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Abstract. The resistance matrix R = R(G) of G is a matrix whose (i, j) -th entry is equal to the
resistance distance rG(vi,v j) . The resistance Re(vi) of a vertex vi is defined to be the sum of
the resistance from vi to all other vertices in G , i.e., Re(vi) = ∑n

j=1 rG(vi,v j) . The resistance

signless Laplacian matrix of a connected graph G is defined to be RQ = diag(Re)+R , where
diag(Re) is the diagonal matrix of the vertex resistances in G. In this paper, we obtain upper
bounds on the minimal and maximal entries of the principal eigenvector of R(G) and RQ ,
respectively, and characterize the corresponding extremal graphs. In addition, a lower bound of
the resistance (resp. resistance signless Laplacian) spectral radius of graphs with n vertices and
independence number α is obtained, the corresponding extremal graph is also characterized.

1. Introduction

All graphs considered in this paper are simple and connected. Let G = (V(G),E(G))
be a graph with vertex set V (G) = {v1,v2, . . . ,vn} and edge set E(G) . For graph-
theoretical terms that are not defined here, we refer to Bollobás’s book [1].

The distance dG(vi,v j) between two vertices vi and v j of G is defined as the
length of a shortest (vi,v j)-path in G . Although this graph parameter has great im-
portant effect on many problems with respect to graphs, the use of shortest path has
some obvious drawbacks. In many cases, shortest paths form a small subset of all paths
between two vertices; it follows that paths even slightly longer than the shortest one
are not considered at all in researching of some problems. Furthermore, the distance
between the vertices does not consider the actual number of (shortest) paths that lie
among the two vertices: two vertices that are separated by a single path have the same
distance of two vertices that are separated by many paths of the same length.

To overcome these limitations, an alternative notion-resistance distance-of dis-
tance between two vertices vi and v j of G has been proposed [3, 4], denoted by
rG(vi,v j) , which is defined as the effective resistance between the two vertices, with
unit resistors taken over any edge of G . It has the following characteristics: (1) The
existence of multiple paths between two vertices reduces the distance; (2) Two vertices
separated by a set of edge independent paths–paths that taken in pairs do not share
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edges–are closer than two vertices divided by redundant paths–paths that taken in pairs
share some edges; (3) Two vertices separated by a shorter path–a path with less edges–
are closer than two vertices set apart by a longer path. As E. Bozzo and M. Franceschet
said in [5] that resistance distance is an interesting, but underestimated, notion of dis-
tance on graphs. Indeed in many applications, such as in electrical network and in a
social network, paths longer than the shortest ones are also relevant, hence the research
on resistance distance has both theoretical and practical importance. For an acyclic
graph G , dG(vi,v j) = rG(vi,v j) for any vi,v j ∈V (G) and therefore the resistance dis-
tances are mainly of interest in the case of cycle-containing graphs.

The resistance matrix R = R(G) of G is a matrix whose (i, j)-th entry is equal
to the resistance distance rG(vi,v j) . The resistance Re(vi) of a vertex vi is defined to be
the sum of the resistance from vi to all other vertices in G , i.e., Re(vi)= ∑n

j=1 rG(vi,v j) .
Let T = max{Re(vi),vi ∈V (G)} and t = min{Re(vi),vi ∈V (G)} . If Re(v1)= Re(v2)=
· · · = Re(vn) , then G is called resistance-regular. In [7], the authors asked that which
graphs are resistance-regular? Obviously, complete graph Kn and k -regular bipartite
graph are resistance-regular. Similar to the signless Laplacian matrix, we can define
the resistance signless Laplacian matrix of a connected graph G as RQ = RQ(G) =
diag(Re)+R , where diag(Re) is the diagonal matrix of the vertex resistances in G.
For a matrix M , det(M) denotes the determinant of M .

Let ϑ1 � ϑ2 � · · · � ϑn (resp. ϑQ
1 � ϑQ

2 � · · · � ϑQ
n ) be the spectrum of R (resp.

RQ ). We call it the resistance (resp. resistance signless Laplacian) spectrum of the
graph G. The spectral radius ϑ = ϑ(G) of R is defined as max{|ϑ1|, |ϑ2|, . . . , |ϑn|} .
From [9], we know that ϑ1 > 0 > ϑ2 � · · · � ϑn and ϑ1 +ϑ2 + · · ·+ϑn = 0, then ϑ =
ϑ1. Similarly, the spectral radius ϑQ = ϑQ(G) of RQ is defined as max{|ϑQ

1 |, |ϑQ
2 |, . . . ,

|ϑQ
n |} . Note that RQ is real nonnegative irreducible matrix, by the Perron-Frobenius

theorem [8], ϑQ is a simple eigenvalue of RQ , then ϑQ = ϑQ
1 .

