n}(\beta) e_{1, n}$ for all $\beta \in R$ if $2 \leqslant j \leqslant n-2$ and $f\left(\beta e_{j, n}\right)=$ $(\lambda \beta) e_{n-1, n}+(a \beta) e_{2, n}+c_{1, n}^{n-1, n}(\beta) e_{1, n}$ for all $\beta \in R$ if $j=n-1$. In particular, we have $e_{i, j} f\left(\beta e_{j, n}\right) e_{n, n}=\lambda \beta e_{i, n}$ as $j \geqslant 2$ and $n-1 \geqslant 3$.

Setting $x=\alpha e_{i, j}$ and $y=\beta e_{j, n}$ in (2.5), we have

$$
\begin{equation*}
f\left(\alpha e_{i, j}\right) \beta e_{j, n}-\beta e_{j, n} f\left(\alpha e_{i, j}\right)=\alpha e_{i, j} f\left(\beta e_{j, n}\right)-f\left(\beta e_{j, n}\right) \alpha e_{i, j} \tag{3.11}
\end{equation*}
$$

for all $\alpha, \beta \in R$. Multiplying (3.11) by $e_{i, i}$ from the left and by $e_{n, n}$ from the right, we obtain $e_{i, i} f\left(\alpha e_{i, j}\right) \beta e_{j, n}=\alpha e_{i, j} f\left(\beta e_{j, n}\right) e_{n, n}$. This implies that $c_{i, j}^{i, j}(\alpha) \beta=\alpha \lambda \beta$ for all
$\alpha, \beta \in R$. Thus $\left(c_{i, j}^{i, j}(\alpha)-\lambda \alpha\right) \beta=0$ for all $\alpha, \beta \in R$. By Lemma 2.1, $c_{i, j}^{i, j}(\alpha)=\lambda \alpha$ for all $\alpha \in R$, proving the lemma.

LEMMA 3.9. Let R be a ring with 1 (resp. a semiprime ring with the multiplier ring $M(R)$) and let $N_{3}(R)$ be the ring of all 3×3 strictly upper triangular matrices over R with center \mathcal{Z}. Suppose that $f: N_{3}(R) \rightarrow N_{3}(R)$ is an additive map. Then $[f(x), x]=0$ for all $x \in N_{3}(R)$ if and only if there exist an additive map $\mu: N_{3}(R) \rightarrow \mathcal{Z}$ and an additive map $v: N_{3}(R) \rightarrow \Omega$ such that $f(x)=\mu(x)+v(x)$ for all $x \in N_{3}(R)$, where $\Omega=\left\{\alpha e_{1,2}+\beta e_{2,3}: \alpha, \beta \in R\right\}$ and v is defined by some $a \in R \quad$ (resp. $a \in$

Proof. The implication " \Leftarrow " is trivial. For the implication " \Rightarrow ". For two distinct integers i, j with $1 \leqslant i<j \leqslant 3$ and write $f\left(\alpha e_{i j}\right)=\sum_{s, t=1, s<t}^{3} c_{s t}^{i j}(\alpha) e_{s t}$ for all $\alpha \in R$, where each $c_{s t}^{i j}: R \rightarrow R$ is an additive map. By Lemma 2.2, $c_{2,3}^{1,2}=0$ and $c_{1,2}^{2,3}=0$. Thus $f\left(\alpha e_{1,2}\right)=c_{1,2}^{1,2}(\alpha) e_{1,2}+c_{1,3}^{1,2}(\alpha) e_{1,3}$ and $f\left(\beta e_{2,3}\right)=c_{2,3}^{2,3}(\beta) e_{2,3}+c_{1,3}^{2,3}(\beta) e_{1,3}$ for all $\alpha, \beta \in R$. Setting $x=\alpha e_{1,2}$ and $y=\beta e_{2,3}$ in (2.5), we obtain

$$
\begin{aligned}
0= & f\left(\alpha e_{1,2}\right) \beta e_{2,3}-\beta e_{2,3} f\left(\alpha e_{1,2}\right)-\alpha e_{1,2} f\left(\beta e_{2,3}\right)+f\left(\beta e_{2,3}\right) \alpha e_{1,2} \\
= & \left(c_{1,2}^{1,2}(\alpha) e_{1,2}+c_{1,3}^{1,2}(\alpha) e_{1,3}\right) \beta e_{2,3}-\beta e_{2,3}\left(c_{1,2}^{1,2}(\alpha) e_{1,2}+c_{1,3}^{1,2}(\alpha) e_{1,3}\right) \\
& -\alpha e_{1,2}\left(c_{2,3}^{2,3}(\beta) e_{2,3}+c_{1,3}^{2,3}(\beta) e_{1,3}\right)+\left(c_{2,3}^{2,3}(\beta) e_{2,3}+c_{1,3}^{2,3}(\beta) e_{1,3}\right) \alpha e_{1,2} \\
= & \left(c_{1,2}^{1,2}(\alpha) \beta-\alpha c_{2,3}^{2,3}(\beta)\right) e_{1,3}
\end{aligned}
$$

