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COMMUTING MAPS ON STRICTLY
UPPER TRIANGULAR MATRIX RINGS

SHU-WEN KO AND CHENG-KAI L1U*

(Communicated by E. Poon)

Abstract. Let R be either a ring with 1 or a semiprime ring not necessarily with 1 and let
Nn(R) be the n x n strictly upper triangular matrix ring over R, where n > 3 is an integer.
We completely characterize additive maps f : N,(R) — N, (R) satisfying [f(x),x] = 0 for all
X € Ny(R) . Our theorem naturally generalizes a recent result obtained by Bounds [3] for strictly
upper triangular matrix rings over a field of characteristic 0.

1. Introduction and results

Throughout here, R denotes an associative ring with center Z(R). R is called
prime if for any a,b € R, aRb =0 implies a =0 or b =0 and R is called semiprime
if for any a € R, aRa =0 implies a = 0. For a,b € R, we let [a,b] = ab — ba be the
commutator of @ and b. A map f: R — R is called additive if f(x+y) = f(x)+ f(»)
for all x,y € R. A map f:R — R is said to be commuting if [f(x),x] =0 for all
x € R. The usual goal when treating a commuting map is to describe its form. The
study of additive commuting maps was initiated by Divinsky and Posner. In 1955 Di-
vinsky [12] proved that if a simple artinian ring R admits a commuting automorphism
o, then either R is commutative or o is the identity map. On the other hand, in 1957
Posner [22] proved that if a prime ring R admits a commuting derivation d, then either
R is commutative or d = 0. In 1993 BreSar [4] extended above two results to general
additive maps and proved that if R is a prime ring with the extended centroid C and
f:R— R is an additive commuting map, then f must be of the form f(x) = Ax+ p(x)
forall x€ R, where A € C and u : R — C is an additive map. This influential result has
been extended to semiprime rings, superalgebras, von Neumann algebras, C* -algebras,
Lie algebras and matrix algebras etc. We refer the reader to the book [5] for the de-
velopment of the theory of commuting maps. Recently, additive commuting maps on
subrings or subsets of matrix rings have been widely investigated in the literature (see
[71-[11], [13]-[21], [23]-[28] for instance). In 2000 Beidar, Bresar and Chebotar [1]
proved that if T;,(F) is the ring of all n x n upper triangular matrices over a field F and
f:T,(F) — T,(F) is a linear commuting map, where n > 2 is an integer, then f is of
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the form f(x) = Ax+ u(x) forall x € T,,(F), where A € F and p : T,(F) — Z(T,,(F))
is a linear map. This result was later extended to linear commuting maps on the ring
of all upper triangular matrices over a commutative ring with 1 by Cheung in [6] and
extended to additive commuting maps on the ring of all upper triangular matrices over
an arbitrary ring with 1 by Eremita in [13]. In 2016 Bounds [3] successfully character-
ized linear commuting maps on the ring of all strictly upper triangular matrices over a
field of characteristic 0. As usual, let R be a ring with 1, let M, (R) be the ring of all
n x n matrices over R and let {e; ; | 1 <i,j < n} be the set of matrix units in M,(R).
Precisely, Bounds proved the following:

THEOREM JB. ([3]) Let n > 4 be an integer and let N,(F) be the ring of all
n X n strictly upper triangular matrices over a field F of characteristic 0. Suppose
that f: Ny(F) — N,(F) is a linear map such that [f(x),x] =0 for all x € N,,(F). Then
there exist A € F and a linear map [ : N,(F) — Q such that f(x) = Ax+ u(x) for all
X € Ny(F), where Q={oe; ,—1+ Pein+vesn:a,B,y€F}.

The proof of Theorem JB depends heavily on the well-known fact about the cen-
tralizers of a nonderogatory matrix over a field F of characteristic 0. Up to now, it
is still an open problem whether Theorem JB holds true for any field F' of positive
characteristic p > 2.

PROBLEM 1. Let n >4 be an integer and let F be a field of characteristic p > 2.
Assume that f: Ny(F) — Ny(F) is a linear commuting map. Can we describe the form

of f?

The goal of this paper is to give an affirmative answer to Problem 1. Moreover,
we extend Theorem JB to strictly upper triangular matrix rings over an arbitrary ring R
with 1. Precisely, we prove the following:

THEOREM 1.1. Let R be a ring with 1 and with center Z(R). Let N,(R) be the
ring of all n x n strictly upper triangular matrices over R with center Z, where n > 3
is an integer. Suppose that f : N,(R) — Nn(R) is an additive map. Then [f(x),x] =0 for
all x € N,(R) if and only if there exist A € Z(R), an additive map L : N, (R) — Z, and
an additive map v : N,(R) — Q such that f(x) = Ax+ p(x) + v(x) for all x € Ny(R),
where Q = {aey,—1+Pern: o, B €R} and v is defined by some a € R such that
V(x) = ey 1xaes 1 + €2 y—1axe,, for all x € Ny(R).

