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COMPOSITION OPERATORS AND THE CLOSURE OF

DIRICHLET–MORREY SPACES IN THE BLOCH SPACE

MAO XIAO, JUNMING LIU ∗ AND YUTIAN WU

(Communicated by E. Fricain)

Abstract. In this paper, we characterize the closure of the Dirichlet-Morrey spaces in the Bloch
space by higher-order derivatives. Moreover, the boundedness and compactness of the products
of composition and differentiation operators from the Bloch space to the closure of the Dirichlet-
Morrey spaces in the Bloch space are investigated. A criterion for an interpolating Blaschke
product to be in the closures is given.

1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the space of
analytic functions on D . For 0 < p < ∞ , Hp denotes the Hardy space, consisting of
all functions f ∈ H(D) for which

‖ f‖p
Hp = sup

0<r<1

1
2π

∫ 2π

0
| f (reiθ )|pdθ < ∞.

As usual H∞ denotes the space of bounded analytic functions in D .
For 0 < α < ∞ , the Bloch type space Bα consists of all f ∈ H(D) such that

‖ f‖Bα = | f (0)|+ sup
z∈D

(1−|z|2)α | f ′(z)| < ∞.

It is a Banach space with the above norm ‖ · ‖Bα . When α = 1, then the space Bα is
the classical Bloch space B . It is well known that H∞ is a subset of the Bloch space.
Let n be a positive integer. From [27, p. 1149], we see that ‖ f‖Bα is equivalent to

‖ f‖Bα ,n = | f (0)|+ | f ′(0)|+ · · ·+ | f (n−1)(0)|+ sup
z∈D

(1−|z|2)α+n−1| f (n)(z)|.

The little Bloch type space Bα
0 consists of all f ∈ H(D) with

lim
|z|→1

(1−|z|2)α | f ′(z)| = 0.
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It is easy to see that the little Bloch type space Bα
0 is the subspace of Bα . We refer to

[27] for more results on Bloch type spaces.
Let I be an arc of ∂D and |I| be the normalized Lebesgue arc length of I . The

Carlenson box based on I , denoted by S(I) , is defined by

S(I) = {z = reiθ ∈ D : 1−|I|� r < 1,eiθ ∈ I}.

Let μ be a nonnegative measure on D . For 0 < α < ∞ , μ is said to be an α -Carleson
measure if

sup
I⊂∂D

μ(S(I))
|I|α < ∞.

If μ is an α -Carleson measure and lim|I|→0
μ(S(I))
|I|α = 0, then μ is called a vanishing

α -Carleson measure.
For 0 < p < ∞ , −2 < q < ∞ , 0 � s < ∞ and −1 < q + s < ∞ , recall that the

general family of function spaces F(p,q,s) consists of those f ∈ H(D) such that

‖ f‖p
F(p,q,s) = sup

a∈D

∫
D
| f ′(z)|p(1−|z|2)q(1−|σa(z)|2)sdA(z) < ∞,

where dA is the normalized Lebesgue area measure on D .
For 0 � p < ∞ , the weighted Dirichlet space Dp consists of functions f ∈ H(D)

for which

‖ f‖Dp = | f (0)|+
(∫

D
| f ′(z)|2(1−|z|2)pdA(z)

)1/2

< ∞.

For 0 � p,λ � 1, the Dirichlet-Morrey space Dλ
p consists of those functions f ∈

H(D) such that

‖ f‖Dλ
p

= | f (0)|+ sup
a∈D

(1−|a|2) p(1−λ)
2 ‖ f ◦σa− f (a)‖Dp < ∞,

where σa = a−z
1−az , is the Möbius transformation of D . It is known that Dλ

p is a Banach

space with the above norm ‖ ·‖Dλ
p
. When p = 1, Dλ

p is the Morrey space L2,λ , which

was studied in [13, 14]. Moreover,

BMOA � L2,λ � H2, 0 < λ < 1.

When λ = 0 or λ = 1, Dλ
p reduces to Dp and Qp , respectively. Moreover,

Qp � Dλ
p � Dp, 0 < λ < 1.