for all $\alpha, \beta \in R$. Thus $c_{1,2}^{1,2}(\alpha) \beta-\alpha c_{2,3}^{2,3}(\beta)=0$ for all $\alpha, \beta \in R$. By Lemma 3.4 (resp. Lemma 3.5), there exists $a \in R$ (resp. $a \in M(R)$) such that $c_{1,2}^{1,2}(\alpha)=\alpha a$ and $c_{2,3}^{2,3}(\alpha)=$ $a \alpha$ for all $\alpha \in R$. Recall that $\mathcal{Z}=R e_{13}$. Thus $f\left(\alpha e_{1,2}\right)-(\alpha a) e_{1,2}=c_{1,3}^{1,2}(\alpha) e_{1,3} \in \mathcal{Z}$ and $f\left(\alpha e_{2,3}\right)-(a \alpha) e_{2,3}=c_{1,3}^{2,3}(\alpha) e_{1,3} \in \mathcal{Z}$ for all $\alpha \in R$. By Lemmas 2.4 and 2.5, $c_{1,2}^{1,3}=0$ and $c_{2,3}^{1,3}=0$. So $f\left(\alpha e_{1,3}\right)=c_{1,3}^{1,3}(\alpha) e_{1,3} \in \mathcal{Z}$ for all $\alpha \in R$. Let $v: N_{3}(R) \rightarrow \Omega$ be the additive map defined by $v(x)=e_{1,1} x a e_{2,2}+e_{2,2} a x e_{3,3}$ for all $x \in N_{3}(R)$, where $\Omega=\left\{\alpha e_{1,2}+\beta e_{2,3}: \alpha, \beta \in R\right\}$. Then $f(x)-v(x) \in \mathcal{Z}$ for all $x \in N_{3}(R)$. Hence $f(x)=\mu(x)+v(x)$ for all $x \in N_{3}(R)$, where $\mu: N_{3}(R) \rightarrow \mathcal{Z}$ is the additive map defined by $\mu(x)=f(x)-v(x)$ for all $x \in N_{3}(R)$. This proves the lemma.

We are now ready to prove Theorems 1.1 and 1.2.
Proof of Theorems 1.1 and 1.2. The implication " \Leftarrow " is trivial. For the implication " \Rightarrow ": By Lemma 3.9, we may assume $n \geqslant 4$. Let λ and a be the elements described in Lemma 3.6 and let $\Omega=\left\{\alpha e_{1, n-1}+\beta e_{2, n}: \alpha, \beta \in R\right\}$. Let v : $N_{n}(R) \rightarrow \Omega$ be the additive map defined by $v(x)=e_{1,1} x a e_{2, n-1}+e_{2, n-1}$ axe $e_{n, n}$ for all $x \in N_{n}(R)$. Clearly, $v\left(\alpha e_{i, j}\right)=0$ for all $\alpha \in R$ and distinct integers i, j with $1 \leqslant i<j \leqslant n$ and $(i, j) \notin\{(1,2),(n-1, n)\}$. By Lemmas 3.6, 3.7 and 3.8, $f\left(\alpha e_{i, j}\right)-$ $\lambda\left(\alpha e_{i, j}\right)-v\left(\alpha e_{i, j}\right) \in R e_{1, n}$ for all $\alpha \in R$ and distinct integers i, j with $1 \leqslant i<j \leqslant n$ and $(i, j) \neq(1, n)$. Moreover, in view of Lemma 3.2 (1), $f\left(\alpha e_{1, n}\right) \in R e_{1, n}$ and hence $f\left(\alpha e_{1, n}\right)-\lambda\left(\alpha e_{1, n}\right)-v\left(\alpha e_{1, n}\right) \in R e_{1, n}$ for all $\alpha \in R$. Recall that $\mathcal{Z}=R e_{1, n}$. So
$f(x)-\lambda x-v(x) \in \mathcal{Z}$ for $x \in N_{n}(R)$. Let $\mu: N_{n}(R) \rightarrow \mathcal{Z}$ be the additive map defined by $\mu(x)=f(x)-\lambda x-v(x)$ for $x \in N_{n}(R)$. Consequently, $f(x)=\lambda x+\mu(x)+v(x)$ for all $x \in N_{n}(R)$. This proves the theorems.