By the Perron-Frobenius theorem [8], fixed p (1 � p < ∞) , each of R and RQ has
a unique eigenvector X = (x1,x2, . . . ,xn)T , positive and unitary (‖X‖p = 1) associated
with its spectral radius. This eigenvector is called the p -normalized principal eigenvec-
tor of the matrix. Denote xminp (resp. xmaxp ) be the minimal (resp. maximal) entry of
the p -normalized principal eigenvector of x . The study on principal eigenvector may
be referred to [2] and references therein.

Let G(n,α) denote the set of all connected graphs with n vertices and indepen-
dence number α , where 1 � α � n−1. Obviously, if α = 1, there is only one graph
Kn in G(n,α) . In this paper, we will study the properties of the spectral radius and
the corresponding p -normalized principal eigenvector of R and RQ , respectively, in
G(n,α) .

Given an n×n matrix M , denote the submatrix of M the M(i1, . . . , ik) , yield from
the deletion of the i1 -th, . . . , ik -th rows and columns. The following results are useful
for our main results.

LEMMA 1.1. [12] Let G be a connected graph on n vertices, n � 3, and 1 � i �=
j � n. Let L(i) and L(i, j) be the above defined submatices of the Laplacian matrix of

the graph G. Then rG(vi,v j) = detL(i, j)
detL(i) .
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Similar to the proof of Lemma 2.4 in [10], we have the following result.

LEMMA 1.2. Let G be a connected graph with η being an automorphism of G,
and x the p-normalized principal eigenvector of R (resp. RQ ). Then for vi,v j ∈V (G) ,
η(vi) = v j implies that xi = x j .

LEMMA 1.3. Let G be a connected graph. Then

(i) t � ϑ(G) � T and 2t � ϑQ(G) � 2T . Moreover, any of the equalities occurs if
and only if G is resistance-regular.

(ii) ϑQ(G) � T .

Proof. (i) Note that for a nonnegative matrix A with spectral radius λ (A) and row
sums r1,r2, · · · ,rn , it has min1�i�n ri � λ (A) � max1�i�n ri [11]. Obviously, (i) holds.

(ii) Setting x to be the normalized column vector with a unique non-zero com-
ponent 1 corresponding to a vertex of maximal vertex resistance in G , by Rayleigh’s
principle, we have ϑQ(G) � xTRQx = T . �

Recall that the spectral radius of a nonnegative irreducible matrix increases when
an entry increases [11]. Since R and RQ are nonnegative irreducible matrices for any
connected graphs, we have the following lemma.

LEMMA 1.4. Let G be a connected graph with two nonadjacent vertices u,v ∈
V (G) . Then ϑ(G+uv) < ϑ(G) and ϑQ(G+uv) < ϑQ(G) .

LEMMA 1.5. Let f (x) = 1
α+(n−α)xp and g(x) = 1

αxp+(n−α) (α < n). Then f (x)
and g(x) are decreasing functions on positive real number set.

Proof. Since d f (x)
dx =− p(n−α)xp−1

[α+(n−α)xp]2 < 0 and dg(x)
dx = − pαxp−1

[αxp+(n−α)]2 < 0. Then we

have our desirable results. �

LEMMA 1.6. [6] For graph G = (V,E) , ∀vi,v j ∈V (i �= j) , 1
2 ( 1

di
+ 1

d j
)� rG(vi,v j)

� 2|E|D( 1
di

+ 1
d j

) , where ds is the degree of vertex vs , D is the diameter of G.

2. A lower bound of spectral radius for R (resp. RQ )

In this section, we consider a lower bound of spectral radius for R (resp. RQ ).
Let G1∨G2 be the join of the graphs G1 and G2 .

LEMMA 2.1. Let G = Kα ∨Kn−α , V (Kα) = {1,2, . . . ,α} and V (Kn−α) = {α +
1,α +2, . . . ,n} . Then

rG(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
n−α , if 1 � i �= j � α;

2
n , if α +1 � i �= j � n;

2n−α−1
n(n−α) , if 1 � i � α α +1 � j � n.
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Proof. Let Js×t be the s× t all-ones matrix. Then the Laplacian matrix of Kα ∨
Kn−α can be written as

L =
(

(n−α)Iα×α −Jα×(n−α)
−J(n−α)×α nI(n−α)×(n−α)− J(n−α)×(n−α)

)
.

