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Abstract. In this paper, we investigate the complex symmetric structure of generalized weighted
composition operators Dm

ψ,ϕ on the weighted Hardy space H2(β) . We obtain explicit conditions
for Dm

ψ,ϕ to be complex symmetric with the conjugation Jw . Under the assumption that Dm
ψ,ϕ is

Jw -symmetric, some sufficient and necessary conditions for Dm
ψ,ϕ to be Hermitian and normal

are given.

1. Introduction

We denote by D the open unit disc and by H(D) the space of all analytic func-
tions in D . Let {β (n)} be a sequence of positive number such that β (0) = 1 and
liminfβ (n)1/n � 1. The weighted Hardy space H2(β ) consists of all f ∈ H(D) given
by f (z) = ∑∞

n=0 anzn , such that

‖ f‖2 =
∞

∑
n=0

|an|2β (n)2 < ∞.

Every weighted Hardy space H2(β ) is a Hilbert space. The weighted sequence for
H2(β ) is written as β (n) = ‖zn‖ . The set {en(z) = zn

β (n)}n�0 forms an orthonormal

basis for the space H2(β ) . For f (z) = ∑∞
n=0 anzn and g(z) = ∑∞

n=0 cnzn in H2(β ) , the
inner product on H2(β ) is given by 〈 f ,g〉 = ∑∞

n=0 ancnβ (n)2. H2(β ) is a reproducing
kernel Hilbert space of analytic functions which means that the point evaluations of
functions on H2(β ) are bounded linear functions. For any point α in D , define

Kα(z) =
∞

∑
n=0

αnzn

β (n)2 , z ∈ D.

Obviously, Kα is the reproducing kernel function for H2(β ) , i.e., 〈 f ,Kα 〉 = f (α) for
any f in H2(β ) . For each point α in D and positive integer m , evaluation of the mth
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derivative of functions in H2(β ) at α is a bounded linear functional and f (m)(α) =
〈 f ,K[m]

α 〉 (see [1]), where

K[m]
α (z) =

∞

∑
n=m

n!
(n−m)!

αn−mzn

β (n)2 .

Clearly, the Hardy space H2 , the Bergman space A2 , the Dirichlet space D and the
derivative Hardy space S2 are the weighted Hardy spaces which are identified with the
weighted sequences β (n) = 1, β (n) = (n+ 1)−

1
2 , β (n) = n

1
2 and β (n) = n , respec-

tively.
Let m ∈ N , ψ ∈ H(D) and ϕ be an analytic self-map of D . The generalized

weighted composition operator Dm
ψ,ϕ (see [29, 30, 31]) is defined by

Dm
ψ,ϕ f (z) = ψ(z) f (m)(ϕ(z)), f ∈ H(D), z ∈ D.

If m = 0, the operator Dm
ψ,ϕ becomes the weighted composition operator, which is

always denoted by ψCϕ . If ψ = 1 and m = 0, the operator Dm
ψ,ϕ is the composition

operator Cϕ . When ψ = 1 and m = 1, the operator Dm
ψ,ϕ is called the composition-

differentiation operator and denoted by Dϕ . When m = 1, the operator Dm
ψ,ϕ is called

the weighted composition-differentiation operator and denoted by ψDϕ . In [5], Fatehi
and Hammond obtained the adjoint, norm and spectrum of Dϕ on the Hardy space H2 .
Some properties of weighted composition-differentiation operators were investigated
in [6,15,16,20]. See [2,21,27,29,30,31,32,33] for more results on generalized weighted
composition operators on analytic function spaces.

An operator C is called a conjugation on complex Hilbert space H if it satisfies
the following conditions:

(i) conjugate-linear or anti-linear: C(ax + by) = aC(x) + bC(y) , for any x,y ∈ H
and a,b ∈ C ;

(ii) isometric: ‖Cx‖ = ‖x‖ , for any x ∈H ;

(iii) involutive: C2 = I , where I is an identity operator.

The operator J , defined as J f (z) = f (z ) , is a standard conjugation. In this paper,
we consider a generalized conjugation Jw , which is defined as follows:

Jw f (z) = f (wz), z ∈ D,

where f ∈ H2(β ) and w ∈ C with |w| = 1.
A bounded linear operator T is said to be complex symmetric (complex symmetric

with C or C -symmetric) if there is a conjugation C on a Hilbert space H such that

T = CT ∗C.

