CERTAIN PROPERTIES OF T-EP OPERATORS

XIAOHUI LI, YONGHUA GUO AND CHUNYUAN DENG

(Communicated by G. Misra)

Abstract. An operator A is said to be T-EP if $\mathcal{R}(A) = \mathcal{R}(TA^*)$ and $A = AT^*T$, where T is a partial isometry. In this note, some basic properties of T-EP operators are studied. The invariant characterizations that sum and product of two T-EP operators still keep to be T-EP are obtained. As an extension, we obtain necessary and sufficient conditions for a lower triangular operator matrix to be T-EP.

1. Introduction

EP operators play an important role and have a wide range of applications in operator generalized inverses. Many scholars have paid attention to EP operators and obtained a lot of meaningful results. In this note, we study the basic properties of T-EP operators. Generally, let \mathcal{H} and \mathcal{K} be two complex infinite dimensional separable Hilbert spaces. $\mathcal{H} \oplus \mathcal{K}$ is defined as the Cartesian product $\mathcal{H} \times \mathcal{K}$ where the operations are defined on $\mathcal{H} \times \mathcal{K}$ coordinatewise. If \mathcal{M} and \mathcal{N} are two closed linear subspaces of \mathcal{H} , then $\mathcal{M} \ominus \mathcal{N} = \mathcal{M} \cap \mathcal{N}^{\perp}$. The set of all bounded linear operators from \mathcal{H} to \mathcal{K} is denoted by $\mathcal{B}(\mathcal{H},\mathcal{K})$. We write $\mathcal{B}(\mathcal{H})$ for $\mathcal{B}(\mathcal{H},\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H},\mathcal{K})$. A^* , $\mathcal{R}(A)$ and $\mathcal{N}(A)$ stand for the adjoint, the range and the null space of A, respectively. $\mathcal{R}(A)$ is the closure of $\mathcal{R}(A)$ and $\mathcal{P}_{\mathcal{M}}$ is the orthogonal projection on a closed subspace \mathcal{M} [15]. We use $\operatorname{asc}(T)$ and $\operatorname{des}(T)$ to denote the ascent and descent of T, i.e., $\operatorname{asc}(T) = \min\{k:$ $\mathcal{N}(T^k) = \mathcal{N}(T^{k+1})$ and des $(T) = \min\{k : \mathcal{R}(T^k) = \mathcal{R}(T^{k+1})\}$ [14]. It is known to us all that des(T) = asc(T) when asc(T) and des(T) are finite and the index of T is defined by ind(T) = asc(T) = des(T). Note that 0 is not the accumulated point of $\sigma(T)$ when ind(T) is finite [4]. Let $A \in \mathcal{B}(\mathcal{H})$ and $|A| = (A^*A)^{\frac{1}{2}}$. If $\mathcal{R}(A) = \mathcal{R}(A^*)$, then A is called EP. If $(Ax, x) \ge 0$ for all $x \in \mathcal{H}$, we call A is positive.

We remind the reader that $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a partial isometry if $T = TT^*T$. In [6], the concept of relative EP matrix of a rectangular matrix relative to a partial isometry matrix (or, in short, *T*-EP) and some properties of *T*-EP are given. The purpose of this paper is to study the basic properties and obtain some new identifying conditions for an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ on a Hilbert space to be *T*-EP, where $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a fixed partial isometry. The necessary and sufficient conditions are given for the sum and product of two *T*-EP operators to be *T*-EP. As an extension, we then derive necessary and sufficient conditions for a lower triangular operator matrix to be *T*-EP.

Keywords and phrases: Partial isometry, EP operator, T-EP operator.

Mathematics subject classification (2020): 15A09, 47A05.

The paper is organized as follows. In Section 2, we use block operator matrix methods to establish serveral necessary and sufficient conditions and obtain many properties when $A \in \mathcal{B}(\mathcal{H},\mathcal{K})$ is *T*-EP. In Section 3, the necessary and sufficient conditions are given for the sum and product of two *T*-EP operators to be *T*-EP. And we obtain some interesting conclusions when the fixed partial isometry *T* has special characteristics.

2. Some basic results

We start with several preliminary results that will be used in our proof. Throughout this paper we will use $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ or $T \in \mathcal{B}(\mathcal{H})$ as a fixed partial isometry. It is well known that, if *T* is a partial isometry, then $\mathcal{R}(T)$ is closed and there exists an isometry $U \in \mathcal{B}(\mathcal{R}(T^*), \mathcal{R}(T))$ such that

$$T = \begin{pmatrix} U & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} \mathcal{R}(T^*) \\ \mathcal{N}(T) \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(T) \\ \mathcal{N}(T^*) \end{pmatrix}, \text{ where } U^*U = I_{\mathcal{R}(T^*)}, UU^* = I_{\mathcal{R}(T)}.$$
(1)

The following lemma is a standard result.

LEMMA 2.1. [1, Proposition 2.4], [11, Theorem 4] and [12, Theorem 1.1] For A, $B \in \mathcal{B}(\mathcal{H},\mathcal{K})$, the following conditions are equivalent:

- (i) $\mathcal{R}(A) \subseteq \mathcal{R}(A+B)$.
- (ii) $\mathcal{R}(B) \subseteq \mathcal{R}(A+B)$.
- (iii) $\mathcal{R}(A) + \mathcal{R}(B) \subseteq \mathcal{R}(A+B)$.
- (iv) $\mathcal{R}(A-B) \subseteq \mathcal{R}(A+B)$.

The following ranges results are given by Douglas [8] and Fillmore-Williams [9].

LEMMA 2.2. [8, Theorem 1] and [9, Theorem 2.1] Let A, B be bounded linear operators on a Hilbert space \mathcal{H} . Then the following statements are equivalent:

- (i) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.
- (ii) $AA^* \leq k^2 BB^*$ for some k > 0.
- (iii) There exists a bounded linear operator C such that A = BC.

In Lemma 2.2, the operator *C* can be denoted by $C = B^{\dagger}A + (I - B^{\dagger}B)D$ for some bounded linear operator *D*, where B^{\dagger} (possibly unbounded) is the Moore-Penrose inverse of *B*. And B^{\dagger} exactly bounded when $\mathcal{R}(B)$ is closed [2, 3].

