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THE ESSENTIAL SPECTRUM EQUALITIES OF 2× 2

UNBOUNDED UPPER TRIANGULAR OPERATOR MATRICES

XINRAN LIU AND DEYU WU ∗

(Communicated by B. Jacob)

Abstract. Based on the space decomposition theory, the conditions for the essential spectrum
equalities

σ∗(T ) = σ∗(A)∪σ∗(D), (σ∗ = σ{e1, e2, e3, e4, e5, e6}),

for the diagonally dominant unbounded upper triangular block operator matrix T =
(

A B
0 D

)
are given, where the sets σe1(·) and σe2(·) denote the Gustafson and Weidmann essential spec-
trums, σe3(·) denotes Wolf essential spectrum, σe4(·) denotes the Schechter essential spectrum,
σe5(·) and σe6(·) denote the essential approximation point spectrum and the essential defect
spectrum, respectively.

1. Introduction

In the theoretical study of linear operators in Hilbert space, the block operator
matrix plays a crucial role, and widely appears in the study of many practical problems,
such as the problem of solving partial differential equations, fluid mechanics, elasticity
theory and quantum mechanics.

Consider the basic partial differential equations in [7]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂σx
∂x + ∂τxy

∂y + fx = 0,

∂σy
∂y + ∂τxy

∂x + fy = 0,

( ∂ 2

∂x2 + ∂ 2

∂y2 )(σx + σy)+ (1+ v)( ∂ fx
∂x + ∂ fy

∂y ) = 0,

(1)

where Ω be a striped region satisfying −h � x � h in the direction of x -axis. Intro-
ducing state functions

p =
∂σx

∂y
+

∂σy

∂y
, q =

∂σx

∂x
+

∂σy

∂x
.

Mathematics subject classification (2020): 47A53, 47A55.
Keywords and phrases: Upper triangular operator matrices, essential spectrums, Fredholm operators,

spectral equalities.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-17-70

1065

http://dx.doi.org/10.7153/oam-2023-17-70


1066 X. LIU AND D. WU

Then we have the equivalent form of (1)

∂
∂y

⎛
⎜⎜⎝

τxy

σy

p
q

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0 ∂
∂x 0 −1

− ∂
∂x 0 0 0
0 0 0 − ∂

∂x
0 0 ∂

∂x 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

τxy

σy

p
q

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

− fx
− fy

(1+ v)( ∂ fx
∂x + ∂ fy

∂y )
0

⎞
⎟⎟⎠ . (2)

Let X = L2(−h,h)×L2(−h,h) , A =
(

0 d
dx

− d
dx 0

)
, B =

(
0 −1
0 0

)
, D =

(
0 − d

dx
d
dx 0

)
.

Then the corresponding block operator matrix of (2) is

T =
(

A B
0 D

)
: D(A)×D(D)⊂ X ×X → X ×X ,

and it is a form of upper triangular operator matrix.
Therefore, it is very important to study the properties of the upper triangular block

operator matrix (see [10, 11, 15]). In [17], the sufficient and necessary conditions for
the spectral equality of the diagonally dominant upper triangular operator matrix were
given:

LEMMA 1. Let T =
(

A B
0 D

)
: D(A)×D(D)→X×X be a densely defined upper

triangular operator matrix, where A, D are densely defined closed and B is closable.
Then σ(T ) = σ(A)∪σ(D) if and only if (σr,1(A)∩σp,1(D))∪ (ρ(A)∩σp,1(D)) =
/0 or λ ∈ (σr,1(A)∩σp,1(D))∪ (ρ(A)∩σp,1(D)) satisfies one of the following:

(i) N(B)∩N(D−λ I) �= /0;
(ii) BN(D−λ I)∩R(A−λ I) �= {0};
(iii) BN(D−λ I)+R(A−λ I) �= X .

Moreover, as an important part of spectral theory, the essential spectrum of the
block operator matrices has also received extensive attention (see [1, 2, 3]).

In this paper, we will continue the investigation of the essential spectrums of the
diagonally dominant upper triangular block operator matrix, and several types of the
essential spectrum equalities are given.