It follows from [9] that the operator T is complex symmetric if and only if T has a
self-transpose matrix representation with respect to an orthonormal basis. Complex
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symmetric operators can be regarded as a generalization of complex symmetric ma-
trices. In [10, 11, 12, 13], Garcia, Putinar and Wogen initiated the general study of
complex symmetric operators. Examples of complex symmetric operators include nor-
mal operators, binormal operators, Hermitian operators, compressed Toeplitz operators
and Hankel operators. In recent decades, complex symmetric composition operators
and weighted composition operators acting on some Hilbert spaces of analytic func-
tions have been studied considerably. See [3,4,5,6,14,8,10,11,12,13,7,15,16,17,18,
19, 20, 21, 22, 23, 24, 25, 26, 28] for more results on complex symmetric operators.

Garcia and Hammond in [8] gave several classes of J -symmetric composition op-
erators and weighted composition operators on H2(β ) . In [22], Malhotra and Gupta
characterized complex symmetric weighted composition operators on H2(β ) . Com-
plex symmetric weighted composition-differentiation operators on the Hardy space H2

were investigated by Han and Wang in [15]. Complex symmetric weighted composition-
differentiation operators ψDϕ on the weighted Bergman space A2

α and the derivative
Hardy space were characterized in [20]. In [16], Han and Wang studied complex sym-
metric generalized weighted composition operators on the Bergman space A2 .

In this paper, we investigate the symbols ψ and ϕ give rise to Jw -symmetric
generalized weighted composition operator Dm

ψ,ϕ on H2(β ) . As an application, we
give some necessary and sufficient conditions for Jw -symmetric operator Dm

ψ,ϕ to be
Hermitian and normal.

2. Main results and proofs

In this section, we state and prove our main results in this paper. For this purpose,
we need the following lemma, which will be used in proving our main result.

LEMMA 1. Let m ∈ N , ϕ be an analytic self-map of D and ψ ∈ H(D) such that
Dm

ψ,ϕ is bounded on H2(β ) . Then for any α ∈ D ,

(Dm
ψ,ϕ )∗Kα(z) = ψ(α)K[m]

ϕ(α)(z), z ∈ D.

Proof. For any f ∈ H2(β ) , we have

〈 f ,(Dm
ψ,ϕ
)∗

Kα〉 =〈Dm
ψ,ϕ f ,Kα 〉 = ψ(α) f (m)(ϕ(α))

=ψ(α)〈 f ,K[m]
ϕ(α)〉 = 〈 f ,ψ(α)K[m]

ϕ(α)〉,

which implies the desired result. �

The following theorem gives the characterization of ψ and ϕ such that the oper-
ator Dm

ψ,ϕ is Jw -symmetric on H2(β ) .

THEOREM 1. Let m ∈ N , ϕ be an analytic self-map of D and ψ ∈ H(D) be not
identically zero such that Dm

ψ,ϕ is bounded on H2(β ) . If Dm
ψ,ϕ is Jw -symmetric on
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H2(β ) , then

ϕ(z) = a0 +
β (m+1)2a1q(z)

(m+1)wm+1β (m)2p(z)
(1)

and

ψ(z) =
β (m)2a2

(m!)2 K[m]
wa0

(z), (2)

where a0 = ϕ(0) , a1 = ϕ ′(0) , a2 = ψ(m)(0) ,

p(z) =
∞

∑
n=m

n!
(n−m)!

(wa0z)n−m

β (n)2 (3)

and

q(z) =
∞

∑
n=m+1

n!
(n−m−1)!

wnan−m−1
0 zn−m

β (n)2 . (4)

Conversely, let a0,a1 ∈D and a2 ∈C . If ϕ and ψ are analytic maps of D , defined
as in equations (1) and (2), then Dm

ψ,ϕ is Jw -symmetric on H2(β ) only if a0 = 0 or
a1 = 0 .