By direct calculation, we have the following results.

detL(i) = (n−α)α−1nn−α−1, 1 � i � n,

detL(i, j) = 2(n−α)α−2nn−α−1, 1 � i �= j � α,

detL(i, j) = 2(n−α)α−2nn−α−2, α +1 � i �= j � n,

detL(i, j) = (2n−α −1)(n−α)α−2nn−α−2, 1 � i � α, α +1 � j � n.

Further by Lemma 1.1, we have our desirable results. �

LEMMA 2.2. Let G = Kα ∨Kn−α with V (Kα) = {1,2, . . . ,α} and V (Kn−α) =
{α +1,α +2, . . . ,n} , and ϑ the spectral radius of G. Then

(i) ϑ = 1
n(n−α){n2−nα−2n+α2+α +[(n2−nα−2n+α2+α)2−4n(α−1)(n−

α)(n−α −1)+ α(n−α)(2n−α−1)2]
1
2 }.

(ii) the eigencomponents of the p-normalized principal eigenvector corresponding
to the eigenvalue ϑ are

xi =
(

[ϑn2−ϑnα−2(n−α)(n−α−1)]p

α[ϑn2−ϑnα−2(n−α)(n−α−1)]p+(n−α)α p(2n−α−1)p

) 1
p

= w1,

for 1 � i � α,

x j =
(

(ϑn2−ϑnα−2nα+2n)p

α(2n−α−1)p(n−α)p+(n−α)(ϑn2−ϑnα−2nα+2n)p

) 1
p

= w2,

for α +1 � i � n.

Proof. Let x = (x1,x2, . . . ,xn)T be p -normalized principal eigenvector correspond-
ing to the eigenvalue ϑ . By Lemma 1.2, we have xi = x1 when 1 � i � α , and
xi = xα+1 when α +1 � i � n. From Rx = ϑx , it is easy to that

ϑx1 =
2(α −1)
n−α

x1 +
2n−α −1

n
xα+1,

ϑxα+1 =
α(2n−α −1)

n(n−α)
x1 +

2(n−α −1)
n

xα+1.

Note that ∑n
k=1 xp

k = 1. By direct calculation, we have our desirable results. �

LEMMA 2.3. Let G = Kα ∨Kn−α , V (Kα) = {1,2, . . . ,α} and V (Kn−α) = {α +
1,α +2, . . . ,n} . Then
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(i) ϑQ = 1
2n(n−α)

(
6n2−9n−5nα +4α2 +4α +[(6n2−9n−5nα +4α2 +4α)2−

4[4n(α − 1) + (n− α)(2n−α − 1)][α(2n− α − 1) + 4(n−α)(n −α − 1)] +

4α(n−α)(2n−α−1)2]
1
2

)

(ii) the components of the p-normalized principal eigenvector corresponding to the
eigenvalue ϑQ(G) are

xi =
(

(ϑQn2−ϑQnα−4n2+6nα+4n−3α2−3α)p

α(ϑQn2−ϑQnα−4n2+6nα+4n−3α2−3α)p+(n−α)α p(2n−α−1)p

) 1
p

= u1, for 1 � i � α,

x j =
(

(ϑQn2−ϑQnα−2n2−αn+5n−α2−α)p

α(n−α)p(2n−α−1)p+(n−α)(ϑQn2−ϑQnα−2n2−αn+5n−α2−α)p

) 1
p

= u2, for α +1 � i � n.

Proof. Let x = (x1,x2, . . . ,xn)T be p -normalized principal eigenvector correspond-
ing to the eigenvalue ϑ(G)Q . By Lemma 1.2, we have xi = x1 when 1 � i � α , and
xi = xα+1 when α +1 � i � n. From RQx = ϑQ(G)x , it is easy to that

ϑQx1 =
(

2(α−1)
n−α

+
2n−α−1

n

)
x1+

2(α−1)
n−α

x1+
2n−α−1

n
xα+1,

ϑQxα+1 =
(

α(2n−α−1)
n(n−α)

+
2(n−α−1)

n

)
xα+1+

α(2n−α−1)
n(n−α)

x1+
2(n−α−1)

n
xα+1

Note that ∑n
k=1 xp

k = 1. By direct calculation, we have our desirable results. �

For a graph G ∈ G(n,α) , it can be obtain from Kα ∨Kn−α by removing some
edges. By Lemma 1.4, we can obtain a lower bound of spectral radius for ϑ (resp.
ϑQ ) in G(n,α) .