Let X , Y be the infinite dimensional complex Hilbert spaces (see [5]). C (X ,Y )
is denoted as the set of all densely defined closed linear operators from X to Y , where
C (X ,X) is written as C (X) . B(X , Y ) and K (X , Y ) denote the subset of all bounded
linear operators from X to Y and the subset of all compact operators from X to Y
(see [9]), respectively. When T ∈ C (X ,Y ) , the symbols D(T ) , N(T ) , R(T ) , T ∗ ,
ρ(T ) , σ(T ) , n(T ) and d(T ) denote the domain, the null space, the range, the adjoint
operator of T , the resolvent set, the spectra, the dimension of N(T ) , the dimension of
the orthogonal complement of R(T ) , respectively.

The set of all upper semi-Fredholm operators (see [6]) are defined as

Φ+(X) := {T ∈ C (X) : α(T ) < ∞,R(T ) is closed in X}.
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The set of all lower semi-Fredholm operators (see [6]) are defined as

Φ−(X) := {T ∈ C (X) : β (T ) < ∞,R(T ) is closed in X}.
The sets of all Fredholm operators on X are defined as

Φ(X) := Φ+(X)∩Φ−(X).

i(T ) := α(T )−β (T ) denotes the index of linear operator. T is called Weyl operator
(see [12]), if T is a Fredholm operator with i(T ) = 0.

2. Preliminaries

DEFINITION 1. For T ∈ C (X) , the following types spectrums can be defined:

σe1(T ) = {λ ∈C : λ −T /∈ Φ+(X)},
σe2(T ) = {λ ∈C : λ −T /∈ Φ−(X)},
σe3(T ) = {λ ∈C : λ −T /∈ Φ(X)},
σe4(T ) = {λ ∈C : λ −T is not a Weyl operator},
σe5(T ) =

⋂
K∈K (X)

σap(T +K),

σe6(T ) =
⋂

K∈K (X)

σδ (T +K).

where
σap(T ) = {λ ∈C : inf

x∈D(T ),‖x‖=1
‖(λ −T)x‖ = 0},

σδ (T ) = {λ ∈C : λ −T is not surjective}.

LEMMA 2. (see [17]) Let T =
(

A B
0 D

)
: D(A)×D(D) → X ×X be diagonally

dominant and B be closable. Then T is closable (closed, respectively) if and only if
A, D are closable (closed, respectively).

LEMMA 3. (see [2,4]) If A∈Φ(X ,Y ) , then there exist A0 ∈B(X ,Y ) , F1 ∈B(X)
and F2 ∈ B(Y ) such that

A0A = I−F1 on D(A);

AA0 = I−F2 on Y.

LEMMA 4. (see [1,3]) Let A ∈ C (X ,Y ) . Suppose there exist operators A1, A2 ∈
B(X ,Y ) , K1 ∈ K (X) , K2 ∈ K (Y ) such that

A1A = I−K1 on D(A);
AA2 = I−K2 on Y.
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Then A ∈ Φ(X ,Y ).

LEMMA 5. (see [8]) Let T ∈ C (X , Y ) and let J : X → Y be a linear operator.
(i) If T ∈Φ(X , Y ) and J ∈K (X , Y ) , then T +J ∈Φ(X , Y ) and i(T +J)= i(T );
(ii) If T ∈ Φ+(X , Y ) and J ∈ K (X , Y ) , then T + J ∈ Φ+(X , Y ) and i(T + J) =

i(T );
(iii) If T ∈ Φ−(X , Y ) and J ∈ K (X , Y ) , then T +J ∈ Φ−(X , Y ) and i(T +J) =

i(T ).

LEMMA 6. (see [3, 14]) Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X be

a densely defined upper triangular operator matrix, where A, D are closed operators,
and B is a closable operator. Then

(i) n(A) � n(T ) � n(A)+n(D);
(ii) d(D) � d(T ) � d(A)+d(D).

LEMMA 7. (see [15]) Let T,S ∈ C (X , Y ) . Then T−1S is bounded if and only if
D(T ∗) ⊂ D(S∗) .

LEMMA 8. (see [8]) Let T ∈ C (X) . Then
(i) λ /∈ σe5(T ) if and only if λ I−T ∈ Φ+(X) and i(λ I−T ) � 0;
(ii) λ /∈ σe6(T ) if and only if λ I−T ∈ Φ−(X) and i(λ I−T ) � 0.

LEMMA 9. (see [4]) Let T =
(

A B
0 D

)
: D(A)×D(D)⊂ X ×X → X ×X , where

A, D are closed operators, B is a closable operator. Then
(i) If A, D ∈ Φ+(X) , then T ∈ Φ+(X);
(ii) If A, D ∈ Φ−(X) , then T ∈ Φ−(X).