In case R is a semiprime ring not necessarily with 1, we prove the following:

THEOREM 1.2. Let R be a semiprime ring with the multiplier ring M(R) and with
the centroid C(R). Let N,(R) be the ring of all n x n strictly upper triangular matrices
over R with center Z, where n >3 is an integer. Suppose that f : N,(R) — N,(R)
is an additive map. Then [f(x),x] =0 for all x € N,(R) if and only if there exist
A € C(R), an additive map U : N,(R) — Z, and an additive map v : N,(R) — Q such
that f(x) = Ax+p(x)+ v(x) forall x € Ny(R), where Q={ae; ,—1+Pern: o,B ER}
and v is defined by some a € M(R) such that v(x) = ey 1xaey,—| + ez n_1axe, , for
all x € Ny(R).
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2. Preliminaries

The following lemma is essential to our proof.

LEMMA 2.1. Let R be either a ring with 1 or a semiprime ring and let Z(R) be
the center of R. Suppose that g : R — R is an additive map. If xg(x) =0 for all x € R,
then g = 0. Similarly, if g(x)x =0 forall x € R, then g =0.

Proof. By assumption,
xg(x)=0 (2.1)
for all x € R. Assume first that 1 € R. Setting x = 1 in (2.1), we have g(1) =0.
Replacing x with x+ 1 in (2.1) and using g(1) = 0 = xg(x), we obtain g(x) =0 for all
X € R, as desired. Assume now that R is semiprime. Replacing x with x+y in (2.1)
and using xg(x) = yg(y) = 0, we obtain

xg(y) +yg(x) =0 (2.2)

for all x,y € R. Replacing y with zy in (2.2), we obtain xg(zy) +zyg(x) = 0 for all
X,,z € R. Multiplying (2.2) by z from the left, we obtain zxg(y) + zyg(x) = 0 for all
X,y,z € R. The difference of the last two equations yields

xg(zy) —zxg(y) =0 (2.3)

for all x,y,z € R. Replacing x with wx in (2.3), we obtain wxg(zy) — zwxg(y) = 0 for
all x,y,z,w € R. Multiplying (2.3) by w from the left, we obtain wxg(zy) —wzxg(y) =0
for all x,y,z,w € R. The difference of the last two equations yields (zw —wz)xg(y) =0
forall x,y,z,w € R. Thus (g(y)w—wg(y))x(g(y)w —wg(y)) =0 for all x,y,w € R. By
semiprimeness of R, g(y)w —wg(y) =0 for all y,w € R. This implies that g(y) € Z(R)
forall y e R. Using g(x) € Z(R) and 0 = xg(x) = g(x)x forall x € R, by (2.2), we have
0=g(x)(xg(y)+yg(x)) = g(x)yg(x) forall x,y € R. By semiprimeness of R, g(x) =0
for all x € R. This proves the lemma. [l

Throughout the rest of this section, R denotes either a ring with 1 or a semiprime
ring not necessarily with 1, M, (R) denotes the ring of all n x n matrices over R, N,(R)
denotes the ring of all n x n strictly upper triangular matrices over R, where n > 3 is
an integer and f : N,(R) — N,(R) is an additive map such that [f(x),x] = 0O for all
X € Nuy(R), that is,

f¥)x = xf(x) (2.4)
for all x € N,(R). Replacing x with x+y in (2.4), we obtain
Sy =yf(x) =xf(y) = f()x (2.5)

for all x,y € N,(R). As usual, we let {e; ;| 1 <i,j <n} be the set of matrix units in
M, (R*), where R* =R if 1 € R and R" is the ring extension of R adjoint with 1 if
1 ¢ R. Then Nu(R) =37 ;_; ;< ;Rei ; and the center Z(N,(R)) of Nu(R) coincides with
Rey ;. For two distinct integers i, j with 1 <i < j < n, we write

n

flae)= Y cil(a)es

st=1,s<t
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forall oo € R, where each c’S; :R — R is an additive map.

LEMMA 2.2. Let i,j be distinct integers such that 1 <i < j<n. Then cl/l =0
for every integer ¢ with 1 < ¢ <i and c;/ = 0 for every integer ¢ with j < { < n.

Proof. Setting x = ate; ; in (2.4), we have

f(ae,-h,')oce,;j = Oce,;jf(ae,-h,') (2.6)

for all & € R. Let £ be an integer such that 1 < ¢ < i. Multiplying (2.6) by ey
from the left and by e; ; from the right, we obtain ecof(ae;j)ae; j = 0. This implies

c/ l( Joo =0 for all o € R. By Lemma 2.1, ¢;% = 0. Let £ be an integer such that
J <t<n. Multiplying (2.6) by e;; from the left and by e ¢ from the right, we obtain

0= oe;;f(aeij)ese. This implies that acj_/;( ) =0 forall @ € R. By Lemma 2.1,
’,’( =0. O

LEMMA 2.3. Let n > 4 be an integer and let i,j be distinct integers such that
1<i<j<n—2. Then c(f_jk =0 for every integers {, k with j </l <k <n.