Proof. Assume that Dm
ψ,ϕ is Jw -symmetric on H2(β ) . Then for any z,α ∈ D ,

Jw(Dm
ψ,ϕ)∗Kα (z) = Dm

ψ,ϕJwKα(z). (5)

Lemma 1 yields that

Jw(Dm
ψ,ϕ )∗Kα(z) =Jwψ(α)K[m]

ϕ(α)(z) = Jwψ(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)
n−m

zn

β (n)2

=ψ(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−m(wz)n

β (n)2

and

Dm
ψ,ϕJwKα(z) =Dm

ψ,ϕJw

∞

∑
n=0

(αz)n

β (n)2 = Dm
ψ,ϕ

∞

∑
n=0

(αwz)n

β (n)2

=Dm
ψ,ϕKwα (z) = ψ(z)K(m)

wα (ϕ(z)) = ψ(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2

for any z,α ∈ D . Hence, equation (5) is equivalent to

ψ(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−m(wz)n

β (n)2 = ψ(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2 (6)
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for any z,α ∈ D . Let α = 0 in (6). We obtain that

ψ(0)
∞

∑
n=m

n!
(n−m)!

ϕ(0)n−m(wz)n

β (n)2 = 0

for any z ∈ D , which means that ψ(0) = 0.
Let ψ(z) = zkh(z) , where k is a positive integer and h is analytic on D with

h(0) �= 0. Next we claim that k = m . If k > m , equation (6) is equivalent to

αk−mh(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−mwnzn−m

β (n)2 = zk−mh(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−mwnαn−m

β (n)2

for any z,α ∈ D . Setting α = 0, we have that h ≡ 0, which contradicts with h(0) �= 0.
If k < m , the equation (6) is equivalent to

zm−kh(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−mwnzn−m

β (n)2 = αm−kh(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−mwnαn−m

β (n)2 .

Setting α = 0, we have that h(0) = 0, which contradicts with h(0) �= 0. Thus k = m
and the equation (6) becomes

h(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−mwnzn−m

β (n)2 = h(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−mwnαn−m

β (n)2 (7)

for any z,α ∈ D . Let α = 0 in (7). We get

h(0)
∞

∑
n=m

n!
(n−m)!

ϕ(0)n−mwnzn−m

β (n)2 = h(z)
m!wm

β (m)2 ,

that is

h(z) =
h(0)β (m)2

m!

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−mwn−mzn−m

β (n)2 .

Therefore,

ψ(z) = zmh(z) =
h(0)β (m)2

m!

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−mwn−mzn

β (n)2

=
ψ(m)(0)β (m)2

(m!)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−mwn−mzn

β (n)2

=
ψ(m)(0)β (m)2

(m!)2 K[m]
wϕ(0)

(z),

(8)

where ψ(m)(0) = m!h(0) �= 0. Substituting ψ(z) in (6), we obtain that

K[m]
wϕ(0)

(α)
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−m(wz)n

β (n)2 = K[m]
wϕ(0)

(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2 (9)
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for any z,α ∈ D . Let

F1(z) =
∞

∑
n=m

n!
(n−m)!

ϕ(α)n−m(wz)n

β (n)2

and

F2(z) =
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2 .

It is clear that Nth derivative of K[m]
wϕ(0)

is equal to 0 at z = 0, that is,
(
K[m]

wϕ(0)

)(N)
(0)

= 0, where N = 1,2, · · · ,m−1. In addition, we have

(
K[m]

wϕ(0)
(z)
)(m)

=
∞

∑
n=m

(n!)2

[(n−m)!]2
ϕ(0)n−mwn−mzn−m

β (n)2 ,

(
K[m]

wϕ(0)
(z)
)(m+1)

=
∞

∑
n=m+1

(n!)2

(n−m)!(n−m−1)!
ϕ(0)n−mwn−mzn−m−1

β (n)2 ,

F (m+1)
1 =

∞

∑
n=m+1

(n!)2

(n−m)!(n−m−1)!
wnϕ(α)n−mzn−m−1

β (n)2

and

F ′
2(z) =

∞

∑
n=m

n!
(n−m−1)!

ϕ(z)n−m−1(wα)nϕ ′(z)
β (n)2 .