Note that $A \in \mathcal{B}(\mathcal{H})$ is EP if $\mathcal{R}(A) = \mathcal{R}(A^*)$. It is obvious that A is EP $\iff A^*$ is EP. If $\mathcal{R}(A)$ is closed, A is EP $\iff A^{\dagger}$ is EP $\iff AA^{\dagger} = A^{\dagger}A$. The following Definition 2.1 extends the class of EP operators to a class of T-EP operators.

DEFINITION 2.1. [6, Definition 3] Let $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be a fixed partial isometry. An operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is said to be relative EP to T (in short, T-EP) if

$$\mathcal{R}(A) = \mathcal{R}(TA^*), \quad A = AT^*T.$$

For the fixed partial isometry $T \in \mathcal{B}(\mathcal{H},\mathcal{K})$ and arbitrary $A \in \mathcal{B}(\mathcal{H},\mathcal{K})$, it is of great significance to study properties of T-EP. As we know, for every $A \in \mathcal{B}(\mathcal{H})$, there is a unique partial isometry $T_0 \in \mathcal{B}(\mathcal{H})$ such that A has the polar decomposition $A = T_0|A|$ and $\mathcal{N}(T_0) = \mathcal{N}(A)$ [7, Theorem 4.39]. As for this special T_0 ,

 $A = T_0|A|$ is the polar decomposition of $A \Longrightarrow A$ is T_0 -EP and A^* is T_0^* -EP.

In fact, $T_0T_0^* = P_{\overline{\mathcal{R}}(A)}$ and $T_0^*T_0 = P_{\overline{\mathcal{R}}(A^*)}$ imply that $A = AT_0^*T_0$ and $A^* = A^*T_0T_0^*$. From $T_0^*AT_0^* = T_0^*T_0|A|T_0^* = |A|T_0^* = A^*$, we have $\mathcal{R}(A^*) = \mathcal{R}(T_0^*AT_0^*) = \mathcal{R}(T_0^*A)$. So, A^* is T_0^* -EP by Definition 2.1. Note that A^* has the polar decomposition $A^* = T_0^*|A^*|$. Similarly, we have that A is T_0 -EP.

As for Definition 2.1, we make the following detailed explanations.

REMARK 2.1. Note that T is a fixed partial isometry. Definition 2.1 has some equal descriptions (see [6] for the finite matrix case).

(i)

$$\mathcal{R}(A) = \mathcal{R}(TA^*) \Longleftrightarrow \mathcal{R}(A) = \mathcal{R}(TA^*T).$$

In fact, by Lemma 2.2, $\mathcal{R}(A) = \mathcal{R}(TA^*)$ (resp. $\mathcal{R}(A) = \mathcal{R}(TA^*T)$) implies that $\overline{\mathcal{R}(A)} \subseteq \mathcal{R}(T)$. So,

$$\mathcal{R}(A^*) = A^* \mathcal{R}(T) = \mathcal{R}(A^* T)$$

and

$$\mathcal{R}(TA^*T) = T\mathcal{R}(A^*T) = T\mathcal{R}(A^*) = \mathcal{R}(TA^*).$$

Hence,

$$\mathcal{R}(A) = \mathcal{R}(TA^*) \Longleftrightarrow \mathcal{R}(A) = \mathcal{R}(TA^*T).$$

(ii) Note that $T^*T = P_{\mathcal{R}(T^*)}$ and $TT^* = P_{\mathcal{R}(T)}$. It follows that

$$A = AT^*T$$

$$\iff \mathcal{R}(A^*) \subseteq \mathcal{R}(T^*)$$

$$\iff \mathcal{N}(T) \subseteq \mathcal{N}(A)$$

$$\iff A = \begin{pmatrix} A_{11} & 0 \\ A_{21} & 0 \end{pmatrix}, \text{ where } A_{11} \in \mathcal{B}(\mathcal{R}(T^*), \mathcal{R}(T)), A_{21} \in \mathcal{B}(\mathcal{R}(T^*), \mathcal{N}(T^*))).$$

In addition, if $\mathcal{R}(A)$ is closed,

$$A = AT^*T \iff A^{\dagger} = T^*TA^{\dagger}.$$

(iii) Let S_1 and S_2 be two partial isometries, A be a closed range operator such that $AS_2S_2^* = A = S_1^*S_1A$. Then

$$(S_1AS_2)^{\dagger} = S_2^*A^{\dagger}S_1^*.$$

(iv) An operator $A \in \mathcal{B}(\mathcal{H},\mathcal{K})$ is said to be relative selfadjoint to T (in short, T-selfadjoint) if $A = TA^*T$. A is said to be relative normal to T (in short, T-normal) if $A = TT^*A = AT^*T$ and $AA^*T = TA^*A$. It is obvious that every T-selfadjoint operator is T-normal [6, Definitions 1 and 2]. If A is T-normal, then $A = AT^*T$ and

$$\mathcal{R}(A) = \mathcal{R}((AA^*)^{\frac{1}{2}}) = \mathcal{R}((TT^*AA^*)^{\frac{1}{2}}) = \mathcal{R}((TA^*AT^*)^{\frac{1}{2}})$$
$$= \mathcal{R}((TA^*TT^*AT^*)^{\frac{1}{2}}) = \mathcal{R}(TA^*T) = \mathcal{R}(TA^*).$$

Hence, every T-normal operator is T-EP.

For the fixed partial isometry $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the next lemma gives the operator matrix representation of the *T*-EP operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$.

LEMMA 2.3. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. The following results are equivalent:

(i) A is T-EP.

(ii) A and T, as the operators from

$$\overline{\mathcal{R}(A^*)} \oplus \left[\mathcal{R}(T^*) \ominus \overline{\mathcal{R}(A^*)}\right] \oplus \mathcal{N}(T) \longrightarrow \overline{\mathcal{R}(A)} \oplus \left[\mathcal{R}(T) \ominus \overline{\mathcal{R}(A)}\right] \oplus \mathcal{N}(T^*),$$

can be denoted as

$$A = A_{11} \oplus 0 \oplus 0, \quad T = U_{11} \oplus U_{22} \oplus 0, \tag{2}$$

respectively, where A_{11} is injective with dense range, U_{11} and U_{22} are two isometries satisfying $\mathcal{R}(A_{11}) = \mathcal{R}(U_{11}A_{11}^*)$.

(iii) There exists an EP operator $E \in \mathcal{B}(\mathcal{K})$ such that A = ET and $E = TT^*E$.