Proof. Let {,k be integers with j </ <k <n. Setting x = ote; j and y = fe;; in
(2.5), we have
flaeij)Bejo—PBejof(aei;) = oeijf(Beje) — f(Bej)oei (2.7)
forall o, 8 € R. Multiplying (2.7) by ¢; ; from the left and by e ; from the right, we
obtain —Be;f(cte; j)exx = 0. This implies that By (o) =0 forall o, B € R. By
Lemma 2.1, cl/k =0. O

LEMMA 2.4. Let i,j be distinct integers such that 1 <i < j<n. Then c; j =0
for every integer ¢ with i < 0 < j.

Proof. Let { be an integer such that i < £ < j. Setting x = oce; j and y = Bey ; in
(2.5), we have
flaeij)Berj—Berjf(aei ;) = aeijf(Ber;) — f(Berj) e (2.8)

for all o, € R. Note that oce; ;f(Beyj)e;; = eiif(Berj)aei; =0 as f(Bey;) €
N,(R). Multiplying (2.8) by ¢;; from the left and by e; ; from the right, we obtain
eiif (cteij)Bey j = 0. This implies that ¢} (o) =0 for all &, € R. By Lemma 2.1,

=
¢p=0. 0O
LEMMA 2.5. Let i, be distinct integers such that 1 <i< j < n. Then c/ &= =0

for every integers (. k with i < { < j and { <k < n.

Proof. Let £,k be integers such that i </ < j and £ < k < n. Setting x = oe;
and y = Be; ¢ in (2.5), we have

floeij)Beir— Beiof(aei ;) = e jf(Beir) — f(Beig) e (2.9)
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forall o, € R. Note that e;; f(Be;¢)oe; j =0 as f(Be; ) € Ny(R). Multiplying (2.9)
by e;; from the left and by e; ; from the right, we obtain
—Beiof(oeij)ew = oeijf(Beir)erx (2.10)
for all o, € R. Assume first that k < j. Then oe; jf(Bei¢)exr =0 as f(ﬂe,;)
Ny (R). With this, by (2.10), we obtain ﬁel gf(aelj)ekk = 0. This implies that ﬁc ()
=0 forall o, € R. By Lemma 2.1, C@k =0, as desired. Assume now that k > j.
In this case, i < { < j < k<n. By (2.10), —ﬁcék( ) = ac! k(ﬁ) forall o, € R. In
view of Lemma 2.3, c’/k = 0. So we have ﬁc;jk(oc) =0 forall a,3 € R. By Lemma
2.1, ¢j5, =0, as desired. [
LEMMA 2.6. Let n > 4 be an integer and let i,j be distinct integers such that
3<i<j<n. Then c}jk =0 for every integers £, k with 1 <0 <k <.
Proof. Let £,k be integers such that 1 </ <k <i.Clearly, 1 </<k<i<j<n.
Setting x = ae; j and y = Bey; in (2.5), we have
floeij)Beri—Perif(oeij) = oeijf(Beri) — f(Beri)oei (2.11)
for all o, € R. Multiplying (2.11) by e, from the left and by ¢;; from the right,
we obtain e/ ¢f(ae; j)Bex; = 0. This implies that ¢} (o) =0 for all &, € R. By
Lemma 2.1, c%{ =0. O
LEMMA 2.7. Let n > 4 be an integer and let i,j be distinct integers such that
2<i< j<n. Then ¢}, =0 forevery integers £,k with 1 <{<i<k<j.
Proof. Let £,k be integers such that 1 < /£ <i <k < j. Setting x = ote;; and
y = Bex ; in (2.5), we have
flaeij)Berj—Bexjf(aei;) = aeijf(Ber;) — f(Bex)oei; (2.12)
forall o, € R. Multiplying (2.12) by e;¢ from the left and by ¢; ; from the right, we
obtain e; ¢ f(oe; ;)Ber ;= —erof (Bex j)ate; ;. This implies that ¢/ (o)) = —c}/ (B) e
forall o, 8 € R. By Lemma 2.6, c];lj =0as { <i<k<j. Thus we have cf/k(a)ﬁ =0
forall o, € R. By Lemma 2.1, ¢j4 =0. O
LEMMA 2.8. Let n > 4 be an integer and let i,j be distinct integers such that
2<i<j<n—1.Then cgk:Oforeveryzntegersé kwith1<l<i<j<k<n—1.
Proof. Let £,k be integers such that 1 </ <i< j<k<n—1. Setting x = oe; ;
and y = Beg, in (2.5), we have
flaeij)Bern— Bewnf(aeij) = aeijf(Bexn) — f(Bexn)otei j (2.13)
for all o, € R. Multiplying (2.13) by e from the left and by e, from the right,
we obtain ey ¢f (e j)Bex, = 0. This implies that ¢} (a)B =0 for all o, € R. By
Lemma 2.1, cl/k =0. O
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LEMMA 2.9. Let n > 4 be an integer and let i, j be distinct integers such that
2<i<j<n—1.Then c;] =0 forevery integer k with j <k <n.