REMARK 1. Obviously, Lemma 9 is not a necessary and sufficient relation. For
example, define linear operators Sr, Sl in Hilbert space X = l2[1, ∞]

Srx = (0, x1, x2, x3, · · ·),
Slx = (x2, x3, x4, · · ·),

where x = (x1, x2, x3, · · ·) ∈ X . Let

T =
(

Sr I−SrSl

0 Sl

)
.

It is easy to prove that T is a left semi-Fredholm operator, but Sl is not a left semi-
Fredholm operator.
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3. The essential spectrum equalities

THEOREM 1. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗) ⊂ D(B∗) , PR(λ I−A)⊥B|D(D) is

compact, where λ /∈ σe1(A) and PR(λ I−A)⊥ : X → R(λ I−A)⊥ is a orthogonal projec-
tion. Then

σe1(T ) = σe1(A)∪σe1(D).

Proof. By Lemma 9, the proof of σe1(T ) ⊆ σe1(A)∪σe1(D) is obvious.
Next, we will show that σe1(T )⊇ σe1(A)∪σe1(D) . Let λ /∈ σe1(T ) . By Lemma

3, there exists M ∈ B(X ×X), N ∈ K (X ×X) such that

M (λ I−T ) = I −N .

Let

M =
(

M1 M2

M3 M4

)
, N =

(
N1 N2

N3 N4

)
.

Then, M1(λ I −A) = I −N1 on D(A) , where M1 ∈ B(X) , and N1 ∈ K (X) , so λ /∈
σe1(A) by Lemma 4. And λ I−T can be decomposed into

λ I−T =

⎛
⎝ (λ I−A)1 0 B1

0 0 B2

0 0 λ I−D

⎞
⎠:

⎛
⎝N(λ I−A)⊥∩D(λ I−A)

N(λ I−A)
D(λ I−D)

⎞
⎠→

⎛
⎝ R(λ I−A)

R(λ I−A)⊥
X

⎞
⎠ .

Obviously, (λ I−A)1 = PR(λ I−A)(λ I−A)|N(λ I−A)⊥∩D(λ I−A) is invertible. Let

Q1 =

⎛
⎝ I 0 −(λ I−A)−1

1 B1

0 I 0
0 0 I

⎞
⎠ :

⎛
⎝N(λ I−A)⊥

N(λ I−A)
X

⎞
⎠→

⎛
⎝N(λ I−A)⊥

N(λ I−A)
X

⎞
⎠ .

Then,

(λ I−T )Q1 =

⎛
⎝ (λ I−A)1 0 0

0 0 B2

0 0 λ I−D

⎞
⎠

=

⎛
⎝ (λ I−A)1 0 0

0 0 0
0 0 λ I−D

⎞
⎠+

⎛
⎝0 0 0

0 0 B2

0 0 0

⎞
⎠ .

(3)

By given condition, B2 = PR(λ I−A)⊥B|D(D) is compact. So λ /∈ σe1(D) , i.e. λ /∈
σe1(A)∪σe1(D). �

However, considering whether R(λ I−A) is dense when λ /∈ σe1(A) , we have the
following remark:
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REMARK 2. Let T =
(

A B
0 D

)
: D(A)×D(D)⊂ X ×X → X ×X , where A, D is

closed, B is a closable operator, D(A∗) ⊂ D(B∗) and σp3(A) = σr1(A) = /0 . Then

σe1(T ) = σe1(A)∪σe1(D),

where σp3(T )= {λ ∈C : λ −T is not injective, R(λ I−T ) �= X , R(λ I−T) is not closed
in X}, σr1(T ) = {λ ∈C : λ −T is injective, R(λ I−T) �= X , R(λ I−T ) is closed in X}.

Proof. For λ /∈ σe1(A) and considering the condition in Theorem 1, we have
R(λ I−A) is closed. i.e.

λ ∈ ρ(A)∪σp1(A)∪σp3(A)∪σr1(A).

By given condition σp3(A) = σr1(A) = /0 , we have

R(λ I−A)⊥ = {0}, i.e. PR(λ I−A)⊥B|D(D) = 0.

So σe1(T ) = σe1(A)∪σe1(D). �

THEOREM 2. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗) ⊂ D(B∗) and B|N(λ I−D) is com-
pact operator on X , where λ /∈ σe2(D) . Then

σe2(T ) = σe2(A)∪σe2(D).