Therefore, differentiating the equation (9) (m+1) times with respect to z , we have

m+1

∑
i=0

(
m+1

i

)(
K[m]

wϕ(0)
(z)
)(i)

F2(z)(m+1−i)

=
∞

∑
n=m+1

(n!)2

(n−m)!(n−m−1)!
ϕ(0)n−mwn−mzn−m−1

β (n)2 ·
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2

+
m−1

∑
i=0

(
m+1

i

)(
K[m]

wϕ(0)
(z)
)(i)

F (m+1−i)
2 (z)

+ (m+1)
∞

∑
n=m

(n!)2

[(n−m)!]2
ϕ(0)n−mwn−mzn−m

β (n)2 ·
∞

∑
n=m

n!
(n−m−1)!

ϕ(z)n−m−1(wα)nϕ ′(z)
β (n)2

=K[m]
wϕ(0)

(α)
∞

∑
n=m+1

(n!)2

(n−m)!(n−m−1)!
wnϕ(α)n−mzn−m−1

β (n)2 .

(10)
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Let z = 0 in (10). We get

[(m+1)!]2wϕ(0)
β (m+1)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−m(wα)n

β (n)2

+
(m+1)(m!)2

β (m)2

∞

∑
n=m

n!
(n−m−1)!

ϕ(0)n−m−1(wα)nϕ ′(0)
β (n)2

=
[(m+1)!]2wm+1ϕ(α)

β (m+1)2 K[m]
wϕ(0)

(α)

for any α ∈ D . Thus

[(m+1)!]2wϕ(0)
β (m+1)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−mwnαn−m

β (n)2

+
(m+1)(m!)2

β (m)2

∞

∑
n=m

n!
(n−m−1)!

ϕ(0)n−m−1wnαn−mϕ ′(0)
β (n)2

=
[(m+1)!]2wm+1ϕ(α)

β (m+1)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−mwn−mαn−m

β (n)2

(11)

for any α ∈ D . Hence, (11) deduces that

ϕ(α) = ϕ(0)+
β (m+1)2ϕ ′(0)q(α)

(m+1)wm+1β (m)2p(α)
,

where

p(α) =
∞

∑
n=m

n!
(n−m)!

(wa0α)n−m

β (n)2

and

q(α) =
∞

∑
n=m+1

n!
(n−m−1)!

wnan−m−1
0 αn−m

β (n)2 .

Conversely, let a0,a1 ∈ D and a2 ∈ C ,

ϕ(z) = a0 +
β (m+1)2a1q(z)

(m+1)wm+1β (m)2p(z)
and ψ(z) =

β (m)2a2

(m!)2 K[m]
wa0

(z),

where p(z) and q(z) are defined as (3) and (4). Then for Jw -symmetric operator Dm
ψ,ϕ ,

equation (6) must hold. This is equivalent to

∞

∑
n=m

n!
(n−m)!

an−m
0 wn−mαn

β (n)2

(
∞

∑
n=m

n!wnzn

(n−m)!β (n)2

(
a0+

β (m+1)2a1q(α)
(m+1)wm+1β (m)2p(α)

)n−m
)

=
∞

∑
n=m

n!
(n−m)!

an−m
0 wn−mzn

β (n)2

(
∞

∑
n=m

n!wnαn

(n−m)!β (n)2

(
a0+

β (m+1)2a1q(z)
(m+1)wm+1β (m)2p(z)

)n−m
)

.

(12)
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For any α,z ∈ D , q(z)
p(z) is analytic and q(0) = 0. Thus q(z)

p(z) can be written as

q(z)
p(z)

=
∞

∑
i=1

ciw
i+mai−1

0 zi, (13)

where c1 = 1 and ci ∈ R , i = 2,3, · · · . Therefore, (12) is equivalent to

∞

∑
n=m

n!wn−man−m
0 αn

(n−m)!β (n)2

∞

∑
l=m

l!wlzl

(l−m)!β (l)2

·
l−m

∑
k=0

(
l−m

k

)
ak

0

(
∞

∑
i=1

β (m+1)2a1

(m+1)wm+1β (m)2
ciw

i+mai−1
0 α i

)l−m−k

=
∞

∑
n=m

n!wn−man−m
0 zn

(n−m)!β (n)2

∞

∑
l=m

l!wlα l

(l−m)!β (l)2

·
l−m

∑
k=0

(
l−m

k

)
ak

0

(
∞

∑
i=1

β (m+1)2a1

(m+1)wm+1β (m)2
ciw

i+mai−1
0 zi

)l−m−k

for any α,z ∈ D . Considering the coefficient of zm+2αm+1 , we obtain that

(m+1)!wm+1

β (m+1)2

(
m!β (m+1)2

(m+1)β (m)4 c2wa0a1 +
m!