Proof. Let k be an integer such that j <k < n. Clearly, 2 <i < j <k < n. Setting
x=oe;; and y = Bey; in (2.5), we have

flaeij)Beri—Berif(aei;) = aeijf(Bei:) — f(Bei)aei; (2.14)

for all o, € R. Multiplying (2.14) by e;,; from the left and by ey, from the right,
we obtain —Be; ;f(oe; j)ex, = 0. This implies that B¢} (o) =0 for all o, € R. By
Lemma 2.1, ci,i =0. O

LEMMA 2.10. Let n > 5 be an integer and let i, j be distinct integers such that
3<i<j<n—1.Then c,.n =0 for every integer { with 2 < { <.

Proof. Let ¢ be an integer such that 2 </ <i. Clearly, 2 </ <i<j<n—1.
Setting x = ae; ; and y = fBe; ¢ in (2.5), we have

floeij)Berr—Berof(aeij) = aeijf(Bere) — f(Ber)aei (2.15)

for all o, € R. Multiplying (2.15) by e;; from the left and by e, , from the right,
we obtain —fe; of(0te; j)en, = 0. This implies that Bc;’ () =0 forall e, B € R. By
Lemma 2.1, c’/; =0. O

3. Proof of Theorems 1.1 and 1.2

LEMMA 3.1. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nu(R) — Nu(R) is an additive map such that [f(x),x] =0 for all x € N,(R), where

> 4 is an integer: Thenfor every distinct integers i,j with 2 <i< j < n 1, there
exist additive maps clj7c1 ' R — R such that f(ae; ;) = clj( Jeij+ i’ a(@)er, for
all ¢ €R.

Proof. Let i, j be two distinct integers such that 2 i<j<n—1.Write f(oe; ;)
= X iml st csi(a)est for all o € R, where each ¢(7 : R — R is an additive map. By
Lemmas 2.2, 2.4 and 2.9, ¢\’ ’J =c; ’J = 0 for all integers s, with 1 <s<i<t<n

and r # j. Next by Lemmas 2 2, 2 5 and 2.8, ¢V’ ’J = c’,; =0 for all integers s,# with

I<s<j<t<nands#i. F1nally,byLemmasZ3 2.5,2.6,2.7,2.8 and 2.10, cst—O
for all integers s,7 with 1 <s <t <n, s,t ¢ {i,j} and (s,1) # (1,n). With these, we
obtain f(ae; ) = clj( Jei j + n(a)elﬁn forall o € R, as desired. [J

LEMMA 3.2. Let R be either a ring with 1 or a semiprime ring. Suppose that
f i Na(R) — N,(R) is an additive map such that [f(x),x] =0 for all x € N,(R), where
n >4 is an integer. Then the following conditions hold:

(1) There exist additive maps ¢, cé’z, C%Z :R— R suchthat f(ae; ) =c;"(o)ey

and f(oea,) = c%Z(a)egﬂn +Ci:(a)el,n forall o €R;
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(2) There exist additive maps c,,_ iz,cgnl " R — R such that f(ote, 1) =
cz:i’:(a)en 1n—|—c§n1 "(a)ezn—i-crf nln( ae, nforall o ER;

9

( ) If n > 5, then for every mteger i with 3 <i< n—2, there exist additive maps

in in

Cins €1, R— R suchthat f(aein) =c; (a)em—I—an( )ein forall oo € R.

Proof. (1) Applying Lemmas 2.4 and 2.5 to f(ae; ,) and applying Lemmas 2.2,
2.4,2.5and 2.7 to f(aey,), we are done.

(2) By Lemmas 2.2 and 2.6, f(cte,—1,) =X)_ llc'znl "(at)er,,, where each cZ Ln,
R — R is an additive map. If n=4,thenn—1=3 and then

n— ln n— ln
aen ln EC e[n—zc eén

L, ; -1,
= ¢, 1 (@)en—1 +627n "o)ern+cf, ()ern
for all o € R, as desired. So we may assume n > 5. Let ¢ be an integer such that

3< ¢ <n—2. By Lemma 3.1, f(Besy) = c%(ﬁ)e”—l—cln(ﬁ)em for all B € R,

where cg f,c%ﬁ R — R are additive maps. Setting x = ae,—, and y = Bey in (2.5),

we have

f(aen—l,n)ﬁe2,/f - ﬂe2,éf(aen—l7n) = aen—l,nf(ﬂelé) _f(ﬁeZ,/f)aen—Ln (31)

forall o, B € R. Note that ote,—1 ,f(Bear)enn =0 as f(Bers) € Ny(R). Multiplying
(3.1) by ey, from the left and by e, from the right, we get —Bes of (0ten—11)enn =
—e22f(Bes.)aten 1. Since £<n—2<n—1and f(Bes) = 3 (B)er T (Blerns
we get exsf(Bexg)oe,—1, =0. Thus Besof(oen—in)enn =0. This 1mphes that
By, () =0 for all o, € R. By Lemma 2.1, < 1"—O Hence ¢y, =0 for
every integer ¢ with 3 < ¢ < n—2. This proves the result