By [10, Proposition 2.1], the norm of functions f ∈ Dλ
p (D) can be defined as follow

‖ f‖Dλ
p

= | f (0)|+ sup
I⊂∂D

√
1

|I|pλ

∫
S(I)

| f ′(z)|2(1−|z|2)pdA(z). (1)
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Let n be a nonnegative integer. Denote by Dn the n-order differential operator. Namely
Dn f = f (n) for f ∈ H(D) . Let ϕ be an analytic self-map of D . The products of
composition operators and n-order differential operators CϕDn are defined by

(CϕDn f )(z) = f (n)(ϕ(z)), f ∈ H(D).

If n = 0, we get the composition operator Cϕ . The products of composition operators
and differential operators have been studied on some analytic function spaces (see [15,
16, 33, 34]).

Let X and Y be two Banach spaces of analytic functions. For simplicity, the clo-
sure of X ∩Y in the norm of Y is denoted by CY (X ∩Y ) . In [1], Anderson, Clunie
and Pommerenke posed the follwing problem: what is the closure of H∞ in the Bloch
norm? This problem remains open to this date. Recently, Zhao [31] studied the closures
of some Möbius invariant spaces in the Bloch space. Aulaskari and Zhao [2] charac-
terized composition operators from the Bloch space to the closures of some Möbius
invariant spaces in the Bloch space. Bao and Göğüş [3] investigated the closure of
Dirichlet type spaces Ds(−1 < s � 1) in the Bloch space. Hu and Zhu [12] studied the
closure of Morrey space in the Bloch space. See [4, 9, 17, 18, 20, 21, 29, 30] for some
related results.

It is well known that for 0 < p < 1,

D � Qp � BMOA ⊆ B.

Hence,
CB(Qp) ⊆ CB(Dλ

p ∩B)⊆ CB(Dp ∩B).

From [3], we see that a Bloch function f is in CB(Ds ∩B) , −1 < s � 1 if and
only if for any ε > 0, ∫

Ωε ( f )
(1−|z|2)s−2dA(z) < ∞,

where
Ωε( f ) = {z ∈ D : (1−|z|2)| f ′(z)| � ε}.

It is also know that F(2,0,s)= Qs . From [2] and [31], we see that a Bloch function
f is in CB(Qs) , 0 < s � 1 if and only if for any ε > 0,

sup
a∈D

∫
Ωε ( f )

(1−|σa(z)|2)s(1−|z|2)−2dA(z) < ∞,

where
Ωε( f ) = {z ∈ D : (1−|z|2)| f ′(z)| � ε}.

According to the above, it is natural to ask what are the necessary and sufficient
conditions for a Bloch function f is in CB(Dλ

p ∩B)?
The purpose of this paper is to characterize CB(Dλ

p ∩B) . In [29], Zhang char-
acterized the boundedness and compactness of the operator CϕDn from Bα(Bα

0 ) to
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CBβ (Ap
ω ∩Bβ ) . Sun et al. [25] studied the boundedness and compactness of the opera-

tor CϕDn from B(B0) to CB(F(p, p−2,s)) . In this work, we will characterize the the
boundedness and compactness of the operator CϕDn from B(B0) to CB(Dλ

p ∩B) .
The rest of this paper is organized as follows: In Section 2, we characterize the

closure of the Dirichlet-Morrey spaces in the Bloch space by higher-order derivatives.
In Section 3, we give the characterization of boundedness and compactness of the prod-
ucts of composition and n-th differentiation operators. In Section 4, a criterion for an
interpolating Blaschke product to be in CB(Dλ

p ∩B) is obtained.
Throughout this paper, we say that A � B if there exists a constant C such that

A � CB . The symbol A ≈ B means that A � B � A .

2. Characterization of CB(Dλ
p ∩B)

To state and prove our results in this paper, we need an estimate, which can be
found in [28].

LEMMA 2.1. Let s > 0 and t > −1 . Then there exists a positive costant C such
that ∫

D

(1−|ω |2)t
|1− zω |2+t+s dA(ω) � C

(1−|z|2)s .