Proof. By Lemma 9, the proof of σe2(T ) ⊆ σe2(A)∪σe2(D) is obvious.
It suffices to show that σe2(T ) ⊇ σe2(A)∪σe2(D) . Let λ /∈ σe2(T ) . Then λ /∈

σe2(D) by Lemma 3 and Lemma 4. We can obtain

λ I−T =

⎛
⎝λ I−A B1 B2

0 (λ I−D)1 0
0 0 0

⎞
⎠:

⎛
⎝ D(λ I−A)

N(λ I−D)⊥∩D(λ I−D)
N(λ I−D)

⎞
⎠→

⎛
⎝ X

R(λ I−D)
R(λ I−D)⊥

⎞
⎠ .

Obviously, (λ I −D)1 = PR(λ I−D)(λ I−D)|N(λ I−D)⊥∩D(λ I−D) are invertible. There ex-
ists Q2 ,

Q2(λ I−T ) =

⎛
⎝λ I−A 0 B2

0 (λ I−D)1 0
0 0 0

⎞
⎠

=

⎛
⎝λ I−A 0 0

0 (λ I−D)1 0
0 0 0

⎞
⎠+

⎛
⎝0 0 B2

0 0 0
0 0 0

⎞
⎠ .

(4)

By given condition, B2 is compact. Similar to the proof process of Theorem 1, λ /∈
σe2(A) , i.e. λ /∈ σe2(A)∪σe2(D). �

Same as remark 2, considering whether λ I−D is injective when λ /∈ σe2(D) , we
have
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REMARK 3. Let T =
(

A B
0 D

)
: D(A)×D(D)⊂ X ×X → X ×X , where A, D is

closed, B is a closable operator, D(A∗) ⊂ D(B∗) , σp1(D) = σp3(D) = /0 . Then

σe2(T ) = σe2(A)∪σe2(D),

where σp1(T ) = {λ ∈C : λ −T is not injective and R(λ I−T ) = X} .

THEOREM 3. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗)⊂D(B∗) and PR(λ I−A)⊥B|N(λ I−D)
is compact, where λ /∈ σe1(A)∪σe2(D) . Then

σe3(T ) = σe3(A)∪σe3(D).

Proof. By Lemma 9, the proof of σe3(T ) ⊆ σe3(A)∪σe3(D) is obvious.
It suffices to show that σe3(T ) ⊇ σe3(A)∪σe3(D) .
Let λ /∈ σe3(T ) . Then λ /∈ σe1(A)∪σe2(D) by Lemma 3 and Lemma 4. And

λ I−T can be decomposed into

λ I−T =

⎛
⎜⎜⎝

Dλ 0 B1 B2

0 0 B3 B4

0 0 Dλ 0
0 0 0 0

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

N(λ I−A)⊥∩D(λ I−A)
N(λ I−A)

N(λ I−D)⊥∩D(λ I−D)
N(λ I−D)

⎞
⎟⎟⎠

→

⎛
⎜⎜⎝

R(λ I−A)
R(λ I−A)⊥
R(λ I−D)
R(λ I−D)⊥

⎞
⎟⎟⎠ .

Obviously, Aλ = PR(λ I−A)(λ I−A)|N(λ I−A)⊥∩D(λ I−A) and
Dλ = PR(λ I−D)(λ I−D)|N(λ I−D)⊥∩D(λ I−D) are invertible. Let

Q3 =

⎛
⎝ I 0 Aλ B1 −A−1

λ B2

0 I 0 0
0 0 0 I

⎞
⎠ :

⎛
⎜⎜⎝

N(λ I−A)⊥
N(λ I−A)

N(λ I−D)⊥
N(λ I−D)

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

N(λ I−A)⊥
N(λ I−A)

N(λ I−D)⊥
N(λ I−D)

⎞
⎟⎟⎠ .

Q4 =

⎛
⎝ I 0 0 0

0 I −B3D
−1
λ 0

0 0 0 I

⎞
⎠ :

⎛
⎜⎜⎝

R(λ I−A)
R(λ I−A)⊥
R(λ I−D)
R(λ I−D)⊥

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

R(λ I−A)
R(λ I−A)⊥
R(λ I−D)
R(λ I−D)⊥

⎞
⎟⎟⎠ .