THEOREM 2.4. Let G ∈ G(n,α) , then

(i) ϑ(G)� 1
n(n−α)

{
n2−3n+α2+α +

[
(n2−3n+α2+α)2−4n(α−1)(n−α)(n−

α −1)+ (n−α)(2n−α −1)2

] 1
2
}

. The equality holds if and only if G ∼= Kα ∨
Kn−α .

(ii) ϑQ(G) � 1
2n(n−α)

(
6n2 − 9n− 5nα + 4α2 + 4α + [(6n2 − 9n− 5nα + 4α2 +

4α)2 − 4[4n(α − 1)+ (n−α)(2n−α − 1)][α(2n−α − 1)+ 4(n−α)(n−α −
1)] + 4α(n−α)(2n−α− 1)2]

1
2

)
. The equality holds if and only if G ∼= Kα ∨

Kn−α .
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3. Upper bounds on the minimal entries of the p -normalized
principal eigenvector

In this section, we consider lower bounds on the entries of the p -normalized
principal eigenvector for R (resp. RQ ). Denote xminp the minimum entry of the p -
normalized principal eigenvector in the following.

3.1. Upper bounds on the minimal entries of the p -normalized principal
eigenvector of R

THEOREM 3.1. Let G ∈ G(n,α) . Fix p � 1 and let x = (x1,x2, . . . ,xn) be the
p-normalized principal eigenvector corresponding to the spectral radius ϑ of R and
w1,w2 be the numbers as shown in Lemma 2.2. Then xminp � min{w1,w2}. The equal-
ity holds if and only if G ∼= Kα ∨Kn−α .

Proof. From G∈G(n,α) , we know that V (G) can be partitioned into two disjoint
subsets A and B such that V (G) = A∪B with A = {1,2, . . . ,α} and B = {α +1,α +
2, . . . ,n} and A is an independent set. Let i ∈ A, j ∈ B such that xi � xk for k ∈ A and
x j � xk for k ∈ B. By Lemma ref 1.4, rG(i,k) � rKα∨Kn−α (i,k) = 2

n−α for k ∈ A, and

rG(i,k) � rKα∨Kn−α (i,k) = 2n−α−1
n(n−α) for k ∈ B, By Rx = ϑx , we have

ϑxi =
α

∑
k=1,k �=i

rG(i,k)xk +
n

∑
k=α+1

rG(i,k)xk

�
α

∑
k=1,k �=i

2
n−α

xi +
n

∑
k=α+1

2n−α −1
n(n−α)

x j

=
2(α −1)
n−α

xi +
2n−α −1

n
x j, (3.1)

ϑx j =
α

∑
k=1

rG( j,k)xk +
n

∑
k=α+1,k �= j

rG( j,k)xk

�
α

∑
k=1

2n−α −1
n(n−α)

xi +
n

∑
k=α+1,k �= j

2
n
x j

=
α(2n−α −1)

n(n−α)
xi +

2(n−α −1)
n

x j, (3.2)

thus

xi � (2n−α −1)(n−α)
n(ϑn−ϑα −2α +2)

x j, (3.3)

x j � α(2n−α −1)
n(ϑn−ϑα)−2(n−α)(n−α−1)

xi. (3.4)

Note that x is p -normalized, we have

αxp
i +(n−α)xp

j �
n

∑
i=1

xp
i = 1. (3.5)
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By (3.3)–(3.5), we have xminp � min{w1,w2}. The first part of the proof is done.
If G ∼= Kα ∨Kn−α , by Lemma 2.2, we have xminp = min{w1,w2}.
If xminp = min{w1,w2}, then all inequalities in (3.1) and (3.2) must be equalities.

Further we have rG(i,k) = 2
n−α for k ∈ A, and rG(i,k) = 2n−α−1

n(n−α) for k∈ B. By Lemma

1.4, it must have G ∼= Kα ∨Kn−α . �

THEOREM 3.2. Let G ∈ G(n,α) . Fix p � 1 and let x = (x1,x2, . . . ,xn) be the
p-normalized principal eigenvector corresponding to the spectral radius ϑ of R. Then
xminp � min{w1,w2}, where

w1 =
(

[ϑn−2(n−α−1)]p

α[ϑn−2(n−α−1)]p +(n−α)[nt−2(n−α −1)]p

) 1
p

,

w2 =
(

(ϑn−ϑα −2α +2)p

α(nt− tα −2α +2)p +(n−α)(ϑn−ϑα−2α +2)p

) 1
p

.