The following lemma, quoted from Lemma 1 in [32], is an extension of Lemma
2.1. See also [19].

LEMMA 2.2. Let s > −1, r,t > 0 and r + t− s > 2 . If t < s+ t < r , then there
exists a positive costant C such that

∫
D

(1−|η |2)s

|1−ηz|r|1−ηξ |t dA(η) � C

(1−|z|2)r−s−2|1− ξz|t .

The follow lemma is Lemma 3.1.1 in [26].

LEMMA 2.3. Let α,t ∈ (0,∞) and a nonnegative measure μ on D . The μ is a
α -Carleson measure if and only if

sup
a∈D

∫
D

(1−|a|2)t
|1−az|α+t dμ(z) < ∞.

LEMMA 2.4. Let 0 < p,λ < 1 . Then f ∈ Dλ
p if and only if

sup
a∈D

∫
D
| f ′(z)|2(1−|z|2)p(1−λ )(1−|σa(z)|2)pλ dA(z) < ∞.

Moreover,

‖ f‖Dλ
p
≈ | f (0)|+

(
sup
a∈D

∫
D
| f ′(z)|2(1−|z|2)p(1−λ )(1−|σa(z)|2)pλ dA(z)

)1/2

.
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Proof. Denote

dμ(z) = | f ′(z)|2(1−|z|2)pdA(z).

Then, from (1) we have that f ∈ Dλ
p if and only if dμ is a pλ -Carleson measure.

Hence, by Lemma 2.3, we get that f ∈ Dλ
p if and only if

sup
a∈D

∫
D

(1−|a|2)t
|1−az|pλ+t

dμ(z)

= sup
a∈D

∫
D

(1−|a|2)t
|1−az|pλ+t

| f ′(z)|2(1−|z|2)pdA(z)

<∞.

Let t = pλ , we get the desired that. �

The following Theorem A (see [22] and [23]) is the characterizations of F(p,q,s)
spaces using higher order derivatives:

THEOREM A. Let f be analytic on D . Let 0 < p < ∞ , −2 < q < ∞ , 0 < s < ∞ .
Let n∈N and q+s>−1 , or n = 0 and q+s− p>−1 . Then the following statements
are equivalent:

(i) f ∈ F(p,q,s);
(ii) sup

a∈D

∫
D | f (n)(z)|p(1−|z|2)np−p+q(1−|σa(z)|2)sdA(z) < ∞;

(iii) sup
a∈D

∫
D | f (n)(z)|p(1−|z|2)np−p+qgs(z,a)dA(z) < ∞;

(iv) dμ(z) = | f (n)(z)|p(1−|z|2)np−p+q+sdA(z) is a bounded s-Carleson measure.

REMARK 2.5. Note that F(2, p(1−λ ), pλ ) = Dλ
p for 0 < p,λ < 1. From the

theorem above, it is easy to see that the following statements are equivalent:
(i) f ∈ Dλ

p ;

(ii) sup
a∈D

∫
D | f (n)(z)|2(1−|z|2)p(1−λ )+2n−2(1−|σa(z)|2)pλ dA(z) < ∞ ;

(iii) dμ(z) = | f (n)(z)|2(1−|z|2)p+2n−2dA(z) is a bounded pλ -Carleson measure.

THEOREM 2.6. Let 0 < p,λ < 1 and let n be a positive integer. Suppose f ∈ B .
Then f ∈ CB(Dλ

p ∩B) if and only if for any ε > 0 ,

sup
a∈D

∫
Ωn,ε ( f )

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞. (2)

where

Ωn,ε( f ) = {z ∈ D : (1−|z|2)n| f (n)(z)| � ε}.
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Proof. Take f ∈ CB(Dλ
p ∩B) and ε > 0. Then there exists a g ∈ Dλ

p ∩B such
that ‖ f −g‖B,n � ε

2 . Since

(1−|z|2)n| f (n)(z)| � sup
ω∈D

(1−|ω |2)n| f (n)(ω)−g(n)(ω)|+(1−|z|2)n|g(n)(z)|

� ε
2

+(1−|z|2)n|g(n)(z)|, z ∈ D.