Acknowledgements. The authors are thankful to the referee for the very thorough reading of the paper and valuable suggestions.

REFERENCES

[1] K. I. Beidar, M. Brešar and M. A. Chebotar, Functional identities on upper triangular matrix algebras, J. Math. Sci. (New York) 102 (2000), 4557-4565.
[2] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
[3] J. Bounds, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132-136.-
[4] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[5] M. Brešar, M. A. Chebotar and W. S. Martindale III, Functional Identities, Frontiers in Mathematics. Basel, Birkhauser Verlag, 2007.
[6] W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117-127.
[7] W. L. Chooi, K. H. Kwa and L. Y. Tan, Commuting maps on rank k triangular matrices, Linear Multilinear Algebra 68 (2020), 1021-1030.
[8] W. L. Chooi, K. H. Kwa and L. Y. Tan, Commuting maps on invertible triangular matrices over \mathbb{F}_{2}, Linear Algebra Appl. 583 (2019), 77-101.
[9] W. L. Chooi, M. H. A. Mutalib and L. Y. Tan, Commuting maps on rank one triangular matrices, Linear Algebra Appl. 626 (2021), 34-55.
[10] W. L. Chooi and Y. N. Tan, A note on commuting additive maps on rank k symmetric matrices, Electron. J. Linear Algebra 37 (2021), 734-746.
[11] P.-H. Chou and C.-K. LiU, Power commuting additive maps on rank- k linear transformations, Linear Multilinear Algebra 69 (2021), 403-427.
[12] N. DIVInsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III 49 (1955), 19-22.
[13] D. EREMITA, Functional identities of degree 2 in triangular rings, Linear Algebra Appl. 438 (2013), 584-597.
[14] W. Franca, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl. 437 (2012), 388-391.
[15] W. Franca, Commuting maps on rank-k matrices, Linear Algebra Appl. 438 (2013), 2813-2815.
[16] W. Franca, Weakly commuting maps on the set of rank-1 matrices, Linear Multilinear Algebra 65 (2017), 479-495.
[17] W. Franca and N. LouZa, Commuting maps on rank-1 matrices over noncommutative division rings, Comm. Algebra 45 (2017), 4696-4706.
[18] W. Franca and N. Louza, Generalized commuting maps on the set of singular matrices, Electron. J. Linear Algebra 35 (2019), 533-542.
[19] C.-K. Liu, Centralizing maps on invertible or singular matrices over division rings, Linear Algebra Appl. 440 (2014), 318-324.
[20] C.-K. Liu and J.-J. Yang, Power commuting additive maps on invertible or singular matrices, Linear Algebra Appl. 530 (2017), 127-149.
[21] Y. Li and F. Wei, Semi-centralizing maps of generalized matrix algebras, Linear Algebra Appl. 436 (2012), 1122-1153.
[22] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[23] R. SLOWIK AND D. A. H. Ahmed, M-commuting maps on triangular and strictly triangular infinite matrices, Electron. J. Linear Algebra 37 (2021), 247-255.
[24] Y. WANG, Functional identities of degree 2 in arbitrary triangular rings, Linear Algebra Appl. 479 (2015), 171-184.
[25] Y. WANG, On functional identities of degree 2 and centralizing maps in triangular rings, Oper. Matrices 10 (2016), 485-499.
[26] Y. WANG, Functional identities in upper triangular matrix rings revisited, Linear Multilinear Algebra 67 (2019), 348-359.
[27] Z.-K. Xiao and F. WEi, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), 2178-2197.
[28] X. Xu and X. Yi, Commuting maps on rank-k matrices, Electron. J. Linear Algebra 27 (2014), 735-741.
(Received March 16, 2023)
Shu-Wen Ko
Department of Mathematics
National Changhua University of Education
Changhua 500, Taiwan
Cheng-Kai Liu
Department of Mathematics
National Changhua University of Education
Changhua 500, Taiwan
e-mail: ckliu@cc.ncue.edu.tw

[^0]: Mathematics subject classification (2020): 15A78, 15A27, 16R60, 16N60.
 Keywords and phrases: Commuting map, functional identity, strictly upper triangular matrix ring, semiprime ring.

 * Corresponding author.

