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Abstract. Let R be either a ring with 1 or a semiprime ring not necessarily with 1 and let
Nn(R) be the n× n strictly upper triangular matrix ring over R , where n � 3 is an integer.
We completely characterize additive maps f : Nn(R) → Nn(R) satisfying [ f (x),x] = 0 for all
x ∈ Nn(R) . Our theorem naturally generalizes a recent result obtained by Bounds [3] for strictly
upper triangular matrix rings over a field of characteristic 0 .

1. Introduction and results

Throughout here, R denotes an associative ring with center Z(R) . R is called
prime if for any a,b ∈ R , aRb = 0 implies a = 0 or b = 0 and R is called semiprime
if for any a ∈ R , aRa = 0 implies a = 0. For a,b ∈ R , we let [a,b] = ab−ba be the
commutator of a and b . A map f : R → R is called additive if f (x+ y) = f (x)+ f (y)
for all x,y ∈ R . A map f : R → R is said to be commuting if [ f (x),x] = 0 for all
x ∈ R . The usual goal when treating a commuting map is to describe its form. The
study of additive commuting maps was initiated by Divinsky and Posner. In 1955 Di-
vinsky [12] proved that if a simple artinian ring R admits a commuting automorphism
σ , then either R is commutative or σ is the identity map. On the other hand, in 1957
Posner [22] proved that if a prime ring R admits a commuting derivation d , then either
R is commutative or d = 0. In 1993 Brešar [4] extended above two results to general
additive maps and proved that if R is a prime ring with the extended centroid C and
f : R→ R is an additive commuting map, then f must be of the form f (x) = λx+μ(x)
for all x∈ R , where λ ∈C and μ : R→C is an additive map. This influential result has
been extended to semiprime rings, superalgebras, von Neumann algebras, C∗ -algebras,
Lie algebras and matrix algebras etc. We refer the reader to the book [5] for the de-
velopment of the theory of commuting maps. Recently, additive commuting maps on
subrings or subsets of matrix rings have been widely investigated in the literature (see
[7]–[11], [13]–[21], [23]–[28] for instance). In 2000 Beidar, Brešar and Chebotar [1]
proved that if Tn(F) is the ring of all n×n upper triangular matrices over a field F and
f : Tn(F) → Tn(F) is a linear commuting map, where n � 2 is an integer, then f is of
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the form f (x) = λx+ μ(x) for all x ∈ Tn(F) , where λ ∈ F and μ : Tn(F) → Z(Tn(F))
is a linear map. This result was later extended to linear commuting maps on the ring
of all upper triangular matrices over a commutative ring with 1 by Cheung in [6] and
extended to additive commuting maps on the ring of all upper triangular matrices over
an arbitrary ring with 1 by Eremita in [13]. In 2016 Bounds [3] successfully character-
ized linear commuting maps on the ring of all strictly upper triangular matrices over a
field of characteristic 0. As usual, let R be a ring with 1, let Mn(R) be the ring of all
n×n matrices over R and let {ei, j | 1 � i, j � n} be the set of matrix units in Mn(R) .
Precisely, Bounds proved the following:

THEOREM JB. ([3]) Let n � 4 be an integer and let Nn(F) be the ring of all
n× n strictly upper triangular matrices over a field F of characteristic 0 . Suppose
that f : Nn(F)→ Nn(F) is a linear map such that [ f (x),x] = 0 for all x ∈ Nn(F) . Then
there exist λ ∈ F and a linear map μ : Nn(F) → Ω such that f (x) = λx+ μ(x) for all
x ∈ Nn(F) , where Ω = {αe1,n−1 + βe1,n + γe2,n : α,β ,γ ∈ F} .

The proof of Theorem JB depends heavily on the well-known fact about the cen-
tralizers of a nonderogatory matrix over a field F of characteristic 0. Up to now, it
is still an open problem whether Theorem JB holds true for any field F of positive
characteristic p � 2.

PROBLEM 1. Let n � 4 be an integer and let F be a field of characteristic p � 2 .
Assume that f : Nn(F)→ Nn(F) is a linear commuting map. Can we describe the form
of f ?

The goal of this paper is to give an affirmative answer to Problem 1. Moreover,
we extend Theorem JB to strictly upper triangular matrix rings over an arbitrary ring R
with 1. Precisely, we prove the following:

THEOREM 1.1. Let R be a ring with 1 and with center Z(R) . Let Nn(R) be the
ring of all n×n strictly upper triangular matrices over R with center Z , where n � 3
is an integer. Suppose that f : Nn(R)→Nn(R) is an additive map. Then [ f (x),x] = 0 for
all x ∈ Nn(R) if and only if there exist λ ∈ Z(R) , an additive map μ : Nn(R) →Z , and
an additive map ν : Nn(R) → Ω such that f (x) = λx+ μ(x)+ ν(x) for all x ∈ Nn(R) ,
where Ω = {αe1,n−1 + βe2,n : α,β ∈ R} and ν is defined by some a ∈ R such that
ν(x) = e1,1xae2,n−1 + e2,n−1axen,n for all x ∈ Nn(R) .

In case R is a semiprime ring not necessarily with 1, we prove the following:

THEOREM 1.2. Let R be a semiprime ring with the multiplier ring M(R) and with
the centroid C(R) . Let Nn(R) be the ring of all n×n strictly upper triangular matrices
over R with center Z , where n � 3 is an integer. Suppose that f : Nn(R) → Nn(R)
is an additive map. Then [ f (x),x] = 0 for all x ∈ Nn(R) if and only if there exist
λ ∈C(R) , an additive map μ : Nn(R) →Z , and an additive map ν : Nn(R) → Ω such
that f (x) = λx+μ(x)+ν(x) for all x∈Nn(R) , where Ω = {αe1,n−1+βe2,n : α,β ∈R}
and ν is defined by some a ∈ M(R) such that ν(x) = e1,1xae2,n−1 + e2,n−1axen,n for
all x ∈ Nn(R) .
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2. Preliminaries

The following lemma is essential to our proof.