We have Ωn,ε( f ) ⊆ Ωn, ε
2
(g) . Consequently,

sup
a∈D

∫
Ωn,ε ( f )

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�sup
a∈D

∫
Ωn, ε

2
(g)

(1−|σa(z)|2)pλ (1−|z|2)2n−pλ |g(n)(z)|2
(1−|z|2)2n|g(n)(z)|2

dA(z)
(1−|z|2)2−p

� 4
ε2 sup

a∈D

∫
D
|g(n)(z)|2(1−|z|2)p(1−λ )+2n−2(1−|σa(z)|2)pλ dA(z).

Since g ∈ Dλ
p , by Remark 2.5, we have

sup
a∈D

∫
D
|g(n)(z)|2(1−|z|2)p(1−λ )+2n−2(1−|σa(z)|2)pλ dA(z) < ∞.

Hence,

sup
a∈D

∫
Ωn,ε ( f )

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞.

Conversely, suppose that (2) holds. Fix ε > 0 and let f satisfy (2). Since CB(Dλ
p ∩

B) is a linear space containing all polynomials, the function

f (z) =
∞

∑
k=0

f k(0)
k!

zk ∈ CB(Dλ
p ∩B)

if and only if

∞

∑
k=n

f k(0)
k!

zk ∈ CB(Dλ
p ∩B).

Without loss of gennerality, we may assume that

f (0) = f ′(0) = · · · = f (n−1)(0) = 0.

For any z ∈ D , by Proposition 4.27 in [28],

f (z) =
1

(β +2) · · · (β +n)

∫
D

f (n)(ω)(1−|ω |2)n+β

(1− zω)2+β ωn dA(ω),
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where β > −1. Following [31], we set f (z) = f1(z)+ f2(z) , where

f1(z) =
1

(β +2) · · · (β +n)

∫
Ωn,ε ( f )

f (n)(ω)(1−|ω |2)n+β

(1− zω)2+β ωn dA(ω)

and

f2(z) =
1

(β +2) · · · (β +n)

∫
D\Ωn,ε ( f )

f (n)(ω)(1−|ω |2)n+β

(1− zω)2+β ωn dA(ω).

After a calculation, we get

f (n)
1 (z) = (β +n+1)

∫
Ωn,ε ( f )

f (n)(ω)(1−|ω |2)n+β

(1− zω)n+2+β dA(ω)

and

f (n)
2 (z) = (β +n+1)

∫
D\Ωn,ε ( f )

f (n)(ω)(1−|ω |2)n+β

(1− zω)n+2+β dA(ω).

Let

h(z) = f1(z)−
n−1

∑
k=0

f k
1 (0)
k!

zk.

Then h(0) = h′(0) = · · · = h(n−1)(0) = 0 and ( f −h)(n)(z) = f (n)
2 (z) .

Combining the above facts with Lemma 2.1, we obtain

‖ f −h‖B,n = sup
z∈D

(1−|z|2)n| f (n)
2 (z)|

� sup
z∈D

(1−|z|2)n
∫

D\Ωn,ε ( f )

| f (n)(ω)|(1−|ω |2)n+β

(1− zω)n+2+β dA(ω)

� ε sup
z∈D

(1−|z|2)n
∫

D

(1−|ω |2)β

(1− zω)n+2+β dA(ω) � ε.