Proof. (i) \implies (ii) Let T have the form (1). Then A has the corresponding form

$$A = \begin{pmatrix} A_1 & A_{12} \\ A_{21} & A_{22} \end{pmatrix} : \begin{pmatrix} \mathcal{R}(T^*) \\ \mathcal{N}(T) \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(T) \\ \mathcal{N}(T^*) \end{pmatrix}.$$
 (3)

So,

$$\mathcal{R}(A) = \mathcal{R}(TA^*T) \iff A_{21} = 0, A_{22} = 0 \text{ and } \mathcal{R}((A_1, A_{12})) = \mathcal{R}(UA_1^*U)$$

and

$$A = AT^*T \iff A_{12} = 0.$$

One gets $A = A_1 \oplus 0$ with $\mathcal{R}(A_1) = \mathcal{R}(UA_1^*)$. By Definition 2.1, one has $\overline{\mathcal{R}(A)} \subseteq \mathcal{R}(T)$ and $\overline{\mathcal{R}(A^*)} \subseteq \mathcal{R}(T^*)$. The operator matrices (1) and (3) can be rewritten as

$$A = \begin{pmatrix} A_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} \overline{\mathcal{R}(A^*)} \\ \mathcal{R}(T^*) \ominus \overline{\mathcal{R}(A^*)} \\ \mathcal{N}(T) \end{pmatrix} \longrightarrow \begin{pmatrix} \overline{\mathcal{R}(A)} \\ \mathcal{R}(T) \ominus \overline{\mathcal{R}(A)} \\ \mathcal{N}(T^*) \end{pmatrix}$$

and

$$T = \begin{pmatrix} U_{11} & U_{12} & 0 \\ U_{21} & U_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} \overline{\mathcal{R}(A^*)} \\ \mathcal{R}(T^*) \ominus \overline{\mathcal{R}(A^*)} \\ \mathcal{N}(T) \end{pmatrix} \longrightarrow \begin{pmatrix} \overline{\mathcal{R}(A)} \\ \mathcal{R}(T) \ominus \overline{\mathcal{R}(A)} \\ \mathcal{N}(T^*) \end{pmatrix},$$

respectively, where A_{11} is injective with dense range and $A_1 = A_{11} \oplus 0$, the isometry $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ with $U^*U = I_{\mathcal{R}(T^*)}$ and $UU^* = I_{\mathcal{R}(T)}$. From $\mathcal{R}(A_1) = \mathcal{R}(UA_1^*)$ and $UA_1^* = \begin{pmatrix} U_{11}A_{11}^* & 0 \\ U_{21}A_{11}^* & 0 \end{pmatrix}$, one gets $U_{21} = 0$ and $\mathcal{R}(A_{11}) = \mathcal{R}(U_{11}A_{11}^*)$. It follows that $\mathcal{R}(U_{11})$ is dense in $\overline{\mathcal{R}(A)}$. From $U^*U = I_{\mathcal{R}(T^*)}$, one gets $U_{11}^*U_{11} = I_{\overline{\mathcal{R}(A^*)}}$, $U_{11}^*U_{12} = 0$, $U_{12}^*U_{11} = 0$, $U_{12}^*U_{12} + U_{22}^*U_{22} = I_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}}$.

It follows that U_{11} is injective with closed range. Hence, $U_{11} \in \mathcal{B}(\overline{\mathcal{R}(A^*)}, \overline{\mathcal{R}(A)})$ is an isometry, $U_{12} = 0$ and $U_{22}^*U_{22} = I_{\mathcal{R}(T^*)} \ominus \overline{\mathcal{R}(A^*)}$. Furthermore, from $UU^* = I_{\mathcal{R}(T)}$, one derives that $U_{22} \in \mathcal{B}(\mathcal{R}(T^*) \ominus \overline{\mathcal{R}(A^*)}, \mathcal{R}(T) \ominus \overline{\mathcal{R}(A)})$ is an isometry with $U_{22}U_{22}^* = I_{\mathcal{R}(T) \ominus \overline{\mathcal{R}(A)}}$.

(ii) \implies (iii) Let $E = AT^*$. By (2), $E = A_{11}U_{11}^* \oplus 0 \oplus 0$. Since

$$\mathcal{R}(A_{11}U_{11}^*) = \mathcal{R}(A_{11}) = \mathcal{R}(U_{11}A_{11}^*),$$

one has E is an EP operator, A = ET and $E = TT^*E$.

(iii) \implies (i) Since A = ET, $A^* = T^*E^*$, one gets $\mathcal{R}(A^*) \subseteq \mathcal{R}(T^*)$. It follows that $A = AT^*T$. By $TT^*E = E$ and E is an EP operator, we have $\mathcal{R}(E) = \mathcal{R}(E^*) \subseteq \mathcal{R}(T)$. From

$$\mathcal{R}(E) \supseteq \mathcal{R}(A) = \mathcal{R}(ET) = E\mathcal{R}(T) \supseteq E\mathcal{R}(E^*) = \mathcal{R}(E),$$

one has $\mathcal{R}(A) = \mathcal{R}(E)$. In addition, from

$$\mathcal{R}(E) = \mathcal{R}(E^*) \supseteq \mathcal{R}(TA^*T) = \mathcal{R}(TT^*E^*T) = \mathcal{R}(E^*T) \supseteq \mathcal{R}(E^*) = \mathcal{R}(E),$$

one has

$$\mathcal{R}(TA^*) = \mathcal{R}(TA^*T) = \mathcal{R}(E).$$

As a result, $\mathcal{R}(A) = \mathcal{R}(TA^*)$ and therefore A is T-EP. \Box

REMARK 2.2. By Lemma 2.3 and its proof, one has the following observations immediately (see [6] for the finite matrix case).

(i) If A is T-EP, then $E = AT^*$ satisfies $\mathcal{R}(E) = \mathcal{R}(A) = \mathcal{R}(E^*) \subseteq \mathcal{R}(T)$,

$$E = ETT^* = TT^*E$$
 and $A = AT^*T = TT^*A$.

(ii) In Lemma 2.3, if T is unitary, then $\mathcal{R}(T) = \mathcal{R}(T^*)$, $T = U_1 \oplus U_2$ and $A = A_{11} \oplus 0$ with $\mathcal{R}(A_{11}) = \mathcal{R}(U_1A_{11}^*)$. Hence,

A is T-EP $\iff TA^*$ is EP $\iff AT^*$ is EP $\iff \mathcal{R}(A) = \mathcal{R}(TA^*)$.