LEMMA 2.1. Let R be either a ring with 1 or a semiprime ring and let Z(R) be
the center of R. Suppose that g : R → R is an additive map. If xg(x) = 0 for all x ∈ R,
then g = 0 . Similarly, if g(x)x = 0 for all x ∈ R, then g = 0 .

Proof. By assumption,
xg(x) = 0 (2.1)

for all x ∈ R . Assume first that 1 ∈ R . Setting x = 1 in (2.1), we have g(1) = 0.
Replacing x with x+1 in (2.1) and using g(1) = 0 = xg(x) , we obtain g(x) = 0 for all
x ∈ R , as desired. Assume now that R is semiprime. Replacing x with x+ y in (2.1)
and using xg(x) = yg(y) = 0, we obtain

xg(y)+ yg(x) = 0 (2.2)

for all x,y ∈ R . Replacing y with zy in (2.2), we obtain xg(zy) + zyg(x) = 0 for all
x,y,z ∈ R . Multiplying (2.2) by z from the left, we obtain zxg(y)+ zyg(x) = 0 for all
x,y,z ∈ R . The difference of the last two equations yields

xg(zy)− zxg(y) = 0 (2.3)

for all x,y,z ∈ R . Replacing x with wx in (2.3), we obtain wxg(zy)− zwxg(y) = 0 for
all x,y,z,w ∈ R . Multiplying (2.3) by w from the left, we obtain wxg(zy)−wzxg(y) = 0
for all x,y,z,w ∈ R . The difference of the last two equations yields (zw−wz)xg(y) = 0
for all x,y,z,w ∈ R . Thus (g(y)w−wg(y))x(g(y)w−wg(y)) = 0 for all x,y,w ∈ R . By
semiprimeness of R , g(y)w−wg(y) = 0 for all y,w ∈ R . This implies that g(y) ∈ Z(R)
for all y∈ R . Using g(x)∈ Z(R) and 0 = xg(x) = g(x)x for all x∈ R , by (2.2), we have
0 = g(x)(xg(y)+yg(x)) = g(x)yg(x) for all x,y ∈ R . By semiprimeness of R , g(x) = 0
for all x ∈ R . This proves the lemma. �

Throughout the rest of this section, R denotes either a ring with 1 or a semiprime
ring not necessarily with 1, Mn(R) denotes the ring of all n×n matrices over R , Nn(R)
denotes the ring of all n× n strictly upper triangular matrices over R , where n � 3 is
an integer and f : Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all
x ∈ Nn(R) , that is,

f (x)x = x f (x) (2.4)

for all x ∈ Nn(R) . Replacing x with x+ y in (2.4), we obtain

f (x)y− y f (x) = x f (y)− f (y)x (2.5)

for all x,y ∈ Nn(R) . As usual, we let {ei, j | 1 � i, j � n} be the set of matrix units in
Mn(R∗) , where R∗ = R if 1 ∈ R and R∗ is the ring extension of R adjoint with 1 if
1 /∈ R . Then Nn(R) = ∑n

i, j=1,i< j Rei, j and the center Z(Nn(R)) of Nn(R) coincides with
Re1,n . For two distinct integers i, j with 1 � i < j � n , we write

f (αei, j) =
n

∑
s,t=1,s<t

ci, j
s,t (α)es,t



1026 S.-W. KO AND C.-K. LIU

for all α ∈ R , where each ci, j
s,t : R → R is an additive map.

LEMMA 2.2. Let i, j be distinct integers such that 1 � i < j � n. Then ci, j
�,i = 0

for every integer � with 1 � � < i and ci, j
j,� = 0 for every integer � with j < � � n.

Proof. Setting x = αei, j in (2.4), we have

f (αei, j)αei, j = αei, j f (αei, j) (2.6)

for all α ∈ R . Let � be an integer such that 1 � � < i . Multiplying (2.6) by e�,�

from the left and by e j, j from the right, we obtain e�,� f (αei, j)αei, j = 0. This implies

ci, j
�,i(α)α = 0 for all α ∈ R . By Lemma 2.1, ci, j

�,i = 0. Let � be an integer such that
j < � � n . Multiplying (2.6) by ei,i from the left and by e�,� from the right, we obtain
0 = αei, j f (αei, j)e�,� . This implies that αci, j

j,�(α) = 0 for all α ∈ R . By Lemma 2.1,

ci, j
j,� = 0. �

LEMMA 2.3. Let n � 4 be an integer and let i, j be distinct integers such that
1 � i < j � n−2 . Then ci, j

�,k = 0 for every integers �,k with j < � < k � n.

Proof. Let �,k be integers with j < � < k � n . Setting x = αei, j and y = βe j,� in
(2.5), we have

f (αei, j)βe j,�−βe j,� f (αei, j) = αei, j f (βe j,�)− f (βe j,�)αei, j (2.7)

for all α,β ∈ R . Multiplying (2.7) by e j, j from the left and by ek,k from the right, we
obtain −βe j,� f (αei, j)ek,k = 0. This implies that βci, j

�,k(α) = 0 for all α,β ∈ R . By

Lemma 2.1, ci, j
�,k = 0. �

LEMMA 2.4. Let i, j be distinct integers such that 1 � i < j � n. Then ci, j
i,� = 0

for every integer � with i < � < j .