(3) Let i be an integer such that 3 <i<n—2. By Lemmas 2.2,2.4, 2.5, 2.6 and
27, f(aein) = Xy ¢, (a)er,, where each ¢, 1 R — R is an additive map. Let ¢ be
an integer such that 2 </ <i<n—1. By Lemma 3.1, f(ae;,—1) = cln 1(Oc)e,-ﬁ,l +

in—1 _in—1 .
in-1:€1, R — R are additive maps. Write

f(Bery) = SJ:LK,cM(ﬁ)est for all B € R, where each c” R — R is an additive
map. Setting x = Be; ; and y = ote; ,—1 in (2.5), we have

f(Ber)oein1—oein1f(Bery) = Berof(oein1)— floein1)Bery (3.2)

for all o, € R. Multiplying (3.2) by ¢;; from the left and by e,_;,-; from the
right, we obtain ey 1 f(Be; ¢)ae;,—1 = Beyof(ctein—1)en—1,—1. Since 2 < ¢ < i and
floein—1)= ciZ:} (ot)ein—1 +C117:1r:1 (ot)er n, wehave ey of (0teip—1)en—1n—1 =0. Thus
e11f(Beys)aei, 1 = 0. This implies that c}'*(B)at = 0 for all o, € R. By Lemma
1,0 :
2.1, et =0.
Next setting x = oce;, and y = e in (2.5), we have

flaein)Berr—Beyof(oein) = oeinf(Ber ) — f(Berr)aein (3.3)

in—1

c"(a)er, forall o € R, where ¢
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for all o, € R. Multiplying (3.3) by e;; from the left and by e, , from the right,
we obtain —ﬁel7gf(a¢i,n)en7n = —6171‘]"([3617[)06657". Note that 6171f(ﬁ617[)'06657n =
crt(B)aer, =0 as ¢yt =0. Thus ey 1f(cte;,)en, = 0. This implies that B (o) =

0 forall a,3 € R. By Lemma 2.1, cf/; =0. Hence ¢}” = 0 for every integer ¢ with
2 </ <i<n—1.This proves the result. [J

LEMMA 3.3. Let R be either a ring with 1 or a semiprime ring. Suppose that
f i Na(R) — N,(R) is an additive map such that [f(x),x] =0 for all x € N,(R), where
n >4 is an integer. Then the following conditions hold:

(1) There exist additive maps th:i,th*l :R — R such that f(ae,—1) =
c}:Z:i(a)eLn_l —|—c};’fl_l(a)e1ﬁ forall o €R,

(2) There exist additive maps c}é,ci:i_“chi : R — R such that f(aei) =
C}ﬁ(a)el,z + Ctifl(a)ehn—l +ciﬁ(a)e1,n forall o € R;

(3) If n = 3, then for every integer j with 3 < j < n—2, there exist additive maps
c}::;,cl’j :R — R such that f(ae, ;) = c}::;(a)eu +ct£(a)el7n forall o € R.

1,n

Proof. (1) By Lemmas 2.2, 2.4 and 2.5, we are done.

(2) By Lemmas 2.2 and 2.3, f(aei2) =Y;_» c}’i(a)elﬁk for all o € R, where
each cii :R — R is an additive map. If n =4, then n—1 =3 and f(oe;2) =
Siseri(@ers = Sl eri(@)ens = cp3(@)ern +cpny(@)ern 1+ cpa(@)er, for
all @ € R, as desired. So we may assume n > 5. Let k be an integer such that 3 <

k<n—2.ByLemma3.l, f(Bex,—1) = Cifﬁ:i(ﬁ)ek,n—l +c]{’"_1([3)el7,, forall B €R,

R
kn—1  kn—1 I . - i .
where Cin—1>C1n : R — R are additive maps. Setting x = ae;» and y = ey, in

(2.5), we have

flaei2)Bexn—1—Bein—1f(cern) = aeinf(Bexn—1)— f(Bern—1)oern  (3.4)

for all o, € R. Clearly, n—1 > 2. Multiplying (3.4) by e;; from the left and
by en—1,n—1 from the right, we obtain 6171f(066172)ﬂ€k7n,1 = 066172f(ﬁek7n,1)en_17n_1 .
Recall that 3 <k and f(Ber,—1) = cijZ:}(B)em,l +clf’zfl(ﬂ)el7n. Thus we have
6172f(ﬁ€k7n_1)€n,17n,1 =0. So 6171f(066172)ﬁ6k7n_1 =0. This unphes that C}i(a)ﬁ =
0 for all o, € R. By Lemma 2.1, cif,% =0. Hence c}i = 0 for every integer k with
3 < k < n—2. This proves the result.

(3) Let j be an integer such that 3 < j <n—2. By Lemmas 2.2,2.3,2.4 and 2.5,
flaey ;) = Zﬁzjciji(a)ehk, where each ci,ﬁ :R — R is an additive map. Let k be an
integer such that 3 < j <k <n— 1. Setting x = ote; j and y = ey, in (2.5), we have

flaeyj)Bern—Bernf(aer ;) = e jf (Bern) — f(Bern)oer (3.5)

forall o, 8 € R. Multiplying (3.5) by ¢; 1 from the left and by e, from the right, we
obtain

ei1f(cer j)Bern = oer jf(Bern)enn (3.6)
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for all o, € R. By Lemma 3.2, f(Bex,) = c],;:(B)ek,n +clf';'f,([3)el7n forall B €R
if k#n—1and f(Bern) = cin(B)ern+ 5 (B)ean+cih(Blern for all B € R if
k=n—1, where ciﬁ,céz,cl " : R — R are additive maps. Thus e Jf(ﬁek,,)enn =0
as 3 < j<k. Soby (3.6), e f(cer j)Ber, = 0. This implies that c1 J(a)B =0

forall o, € R. By Lemma 2.1, cl’J = 0. Hence c}” = 0 for every integer k with
Jj <k<n—1.This proves the result. [

LEMMA 3.4. Let R be a ring with 1 and with center Z(R).