The equality holds if and only if G ∼= Kn.

Proof. From G∈G(n,α) , we know that V (G) can be partitioned into two disjoint
subsets A and B such that V (G) = A∪B with A = {1,2, . . . ,α} and B = {α +1,α +
2, . . . ,n} and A is an independent set. Let i ∈ A, j ∈ B such that xi � xk for k ∈ A, and
x j � xk for k ∈ B. By Lemma 1.4, rG(i,k) � rKα∨Kn−α

(i,k) = 2
n−α for k ∈ A(k �= i),

and rG(i,k) � rKα∨Kn−α (i,k) = 2n−α−1
n(n−α) for k ∈ B, By Rx = ϑx , we have

ϑxi =
α

∑
k=1,k �=i

rG(i,k)xk +
n

∑
k=α+1

rG(i,k)xk

�
α

∑
k=1,k �=i

2
n−α

xi +
n

∑
k=α+1

rG(i,k)x j

=
2(α −1)
n−α

xi +
(

Re(i)− 2(α −1)
n−α

)
x j

� 2(α −1)
n−α

xi +
(

t− 2(α −1)
n−α

)
x j, (3.6)

ϑx j =
α

∑
k=1

rG( j,k)xk +
n

∑
k=α+1,k �= j

rG( j,k)xk

�
α

∑
k=1

rG( j,k)xi +
n

∑
k=α+1,k �= j

2
n
x j

=
(

Re( j)− 2(n−α −1)
n

)
xi +

2(n−α −1)
n

x j

�
(

t− 2(n−α −1)
n

)
xi +

2(n−α −1)
n

x j. (3.7)
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Then

xi � nt− tα −2α +2
ϑn−ϑα −2α +2

x j, (3.8)

x j � nt−2(n−α −1)
ϑn−2(n−α−1)

xi. (3.9)

By equations (3.8) and (3.9), we have xminp � min{w1,w2}. Then the first part of the
proof is done.

If G ∼= Kn, then α = 1. Then A = {1} and B = {2, . . . ,n} and ϑ = 2(n−1)
n ,

x = ( 1
n , 1

n , . . . , 1
n )T . By direct calculation, we have w1 = w2 = ( 1

n )
1
p . That is xminp =

min{w1,w2} = w1 = w2.
If xminp = min{w1,w2}, each of in (3.6) and (3.7) the equality holds. Obviously, it

must have Re(i) = Re( j) = t, and t = 2(α−1)
n−α + 2n−α−1

n = 2(n−α−1)
n + α(2n−α−1)

n(n−α) , then
α = 1. So G ∼= Kn. �

COROLLARY 3.3. Let G ∈ G(n,α) . Fix p � 1 , let x = (x1,x2, . . . ,xn) be the
p-normalized principal eigenvector corresponding to the spectral radius ϑ of R and
w1,w2,w1,w2 be the numbers in theorems 3.1 and 3.2, respectively. Then

(i) t � 2n2−nα−3n+α2+α
n2−nα , xminp � min{w1,w2}. The equality holds if and only if

G ∼= Kn.

(ii) 2n2−2nα−2n+α2+α
n2−nα < t < 2n2−nα−3n+α2+α

n2−nα , xminp � min{w1,w2}.
(iii) t � 2n2−2nα−2n+α2+α

n2−nα , xminp � min{w1,w2}. The equality holds if and only if

G ∼= Kα ∨Kn−α .

Proof. If t > 2n2−2nα−2n+α2+α
n2−nα , we have nt−2(n−α−1)

ϑn−2(n−α−1) > α(2n−α−1)
n(ϑn−ϑα)−2(n−α)(n−α−1).

Then by Lemma 1.5, we have w1 = f

(
nt−2(n−α−1)
ϑn−2(n−α−1)

)
< f

(
α(2n−α−1)

n(ϑn−ϑα)−2(n−α)(n−α−1)

)
= w1.