β (m)2 c1wa0a1 +
(m+2)!w2

2β (m+2)2a3
0

)

=
(m+2)!wm+2

2β (m+2)2

(
(m+1)!w
β (m+1)2 a3

0 +
2m!β (m+1)2

(m+1)β (m)4 c1a0a1

)
.

(14)

Therefore, equation (14) holds only if a0 = 0 or a1 = 0. Next, we consider the follow-
ing two cases:

Case 1. a0 = 0. In this case,

ϕ(z) = a1z and ψ(z) =
a2

m!
zm.

Then

Jw(Dm
ψ,ϕ )∗Kα(z) =

a2

m!

∞

∑
n=m

n!
(n−m)!

an−m
1 (wαz)n

β (n)2 = Dm
ψ,ϕJwKα (z).

Case 2. a1 = 0. In this case,

ϕ(z) = a0 and ψ(z) =
β (m)2a2

(m!)2 K[m]
wa0

(z).

Then

Jw(Dm
ψ,ϕ)∗Kα (z) =

β (m)2wma2

(m!)2

∞

∑
n=m

n!
(n−m)!

an−m
0 wn−mzn

β (n)2

∞

∑
n=m

n!
(n−m)!

an−m
0 wn−mαn

β (n)2

=Dm
ψ,ϕJwKα(z).
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The proof is complete. �

The following result obtains the condition on ϕ so that ϕ is an automorphism on
D and Dm

ψ,ϕ is Jw -symmetric on H2(β ) .

THEOREM 2. Let m ∈ N , ϕ be an automorphism on D and ψ ∈ H(D) be not
identically zero such that Dm

ψ,ϕ is Jw -symmetric on H2(β ) . Then one of the following
statements holds:

(i) ϕ(z) = −λ z with |λ | = 1 for some λ ∈ C .

(ii)

ϕ(z) =
aβ (m+1)2β (m+2)2

aw[(m+2)β (m+1)4− (m+1)β (m)2β (m+2)2]
· a− z
1−az

for some a ∈ D\0 .

Proof. Since Dm
ψ,ϕ is Jw -symmetric on H2(β ) , Theorem 1 yields that

ϕ(z) = a0 +
β (m+1)2a1q(z)

(m+1)wm+1β (m)2p(z)
,

where a0 = ϕ(0) , a1 = ϕ ′(0) , p(z) and q(z) are defined as Theorem 1. Since ϕ is an
automorphism on D , then there are a ∈ D and λ ∈ C with |λ | = 1 such that for any
z ∈ D ,

a0 +
β (m+1)2a1q(z)

(m+1)wm+1β (m)2p(z)
= λ

a− z
1−az

,

which is equivalent to

(m+1)a0β (m)2wm+1p(z)− (m+1)a0aβ (m)2wm+1zp(z)

+a1β (m+1)2q(z)−a1aβ (m+1)2zq(z)

=(m+1)λaβ (m)2wm+1p(z)− (m+1)λ β (m)2wm+1zp(z)

(15)

for any z ∈ D . Considering the constant in (15), we get

a0 = λa.

Similarly, considering the coefficients of z and z2 , we get

(m+1)β (m)2

β (m+1)2 wm+2a2
0−awm+1a0 +wm+1a1

=
(m+1)β (m)2

β (m+1)2 wm+2λaa0−λwm+1

(16)
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and

(m+1)(m+2)!β (m)2

2β (m+2)2 wm+3a3
0−

(m+1)(m+1)!β (m)2

β (m+1)2 wm+2aa2
0

+
(m+2)!β (m+1)2

β (m+2)2 wm+2a0a1− (m+1)!wm+1aa1

=
(m+1)(m+2)!β (m)2

2β (m+2)2 wm+3λaa2
0−

(m+1)(m+1)!β (m)2

β (m+1)2 wm+2λa0

(17)

for any w ∈ D .
If a = 0, then a0 = λa = 0. Therefore, (16) deduces that a1 =−λ , which implies

that

p(z) =
m!