Hence h ∈ B . Using Fubini theorem and Lemma 2.2, we obtain

sup
a∈D

∫
D
|h(n)(z)|2(1−|z|2)p(1−λ )+2n−2(1−|σa(z)|2)pλ dA(z)

=sup
a∈D

∫
D
| f (n)

1 (z)|2(1−|z|2)p(1−λ )+2n−2(1−|σa(z)|2)pλ dA(z)

�‖ f1‖B,n sup
a∈D

∫
D
| f (n)

1 (z)| 1
(1−|z|2)n (1−|z|2)p(1−λ )+2n−2(1−|σa(z)|2)pλ dA(z)

�‖ f1‖B,n sup
a∈D

∫
D
(1−|σa(z)|2)pλ (1−|z|2)p(1−λ )+n−2

×
(∫

Ωn,ε ( f )

| f (n)(ω)|(1−|ω |2)n+β

(1− zω)n+2+β dA(ω)

)
dA(z)
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�sup
a∈D

∫
Ωn,ε ( f )

| f (n)(ω)|(1−|ω |2)n+β

×
(∫

D

(1−|z|2)p(1−λ )+n−2(1−|σa(z)|2)pλ

|1− zω|n+2+β dA(z)

)
dA(ω)

�sup
a∈D

∫
Ωn,ε ( f )

(1−|ω |2)β (1−|a|2)pλ
(∫

D

(1−|z|2)p+n−2

|1− zω |n+2+β |1− za|2pλ dA(z)
)

dA(ω)

�sup
a∈D

∫
Ωn,ε ( f )

(
1−|σa(ω)|2

1−|ω |2
)pλ

dA(ω)
(1−|ω |2)2−p < ∞,

that is, h ∈ Dλ
p . Thus for any ε > 0, there exists a function h ∈ Dλ

p ∩B such that

‖ f −g‖B,n � ε , i.e., f ∈ CB(Dλ
p ∩B) . The proof is complete. �

3. The boundedness and compactness of the operator CϕDn

In this section, we characterize the boundedness and compactness of the operator
CϕDn : B(B0) →CB(Dλ

p ∩B) and on CB(Dλ
p ∩B) .

THEOREM 3.1. Let ϕ be an analytic self-map of D and let n be a nonnegative
integer. Suppose that 0 < p,λ < 1 . Then CϕDn : B → CB(Dλ

p ∩B) is bounded if and
only if for any ε > 0 ,

sup
a∈D

∫
Γε (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞, (3)

where Γε(ϕ) = {z ∈ D : (1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| � ε} .

Proof. Assume that CϕDn : B → CB(Dλ
p ∩B) is bounded. From [24], we see that

exists two functions f1, f2 ∈ B such that

| f (n+1)
1 (z)|+ | f (n+1)

2 (z)| � C
(1−|z|2)n+1 .

By the boundedness of CϕDn , we get f (n)
1 ◦ϕ , f (n)

2 ◦ϕ ∈ CB(Dλ
p ∩B) . Hence, Theorem

2.6 implies that, for any ε > 0,

sup
a∈D

∫
Ω ε

2
( f (n)

1 ◦ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞

and

sup
a∈D

∫
Ω ε

2
( f

(n)
2 ◦ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞.
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When z ∈ Γε(ϕ) , we get

(|( f (n)
1 ◦ϕ)′(z)|+ |( f (n)

2 ◦ϕ)′(z)|)(1−|z|2)
=(| f (n+1)

1 (ϕ(z))|+ | f (n+1)
2 (ϕ(z))|)|ϕ ′(z)|(1−|z|2)

� (1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| � ε,

which implies that either

|( f (n)
1 ◦ϕ)′(z)|(1−|z|2) � ε

2
or

|( f (n)
2 ◦ϕ)′(z)|(1−|z|2) � ε

2
.

Hence

sup
a∈D

∫
Γε (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�sup
a∈D

∫
Ω ε

2
( f

(n)
1 ◦ϕ)∪Ω ε

2
( f

(n)
2 ◦ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�sup
a∈D

∫
Ω ε

2
( f

(n)
1 ◦ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

+ sup
a∈D

∫
Ω ε

2
( f (n)

2 ◦ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

<∞.

Conversely, suppose that (3) holds. Let f ∈ B . Then

|(CϕDn f )′(z)|(1−|z|2) =| f (n+1)(ϕ(z))|(1−|ϕ(z)|2)n+1 (1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)|

�‖ f‖B,n+1
(1−|z|2)

(1−|ϕ(z)|2)n+1 |ϕ ′(z)|.