If t > 2n2−nα−3n+α2+α
n2−nα , we have nt−tα−2α+2

ϑn−ϑα−2α+2 > (2n−α−1)(n−α)
ϑn2−ϑnα−2nα+2n

. Then also by

Lemma 1.5, we have w2 = g

(
nt−tα−2α+2

ϑn−ϑα−2α+2

)
< g

(
(2n−α−1)(n−α)

ϑn2−ϑnα−2nα+2n

)
= w2.

Note that 2n2−nα−3n+α2+α
n2−nα > 2n2−2nα−2n+α2+α

n2−nα . It is easy to obtain our desirable
results. �

3.2. Upper bounds on the minimal entries of the p -normalized principal
eigenvector of ϑQ

THEOREM 3.4. Let G ∈ G(n,α) . Fix p � 1 and let x = (x1,x2, . . . ,xn) be the p-
normalized principal eigenvector corresponding to the spectral radius ϑQ of RQ and
u1,u2 be the numbers as shown in Lemma 2.3. Then xminp � min{u1,u2}. The equality
holds if and only if G ∼= Kα ∨Kn−α .
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Proof. From G∈G(n,α) , we know that V (G) can be partitioned into two disjoint
subsets A and B such that V (G) = A∪B with A = {1,2, . . . ,α} and B = {α +1,α +
2, . . . ,n} and A is an independent set. Let i ∈ A, j ∈ B such that xi � xk for k ∈ A,
and x j � xk for k ∈ B. By Lemma 1.4, rG(i,k) � rKα∨Kn−α

(i,k) = 2
n−α for k ∈ A,

and rG(i,k) � rKα∨Kn−α
(i,k) = 2n−α−1

n(n−α) for k ∈ B. Then Re(i) � 2n2−(α+3)n+α2+α
n(n−α) and

Re( j) � 2n2−(α+2)n+α2+α
n(n−α) . By ϑQx = ϑQx , we have

ϑQxi = Re(i)xi +
α

∑
k=1,k �=i

rG(i,k)xk +
n

∑
h=α+1

rG(i,k)xk

� Re(i)xi +
α

∑
k=1,k �=i

2
n−α

xi +
n

∑
h=α+1

2n−α −1
n(n−α)

x j

� 2n2− (α +3)n+ α2 + α
n(n−α)

xi +
2(α −1)
n−α

xi +
2n−α −1

n
x j, (3.10)

ϑQx j = Re( j)x j +
α

∑
k=1

rG( j,k)xk +
n

∑
k=α+1,k �= j

rG( j,k)xk

� Re( j)x j +
α

∑
k=1

2n−α −1
n(n−α)

xi +
n

∑
h=α+1,k �= j

2
n
x j

� 2n2− (α +2)n+ α2 + α
n(n−α)

x j +
α(2n−α −1)

n(n−α)
xi +

2(n−α −1)
n

x j, (3.11)

thus

xi � (2n−α −1)(n−α)
ϑQn2−ϑQnα −2n2− (α −5)n−α2−α

x j, (3.12)

x j � α(2n−α −1)
ϑQn(n−α)−4n2 +6nα +4n−3α2−3α

xi. (3.13)

By (3.5) and (3.12)–(3.13), we have xminp � min{u1,u2}. This is proved the first part
of the theorem.

If G ∼= Kα ∨Kn−α , by Lemma 2.3, we have xminp = min{u1,u2}.
If xminp = min{u1,u2}, then all inequalities in (3.10) and (3.11) must be equalities.

Further we have rG(i,k) = 2
n−α for k ∈ A, and rG(i,k) = 2n−α−1

n(n−α) for k∈ B. By Lemma

1.4, it must have G ∼= Kα ∨Kn−α . �

THEOREM 3.5. Let G ∈ G(n,α) . Fix p � 1 and let x = (x1,x2, . . . ,xn) be the
p-normalized principal eigenvector corresponding to the spectral radius ϑQ of RQ .
Then xminp � min{u1,u2}, where

u1 =
(

[(ϑQ−t)n(n−α)−2(n−α−1)(n−α)]p

α[(ϑQ−t)n(n−α)−2(n−α−1)(n−α)]p+(n−α)α p(2n−α−1)p

) 1
p

,
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u2 =
(

(ϑQn2−ϑQnα−n2t+tnα−2nα+2n)p

α(2n−α−1)p(n−α)p+(n−α)(ϑQn2−ϑQnα−n2t+tnα−2nα+2n)p

) 1
p

.

The equality holds if and only if G ∼= Kn.