In addition, if $\mathcal{R}(A)$ is closed, then

$$A \text{ is } T \text{-EP} \iff \mathcal{R}(A) = \mathcal{R}(TA^*)$$
$$\iff \mathcal{N}(A^*) = \mathcal{N}(AT^*)$$
$$\iff TA^{\dagger} \text{ is EP}$$
$$\iff TA^{\dagger}A = AA^{\dagger}T.$$

(iii) In Lemma 2.3,

$$\mathcal{R}(A_{11}) = \mathcal{R}(U_{11}A_{11}^*) \iff AT^* \text{ is EP} \iff TA^* \text{ is EP},$$

which is also equivalent to that TA^{\dagger} is EP when $\mathcal{R}(A)$ is closed.

(iv) If $\mathcal{R}(A)$ is closed, then A is T-EP if and only if $TA^{\dagger}A = AA^{\dagger}T$ and $A = AT^{*}T = TT^{*}A$. In this case, A_{11} is invertible by (2) and the following relations are obvious:

$$(T^*A)^{\dagger} = A^{\dagger}T; \quad (AT^*)^{\dagger} = TA^{\dagger}; \quad (TA^{\dagger})^{\dagger} = AT^*; \quad (A^{\dagger}T)^{\dagger} = T^*A; (TA^{\dagger}T)^{\dagger} = T^*AT^*; \quad (AT^*A)^{\dagger} = A^{\dagger}TA^{\dagger}; \quad A^{\dagger} = T^*E^{\dagger} = T^*(AT^*)^{\dagger}.$$

(v) In general,

A is
$$T$$
-EP $\iff A^*$ is T^* -EP.

If $\mathcal{R}(A)$ is closed, then

A is
$$T - \text{EP} \iff A^{\dagger}$$
 is $T^* - \text{EP}$.

In fact, if A is T-EP, by Lemma 2.3, $\mathcal{R}(A_{11}) = \mathcal{R}(U_{11}A_{11}^*)$ implies that

$$\mathcal{R}(U_{11}^*A_{11}) = \mathcal{R}(U_{11}^*U_{11}A_{11}^*) = \mathcal{R}(P_{\overline{\mathcal{R}(A^*)}}A_{11}^*) = \mathcal{R}(A_{11}^*).$$

So, A^* is T^* -EP. Conversely, if A^* is T^* -EP, similarly to the above proof, $(A^*)^*$ is $(T^*)^*$ -EP, i.e., A is T-EP. In case that $\mathcal{R}(A)$ is closed and A^* is T^* -EP, then

$$\mathcal{R}(A^{\dagger}) = \mathcal{R}(A^*) = \mathcal{R}(T^*A) = \mathcal{R}(T^*(A^{\dagger})^*)$$

and $\mathcal{R}((A^{\dagger})^*) = \mathcal{R}(A) \subseteq \mathcal{R}(T)$. One has A^* is T^* -EP $\iff A^{\dagger}$ is T^* -EP. (vi)

A is T-EP $\iff AT^*$ is EP and $A = AT^*T$.

In fact, it is clear that A is T-EP $\implies AT^*$ is EP and $A = AT^*T$. On the other hand, if AT^* is EP and $A = AT^*T$, then

$$\mathcal{R}(A) = A(\overline{\mathcal{R}(A^*)}) \subseteq A(\mathcal{R}(T^*)) = \mathcal{R}(TA^*).$$

Hence, $\mathcal{R}(A) \subseteq \mathcal{R}(T)$ and $\mathcal{R}(A^*) \subseteq \mathcal{R}(T^*)$. Therefore, if *T* is denoted by (1), then $A = A_1 \oplus 0$. It follows that $\mathcal{R}(A_1) = \mathcal{R}(A_1U^*) = \mathcal{R}(UA_1^*)$ and $\mathcal{R}(A) = \mathcal{R}(TA^*)$. (vii)

$$AT^*$$
 is EP $\iff TA^*$ is EP ($\iff TA^{\dagger}$ is EP when $\mathcal{R}(A)$ is closed).

(viii)

A is EP and
$$|A^*|$$
 is T-EP \Longrightarrow A^* is T-EP.

In fact,

$$\mathcal{R}(A^*) = \mathcal{R}(A) = \mathcal{R}(|A^*|) = \mathcal{R}(T|A^*|) = T\mathcal{R}(A) = \mathcal{R}(TA).$$

By polar decomposition and $|A^*| = |A^*|T^*T$ one has $A^* = A^*T^*T$, i.e., A^* is T-EP.

3. Some properties of *T*-EP operators

In this section, we study characterizations of *T*-EP operators. Firstly, we consider a specific case when $T \in \mathcal{B}(\mathcal{H})$ be a fixed selfadjoint partial isometry.

THEOREM 3.1. Let $A \in \mathcal{B}(\mathcal{H})$ and $T \in \mathcal{B}(\mathcal{H})$ be a fixed selfadjoint partial isometry. Then A is T-EP if and only if TA is EP and $A = AT^2 = T^2A$.

Proof. \implies Since A is T-EP, $\mathcal{R}(A) \subseteq \mathcal{R}(T)$ and $\mathcal{R}(A^*) \subseteq \mathcal{R}(T)$ by Definition 2.1. Hence, $T^2A = P_{\mathcal{R}(T)}A = A = AT^2$. From $\mathcal{R}(A) = \mathcal{R}(TA^*)$ one has

$$\mathcal{R}(TA) = \mathcal{R}(T^2A^*) = \mathcal{R}(A^*) = A^*(\overline{\mathcal{R}(A)}) \subseteq A^*(\mathcal{R}(T)) = \mathcal{R}(A^*T^*) \subseteq \mathcal{R}(A^*).$$

Therefore, $\mathcal{R}(TA) = \mathcal{R}(A^*T^*)$.

$$\mathcal{R}(T^*A) = \mathcal{R}(TA) = \mathcal{R}(A^*T^*) = A^*(\mathcal{R}(T^*)) \supseteq A^*(\mathcal{R}(A)) = \mathcal{R}(A^*)$$

and $\mathcal{R}(A^*T^*) \subseteq \mathcal{R}(A^*)$. Hence, A^* is T^* -EP. By Remark 2.2 (iii), we get A is T-EP. \Box

Theorem 3.1 shows that, if $T \in \mathcal{B}(\mathcal{H})$ is an orthogonal projection, then

 $A \in \mathcal{B}(\mathcal{H})$ is T-EP \iff A is EP and A = AT = TA.