(1) Let g: R — R and h: R — R be additive maps such that g(x)y = xh(y) for all
X,y € R. Then there exists a € R such that g(x) = xa and h(x) = ax for all x € R.

(2) Let g: R — R be an additive map such that g(x)y = xg(y) for all x,y € R.
Then there exists A € Z(R) such that g(x) = Ax forall x € R.

Proof. (1) Clearly, g(x) =xh(1) and g(1)y=h(y) forall x,y € R. Thus (xk(1))y=
g(x)y =xh(y) =x(g(1)y) forall x,y € R. So h(1) =g(1), as desired. (2) By (1), there
exists a € R such that g(x) = ax = xa for all x € R. Clearly, a € Z(R), as desired. [

Let R be a semiprime ring. An ideal / of R is called essential if 7NJ # 0 for
every nonzero ideal J of R. The symmetric Martindale ring of quotients of R, denoted
by Os(R), is also a semiprime ring and can be characterized as a ring satisfying the
following four axioms [2, Proposition 2.2.3]:

(Q1) R is a subring of Q(R).

(Q2) For any a € Qs(R), there exists an essential ideal I of R such that alUla C R.
(Q3) If @ € Q4(R) and [ is an essential ideal of R, then al =0 if and only if a = 0.
(Q4) Given an essential ideal I of R, a left R-module homomorphism g : 7 — R and
a right R-module homomorphism % : I — R such that g(x)y = xk(y) for all x,y €1,
there exists a € Q(R) such that g(x) = xa and h(x) = ax forall x e I.

We denote by M(R) the multiplier ring of R, that is,
M(R) = {a € Os(R) | aR+Ra C R}

and by C(R) the centroid of R, thatis, C(R) = Z(Qs(R)) "M(R). We refer the reader
to the book [2] for the basic terminology and notation.

LEMMA 3.5. Let R be a semiprime ring with the multiplier ring M(R) and with
the centroid C(R)

(1) Let g: R — R and h: R — R be additive maps such that g(x)y = xh(y) for all
X,y € R. Then there exists a € M(R) such that g(x) = xa and h(x) = ax for all x € R.

(2) Let g: R — R be an additive map such that g(x)y = xg(y) for all x,y € R.
Then there exists A € C(R) such that g(x) = Ax for all x € R.

Proof. (1) Clearly, g(zx)y = zxh(y) and z(g(x)y) = z(xh(y)) for all x,y,z € R.
The difference of the last two equations yields g(zx)y = zg(x)y for all x,y,z € R. Thus
(g(zx) — zg(x))R = 0 for all x,z € R. By semiprimeness of R, g(zx) = zg(x) for all
x,z € R. This implies that g is a left R-module homomorphism. By symmetry, % is
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a right R-module homomorphism. By axiom (Q4), there exists a € Qs(R) such that
g(x) = xa and h(x) = ax for all x € R. Clearly, aR = h(R) C R and Ra = g(R) CR.
Hence a € M(R). (2) By (1), there exists A € M(R) such that g(x) = Ax =xA for all
X € R. By [2, Remark 2.3.1], A € Z(Qs(R)). Hence A € C(R). O

LEMMA 3.6. Let R be a ring with 1 and with center Z(R) (resp. a semiprime
ring with the multiplier ring M(R) and with the centroid C(R)). Suppose that f :
Ny (R) — N,(R) is an additive map such that [f(x),x] =0 for all x € N,(R), where
n >4 is an integer. Then there exist A € Z(R) (resp. A €C(R)), a€R (resp. a €
M(R) ) and additive maps ci 2 nl "L R — R such that f(ae, 2) (Ao)ern+

) ln
(oa)ey 1 + C1,n(a)el,n’ f(aen,l n) = (Ao)e,—1, + (aa)eg n el ’"(a)ehn and
floeiir1) = (Aat)e; i1 —|—c'1’l:lr (a)eyn forall o € R and 2 <i<n—2.

Proof. By Lemmas 3.2 (2) and 3.3 (2), there exist additive maps ¢, 2,ci i l,ci i :

R — R such that f(ae; ) —cié(a)em—kcl o (o)er -1 +c1 n(a)em and there exist

additive maps ¢}, iz7c; nl "7c'1';,1’" : R — R such that f(ae,—1,) = ch:Z(a)en,Ln +

n—1.n

¢, M(a)ean+ e, ""(a)ey, for all o € R. And by Lemma 3.1, for every integer i

with 2 <i < n—2, there exist additive maps c/ iﬂ , c’lln+1 R— R suchthat f(ote;j1) =
ii+1

C,-7,-+1(05)6i7i+1 +cl7n (a)el.’n forall o €R.