Proof. Let � be an integer such that i < � < j . Setting x = αei, j and y = βe�, j in
(2.5), we have

f (αei, j)βe�, j −βe�, j f (αei, j) = αei, j f (βe�, j)− f (βe�, j)αei, j (2.8)

for all α,β ∈ R . Note that αei, j f (βe�, j)e j, j = ei,i f (βe�, j)αei, j = 0 as f (βe�, j) ∈
Nn(R) . Multiplying (2.8) by ei,i from the left and by e j, j from the right, we obtain
ei,i f (αei, j)βe�, j = 0. This implies that ci, j

i,�(α)β = 0 for all α,β ∈ R . By Lemma 2.1,

ci, j
i,� = 0. �

LEMMA 2.5. Let i, j be distinct integers such that 1 � i < j � n. Then ci, j
�,k = 0

for every integers �,k with i < � < j and � < k � n.

Proof. Let �,k be integers such that i < � < j and � < k � n . Setting x = αei, j

and y = βei,� in (2.5), we have

f (αei, j)βei,�−βei,� f (αei, j) = αei, j f (βei,�)− f (βei,�)αei, j (2.9)
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for all α,β ∈ R . Note that eii f (βei,�)αei, j = 0 as f (βei,�) ∈ Nn(R) . Multiplying (2.9)
by ei,i from the left and by ek,k from the right, we obtain

−βei,� f (αei, j)ekk = αei, j f (βei,�)ek,k (2.10)

for all α,β ∈ R . Assume first that k � j . Then αei, j f (βei,�)ek,k = 0 as f (βei,�) ∈
Nn(R) . With this, by (2.10), we obtain βei,� f (αei, j)ek,k = 0. This implies that βci, j

�,k(α)

= 0 for all α,β ∈ R . By Lemma 2.1, ci, j
�,k = 0, as desired. Assume now that k > j .

In this case, i < � < j < k � n . By (2.10), −βci, j
�,k(α) = αci,�

j,k(β ) for all α,β ∈ R . In

view of Lemma 2.3, ci,�
j,k = 0. So we have βci, j

�,k(α) = 0 for all α,β ∈ R . By Lemma

2.1, ci, j
�,k = 0, as desired. �

LEMMA 2.6. Let n � 4 be an integer and let i, j be distinct integers such that
3 � i < j � n. Then ci, j

�,k = 0 for every integers �,k with 1 � � < k < i .

Proof. Let �,k be integers such that 1 � � < k < i . Clearly, 1 � � < k < i < j � n .
Setting x = αei, j and y = βek,i in (2.5), we have

f (αei, j)βek,i −βek,i f (αei, j) = αei, j f (βek,i)− f (βek,i)αei, j (2.11)

for all α,β ∈ R . Multiplying (2.11) by e�,� from the left and by ei,i from the right,

we obtain e�,� f (αei, j)βek,i = 0. This implies that ci, j
�,k(α)β = 0 for all α,β ∈ R . By

Lemma 2.1, ci, j
�,k = 0. �

LEMMA 2.7. Let n � 4 be an integer and let i, j be distinct integers such that
2 � i < j � n. Then ci, j

�,k = 0 for every integers �,k with 1 � � < i < k < j .

Proof. Let �,k be integers such that 1 � � < i < k < j . Setting x = αei, j and
y = βek, j in (2.5), we have

f (αei, j)βek, j −βek, j f (αei, j) = αei, j f (βek, j)− f (βek, j)αei, j (2.12)

for all α,β ∈ R . Multiplying (2.12) by e�,� from the left and by e j, j from the right, we

obtain e�,� f (αei, j)βek, j =−e�,� f (βek, j)αei, j . This implies that ci, j
�,k(α)β =−ck, j

�,i (β )α
for all α,β ∈ R . By Lemma 2.6, ck, j

�,i = 0 as � < i < k < j . Thus we have ci, j
�,k(α)β = 0

for all α,β ∈ R . By Lemma 2.1, ci, j
�,k = 0. �

LEMMA 2.8. Let n � 4 be an integer and let i, j be distinct integers such that
2 � i < j � n−1 . Then ci, j

�,k = 0 for every integers �,k with 1 � � < i < j � k � n−1 .

Proof. Let �,k be integers such that 1 � � < i < j � k � n−1. Setting x = αei, j

and y = βek,n in (2.5), we have

f (αei, j)βek,n −βek,n f (αei, j) = αei, j f (βek,n)− f (βek,n)αei, j (2.13)

for all α,β ∈ R . Multiplying (2.13) by e�,� from the left and by en,n from the right,

we obtain e�,� f (αei, j)βek,n = 0. This implies that ci, j
�,k(α)β = 0 for all α,β ∈ R . By

Lemma 2.1, ci, j
�,k = 0. �
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LEMMA 2.9. Let n � 4 be an integer and let i, j be distinct integers such that
2 � i < j � n−1 . Then ci, j

i,k = 0 for every integer k with j < k � n.

Proof. Let k be an integer such that j < k � n . Clearly, 2 � i < j < k � n . Setting
x = αei, j and y = βe1,i in (2.5), we have

f (αei, j)βe1,i−βe1,i f (αei, j) = αei, j f (βe1,i)− f (βe1,i)αei, j (2.14)

for all α,β ∈ R . Multiplying (2.14) by e1,1 from the left and by ek,k from the right,
we obtain −βe1,i f (αei, j)ek,k = 0. This implies that βci, j

i,k(α) = 0 for all α,β ∈ R . By

Lemma 2.1, ci, j
i,k = 0. �

LEMMA 2.10. Let n � 5 be an integer and let i, j be distinct integers such that
3 � i < j � n−1 . Then ci, j

�,n = 0 for every integer � with 2 � � < i .