THEOREM 3.2. Let $A \in \mathcal{B}(\mathcal{H})$ and $T \in \mathcal{B}(\mathcal{H})$ be a partial isometry such that $AT^* = T^*A$. Then A is T-EP if and only if A is EP and $A = TT^*A = AT^*T$.

Proof. \implies From A is T-EP and $TA^* = A^*T$ one gets

$$\mathcal{R}(A) = \mathcal{R}(TA^*) = \mathcal{R}(A^*T) \subseteq \mathcal{R}(A^*).$$

Note that

$$\mathcal{R}(A^*) = \mathcal{R}(T^*TA^*) = T^*\mathcal{R}(TA^*) = T^*\mathcal{R}(A) = \mathcal{R}(T^*A) = \mathcal{R}(AT^*) \subseteq \mathcal{R}(A).$$

Hence, $\mathcal{R}(A) = \mathcal{R}(A^*)$, i.e., A is EP. By Remark 2.2 (i) one has $A = AT^*T = TT^*A$.

Next, we consider the sum and the product of two T-EP operators and obtain the sufficient and necessary conditions which ensure A + B and AB are T-EP.

THEOREM 3.3. Let A and $B \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be T-EP. Then A + B is T-EP if and only if

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}})$$

$$= \mathcal{R}(P_{\overline{\mathcal{R}(A)}}T(A+B)^*P_{\overline{\mathcal{R}(A)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\mathcal{R}(T)\ominus\overline{\mathcal{R}(A)}}).$$
(4)

Proof. Let A and T have the matrix forms (2). If A and B are T-EP, then $A = AT^*T$, $B = BT^*T$ and $(A+B) = (A+B)T^*T$. By Lemma 2.3, T-EP operator B can be represented as

$$B = \begin{pmatrix} B_{11} & B_{12} & 0 \\ B_{21} & B_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} \overline{\mathcal{R}(A^*)} \\ \mathcal{R}(T^*) \ominus \overline{\mathcal{R}(A^*)} \\ \mathcal{N}(T) \end{pmatrix} \longrightarrow \begin{pmatrix} \overline{\mathcal{R}(A)} \\ \mathcal{R}(T) \ominus \overline{\mathcal{R}(A)} \\ \mathcal{N}(T^*) \end{pmatrix}.$$
(5)

By (2) and $\mathcal{R}(B) = \mathcal{R}(TB^*)$ one has

$$\mathcal{R}\left(\begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}\right) = \mathcal{R}\left(\begin{pmatrix} U_{11}B_{11}^* & U_{11}B_{21}^* \\ U_{22}B_{12}^* & U_{22}B_{22}^* \end{pmatrix}\right).$$

One gets $\mathcal{R}((B_{11} B_{12})) = \mathcal{R}((U_{11}B_{11}^* U_{11}B_{21}^*))$, i.e.,

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\overline{\mathcal{R}(A^*)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}})$$

$$= \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\overline{\mathcal{R}(A)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\mathcal{R}(T)\ominus\overline{\mathcal{R}(A)}})$$
(6)

and $\mathcal{R}((B_{21} B_{22})) = \mathcal{R}((U_{22}B_{12}^* U_{22}B_{22}^*))$. Therefore,

$$\begin{split} \mathcal{R}(A+B) &= \mathcal{R}(T(A+B)^*) \\ \Longleftrightarrow \mathcal{R}\left(\begin{pmatrix} A_{11}+B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \right) = \mathcal{R}\left(\begin{pmatrix} U_{11}(A_{11}+B_{11})^* & U_{11}B_{21}^* \\ U_{22}B_{12}^* & U_{22}B_{22}^* \end{pmatrix} \right) \\ \Leftrightarrow \mathcal{R}((A_{11}+B_{11} & B_{12})) = \mathcal{R}((U_{11}(A_{11}+B_{11})^* & U_{11}B_{21}^*)) \\ \Leftrightarrow \mathcal{R}(A_{11}+B_{11}) + \mathcal{R}(B_{12}) = \mathcal{R}(U_{11}(A_{11}+B_{11})^*) + \mathcal{R}(U_{11}B_{21}^*) \\ \Leftrightarrow \mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}}) \\ &= \mathcal{R}(P_{\overline{\mathcal{R}(A)}}T(A+B)^*P_{\overline{\mathcal{R}(A)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\mathcal{R}(T)\ominus\overline{\mathcal{R}(A)}}). \quad \Box \end{split}$$

Theorem 3.3 contains some special cases.

COROLLARY 3.1. Let A, $B \in \mathcal{B}(\mathcal{H},\mathcal{K})$ be T-EP. If $P_{\overline{\mathcal{R}}(A)}BP_{\overline{\mathcal{R}}(A^*)} = 0$, then A + B is T-EP.

Proof. By Lemma 2.3, if A is T-EP, then $P_{\overline{\mathcal{R}}(A)}T = TP_{\overline{\mathcal{R}}(A^*)}$ and

$$\mathcal{R}(A) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}AP_{\overline{\mathcal{R}(A^*)}}) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TA^*P_{\overline{\mathcal{R}(A)}}).$$
(7)

If $P_{\overline{\mathcal{R}}(A)}BP_{\overline{\mathcal{R}}(A^*)} = 0$, then

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}}) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\mathcal{R}(T)\ominus\overline{\mathcal{R}(A)}})$$

by (6),

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}}) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}AP_{\overline{\mathcal{R}(A^*)}})$$

and

$$\mathcal{R}(P_{\overline{\mathcal{R}}(A)}T(A+B)^*P_{\overline{\mathcal{R}}(A)}) = \mathcal{R}(P_{\overline{\mathcal{R}}(A)}TA^*P_{\overline{\mathcal{R}}(A)}).$$

Hence, the result in (4) holds and A + B is T-EP. \Box

REMARK 3.1. Let $A, B \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be *T*-EP. We can derive the following results. (i) In Theorem 3.3, if $\mathcal{R}(A)$ is closed, then A + B is *T*-EP if and only if

$$\mathcal{R}(A + AA^{\dagger}BA^{\dagger}A) + \mathcal{R}(AA^{\dagger}B(T^{*}T - A^{\dagger}A))$$

= $\mathcal{R}(AA^{\dagger}T(A + B)^{*}AA^{\dagger}) + \mathcal{R}(AA^{\dagger}TB^{*}(TT^{*} - AA^{\dagger})).$ (8)

(ii) If $BA^* = 0$, then

$$B = \begin{pmatrix} 0 & B_{12} & 0 \\ 0 & B_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{R}(B_{12}) = \mathcal{R}(U_{11}B_{12}^*), \quad \mathcal{R}(B_{22}) = \mathcal{R}(U_{22}B_{22}^*).$$

By Theorem 3.3, A + B is T-EP. Similarly, if $A^*B = 0 \Rightarrow B_{11} = 0$ and $B_{12} = 0 \Rightarrow A + B$ is T-EP.