Then

Q4(λ I−T )Q3 =

⎛
⎜⎜⎝

Aλ 0 0 0
0 0 0 B4

0 0 Dλ 0
0 0 0 0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

Aλ 0 0
0 0 0 0
0 0 Dλ 0
0 0 0 0

⎞
⎟⎟⎠+

⎛
⎝0 0 0 0

0 0 0 B4

0 0 0 0

⎞
⎠ . (5)
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By given condition, B4 = PR(λ I−A)⊥B|N(λ I−D) is compact. So λ /∈ σe2(A)∪σe1(D) , i.e.
λ /∈ σe3(A)∪σe3(D). �

REMARK 4. Let T =
(

A B
0 D

)
: D(A)×D(D)⊂ X ×X → X ×X , where A, D is

closed, B is a closable operator and D(A∗)⊂D(B∗) . If one of the following conditions
is satisfied:

(i) σp3(A) = σr1(A) = /0 ;
(ii)σp1(D) = σp3(D) = /0 .
Then,

σe3(T ) = σe3(A)∪σe3(D).

REMARK 5. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗) ⊂ D(B∗) .
(i) If PR(A)⊥B|D(D) is compact, then T ∈ Φ+(X) if and only if A ∈ Φ+(X) and

D ∈ Φ+(X) .
(ii) If B|N(D) is compact on X , then T ∈Φ−(X) if and only if A∈Φ−(X) and D∈

Φ−(X) .
(iii) If PR(A)⊥B|N(D) is compact, then T ∈ Φ(X) if and only if A∈ Φ(X) and D ∈

Φ(X) .

THEOREM 4. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗) ⊂ D(B∗) , PR(λ I−A)⊥B|N(λ I−D) is
compact and i(λ I−A)i(λ I−D) � 0 , where λ /∈ σe1(A)∪σe2(D) . Then

σe4(T ) = σe4(A)∪σe4(D).

Proof. Let λ /∈ σe4(A)∪σe4(D) . Then by Lemma 5 and Theorem 3, we have
λ I−T ∈ Φ(X) and

i(λ I−T ) = i(λ I−A)+ i(λ I−D) = 0.

Therefore, λ /∈ σe4(T ) .
On the other hand, let λ /∈σe4(T ) , by formula (5) of Theorem 3, λ I−A and λ I−

D are Fredholm operators, and

i(λ I−A)+ i(λ I−D) = i(λ I−T ) = 0.

By given condition i(λ I−A)i(λ I−D) � 0, it is easy to prove

i(λ I−A) = i(λ I−D) = 0.

i.e. λ /∈ σe4(A)∪σe4(D) . �
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REMARK 6. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where D is

closed, B is a closable operator, D(A∗) ⊂ D(B∗) . If one of the following conditions is
satisfied:

(i)σp1(A) = σp3(A) = σr1(A) = /0 ;
(ii)σp1(D) = σp3(D) = σr1(D) = /0 .
Then,

σe4(T ) = σe4(A)∪σe4(D).

Proof. We only prove the case of condition (i). Let λ /∈ σe1(A)∪σe2(D) , consid-
ering the condition in Theorem 4, R(λ I−A), R(λ I−D) are closed. i.e.

λ ∈ ρ(A)∪σp1(A)∪σp3(A)∪σr1(A)∪ρ(D)∪σp1(D)∪σp3(D)∪σr1(D).

Then, we have
R(λ I−A)⊥ = {0}, N(λ I−A) = {0},

i.e.
PR(λ I−A)⊥B|D(D) = 0, i(λ I−A) = 0.

So σe4(T ) = σe4(A)∪σe4(D). �

THEOREM 5. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗) ⊂ D(B∗) , PR(λ I−A)⊥B|D(D) is
compact and i(λ I−A)i(λ I−D) � 0 , where λ /∈ σe1(A) . Then

σe5(T ) = σe5(A)∪σe5(D).

Proof. Let λ /∈ σe5(A)∪σe5(D) . Then by lemma 8, we have

λ I−A,λ I−D ∈ Φ+(X), i(λ I−A) � 0, i(λ I−D) � 0.

And by Lemma 5 and Lemma 9, we can obtain

λ I−T ∈ Φ+(X), i(λ I−T ) = i(λ I−A)+ i(λ I−D) � 0,

i.e. λ /∈ σe5(T ) .
Conversely, let λ /∈ σe5(T ) . By formula (3) of Theorem 1, λ I −A and λ I −

D are upper semi-Fredholm operators, and

i(λ I−A)+ i(λ I−D) = i(λ I−T ) � 0.