Proof. Let � be an integer such that 2 � � < i . Clearly, 2 � � < i < j � n− 1.
Setting x = αei, j and y = βe1,� in (2.5), we have

f (αei, j)βe1,�−βe1,� f (αei, j) = αei, j f (βe1,�)− f (βe1,�)αei, j (2.15)

for all α,β ∈ R . Multiplying (2.15) by e1,1 from the left and by en,n from the right,
we obtain −βe1,� f (αei, j)en,n = 0. This implies that βci, j

�,n(α) = 0 for all α,β ∈ R . By

Lemma 2.1, ci, j
�,n = 0. �

3. Proof of Theorems 1.1 and 1.2

LEMMA 3.1. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all x ∈ Nn(R) , where
n � 4 is an integer. Then for every distinct integers i, j with 2 � i < j � n− 1 , there
exist additive maps ci, j

i, j,c
i, j
1,n : R → R such that f (αei, j) = ci, j

i, j(α)ei, j + ci, j
1,n(α)e1,n for

all α ∈ R.

Proof. Let i, j be two distinct integers such that 2 � i < j � n−1. Write f (αei, j)
= ∑n

s,t=1,s<t c
i, j
s,t (α)es,t for all α ∈ R , where each ci, j

s,t : R → R is an additive map. By

Lemmas 2.2, 2.4 and 2.9, ci, j
s,i = ci, j

i,t = 0 for all integers s,t with 1 � s < i < t � n

and t �= j . Next by Lemmas 2.2, 2.5 and 2.8, ci, j
s, j = ci, j

j,t = 0 for all integers s,t with

1 � s < j < t � n and s �= i . Finally, by Lemmas 2.3, 2.5, 2.6, 2.7, 2.8 and 2.10, ci, j
s,t = 0

for all integers s, t with 1 � s < t � n , s,t /∈ {i, j} and (s,t) �= (1,n) . With these, we
obtain f (αei, j) = ci, j

i, j(α)ei, j + ci, j
1,n(α)e1,n for all α ∈ R , as desired. �

LEMMA 3.2. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all x ∈ Nn(R) , where
n � 4 is an integer. Then the following conditions hold :

(1) There exist additive maps c1,n
1,n,c

2,n
2,n,c

2,n
1,n : R→R such that f (αe1,n)= c1,n

1,n(α)e1,n

and f (αe2,n) = c2,n
2,n(α)e2,n + c2,n

1,n(α)e1,n for all α ∈ R;
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(2) There exist additive maps cn−1,n
n−1,n,c

n−1,n
2,n ,cn−1,n

1,n : R→R such that f (αen−1,n) =

cn−1,n
n−1,n(α)en−1,n + cn−1,n

2,n (α)e2,n + cn−1,n
1,n (α)e1,n for all α ∈ R;

(3) If n � 5 , then for every integer i with 3 � i � n−2 , there exist additive maps
ci,n
i,n,c

i,n
1,n : R → R such that f (αei,n) = ci,n

i,n(α)ei,n + ci,n
1,n(α)e1,n for all α ∈ R.

Proof. (1) Applying Lemmas 2.4 and 2.5 to f (αe1,n) and applying Lemmas 2.2,
2.4, 2.5 and 2.7 to f (αe2,n) , we are done.

(2) By Lemmas 2.2 and 2.6, f (αen−1,n) = ∑n−1
�=1 cn−1,n

�,n (α)e�,n , where each cn−1,n
�,n :

R → R is an additive map. If n = 4, then n−1 = 3 and then

f (αen−1,n) =
n−1

∑
�=1

cn−1,n
�,n (α)e�,n =

3

∑
�=1

cn−1,n
�,n (α)e�,n

= cn−1,n
n−1,n(α)en−1,n + cn−1,n

2,n (α)e2,n + cn−1,n
1,n (α)e1,n

for all α ∈ R , as desired. So we may assume n � 5. Let � be an integer such that
3 � � � n− 2. By Lemma 3.1, f (βe2,�) = c2,�

2,�(β )e2,� + c2,�
1,n(β )e1,n for all β ∈ R ,

where c2,�
2,�,c

2,�
1,n : R → R are additive maps. Setting x = αen−1,n and y = βe2,� in (2.5),

we have

f (αen−1,n)βe2,�−βe2,� f (αen−1,n) = αen−1,n f (βe2,�)− f (βe2,�)αen−1,n (3.1)

for all α,β ∈ R . Note that αen−1,n f (βe2,�)en,n = 0 as f (βe2,�) ∈ Nn(R) . Multiplying
(3.1) by e2,2 from the left and by en,n from the right, we get −βe2,� f (αen−1,n)en,n =
−e2,2 f (βe2,�)αen−1,n . Since � � n−2 < n−1 and f (βe2,�)= c2,�

2,�(β )e2,�+c2,�
1,n(β )e1,n ,

we get e2,2 f (βe2,�)αen−1,n = 0. Thus βe2,� f (αen−1,n)en,n = 0. This implies that

βcn−1,n
�,n (α) = 0 for all α,β ∈ R . By Lemma 2.1, cn−1,n

�,n = 0. Hence cn−1,n
�,n = 0 for

every integer � with 3 � � � n−2. This proves the result.
(3) Let i be an integer such that 3 � i � n−2. By Lemmas 2.2, 2.4, 2.5, 2.6 and

2.7, f (αei,n) = ∑i
�=1 ci,n

�,n(α)e�,n , where each ci,n
�,n : R → R is an additive map. Let � be

an integer such that 2 � � < i < n−1. By Lemma 3.1, f (αei,n−1) = ci,n−1
i,n−1(α)ei,n−1 +

ci,n−1
1,n (α)e1,n for all α ∈ R , where ci,n−1

i,n−1,c
i,n−1
1,n : R → R are additive maps. Write

f (βe1,�) = ∑n
s,t=1,s<t c

1,�
s,t (β )es,t for all β ∈ R , where each c1,�

s,t : R → R is an additive
map. Setting x = βe1,� and y = αei,n−1 in (2.5), we have

f (βe1,�)αei,n−1−αei,n−1 f (βe1,�) = βe1,� f (αei,n−1)− f (αei,n−1)βe1,� (3.2)

for all α,β ∈ R . Multiplying (3.2) by e1,1 from the left and by en−1,n−1 from the
right, we obtain e1,1 f (βe1,�)αei,n−1 = βe1,� f (αei,n−1)en−1,n−1 . Since 2 � � < i and

f (αei,n−1)= ci,n−1
i,n−1(α)ei,n−1+ci,n−1

1,n (α)e1,n , we have e1,� f (αei,n−1)en−1,n−1 = 0. Thus

e1,1 f (βe1,�)αei,n−1 = 0. This implies that c1,�
1,i (β )α = 0 for all α,β ∈ R . By Lemma