β (m)2 and q(z) =
(m+1)!wm+1z

β (m+1)2 .

Hence, ϕ(z) = −λ z with |λ | = 1.
If a �= 0, a0 = λa and (17) give that

a1 =
(m+1)β (m)2β (m+2)2wλ 2a(|a|2−1)

β (m+1)2[(m+2)β (m+1)2wλa−β (m+2)2a]
,

which with (16) yields that

λ =
aβ (m+1)2β (m+2)2

aw[(m+2)β (m+1)4− (m+1)β (m)2β (m+2)2]
.

The proof is complete. �
As an application of Theorem 1, we investigate the necessary and sufficient con-

ditions for Jw -symmetric operator Dm
ψ,ϕ to be Hermitian and normal. Recall that a

bounded linear operator T is Hermitian if T = T ∗ . An operator T on H is normal if
and only if TT ∗ = T ∗T , or for any x ∈H , ‖Tx‖ = ‖T ∗x‖ .

THEOREM 3. Let m ∈ N , ϕ be an analytic self-map of D and ψ ∈ H(D) be not
identically zero such that Dm

ψ,ϕ is bounded and Jw -symmetric on H2(β ) . Then Dm
ψ,ϕ

is Hermitian if and only if

ψ(m)(0),ϕ ′(0) ∈ R and ϕ(0) = wϕ(0).

Proof. It is clear that Dm
ψ,ϕ is Hermitian if and only if Dm

ψ,ϕKα(z) = (Dm
ψ,ϕ )∗Kα(z)

for any z,α ∈ D . Since Dm
ψ,ϕ is Jw -symmetric, then for any z,α ∈ D ,

Jw(Dm
ψ,ϕ)∗Kα (z) = Dm

ψ,ϕJwKα(z).

Therefore, Dm
ψ,ϕ is Hermitian if and only if for any z,α ∈ D ,

Jw(Dm
ψ,ϕ)∗Kα (z) = JwDm

ψ,ϕKα (z) = Dm
ψ,ϕJwKα(z). (18)
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Since

JwDm
ψ,ϕKα(z) =Jwψ(z)K(m)

α (ϕ(z))

=Jwψ(z)
∞

∑
n=m

n!
(n−m)!

αnϕ(z)n−m

β (n)2

=ψ(wz)
∞

∑
n=m

n!
(n−m)!

αnϕ(wz)
n−m

β (n)2

and

Dm
ψ,ϕJwKα(z) = ψ(z)

∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2

for any z,α ∈ D , then (18) is equivalent to

ψ(wz )
∞

∑
n=m

n!
(n−m)!

αnϕ(wz)
n−m

β (n)2 = ψ(z)
∞

∑
n=m

n!
(n−m)!

ϕ(z)n−m(wα)n

β (n)2 (19)

for any z,α ∈ D . Considering the coefficients of αm and αm+1 respectively, we obtain
that ψ(wz) = wmψ(z) and ψ(wz)ϕ(wz) = wm+1ψ(z)ϕ(z), which means that

ϕ(wz) = wϕ(z).

Therefore,

p(wz) =
∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)
n−m

(wz)n−m

β (n)2

=
∞

∑
n=m

n!
(n−m)!

wn−mwn−mϕ(0)n−m(wz)n−m

β (n)2

=
∞

∑
n=m

n!
(n−m)!

(ϕ(0)wz)n−m

β (n)2 = p(z)

(20)

and

q(wz) =
∞

∑
n=m+1

n!
(n−m−1)!

wnϕ(0)
n−m−1

(wz)n−m

β (n)2

=
∞

∑
n=m+1

n!
(n−m−1)!

wm+nwn−m−1ϕ(0)n−m−1wnzn−m

β (n)2

=
∞

∑
n=m+1

n!
(n−m−1)!

wm+nwn−m−1wm+1wm+1ϕ(0)n−m−1wnzn−m

β (n)2

=w2m+1q(z).