Proof. Similar to the proof in Theorem 3.4, we have

ϑQxi = Re(i)xi +
α

∑
k=1,k �=i

rG(i,k)xk +
n

∑
k=α+1

rG(i,k)xk

� Re(i)xi +
α

∑
k=1,k �=i

rG(i,k)xi +
n

∑
k=α+1

rG(i,k)x j

� Re(i)xi +
α

∑
k=1,k �=i

rG(i,k)xi +
2n−α −1

n
x j

� Re(i)xi +
2(α −1)
n−α

xi +
2n−α −1

n
x j

� txi +
2(α −1)
n−α

xi +
2n−α −1

n
x j

ϑQx j = Re( j)x j +
α

∑
k=1

rG( j,k)xk +
n

∑
k=α+1,k �= j

rG( j,k)xk

� Re( j)x j +
α

∑
k=1

rG( j,k)xi +
n

∑
k=α+1,k �= j

rG( j,k)x j

� tx j +
α(2n−α −1)

n(n−α)
xi +

2(n−α −1)
n

x j

thus

xi � (2n−α −1)(n−α)
ϑQn2−ϑQnα −n2t + tnα −2nα +2n

x j, (3.14)

x j � α(2n−α −1)
(ϑQ − t)n(n−α)−2(n−α−1)(n−α)

xi. (3.15)

By (3.5) and (3.14)–(3.15), we have xminp � min{w1,w2}. Then the first part of the
proof is done.

If G ∼= Kn, then α = 1. Then A = {1} and B = {2, . . . ,n} and ϑQ = 4(n−1)
n ,

x = ( 1
n , 1

n , . . . , 1
n )T . By direct calculation, we have u1 = u2 = ( 1

n )
1
p . That is xminp =

min{u1,u2} = u1 = u2.
If xminp = min{u1,u2}, each of in (3.6) and (3.7) the equality holds. Obviously, it

must have Re(i) = Re( j) = t, and t = 2(α−1)
n−α + 2n−α−1

n = 2(n−α−1)
n + α(2n−α−1)

n(n−α) , then
α = 1. So G ∼= Kn. �

Similar to the proof of Corollary 3.3, we have the following results.
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COROLLARY 3.6. Let G ∈ G(n,α) . Fix p � 1 , let x = (x1,x2, . . . ,xn) be the
p-normalized principal eigenvector corresponding to the spectral radius ϑ of R and
w1,w2,w1,w2 be the numbers in theorems 3.1 and 3.2, respectively. Then

(i) t � 2n2−nα−3n+α2+α
n2−nα , xminp � min{u1,u2}. The equality holds if and only if G∼=

Kn.

(ii) 2n2−2nα−2n+α2+α
n2−nα < t < 2n2−nα−3n+α2+α

n2−nα , xminp � min{u1,u2}.
(iii) t � 2n2−2nα−2n+α2+α

n2−nα , xminp � min{u1,u2}. The equality holds if and only if

G ∼= Kα ∨Kn−α .

4. Upper bounds on the maximum entries of the p -normalized
principal eigenvector

THEOREM 4.1. Let G be a connected graph of order n and x = (x1,x2, . . . ,xn)
be the p(p � 1)-normalized principal eigenvector corresponding to the spectral radius
ϑ of R(G) with x1 � x2 � . . . � xn. Then

x1 �
(

2δ |E|DT p−1ϑ p +4n(|E|DT p−1)2

δ 2ϑ 2p +4δ |E|DT p−1ϑ p−4n2(|E|DT p−1)2 +8n(|E|DT p−1)2

) 1
p

,

where D,δ denote the diameter, the minimum degree, respectively.

Proof. Since x = (x1,x2, . . . ,xn) be the p -normalized principal eigenvector, we
have ∑n

k=1 xp
k = 1. From R(G)x = ϑx , we have ϑxi = ∑n

k=1,k �=i ri,kxk . For p � 1, by

weighted power mean inequality, we have

(
∑n

k=1,k �=i ri,kx
p
k

∑n
k=1,k �=i ri,k

) 1
p

� ∑n
k=1,k �=i ri,kxk

∑n
k=1,k �=i ri,k

. Further by

Lemma 1.6,

ϑ pxp
i =

( n

∑
k=1,k �=i

ri,kxk

)p

�
( n

∑
k=1,k �=i

ri,k

)p−1 n

∑
k=1,k �=i

ri,kx
p
k

� Re(vi)p−1
n

∑
k=1,k �=i

2|E|D
(

1
di

+
1
dk

)
xp
k

= 2|E|DRe(vi)p−1
[

1
di

n

∑
k=1,k �=i

xp
k +

n

∑
k=1,k �=i

1
dk

xp
k

]