By given condition i(λ I−A)i(λ I−D) � 0, it is easy to prove that

i(λ I−A) � 0, i(λ I−D) � 0.

Therefore, λ /∈ σe5(A)∪σe5(D) . �
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REMARK 7. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where D is

closed, B is a closable operator, D(A) ⊂ D(B∗) and σp1(A) = σp3(A) = σr1(A) = /0 .
Then

σe5(T ) = σe5(A)∪σe5(D),

THEOREM 6. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X ×X → X ×X , where A, D

are closed operators, B is a closable operator, D(A∗)⊂ D(B∗) , B|N((λ I−D) is compact
operator on X and i(λ I−A)i(λ I−D) � 0 , where λ /∈ σe2(D) . Then

σe6(T ) = σe6(A)∪σe6(D).

Proof. The proof process of Theorem 6 is similar to Theorem 5. �

REMARK 8. Let T =
(

A B
0 D

)
: D(A)×D(D) ⊂ X × X → X ×X , where A is

closed, B is a closable operator, D(A∗) ⊂ D(B∗) and σp1(D) = σp3(D) = σr1(D) = /0 .
Then

σe6(T ) = σe6(A)∪σe6(D).

4. Application

As applications of the main results, we shall characterize various essential spec-
trums of the upper-triangular infinite-dimensional Hamiltonian operators.

COROLLARY 1. Let H =
(

A B
0 −A∗

)
: D(A)×D(A∗) ⊂ X ×X → X ×X be an

upper triangular infinite dimensional Hamiltonian operator, PR(A)⊥B|D(A∗) is compact.
Then H is a Fredholm operator if and only if A is a Fredholm operator.

COROLLARY 2. Let H =
(

A B
0 −A∗

)
: D(A)×D(A∗) ⊂ X ×X → X ×X be an

upper triangular infinite dimensional Hamiltonian operator, PR(A)⊥B|D(A∗) is compact
and i(A)i(A∗) � 0 . Then H is a Weyl operator if and only if A is a Weyl operator.

Now we will give an example to illustrate the validity of the main results.

EXAMPLE 1. [18] Consider the boundary value problem of the plate bending
equation: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
D( ∂ 2

∂x2 + ∂ 2

∂y2 )2w = 0, 0 < x < h, 0 < y < 1;

w(x,0) = u(x,1) = 0, 0 � x � h;

∂ 2w
∂x2 + ∂ 2w

∂y2 = 0, y = 0 or y = 1.
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Let

θ =
∂w
∂x

, q = D

(
∂ 3w
∂x3 +

∂ 3w
∂xy2

)
, m = −D

(
∂ 2w
∂x2 +

∂ 2w
∂y2

)
.

Here q is the Lagrangian parameter function, and m is the bending moment. Using the
multivariate polynomial with remainder division of the matrix, the Hamilton canonical
equation can be obtained

∂
∂x

⎛
⎜⎜⎝

w
θ
q
m

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝

0 I 0 0

− ∂ 2

∂y2 0 0 − I
D

0 0 0 ∂ 2

∂y2

0 0 −I 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

w
θ
q
m

⎞
⎟⎟⎠ .

Let Y = L2[0,1]×L2[0,1] . Then the corresponding infinite-dimensional Hamiltonian
operator is

H =
(

A B
0 −A∗

)
: D(A)×D(A∗) ⊂ Y ×Y,

where

A =

(
0 I

− d2

dy2 0

)
, B =

(
0 0
0 − I

D

)
,

D(A) =
{(w

θ

)
∈ X : w′ absolutely continuous, w(0) = w(1) = 0, w′, w′′ ∈ X

}
.

Obviously, A =

(
0 I

− d2

dy2 0

)
is invertible, so PR(A)⊥B|N(A∗) = 0, i.e. it is compact

and i(A) = i(−A∗) = 0.
By Theorem 1−6, we have

σei(H ) = σei(A)∪σei(−A∗) = /0, (i = 1, · · · ,6).

On the other hand,

σ(A) = σ(−A∗) = σp(A) = {kπ : k = ±1, ±2, · · ·}.

Thus, σr,1(A) = /0 , and so

σ(H ) = {kπ : k = ±1, ±2, · · ·}.

Then, σei(A) = σei(−A∗) = σei(H ) = /0,(i = 1, · · · ,6), and

σei(H ) = σei(A)∪σei(−A∗) = /0, (i = 1, · · · ,6).
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