(21)
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Then

ϕ(0)+
β (m+1)2ϕ ′(0)

(m+1)wm+1β (m)2

q(wz)
p(wz)

=wϕ(0)+
β (m+1)2ϕ ′(0)

(m+1)wm+1β (m)2

w2m+1q(z)
p(z)

=wϕ(0)+
β (m+1)2ϕ ′(0)wmwm+1

(m+1)wm+1β (m)2

q(z)
p(z)

=w

(
ϕ(0)+

β (m+1)2ϕ ′(0)
(m+1)wm+1β (m)2

q(z)
p(z)

)

=w

(
ϕ(0)+

β (m+1)2ϕ ′(0)
(m+1)wm+1β (m)2

q(z)
p(z)

)
,

(22)

which implies that ϕ ′(0) ∈ R . Since Dm
ψ,ϕ is Jw -symmetric, Theorem 1 yields that

ψ(m)(0)β (m)2

(m!)2

∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)
n−m

(wz)n

β (n)2

=
ψ(m)(0)β (m)2

(m!)2

∞

∑
n=m

n!
(n−m)!

wnϕ(0)n−mzn

β (n)2

=
ψ(m)(0)β (m)2

(m!)2

∞

∑
n=m

n!
(n−m)!

wnϕ(0)n−mzn

β (n)2 ,

which implies ψ(m)(0) = ψ(m)(0).
Conversely, assume that ψ(m)(0),ϕ ′(0) ∈ R and ϕ(0) = wϕ(0) . Obviously, it is

sufficient to verify that equation (19) holds. Since ϕ(0) = wϕ(0) and

ψ(wz) =
β (m)2ψ(m)(0)

(m!)2

∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)
n−m

(wz)n

β (n)2

=
β (m)2ψ(m)(0)

(m!)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)n−m(wz)n

β (n)2 = wmψ(z),

we see that (20) and (21) hold. Thus from (22), we obtain that ϕ(wz) = wϕ(z). There-
fore,

ψ(wz)
∞

∑
n=m

n!
(n−m)!

αnϕ(wz)
n−m

β (n)2 =wmψ(z)
∞

∑
n=m

n!
(n−m)!

αnwn−mϕ(z)n−m

β (n)2

=ψ(z)
∞

∑
n=m

n!
(n−m)!

αnwnϕ(z)n−m

β (n)2

for any z,α ∈ D . The proof is complete. �

If ϕ(0) = 0, the following result implies that every Jw -symmetric operator Dm
ψ,ϕ

is normal.
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THEOREM 4. Let m ∈ N , ϕ be an analytic self-map of D with ϕ(0) = 0 and
ψ ∈ H(D) be not identically zero such that Dm

ψ,ϕ is bounded and Jw -symmetric on
H2(β ) . Then Dm

ψ,ϕ is normal.

Proof. Obviously, ϕ(0) = 0 gives

p(z) =
m!

β (m)2 and q(z) =
(m+1)!wm+1z

β (m+1)2 .

Since Dm
ψ,ϕ is Jw -symmetric, Theorem 1 yields that

ϕ(z) = a1z and ψ(z) =
a2

m!
zm,

where a1 = ϕ ′(0) and a2 = ψ(m)(0). Then for j ∈ N+ ,

‖Dm
ψ,ϕe j‖2 =

∞

∑
n=0

|〈Dm
ψ,ϕe j,en〉|2 =

∞

∑
n=0

|〈ψe(m)
j ◦ϕ ,

zn

β (n)
〉|2

=
∞

∑
n=0

|〈 j!a2a
j−m
1 z j

m!( j−m)!β ( j)
,

zn

β (n)
〉|2

and

‖(Dm
ψ,ϕ)∗e j‖2 =

∞

∑
n=0

|〈(Dm
ψ,ϕ )∗e j,en〉|2 =

∞

∑
n=0

|〈e j,D
m
ψ,ϕen〉|2

=
∞

∑
n=0

|〈 z j

β ( j)
,ψe(m)

n ◦ϕ〉|2 =
∞

∑
n=0

|〈 z j

β ( j)
,

n!a2a
n−m
1 zn

m!(n−m)!β (n)
〉|2.