(iii) If one of $\overline{\mathcal{R}(A)} \cap \mathcal{R}(B) = \{0\}$ and $\overline{\mathcal{R}(A^*)} \cap \mathcal{R}(B^*) = \{0\}$ holds, then $P_{\overline{\mathcal{R}(A)}}BP_{\overline{\mathcal{R}(A^*)}} = 0$ and A + B is *T*-EP by Corollary 3.1. These are the main results in [6, Corollaries 5 and 6, Theorems 23, 25 and 26].

COROLLARY 3.2. Let A, $B \in \mathcal{B}(\mathcal{H},\mathcal{K})$ be T-EP. If

$$\mathcal{R}(A) \subseteq \mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}})$$

and

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}TA^*) \subseteq \mathcal{R}(P_{\overline{\mathcal{R}(A)}}T(A+B)^*P_{\overline{\mathcal{R}(A)}}),$$

then A + B is T - EP.

Proof. If

$$\mathcal{R}(A) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}AP_{\overline{\mathcal{R}(A^*)}}) \subseteq \mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}})$$

and

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}TA^*) \subseteq \mathcal{R}(P_{\overline{\mathcal{R}(A)}}T(A+B)^*P_{\overline{\mathcal{R}(A)}}),$$

then

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}AP_{\overline{\mathcal{R}(A^*)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\overline{\mathcal{R}(A^*)}}) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}})$$

and

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}TA^*P_{\overline{\mathcal{R}(A)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\overline{\mathcal{R}(A)}}) = \mathcal{R}(P_{\overline{\mathcal{R}(A)}}T(A+B)^*P_{\overline{\mathcal{R}(A)}})$$

by Lemma 2.1. Since A and B are T-EP, by (6) and (7),

$$\mathcal{R}(P_{\overline{\mathcal{R}(A)}}(A+B)P_{\overline{\mathcal{R}(A^*)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}})$$
$$= \mathcal{R}(P_{\overline{\mathcal{R}(A)}}T(A+B)^*P_{\overline{\mathcal{R}(A)}}) + \mathcal{R}(P_{\overline{\mathcal{R}(A)}}TB^*P_{\mathcal{R}(T)\ominus\overline{\mathcal{R}(A)}}).$$

Therefore, A + B is T-EP. \Box

As for the product of two T-EP operators, we have the following results.

THEOREM 3.4. Let
$$A, B \in \mathcal{B}(\mathcal{H}, \mathcal{K})$$
 be T -EP. Then
(i) A^*B is T^*T -EP $\iff A^*BP_{\overline{\mathcal{R}}(A^*)}$ is EP and $P_{\overline{\mathcal{R}}(A)}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}}(A^*)} = 0$.
(ii) AB^* is TT^* -EP $\iff AB^*P_{\overline{\mathcal{R}}(A)}$ is EP and $P_{\mathcal{R}(T)\ominus\overline{\mathcal{R}}(A)}BP_{\overline{\mathcal{R}}(A^*)} = 0$.

Proof. (i) It is obvious that $A^*B = A^*BT^*T$ since *B* is *T*-EP. By Lemma 2.3, *A* and *T* have the forms as in (2). Let *B* have the corresponding form as in (5). One has $T^*T = I \oplus I \oplus 0$,

$$A^*B = \begin{pmatrix} A^*_{11}B_{11} & A^*_{11}B_{12} & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}, \quad T^*TB^*A = \begin{pmatrix} B^*_{11}A_{11} & 0 & 0\\ B^*_{12}A_{11} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Hence, A^*B is T^*T -EP if and only if $\mathcal{R}(A^*B) = \mathcal{R}(T^*TB^*A) \iff A_{11}^*B_{11}$ is EP and $B_{12} = 0 \iff P_{\overline{\mathcal{R}(A)}}BP_{\mathcal{R}(T^*)\ominus\overline{\mathcal{R}(A^*)}} = 0$ and $A^*BP_{\overline{\mathcal{R}(A^*)}}$ is EP. (ii) Similar to (i). \Box

THEOREM 3.5. Let A and $B \in \mathcal{B}(\mathcal{H})$ be T-EP. (i) If $\mathcal{R}(AB) = \mathcal{R}(A) \cap \mathcal{R}(B)$ and $\mathcal{R}(B^*A^*) = \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$, then AB is T-EP. (ii) If AB is T-EP, then $\mathcal{R}(AB) \subseteq \mathcal{R}(A) \cap \mathcal{R}(B)$ and $\mathcal{R}(B^*A^*) \subseteq \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$. (iii) If $\operatorname{ind}(A) \leq 1$ and $\operatorname{ind}(B) \leq 1$, then

 $AB \text{ is } T \text{-} EP \iff \mathcal{R}(AB) = \mathcal{R}(A) \cap \mathcal{R}(B) \text{ and } \mathcal{R}(B^*A^*) = \mathcal{R}(B^*) \cap \mathcal{R}(A^*).$

Proof. (i) If $\mathcal{R}(AB) = \mathcal{R}(A) \cap \mathcal{R}(B)$ and $\mathcal{R}(B^*A^*) = \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$, then

$$\mathcal{R}(AB) = \mathcal{R}(A) \cap \mathcal{R}(B) = \mathcal{R}(TB^*) \cap \mathcal{R}(TA^*)$$

and

$$\mathcal{R}(TB^*A^*) = T(\mathcal{R}(B^*A^*)) = T(\mathcal{R}(B^*) \cap \mathcal{R}(A^*)) = \mathcal{R}(TB^*) \cap \mathcal{R}(TA^*).$$

And it is clear that $AB = ABT^*T$. Hence, AB is T-EP.