Therefore, for any δ > 0, if |(CϕDn f )′(z)|(1−|z|2) > δ , we have that

(1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| � δ

‖ f‖B,n+1
= ε.

Hence,

sup
a∈D

∫
Ωδ (Cϕ Dn f )

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�sup
a∈D

∫
Γε (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞.
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From Theorem 2.6, we have

CϕDn f ∈ CB(Dλ
p ∩B),

i.e., CϕDn : B → CB(Dλ
p ∩B) is bounded. The proof is complete. �

THEOREM 3.2. Let ϕ be an analytic self-map of D and let n be a nonnegative
integer. Suppose that 0 < p,λ < 1 . Then CϕDn : B0 →CB(Dλ

p ∩B) is bounded if and

only if ϕ ∈ CB(Dλ
p ∩B) and

sup
z∈D

(1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| < ∞. (4)

Proof. Suppose ϕ ∈ CB(Dλ
p ∩B) and

K := sup
z∈D

(1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| < ∞.

Let f ∈ B . For any ε > 0, there is a constant r(0 < r < 1) such that

| f (n)(z)|(1−|z|2)n <
ε
K

,

whenever |z| > r . Let z ∈ Ωε(CϕDn) . Then, by the assumed condition, we have

ε � | f (n+1)(ϕ(z))||ϕ ′(z)|(1−|z|2)

� | f (n+1)(ϕ(z))|(1−|ϕ(z)|2)n+1 (1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)|

� K| f (n+1)(ϕ(z))|(1−|ϕ(z)|2)n+1,

which implies that |ϕ(z)| < r . Thus,

ε � | f (n+1)(ϕ(z))||ϕ ′(z)|(1−|z|2)

� ‖ f‖B,n+1
(1−|z|2)

(1−|ϕ(z)|2)n+1 |ϕ ′(z)|

� ‖ f‖B,n+1

(1− r2)n+1 (1−|z|2)|ϕ ′(z)|.

Let δ = ε(1−r2)n+1

‖ f‖B,n+1
. Then (1−|z|2)|ϕ ′(z)| � δ . Hence, Ωε(CϕDn f ) ⊆ Ωδ (ϕ) . Since

ϕ ∈ CB(Dλ
p ∩B) , by Theorem 2.6 we get

sup
a∈D

∫
Ωε (Cϕ Dn f )

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�sup
a∈D

∫
Ωδ (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

<∞.
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By Theorem 2.6, we see that CϕDn f ∈ CB(Dλ
p ∩B) . Hence, CϕDn : B0 →CB(Dλ

p ∩B)
is bounded.

Conversely, suppose that CϕDn : B0 → CB(Dλ
p ∩ B) is bounded. Noting that

fn(z) = zn+1/(n+1)!∈ B , we have

ϕ = CϕDn( fn) ∈ CB(Dλ
p ∩B).

Since CB(Dλ
p ∩B) is a subspace of B and CϕDn : B0 →CB(Dλ

p ∩B) is bounded, then
CϕDn : B0 →B is bounded. It is easy to see (4) holds according to [34, Theorem 2.1]
with α = β = 1. The proof is complete. �

THEOREM 3.3. Let ϕ be an analytic self-map of D and let n be a nonnegative
integer. Suppose that 0 < p,λ < 1 . Then the following statements are equivalent.

(i) CϕDn : B → CB(Dλ
p ∩B) is compact;

(ii) CϕDn : B0 →CB(Dλ
p ∩B) is compact;

(iii) ϕ ∈ CB(Dλ
p ∩B) and

lim
|ϕ(z)|→1

(1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| = 0. (5)

Proof. (i) ⇒ (ii) It is clear.
(ii) ⇒ (iii) Assume that CϕDn : B0 → CB(Dλ

p ∩B) is compact. Then CϕDn :

B0 → CB(Dλ
p ∩B) is bounded. By Theorem 3.2, we see that ϕ ∈ CB(Dλ

p ∩B) . Since

CB(Dλ
p ∩B) ⊆ B , we get that CϕDn : B0 →B is compact. This implies that (5) holds

by [34, Theorem 2.2].
(iii) ⇒ (i) By the assumption, we see that there exists r (0 < r < 1) , such that

(1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| < ε

2
, when |ϕ(z)| > r.