2.1, c1,�
1,i = 0.
Next setting x = αei,n and y = βe1,� in (2.5), we have

f (αei,n)βe1,�−βe1,� f (αei,n) = αei,n f (βe1,�)− f (βe1,�)αei,n (3.3)
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for all α,β ∈ R . Multiplying (3.3) by e1,1 from the left and by en,n from the right,
we obtain −βe1,� f (αei,n)en,n = −e1,1 f (βe1,�)αei,n . Note that e1,1 f (βe1,�)αei,n =
c1,�
1,i (β )αe1,n = 0 as c1,�

1,i = 0. Thus βe1,� f (αei,n)en,n = 0. This implies that βci,n
�,n(α) =

0 for all α,β ∈ R . By Lemma 2.1, ci,n
�,n = 0. Hence ci,n

�,n = 0 for every integer � with
2 � � < i < n−1. This proves the result. �

LEMMA 3.3. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all x ∈ Nn(R) , where
n � 4 is an integer. Then the following conditions hold :

(1) There exist additive maps c1,n−1
1,n−1,c

1,n−1
1,n : R → R such that f (αe1,n−1) =

c1,n−1
1,n−1(α)e1,n−1 + c1,n−1

1,n (α)e1,n for all α ∈ R;

(2) There exist additive maps c1,2
1,2,c

1,2
1,n−1,c

1,2
1,n : R → R such that f (αe1,2) =

c1,2
1,2(α)e1,2 + c1,2

1,n−1(α)e1,n−1 + c1,2
1,n(α)e1,n for all α ∈ R;

(3) If n � 5 , then for every integer j with 3 � j � n−2 , there exist additive maps
c1, j
1, j,c

1, j
1,n : R → R such that f (αe1, j) = c1, j

1, j(α)e1, j + c1, j
1,n(α)e1,n for all α ∈ R.

Proof. (1) By Lemmas 2.2, 2.4 and 2.5, we are done.
(2) By Lemmas 2.2 and 2.3, f (αe1,2) = ∑n

k=2 c1,2
1,k(α)e1,k for all α ∈ R , where

each c1,2
1,k : R → R is an additive map. If n = 4, then n− 1 = 3 and f (αe1,2) =

∑n
k=2 c1,2

1,k(α)e1,k = ∑4
k=2 c1,2

1,k(α)e1,k = c1,2
1,2(α)e1,2 + c1,2

1,n−1(α)e1,n−1 + c1,2
1,n(α)e1,n for

all α ∈ R , as desired. So we may assume n � 5. Let k be an integer such that 3 �
k � n−2. By Lemma 3.1, f (βek,n−1) = ck,n−1

k,n−1(β )ek,n−1 +ck,n−1
1,n (β )e1,n for all β ∈ R ,

where ck,n−1
k,n−1,c

k,n−1
1,n : R → R are additive maps. Setting x = αe1,2 and y = βek,n−1 in

(2.5), we have

f (αe1,2)βek,n−1−βek,n−1 f (αe1,2) = αe1,2 f (βek,n−1)− f (βek,n−1)αe1,2 (3.4)

for all α,β ∈ R . Clearly, n− 1 > 2. Multiplying (3.4) by e1,1 from the left and
by en−1,n−1 from the right, we obtain e1,1 f (αe1,2)βek,n−1 = αe1,2 f (βek,n−1)en−1,n−1 .

Recall that 3 � k and f (βek,n−1) = ck,n−1
k,n−1(β )ek,n−1 + ck,n−1

1,n (β )e1,n . Thus we have

e1,2 f (βek,n−1)en−1,n−1 = 0. So e1,1 f (αe1,2)βek,n−1 = 0. This implies that c1,2
1,k(α)β =

0 for all α,β ∈ R . By Lemma 2.1, c1,2
1,k = 0. Hence c1,2

1,k = 0 for every integer k with
3 � k � n−2. This proves the result.

(3) Let j be an integer such that 3 � j � n−2. By Lemmas 2.2, 2.3, 2.4 and 2.5,
f (αe1, j) = ∑n

k= j c
1, j
1,k(α)e1,k , where each c1, j

1,k : R → R is an additive map. Let k be an
integer such that 3 � j < k � n−1. Setting x = αe1, j and y = βek,n in (2.5), we have

f (αe1, j)βek,n−βek,n f (αe1, j) = αe1, j f (βek,n)− f (βek,n)αe1, j (3.5)

for all α,β ∈ R . Multiplying (3.5) by e1,1 from the left and by en,n from the right, we
obtain

e1,1 f (αe1, j)βek,n = αe1, j f (βek,n)en,n (3.6)
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for all α,β ∈ R . By Lemma 3.2, f (βek,n) = ck,n
k,n(β )ek,n + ck,n

1,n(β )e1,n for all β ∈ R

if k �= n− 1 and f (βek,n) = ck,n
k,n(β )ek,n + ck,n

2,n(β )e2,n + ck,n
1,n(β )e1,n for all β ∈ R if

k = n− 1, where ck,n
k,n,c

k,n
2,n,c

k,n
1,n : R → R are additive maps. Thus e1, j f (βek,n)en,n = 0

as 3 � j < k . So by (3.6), e1,1 f (αe1, j)βek,n = 0. This implies that c1, j
1,k(α)β = 0

for all α,β ∈ R . By Lemma 2.1, c1, j
1,k = 0. Hence c1, j

1,k = 0 for every integer k with
j < k � n−1. This proves the result. �

LEMMA 3.4. Let R be a ring with 1 and with center Z(R) .
(1) Let g : R → R and h : R→ R be additive maps such that g(x)y = xh(y) for all

x,y ∈ R. Then there exists a ∈ R such that g(x) = xa and h(x) = ax for all x ∈ R.
(2) Let g : R → R be an additive map such that g(x)y = xg(y) for all x,y ∈ R.