Let i be an integer such that 1 <i<n—2. Setting x = ate; i1 and y = Bei 2
in (2.5), we have

floeii)Beirtiva— Beiriivaf(aeiit) = aeii1 f(Beirrivz) — f(Beiviiva) e
(3.7)
for all o, 8 € R. Multiplying (3.7) by ¢;; from the left and by ¢;12 ;> from the right,

we obtain e;;f(oe;iy1)Beir1,iv2 = 0tejiy1f(Beir1,iv2)eir2,ira. This implies
ciiti(@)B = aci 15 (B) (3.8)
for all o, € R and i =1,...,n—2. Since n >4, by (3.8) we have C12( B =
Occ% g(ﬂ) and cgg(a)ﬂ = Occ3 4([3) forall o, € R. By Lemma 3.4 (1) (resp. Lemma
3.5 (1)), there exist u,v € R (resp. u,v € M(R)) such that ¢; 3(Oc) = uo and c2’3((x) =
ov for all oo € R. With these, we have cgg(a) = ua = av and then c23( B =
(o) =u(af) = (af)v =o(Bv) = acm(ﬁ) for all o, 3 € R. By Lemma 3.4 (2)
(resp. Lemma 3.5 (2)), there exists A € Z(R) (resp. A € C(R)) such that c2’3( )=Aa
forall o € R. Then c}3(a)B = a3 3(B) = a(AB) = (Ar)B forall o, B € R. Thus
(c1 2( )—Ao)B =0 forall [3 € R. By Lemma 2.1, c}%( o)=2La= cgg( o) for
all oo € R. Similarly, we have ¢3’ 3( )=Aa=c3 4( ) for all oc € R. Now using (3.8)

repeatedly, we obtain ¢! iii( o)=Aa forall c eRand i=1,...,n—1.

Setting x = ey o and y = Ben—1, in (2.5), we have

floer2)Ben—1—Ben—1nf(ce12) =oeraf(Ben—1n) — f(Ben—1,)aer2  (3.9)
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for all o, € R. Multiplying (3.9) by e;; from the left and by e, , from the right,
we obtain e 1 f(ce12)Ben—1,, = oe12f(Ben—1n)enn. This implies Cln CI
acg nl "(B) for all o, € R. Thus by Lemma 3.4 (1) (resp. Lemma 3.5 (1)), there

exists a € R (resp. a € M(R)) such that ¢> (&) = ca and ch. “1(B) = aB for all
o, € R. This proves the lemma. [ '

LEMMA 3.7. Let R be either a ring with 1 or a semiprime ring. Suppose that
f : Nu(R) — Nu(R) is an additive map such that [f(x),x] =0 for all x € N,(R), where
>4 is an integer. Let A and a be the elements described in Lemma 3.6. Then for
every integer i with 2 < i< n—2, there exists an additive map c1 :R — R such that

floein) = (Aa)ein —|—c1 n( )ein forall o € R.
Proof. By Lemma 3 2 (1) and (3), for every integer i with 2 <i < n— 2, there

exist additive maps ¢." "€ o R — R such that f(oe;n) = M a)ein + & n((x)em for

nn

all o € R. Let i be an integer such that 2 <i <n—2. By Lemma 3.6, f(ﬂe,-_lﬁi) =
(AB)e1x+(Ba)ern— 1+C}’i(ﬁ)€1 n forall BeRifi=2and f(Bei-1,:) = (AB)ei1,;+
c’1 nl ’(ﬁ)eln forall B € R if 3<i<n—2. In particular, e;_;—1f(Bei—1,)ein =
ABei_ 1nasi<n—1.Setting x = Ocew and y = Be;_;; in (2.5), we have

floein)Bei1i—Bei1if(0ein) = aeinf(Bei—1i) — f(Bei—1i)oein (3.10)

for all o, € R. Multiplying (3.10) by ¢;_;,—; from the left and by e, , from the
right, we see that —fe;_y;f(ae;,)enn = —ei—1,-1f(Bei—1,)0e;,. This implies that
Bejn(e) = ABo for all o, B € R. Thus B(c;, (o) —Aa) =0 for all o, B € R. By
Lemma 2.1, cifl(oc) = Aa forall o € R, proving the lemma. [J

LEMMA 3.8. Let R be either a ring with 1 or a semiprime ring. Suppose that
f i Na(R) — N, (R) is an additive map such that [f(x),x] =0 for all x € N,(R), where
n >4 is an integer. Let A and a be the elements described in Lemma 3.6. Then for
every distinct integers i,j with 1 <i<j<n—1and (i,j) # (1,2), there exists an
additive map c1 :R — R such that f(ae; ;) = (Aa)e; —|—C1 n( )ein forall oo € R.