Let z ∈ Γε(ϕ) . Then |ϕ(z)| � r . Therefore,

ε � (1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| � (1−|z|2)

(1− r2)n+1 |ϕ ′(z)|.

Thus ε(1− r2)n+1 � (1−|z|2)|ϕ ′(z)| . Let δ = ε(1− r2)n+1 . Then z ∈ Ωδ (ϕ) . Hence

sup
a∈D

∫
Γε (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

� sup
a∈D

∫
Ωδ (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p .

Since ϕ ∈ CB(Dλ
p ∩B) , by Theorem 2.6 we have

sup
a∈D

∫
Ωδ (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞.
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Therefore,

sup
a∈D

∫
Γε (ϕ)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p < ∞.

By Theorem 3.1, CϕDn : B → CB(Dλ
p ∩B) is bounded. It is easy to know that CϕDn :

B → B is compact by [34, Theorem 2.2]. Therefore CϕDn : B → CB(Dλ
p ∩B) is com-

pact. The proof is complete. �

From Theorem 3.3, we immediately get the following corollary.

COROLLARY 3.4. Let ϕ be an analytic self-map of D and let n be a nonnegative
integer. Suppose that 0 < p,λ < 1 and ϕ ∈ CB(Dλ

p ∩B) . Then the following statements
are equivalent.

(i) CϕDn : B → CB(Dλ
p ∩B) is compact;

(ii) CϕDn : B0 →CB(Dλ
p ∩B) is compact;

(iii) CϕDn : B →B is compact;
(iv) CϕDn : B0 →B is compact.

THEOREM 3.5. Let ϕ be an analytic self-map of D and let n be a nonnegative
integer. Suppose that 0 < p,λ < 1 . Then CϕDn : CB(Dλ

p ∩B)→CB(Dλ
p ∩B) is compact

if and only if ϕ ∈ CB(Dλ
p ∩B) and

lim
|ϕ(z)|→1

(1−|z|2)
(1−|ϕ(z)|2)n+1 |ϕ ′(z)| = 0. (6)

Proof. Suppose that ϕ ∈ CB(Dλ
p ∩B) and (6) holds. By Thoerem 3.3, CϕDn :

B→ CB(Dλ
p ∩B) is compact. Since CB(Dλ

p ∩B)⊆B , we get that Cϕ : CB(Dλ
p ∩B)→

CB(Dλ
p ∩B) is compact, as desired.

Conversely, assume that CϕDn : CB(Dλ
p ∩B) → CB(Dλ

p ∩B) is compact. It is

clear that ϕ ∈ CB(Dλ
p ∩B) since fn(z) = zn+1/(n + 1)! ∈ CB(Dλ

p ∩B) . Since B0 is

closure of all polynomials in B and the space Dλ
p contains all polynomials, we get that

Cϕ : B0 → CB(Dλ
p ∩B) is compact. By [34, Theorem 2.2], we see that (6) holds. The

proof is complete. �

4. Interpolating Blaschke products in CB(Dλ
p ∩B)

If a sequence {ak}∞
k=1 in D satisfies

∞

∑
k=1

(1−|ak|) < ∞,

then we say that {ak}∞
k=1 in D is a Blaschke sequence. The corresponding Blaschke

product B is given by

B(z) =
∞

∏
k=1

|ak|
ak

ak − z
1−akz

,
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where |ak|/ak = −1 if ak = 0. It is clear that B ∈ H∞ . Blaschke products play an
important role in the study of zero sets and inner functions in analytic function spaces.
They also can be used to construct examples in various function spaces. See [5] for
example.