(ii) Obviously, $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$ by Lemma 2.2. Since AB is T-EP,

$$\mathcal{R}(AB) = \mathcal{R}(TB^*A^*) = TB^*(\mathcal{R}(A^*)) \subseteq \mathcal{R}(TB^*) = \mathcal{R}(B).$$

Hence, $\mathcal{R}(AB) \subseteq \mathcal{R}(A) \cap \mathcal{R}(B)$. Since AB is T-EP, B^*A^* is T^* -EP and

$$\mathcal{R}(B^*A^*) = \mathcal{R}(T^*AB) = T^*A(\mathcal{R}(B)) \subseteq \mathcal{R}(T^*A) = \mathcal{R}(A^*).$$

Obviously, $\mathcal{R}(B^*A^*) \subseteq \mathcal{R}(B^*)$. Hence, $\mathcal{R}(B^*A^*) \subseteq \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$.

(iii) By items (i) and (ii), we only need to verify that, if AB is T-EP,

$$\mathcal{R}(AB) \supseteq \mathcal{R}(A) \cap \mathcal{R}(B), \quad \mathcal{R}(B^*A^*) \supseteq \mathcal{R}(B^*) \cap \mathcal{R}(A^*).$$

Since $ind(B) \leq 1$, $\mathcal{R}(B)$ is closed and B can be denoted as

$$B = \begin{pmatrix} B_{11} & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} \mathcal{R}(B^*) \\ \mathcal{N}(B) \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{pmatrix},$$

where B_{11} is invertible. Denote A by

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} : \begin{pmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{pmatrix}.$$

Then $AB = \begin{pmatrix} A_{11}B_{11} & 0 \\ A_{21}B_{11} & 0 \end{pmatrix}$. Since *AB* is *T*-EP, by item (ii), $\mathcal{R}(AB) \subseteq \mathcal{R}(B)$. One gets $A_{21} = 0$ since B_{11} is invertible. It follows that

$$A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}, \quad A^2 = \begin{pmatrix} A_{11}^2 & A_{11}A_{12} + A_{12}A_{22} \\ 0 & A_{22}^2 \end{pmatrix},$$

where $\mathcal{N}(A_{22}) = \mathcal{N}(A_{22}^2)$ since max{ind(A_{11}), ind(A_{22})} \leq ind(A) \leq 1. If $x \in \mathcal{R}(A) \cap \mathcal{R}(B) = \mathcal{R}(A^2) \cap \mathcal{R}(B)$, then there exists x_i and y_i , i = 1, 2 such that

$$x = \begin{pmatrix} A_{11}^2 & A_{11}A_{12} + A_{12}A_{22} \\ 0 & A_{22}^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} B_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

So, $A_{11}^2 x_1 + (A_{11}A_{12} + A_{12}A_{22})x_2 = B_{11}y_1$ and $A_{22}x_2 = 0$. One has

$$x = A_{11}^2 x_1 + A_{11}A_{12}x_2 = A_{11}(A_{11}x_1 + A_{12}x_2) = B_{11}y_1$$

Note that $A_{11}x_1 + A_{12}x_2 \in \mathcal{R}(B)$. It follows that $x = B_{11}y_1 \in \mathcal{R}(AB)$, i.e., $\mathcal{R}(AB) \supseteq \mathcal{R}(A) \cap \mathcal{R}(B)$. Similarly, $\mathcal{R}(B^*A^*) \supseteq \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$. \Box

If A and B are EP with closed range, then $ind(A) \leq 1$ and $ind(B) \leq 1$. It follows that

$$AB$$
 is $EP \iff \mathcal{R}(AB) = \mathcal{R}(A) \cap \mathcal{R}(B)$ and $\mathcal{R}(B^*A^*) = \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$

It is the result in [5, Theorem 1] and [13].

In Theorem 3.5 (iii), the conditions that $ind(A) \leq 1$ and $ind(B) \leq 1$ are necessary. The next example shows that, if *A* and *B* are *T*-EP with closed range and *AB* is *T*-EP, then $\mathcal{R}(AB) = \mathcal{R}(A) \cap \mathcal{R}(B)$ and $\mathcal{R}(B^*A^*) = \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$ do not always hold.

EXAMPLE. Let
$$A = B = T = \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & I \\ 0 & 0 & 0 \end{pmatrix} \in B(\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H})$$
. Then A, B and AB

and T-EP. However,

$$\mathcal{R}(AB) \neq \mathcal{R}(A) \cap \mathcal{R}(B), \quad \mathcal{R}(B^*A^*) \neq \mathcal{R}(B^*) \cap \mathcal{R}(A^*).$$

Note that

$$TA^* = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad AB = T(AB)^* = \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

It is easy to show that *T* is partial isometry and $\mathcal{R}(A) = \mathcal{R}(B) = \mathcal{R}(TA^*)$. Hence, *A* and *B* are *T*-EP. The relations $\mathcal{R}(AB) = \mathcal{R}(T(AB)^*)$ and $\mathcal{R}((AB)^*) \subseteq \mathcal{R}(T^*)$ imply that *AB* is *T*-EP. But it is obvious that $\mathcal{R}(A) \cap \mathcal{R}(B) \neq \mathcal{R}(AB)$ and $\mathcal{R}(B^*A^*) \neq \mathcal{R}(B^*) \cap \mathcal{R}(A^*)$.

Denoted by

$$T := \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}, \quad M := \begin{pmatrix} A & 0 \\ C & B \end{pmatrix}, \tag{9}$$

where A and $T_1 \in \mathcal{B}(\mathcal{H}_1, \mathcal{K}_1)$, B and $T_2 \in \mathcal{B}(\mathcal{H}_2, \mathcal{K}_2)$ and $C \in \mathcal{B}(\mathcal{H}_1, \mathcal{K}_2)$ satisfy that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed, A is T_1 -EP and B is T_2 -EP, T_1 and T_2 are partial isometries. Then we have the following result.

THEOREM 3.6. Let M and T be defined by (9). The 2 × 2 lower triangular operator matrix M is T-EP if and only if $P_{\mathcal{N}(B^*)}CA^* = 0$ and $CP_{\mathcal{N}(A)} = 0$ if and only if C = BXA for some $X \in \mathcal{B}(\mathcal{K}_1, \mathcal{H}_2)$.