Then there exists λ ∈ Z(R) such that g(x) = λx for all x ∈ R.

Proof. (1) Clearly, g(x)= xh(1) and g(1)y = h(y) for all x,y∈R . Thus (xh(1))y =
g(x)y = xh(y) = x(g(1)y) for all x,y ∈ R . So h(1) = g(1) , as desired. (2) By (1), there
exists a ∈ R such that g(x) = ax = xa for all x ∈ R . Clearly, a∈ Z(R) , as desired. �

Let R be a semiprime ring. An ideal I of R is called essential if I ∩ J �= 0 for
every nonzero ideal J of R . The symmetric Martindale ring of quotients of R , denoted
by Qs(R) , is also a semiprime ring and can be characterized as a ring satisfying the
following four axioms [2, Proposition 2.2.3]:

(Q1) R is a subring of Qs(R) .
(Q2) For any a ∈ Qs(R) , there exists an essential ideal I of R such that aI∪ Ia ⊆ R .
(Q3) If a ∈ Qs(R) and I is an essential ideal of R , then aI = 0 if and only if a = 0.
(Q4) Given an essential ideal I of R , a left R-module homomorphism g : I → R and
a right R-module homomorphism h : I → R such that g(x)y = xh(y) for all x,y ∈ I ,
there exists a ∈ Qs(R) such that g(x) = xa and h(x) = ax for all x ∈ I .

We denote by M(R) the multiplier ring of R , that is,

M(R) = {a ∈ Qs(R) | aR+Ra⊆ R}
and by C(R) the centroid of R , that is, C(R) = Z(Qs(R))∩M(R) . We refer the reader
to the book [2] for the basic terminology and notation.

LEMMA 3.5. Let R be a semiprime ring with the multiplier ring M(R) and with
the centroid C(R)

(1) Let g : R → R and h : R→ R be additive maps such that g(x)y = xh(y) for all
x,y ∈ R. Then there exists a ∈ M(R) such that g(x) = xa and h(x) = ax for all x ∈ R.

(2) Let g : R → R be an additive map such that g(x)y = xg(y) for all x,y ∈ R.
Then there exists λ ∈C(R) such that g(x) = λx for all x ∈ R.

Proof. (1) Clearly, g(zx)y = zxh(y) and z(g(x)y) = z(xh(y)) for all x,y,z ∈ R .
The difference of the last two equations yields g(zx)y = zg(x)y for all x,y,z ∈ R . Thus
(g(zx)− zg(x))R = 0 for all x,z ∈ R . By semiprimeness of R , g(zx) = zg(x) for all
x,z ∈ R . This implies that g is a left R-module homomorphism. By symmetry, h is
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a right R-module homomorphism. By axiom (Q4), there exists a ∈ Qs(R) such that
g(x) = xa and h(x) = ax for all x ∈ R . Clearly, aR = h(R) ⊆ R and Ra = g(R) ⊆ R .
Hence a ∈ M(R) . (2) By (1), there exists λ ∈ M(R) such that g(x) = λx = xλ for all
x ∈ R . By [2, Remark 2.3.1], λ ∈ Z(Qs(R)) . Hence λ ∈C(R) . �

LEMMA 3.6. Let R be a ring with 1 and with center Z(R) (resp. a semiprime
ring with the multiplier ring M(R) and with the centroid C(R) ) . Suppose that f :
Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all x ∈ Nn(R) , where
n � 4 is an integer. Then there exist λ ∈ Z(R) (resp. λ ∈ C(R) ) , a ∈ R (resp. a ∈
M(R) ) and additive maps c1,2

1,n,c
n−1,n
1,n ,ci,i+1

1,n : R → R such that f (αe1,2) = (λ α)e1,2 +

(αa)e1,n−1 + c1,2
1,n(α)e1,n , f (αen−1,n) = (λ α)en−1,n + (aα)e2,n + cn−1,n

1,n (α)e1,n and

f (αei,i+1) = (λ α)ei,i+1 + ci,i+1
1,n (α)e1,n for all α ∈ R and 2 � i � n−2 .

Proof. By Lemmas 3.2 (2) and 3.3 (2), there exist additive maps c1,2
1,2,c

1,2
1,n−1,c

1,2
1,n :

R→ R such that f (αe1,2) = c1,2
1,2(α)e1,2 +c1,2

1,n−1(α)e1,n−1 +c1,2
1,n(α)e1,n and there exist

additive maps cn−1,n
n−1,n,c

n−1,n
2,n ,cn−1,n

1,n : R → R such that f (αen−1,n) = cn−1,n
n−1,n(α)en−1,n +

cn−1,n
2,n (α)e2,n + cn−1,n

1,n (α)e1,n for all α ∈ R . And by Lemma 3.1, for every integer i

with 2 � i � n−2, there exist additive maps ci,i+1
i,i+1,c

i,i+1
1,n : R→R such that f (αei,i+1) =

ci,i+1
i,i+1(α)ei,i+1 + ci,i+1

1,n (α)e1,n for all α ∈ R .
Let i be an integer such that 1 � i � n−2. Setting x = αei,i+1 and y = βei+1,i+2

in (2.5), we have

f (αei,i+1)βei+1,i+2−βei+1,i+2 f (αei,i+1) = αei,i+1 f (βei+1,i+2)− f (βei+1,i+2)αei,i+1