Therefore, for j ∈ N+ ,

‖Dm
ψ,ϕe j‖2 = ‖(Dm

ψ,ϕ)∗e j‖2 = |a2a
j−m
1 |2

(
j!

m!( j−m)!

)2

.

Hence Dm
ψ,ϕ is normal. The proof is complete. �

The following result finds a necessary and sufficient condition for a Jw -symmetric
operator Dm

ψ,ϕ to be normal.

THEOREM 5. Let m ∈ N , ϕ be an analytic self-map of D with ϕ ′(0) = 0 and
ψ ∈ H(D) be not identically zero such that Dm

ψ,ϕ is bounded and Jw -symmetric on

H2(β ) . Then Dm
ψ,ϕ is normal if and only if ϕ(0) = wϕ(0) .

Proof. Since Dm
ψ,ϕ is Jw -symmetric and ϕ ′(0) = 0, Theorem 1 deduces that

ϕ(z) = ϕ(0) and ψ(z) =
ψ(m)(0)β (m)2

(m!)2 K[m]
wϕ(0)

(z).
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Since for any f ∈ H2(β ) , we have〈
f ,(Dm

ψ,ϕ )∗K[m]
α

〉
=
〈
Dm

ψ,ϕ f ,K[m]
α

〉
= ψ(m)(α) f (m)(ϕ(α)) =

〈
f ,ψ(m)(α)K[m]

ϕ(α)

〉
.

Then
(Dm

ψ,ϕ)∗K[m]
α = ψ(m)(α)K[m]

ϕ(α)

for any α ∈ D . Hence, for any α,z ∈ D ,

(Dm
ψ,ϕ )∗Dm

ψ,ϕKα (z) = (Dm
ψ,ϕ )∗ψ(z)K(m)

α (ϕ(z))

=
ψ(m)(0)β (m)2

(m!)2

∞

∑
n=m

n!
(n−m)!

αnϕ(0)n−m

β (n)2 (Dm
ψ,ϕ )∗ψ(z)K[m]

wϕ(0)
(z)

=
ψ(m)(0)β (m)2

(m!)2

∞

∑
n=m

n!
(n−m)!

αnϕ(0)n−m

β (n)2 ψ(m)(wϕ(0))K[m]
ϕ(0)(z)

=
|ψ(m)(0)|2β (m)4

(m!)4

∞

∑
n=m

n!
(n−m)!

αnϕ(0)n−m

β (n)2

·
∞

∑
n=m

(n!)2

[(n−m)!]2
|ϕ(0)|2(n−m)

β (n)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)
n−m

zn

β (n)2

and

Dm
ψ,ϕ(Dm

ψ,ϕ )∗Kα(z) = Dm
ψ,ϕψ(α)K[m]

ϕ(α)(z) = ψ(α)ψ(z)
(
K[m]

ϕ(α)(z)
)(m) ◦ϕ(z)

=
|ψ(m)(0)|2β (m)4

(m!)4 K[m]
wϕ(0)

(α)K[m]
wϕ(0)

(z)
(
K[m]

ϕ(α)(z)
)(m) ◦ϕ(z)

=
|ψ(m)(0)|2β (m)4

(m!)4

∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)n−mzn

β (n)2

·
∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)
n−m

an

β (n)2

∞

∑
n=m

(n!)2

[(n−m)!]2
|ϕ(0)|2(n−m)

β (n)2 .

Therefore, Dm
ψ,ϕ is normal if and only if

∞

∑
n=m

n!
(n−m)!

αnϕ(0)n−m

β (n)2

∞

∑
n=m

n!
(n−m)!

ϕ(0)
n−m

zn

β (n)2

=
∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)n−mzn

β (n)2

∞

∑
n=m

n!
(n−m)!

wn−mϕ(0)
n−m

an

β (n)2

(23)

for any z,α ∈ D . Considering the coefficient of αmzm+1 in (23), we have

ϕ(0) = wϕ(0).

Conversely, assume that ϕ(0) = wϕ(0) . By a simple calculation, equation (23)
holds. The proof is complete. �
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