Proof. By Lemma 2.3, *M* and *T*, as operators from $\mathcal{R}(A^*) \oplus [\mathcal{R}(T_1^*) \oplus \mathcal{R}(A^*)] \oplus \mathcal{N}(T_1) \oplus \mathcal{R}(B^*) \oplus [\mathcal{R}(T_2^*) \oplus \mathcal{R}(B^*)] \oplus \mathcal{N}(T_2)$ into $\mathcal{R}(A) \oplus [\mathcal{R}(T_1) \oplus \mathcal{R}(A)] \oplus \mathcal{N}(T_1^*) \oplus \mathcal{R}(B) \oplus [\mathcal{R}(T_2) \oplus \mathcal{R}(B)] \oplus \mathcal{N}(T_2^*)$, can be denoted as

where A_1 , B_1 is invertible, U_i (i = 1, 2, 4, 5) is isometry. One derives that

$$\mathcal{R}(M) = \mathcal{R}(A_1) \oplus \mathcal{R}(B_1) \oplus \mathcal{R}\left(\begin{pmatrix} C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} \right)$$
$$= \mathcal{R}(A) \oplus \mathcal{R}(B) \oplus \mathcal{R}((I - BB^{\dagger})C).$$

 $M = MT^*T$ if and only if

if and only if

$$\begin{pmatrix} C_{13} \\ C_{23} \\ C_{33} \end{pmatrix} = 0.$$
(11)

.

Note that

$$TM^* = \begin{pmatrix} U_1A_1^* \ 0 \ 0 \ U_1C_{11}^* \ U_1C_{21}^* \ U_1C_{31}^* \\ 0 \ 0 \ 0 \ U_2C_{12}^* \ U_2C_{22}^* \ U_2C_{32}^* \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ U_4B_1^* \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

Since A_1 and B_2 are invertible, and U_i (i = 1, 2, 4, 5) is isometry, one has

$$\begin{aligned} \mathcal{R}(TM^*) &= \mathcal{R}(U_1A_1^*) \oplus \mathcal{R}(\left(U_2C_{12}^* \ U_2C_{22}^* \ U_2C_{32}^*\right)) \oplus \mathcal{R}(U_4B_1^*) \\ &= \mathcal{R}(A) \oplus \mathcal{R}(\left(U_2C_{12}^* \ U_2C_{22}^* \ U_2C_{32}^*\right)) \oplus \mathcal{R}(B). \end{aligned}$$

Therefore,

$$\mathcal{R}(M) = \mathcal{R}(TM^*) \iff \begin{pmatrix} 0 & C_{12} & 0 \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = 0.$$
(12)

Hence,

M is *T*-EP
$$\iff$$
 (11) and (12) hold $\iff \begin{pmatrix} 0 & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = 0.$

Applying the representations of *A*, *B* and *C* in (10), one has $C_{i,j} = 0$, $1 \le i, j \le 3$ and $(i, j) \ne (1, 1) \iff P_{\mathcal{N}(B^*)}CA^* = 0$ and $CP_{\mathcal{N}(A)} = 0 \iff C = BXA$ for some $X \in \mathcal{B}(\mathcal{K}_1, \mathcal{H}_2)$. \Box

In [10, Lemma 1], R. E. Hartwig and I. J. Katz show that $\begin{pmatrix} A & 0 \\ C & B \end{pmatrix}$ is EP if and only if A and B are EP with closed range and $\mathcal{R}(CA^*) \subseteq \mathcal{R}(B)$ and $CP_{\mathcal{N}(A)} = 0$, i.e., C = BXA for some X. Theorem 3.6 generalizes this result to the T-EP case.

Statements and declarations

Conflict of interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Competing Interests. The authors have no relevant financial or non-financial interests to disclose.

Author Contributions. All authors contributed to the study conception and design. Material preparation and analysis were performed by [Yonghua Guo] and [Chunyuan Deng]. The first draft of the manuscript was written by [Xiaohui Li] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Data availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

REFERENCES

- M. L. ARIAS, G. CORACH, A. MAESTRIPIERI, Range additivity, shorted operator and the Sherman-Morrison-Woodbury formula, Linear Algebra Appl. 467 (2015) 86–99.
- [2] J. K. BAKSALARY, O. M. BAKSALARY, X. LIU, Further properties of the star, left-star, right-star, and minus partial orderings, Linear Algebra Appl. 375 (2003) 83–94.
- [3] S. L. CAMPBELL, C. D. MEYER, Generalized inverses of linear transformations, Pitman publishing limited, 1979.
- [4] C. DENG, H. DU, The reduced minimum modulus of Drazin inverses of linear operators on Hilbert spaces, Proc. Am. Math. Soc. 134 (2006) 3309–3317.
- [5] D. DJORDJEVIĆ, Products of EP operators on Hilbert spaces, Proc. Am. Math. Soc. 129 (2001) 1727–1731.
- [6] D. E. FERREYRA, S. B. MALIK, *Relative EP matrices*, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116 (2022) 69.
- [7] R. G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Springer Science & Business Media, 1998.
- [8] R. G. DOUGLAS, On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966) 413–416.
- [9] L. R. FILLMORE, J. P. WILLIAMS, On operator ranges, Adv. Math. 7 (1971) 254–281.
- [10] R. E. HARTWIG, I. J. KATZ, On products of EP matrices, Linear Algebra Appl. 252 (1997) 339–345.
- [11] M. KHADIVI, Range inclusion and the UUP property, J. Math. Anal. Appl. 160 (1991) 176–189.
- [12] M. KHADIVI, Range inclusion and operator equations, J. Math. Anal. Appl. 197 (1996) 630-633.
- [13] H. WANG, H. WU, X. LIU, The m-Core-EP inverse in Minkowski Space, B. Iran. Math. Soc. 48 (2022) 2577–2601.

- [14] A. E. TAYLAR, D. C. LAY, *Introduction to functional analysis* (second edition), John Wiley & sons, New York, Chichester, Brisbane, Toronto, 1980.
- [15] S. WANG, C. DENG, Certain Properties of Orthogonal Projections, B. Iran. Math. Soc. 47 (2021) 211–229.

(Received March 24, 2023)

Xiaohui Li School of Mathematics Science South China Normal University Guangzhou 510631, China e-mail: 834375631@gg.com

Yonghua Guo School of Mathematics and Statistics Guangxi Normal University Guilin 541006, China e-mail: yhguo@189.cn

> Chunyuan Deng School of Mathematics Science South China Normal University Guangzhou 510631, China e-mail: cydeng@scnu.edu.cn

Operators and Matrices www.ele-math.com oam@ele-math.com