(3.7)
for all α,β ∈ R . Multiplying (3.7) by ei,i from the left and by ei+2,i+2 from the right,
we obtain ei,i f (αei,i+1)βei+1,i+2 = αei,i+1 f (βei+1,i+2)ei+2,i+2 . This implies

ci,i+1
i,i+1(α)β = αci+1,i+2

i+1,i+2(β ) (3.8)

for all α,β ∈ R and i = 1, . . . ,n− 2. Since n � 4, by (3.8) we have c1,2
1,2(α)β =

αc2,3
2,3(β ) and c2,3

2,3(α)β = αc3,4
3,4(β ) for all α,β ∈ R . By Lemma 3.4 (1) (resp. Lemma

3.5 (1)), there exist u,v ∈ R (resp. u,v ∈ M(R)) such that c2,3
2,3(α) = uα and c2,3

2,3(α) =

αv for all α ∈ R . With these, we have c2,3
2,3(α) = uα = αv and then c2,3

2,3(α)β =

(uα)β = u(αβ ) = (αβ )v = α(βv) = αc2,3
2,3(β ) for all α,β ∈ R . By Lemma 3.4 (2)

(resp. Lemma 3.5 (2)), there exists λ ∈ Z(R) (resp. λ ∈C(R)) such that c2,3
2,3(α) = λ α

for all α ∈ R . Then c1,2
1,2(α)β = αc2,3

2,3(β ) = α(λ β ) = (λ α)β for all α,β ∈ R . Thus

(c1,2
1,2(α)− λ α)β = 0 for all α,β ∈ R . By Lemma 2.1, c1,2

1,2(α) = λ α = c2,3
2,3(α) for

all α ∈ R . Similarly, we have c2,3
2,3(α) = λ α = c3,4

3,4(α) for all α ∈ R . Now using (3.8)

repeatedly, we obtain ci,i+1
i,i+1(α) = λ α for all α ∈ R and i = 1, . . . ,n−1.

Setting x = αe1,2 and y = βen−1,n in (2.5), we have

f (αe1,2)βen−1,n−βen−1,n f (αe1,2) = αe1,2 f (βen−1,n)− f (βen−1,n)αe1,2 (3.9)
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for all α,β ∈ R . Multiplying (3.9) by e1,1 from the left and by en,n from the right,
we obtain e1,1 f (αe1,2)βen−1,n = αe1,2 f (βen−1,n)en,n . This implies c1,2

1,n−1(α)β =

αcn−1,n
2,n (β ) for all α,β ∈ R . Thus by Lemma 3.4 (1) (resp. Lemma 3.5 (1)), there

exists a ∈ R (resp. a ∈ M(R)) such that c1,2
1,n−1(α) = αa and cn−1,n

2,n (β ) = aβ for all
α,β ∈ R . This proves the lemma. �

LEMMA 3.7. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all x ∈ Nn(R) , where
n � 4 is an integer. Let λ and a be the elements described in Lemma 3.6. Then for
every integer i with 2 � i � n−2 , there exists an additive map ci,n

1,n : R → R such that

f (αei,n) = (λ α)ei,n + ci,n
1,n(α)e1,n for all α ∈ R.

Proof. By Lemma 3.2 (1) and (3), for every integer i with 2 � i � n− 2, there
exist additive maps ci,n

i,n,c
i,n
1,n : R → R such that f (αei,n) = ci,n

i,n(α)ei,n + ci,n
1,n(α)e1,n for

all α ∈ R . Let i be an integer such that 2 � i � n− 2. By Lemma 3.6, f (βei−1,i) =
(λ β )e1,2+(βa)e1,n−1+c1,2

1,n(β )e1,n for all β ∈R if i = 2 and f (βei−1,i)= (λ β )ei−1,i+

ci−1,i
1,n (β )e1,n for all β ∈ R if 3 � i � n− 2. In particular, ei−1,i−1 f (βei−1,i)ei,n =

λ βei−1,n as i < n−1. Setting x = αei,n and y = βei−1,i in (2.5), we have

f (αei,n)βei−1,i −βei−1,i f (αei,n) = αei,n f (βei−1,i)− f (βei−1,i)αei,n (3.10)

for all α,β ∈ R . Multiplying (3.10) by ei−1,i−1 from the left and by en,n from the
right, we see that −βei−1,i f (αei,n)en,n = −ei−1,i−1 f (βei−1,i)αei,n . This implies that
βci,n

i,n(α) = λ β α for all α,β ∈ R . Thus β (ci,n
i,n(α)−λ α) = 0 for all α,β ∈ R . By

Lemma 2.1, ci,n
i,n(α) = λ α for all α ∈ R , proving the lemma. �

LEMMA 3.8. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nn(R) → Nn(R) is an additive map such that [ f (x),x] = 0 for all x ∈ Nn(R) , where
n � 4 is an integer. Let λ and a be the elements described in Lemma 3.6. Then for
every distinct integers i, j with 1 � i < j � n− 1 and (i, j) �= (1,2) , there exists an
additive map ci, j

1,n : R → R such that f (αei, j) = (λ α)ei, j + ci, j
1,n(α)e1,n for all α ∈ R.