A sequence {ak}∞
k=1 in D is called an interpolating sequence if for any bounded

sequence {ωk}∞
k=1 in C , there is a function f in H∞ satisfying f (ak) = ωk for every

k . A significant result of Carleson [6] showed that {ak}∞
k=1 is an interpolating sequence

if and only if {ak}∞
k=1 is uniformly separated, that is, there exists a δ > 0, such that

inf
m ∏

n �=m

ρ(an,am) � δ . (7)

Here ρ denotes the pseudo-hyperbolic distance:

ρ(z,ω) =
∣∣∣∣ z−ω
1−ωz

∣∣∣∣ , z,ω ∈ D.

Also, for a∈ D and 0 < r < 1, Δ(a,r) will denote the pseudo-hyperbolic disc of center
a and radius r :

Δ(a,r) = {z ∈ D : ρ(z,a) < r}.
If the zero set of a Blaschke product B is uniformly separated, then we say that B is an
interpolating Blaschke product. Equivalently, B is an interpolating Blaschke product if
and only if its zero set {zn} satisfying

inf
n

(1−|zn|)|B′(zn)| > 0.

See [7, 8] for interpolating Blaschke products, and [3, 4, 9] for the characterization of
interpolating Blaschke products in closure in the Bloch norm of some analytic function
spaces.

Now, we characterize interpolating Blaschke products in CB(Dλ
p ∩B) as follows.

THEOREM 4.1. Let 0 < p,λ < 1 and B be an interpolating Blaschke product
with zero set {zn}∞

n=1 . Then B ∈ CB(Dλ
p ∩B) if and only if

∞

∑
n=1

(1−|zn|)p(1−λ ) < ∞. (8)

Proof. Suppose (8) holds. Note that

|B′(z)| �
∞

∑
n=1

1−|zn|2
|1− znz|2 , z ∈ D.

Hence, for any ε > 0, we know that

z ∈ Ωε(B) = {z ∈ D : (1−|z|2)|B′(z)| � ε}.
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Then, using Lemma 2.2, we obtain

∫
Ωε (B)

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�1
ε

∞

∑
n=1

(1−|zn|2)
∫

Ωε (B)

(1−|σa(z)|2)pλ (1−|z|2)p−pλ−1

|1− znz|2 dA(z)

�1
ε

∞

∑
n=1

(1−|zn|2)(1−|a|2)pλ
∫

D

(1−|z|2)p−1

|1− zzn|2|1− za|2pλ dA(z)

�1
ε

∞

∑
n=1

C(1−|a|2)pλ

(1−|zn|2)−p|1−azn|2pλ

�
∞

∑
n=1

(1−|zn|)p(1−λ )(1−|σa(zn)|2)pλ

�
∞

∑
n=1

(1−|zn|)p(1−λ ) < ∞.

Applying Theorem 2.6, we see that B ∈ CB(Dλ
p ∩B) .

Conversely, suppose B ∈ CB(Dλ
p ∩B) . Since B is an interpolating Blaschke prod-

uct with zero set {zn}∞
n=1 , there exists δ > 0 such that condition (7) holds. Girela et al.

[11] proved that

(1−|z|)|B′(z)| � δ (1− δ )
8

,

where z ∈ Δ(zn,δ/4) for every positive integer n . Hence

∞⋃
n=1

Δ(zn,δ/4) ⊆
{

z ∈ D : (1−|z|)|B′(z)| � δ (1− δ )
8

}
.

By [28], we know that |Δ(zn,δ/4)| ≈ (1−|zn|)2 and 1−|z| ≈ 1−|zn| ≈ |1− znz| for
all z ∈ Δ(zn,δ/4) . Clearly, {Δ(zn,δ/4)}∞

n=1 are pairwise disjoint. These together with
Theorem 2.6, we have

∞ >
∫
{z∈D:(1−|z|)|B′(z)|� δ (1−δ )

8 }

(
1−|σa(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�
∫
⋃∞

n=1 Δ(zn,δ/4)

(
1−|σzn(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

�
∞

∑
n=1

∫
Δ(zn,δ/4)

(
1−|σzn(z)|2

1−|z|2
)pλ

dA(z)
(1−|z|2)2−p

≈
∞

∑
n=1

(1−|zn|)p(1−λ ).

The proof is complete. �
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