Proof. By Lemma 3.1 and Lemma 3.3 (1) and (3), for every distinct integers
i,j with 1 <i<j<n—1and (i,j) # (1,2), there exist additive maps ¢;},c}’,
R — R such that f(ae; ;) = cl’j( )ei —l—cil’jn( o)er, forall ¢ € R. Let i,j be dis-
tinct integers such that 1 <i<j<n-—1and (i,j) # (1, 2) By Lemmas 3.6 and

3.7, f(Bejn) = (lﬂ)ejn—i-c "(B)ei, forall BERIf2< j<n—2and f(Bej,) =
(AB)en—1,+ (aB)ern+c) nl n(ﬁ)elﬂn forall BERif j=n— 1. In particular, we have
eijf(Bejn)enn=ABeinas j=>2and n—12>3.

Setting x = ae; j and y = fe;, in (2.5), we have

flaeij)Bejn—Bejnf(oei;) = aeijf(Bejn) — f(Bejn)aei; (3.11)

forall o, 8 € R. Multiplying (3.11) by ¢;; from the left and by e, , from the right, we
obtain e;;f(ae; j)Bejn = ote; jf(Bejn)enn. This implies that ¢;(a)B = aAB for all
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B €R. Thus (c(a) — 2a)B =0 forall o, € R. By Lemma 2.1, c/’/() = At
forall o € R, proving the lemma. [ '

LEMMA 3.9. Let R be a ring with 1 (resp. a semiprime ring with the multiplier
ring M(R)) and let N3(R) be the ring of all 3 x 3 strictly upper triangular matrices
over R with center Z. Suppose that f : N3(R) — N3(R) is an additive map. Then
[f(x),x] =0 for all x € N3(R) if and only if there exist an additive map 1 : N3(R) — Z
and an additive map v : N3(R) — Q such that f(x) = p(x)+ v(x) for all x € N3(R),
where Q = {ae 2+ Ber3: o, € R} and v is defined by some a € R (resp. a €
M(R)) such that v(x) = e} 1xaey + ez raxes 3 for all x € N3(R).

Proof. The implication *“<=" is trivial. For the implication “=-": For two distinct
integers i, j with 1 <i< j <3 and write f(oe;;) = 2§7t=1.5<t cl(a)ey forall  €R,
where each ¢ : R — R is an additive map. By Lemma 2.2, céjg =0 and c?jg =0.

Thus f(ae2) = c}ﬁ(a)ehz +c}:§(a)el73 and f(Ber3) = céé(ﬁ)elg +c?§(ﬁ)el73 for
all o, B € R. Setting x = ate; » and y = fey 3 in (2.5), we obtain

0= f(aei2)Bers—Persf(oerr) —aernf(Beas) + f(Bers)oer
= (e} (@)era+ef3(@)ers)Beas — Beas(el s (@)er +ep3(a)ers)
- 0661,2(0522([3)6273 + Cig(ﬂ)em) + (Cgﬁg(ﬁ)ez.s + Cig(ﬂ)em)ael,z

= (ey3()B — ac33(B))er 3

forall o, € R. Thus c}é(a)ﬁ — acgg(ﬁ) =0 forall o, € R. By Lemma 3.4 (resp.
Lemma 3.5), there exists a € R (resp. a € M(R)) such that c}%(a) = oa and cég(a) =
aca for all oo € R. Recall that Z = Rey3. Thus f(ae2) — (aa)e;» = c}é(a)elﬁg cz
and f(oer3) — (aa)ers = cig(a)em € Z for all & € R. By Lemmas 2.4 and 2.5,
cig =0 and cég =0.So f(oe13) = Ctg(a)ehg € Zforall a e R. Let v:N3(R) — Q
be the additive map defined by v(x) = e 1xaes 2 + ez 2axes 3 for all x € N3(R), where
Q= {aei»+Pers:a,p €R}. Then f(x)—v(x) € Z for all x € N3(R). Hence
f(x) =p(x)+v(x) forall x € N3(R), where p : N3(R) — Z is the additive map defined
by p(x) = f(x) — v(x) for all x € N3(R). This proves the lemma. [J

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. The implication “<=" is trivial. For the im-
plication “=": By Lemma 3.9, we may assume n > 4. Let A and a be the ele-
ments described in Lemma 3.6 and let Q = {ote; -1 + Pery : 0, € R}. Let v:
N,(R) — Q be the additive map defined by v(x) = ey 1xaes ,—1 + €2 ,—1axey, for
all x € N,(R). Clearly, v(ce;;) =0 for all o € R and distinct integers i,j with
I<i<j<nand (i,j) ¢ {(1,2),(n—1,n)}. By Lemmas 3.6, 3.7 and 3.8, f(ote; ;) —
A(ae;j) — v(ae; ;) € Rey, forall o € R and distinct integers 7, j with 1 <i< j<n
and (i, ) # (1,n). Moreover, in view of Lemma 3.2 (1), f(oe;,) € Re;,, and hence
floey,) —A(aer,) — v(aer ) € Rey,, for all oo € R. Recall that Z = Re;,. So
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f(x) =Ax—v(x) € Z for x € Ny(R). Let u : N,(R) — Z be the additive map defined
by p(x) = f(x) —Ax—v(x) for x € N,(R). Consequently, f(x) = Ax+ u(x)+ v(x)
for all x € N,(R). This proves the theorems. [
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