Proof. By Lemma 3.1 and Lemma 3.3 (1) and (3), for every distinct integers
i, j with 1 � i < j � n− 1 and (i, j) �= (1,2) , there exist additive maps ci, j

i, j,c
i, j
1,n :

R → R such that f (αei, j) = ci, j
i, j(α)ei, j + ci, j

1,n(α)e1,n for all α ∈ R . Let i, j be dis-
tinct integers such that 1 � i < j � n− 1 and (i, j) �= (1,2) . By Lemmas 3.6 and
3.7, f (βe j,n) = (λ β )e j,n + c j,n

1,n(β )e1,n for all β ∈ R if 2 � j � n−2 and f (βe j,n) =

(λ β )en−1,n +(aβ )e2,n +cn−1,n
1,n (β )e1,n for all β ∈ R if j = n−1. In particular, we have

ei, j f (βe j,n)en,n = λ βei,n as j � 2 and n−1 � 3.
Setting x = αei, j and y = βe j,n in (2.5), we have

f (αei, j)βe j,n −βe j,n f (αei, j) = αei, j f (βe j,n)− f (βe j,n)αei, j (3.11)

for all α,β ∈ R . Multiplying (3.11) by ei,i from the left and by en,n from the right, we
obtain ei,i f (αei, j)βe j,n = αei, j f (βe j,n)en,n . This implies that ci, j

i, j(α)β = αλ β for all
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α,β ∈ R . Thus (ci, j
i, j(α)−λ α)β = 0 for all α,β ∈ R . By Lemma 2.1, ci, j

i, j(α) = λ α
for all α ∈ R , proving the lemma. �

LEMMA 3.9. Let R be a ring with 1 (resp. a semiprime ring with the multiplier
ring M(R) ) and let N3(R) be the ring of all 3× 3 strictly upper triangular matrices
over R with center Z . Suppose that f : N3(R) → N3(R) is an additive map. Then
[ f (x),x] = 0 for all x ∈ N3(R) if and only if there exist an additive map μ : N3(R)→Z
and an additive map ν : N3(R) → Ω such that f (x) = μ(x)+ ν(x) for all x ∈ N3(R) ,
where Ω = {αe1,2 + βe2,3 : α,β ∈ R} and ν is defined by some a ∈ R (resp. a ∈
M(R) ) such that ν(x) = e1,1xae2,2 + e2,2axe3,3 for all x ∈ N3(R) .

Proof. The implication “⇐” is trivial. For the implication “⇒”: For two distinct
integers i, j with 1 � i < j � 3 and write f (αei j) = ∑3

s,t=1,s<t c
i j
st (α)est for all α ∈ R ,

where each ci j
st : R → R is an additive map. By Lemma 2.2, c1,2

2,3 = 0 and c2,3
1,2 = 0.

Thus f (αe1,2) = c1,2
1,2(α)e1,2 +c1,2

1,3(α)e1,3 and f (βe2,3) = c2,3
2,3(β )e2,3 +c2,3

1,3(β )e1,3 for
all α,β ∈ R . Setting x = αe1,2 and y = βe2,3 in (2.5), we obtain

0 = f (αe1,2)βe2,3−βe2,3 f (αe1,2)−αe1,2 f (βe2,3)+ f (βe2,3)αe1,2

= (c1,2
1,2(α)e1,2 + c1,2

1,3(α)e1,3)βe2,3−βe2,3(c
1,2
1,2(α)e1,2 + c1,2

1,3(α)e1,3)

−αe1,2(c
2,3
2,3(β )e2,3 + c2,3

1,3(β )e1,3)+ (c2,3
2,3(β )e2,3 + c2,3

1,3(β )e1,3)αe1,2

= (c1,2
1,2(α)β −αc2,3

2,3(β ))e1,3

for all α,β ∈ R . Thus c1,2
1,2(α)β −αc2,3

2,3(β ) = 0 for all α,β ∈ R . By Lemma 3.4 (resp.

Lemma 3.5), there exists a∈ R (resp. a∈M(R)) such that c1,2
1,2(α) = αa and c2,3

2,3(α) =

aα for all α ∈ R . Recall that Z = Re13 . Thus f (αe1,2)− (αa)e1,2 = c1,2
1,3(α)e1,3 ∈ Z

and f (αe2,3)− (aα)e2,3 = c2,3
1,3(α)e1,3 ∈ Z for all α ∈ R . By Lemmas 2.4 and 2.5,

c1,3
1,2 = 0 and c1,3

2,3 = 0. So f (αe1,3) = c1,3
1,3(α)e1,3 ∈Z for all α ∈ R . Let ν : N3(R)→Ω

be the additive map defined by ν(x) = e1,1xae2,2 + e2,2axe3,3 for all x ∈ N3(R) , where
Ω = {αe1,2 + βe2,3 : α,β ∈ R} . Then f (x)− ν(x) ∈ Z for all x ∈ N3(R) . Hence
f (x) = μ(x)+ν(x) for all x∈N3(R) , where μ : N3(R)→Z is the additive map defined
by μ(x) = f (x)−ν(x) for all x ∈ N3(R) . This proves the lemma. �

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. The implication “⇐” is trivial. For the im-
plication “⇒”: By Lemma 3.9, we may assume n � 4. Let λ and a be the ele-
ments described in Lemma 3.6 and let Ω = {αe1,n−1 + βe2,n : α,β ∈ R} . Let ν :
Nn(R) → Ω be the additive map defined by ν(x) = e1,1xae2,n−1 + e2,n−1axen,n for
all x ∈ Nn(R) . Clearly, ν(αei, j) = 0 for all α ∈ R and distinct integers i, j with
1 � i < j � n and (i, j) /∈ {(1,2),(n−1,n)} . By Lemmas 3.6, 3.7 and 3.8, f (αei, j)−
λ (αei, j)−ν(αei, j) ∈ Re1,n for all α ∈ R and distinct integers i, j with 1 � i < j � n
and (i, j) �= (1,n) . Moreover, in view of Lemma 3.2 (1), f (αe1,n) ∈ Re1,n and hence
f (αe1,n)− λ (αe1,n)− ν(αe1,n) ∈ Re1,n for all α ∈ R . Recall that Z = Re1,n . So
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f (x)−λx−ν(x) ∈ Z for x ∈ Nn(R) . Let μ : Nn(R) →Z be the additive map defined
by μ(x) = f (x)−λx− ν(x) for x ∈ Nn(R) . Consequently, f (x) = λx + μ(x)+ ν(x)
for all x ∈ Nn(R) . This proves the theorems. �
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