= 2|E|DRe(vi)p−1
[
1− xp

i

di
+

n

∑
k=1,k �=i

1
dk

xp
k

]

� 2|E|DRe(vi)p−1
[
1− xp

i

δ
+

n

∑
k=1,k �=i

1
δ

xp
k

]
. (4.1)
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Setting i = 1,2 in (4.1), respectively, we have

ϑ pxp
1 � 2|E|DRe(v1)p−1

[
1− xp

1

δ
+

n

∑
k=2

1
δ

xp
2

]

= 2|E|DRe(v1)p−1
[
1− xp

1

δ
+

n−1
δ

xp
2

]

� 2|E|DRe(v1)p−1

δ
[(1− xp

1)+ (n−1)xp
2]

� 2|E|DT p−1

δ
[(1− xp

1)+ (n−1)xp
2]. (4.2)

ϑ pxp
2 � 2|E|DRe(v2)p−1

[
1− xp

2

δ
+

n

∑
k=1,k �=2

1
δ

xp
k

]

� 2|E|DRe(v2)p−1
[
1− xp

2

δ
+

n

∑
k=1,k �=2

1
δ

xp
1

]

=
2|E|DRe(v2)p−1

δ
[(1− xp

2)+ (n−1)xp
1]

� 2|E|DT p−1

δ
[(1− xp

2)+ (n−1)xp
1]. (4.3)

From (4.2) and (4.3), we have

xp
2 � 2|E|DT p−1[1+(n−1)xp

1]
δϑ p +2|E|DT p−1 ,

xp
1 � 2δ |E|DT p−1ϑ p +4n(|E|DT p−1)2

δ 2ϑ 2p +4δ |E|DT p−1ϑ p−4n2(|E|DT p−1)2 +8n(|E|DT p−1)2 .

This completes the proof. �

THEOREM 4.2. Let G be a connected graph of order n and x = (x1,x2, . . . ,xn) be
the p (p � 1)-normalized principal eigenvector corresponding to the spectral radius
ϑ of RQ(G) with x1 � x2 � . . . � xn. Then

xp
1�

(
2δ |E|DT p−1(ϑQ(G)−T )p+4n(|E|DT p−1)2

δ 2(ϑQ(G)−T )2p+4δ |E|DT p−1(ϑQ(G)−T )p−4n2(|E|DT p−1)2+8n(|E|DT p−1)2

)1
p

,

where D,δ denote the diameter, the minimum degree, respectively.

Proof. Since x = (x1,x2, . . . ,xn) be the p -normalized principal eigenvector, we
have ∑n

k=1 xp
k = 1. From RQx = ϑQ(G)x , we have ϑQ(G)xi = Re(vi)xi+∑n

k=1,k �=i ri,kxk .
Then

(ϑQ(G)−T )xi � (ϑQ(G)−Re(vi))xi =
n

∑
k=1,k �=i

ri,kxk.
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For p � 1, by weighted power mean inequality, we have

(ϑQ(G)−T)pxp
i �

( n

∑
k=1,k �=i

ri,kxk

)p

�
( n

∑
k=1,k �=i

ri,k

)p−1 n

∑
k=1,k �=i

ri,kx
p
k

� Re(vi)p−1
n

∑
k=1,k �=i

2|E|D
(

1
di

+
1
dk

)
xp
k

= 2|E|DRe(vi)p−1
[

1
di

n

∑
k=1,k �=i

xp
k +

n

∑
k=1,k �=i

1
dk

xp
k

]

= 2|E|DRe(vi)p−1
[
1− xp

i

di
+

n

∑
k=1,k �=i

1
dk

xp
k

]

� 2|E|DRe(vi)p−1
[
1− xp

i

δ
+

n

∑
k=1,k �=i

1
δ

xp
k

]
. (4.4)

Setting i = 1,2 in (4.4), respectively, we have

(ϑQ(G)−T)pxp
1 � 2|E|DRe(v1)p−1

[
1− xp

1

δ
+

n

∑
k=2

1
δ

xp
2

]

= 2|E|DRe(v1)p−1
[
1− xp

1

δ
+

n−1
δ

xp
2

]

� 2|E|DRe(v1)p−1

δ
[(1− xp

1)+ (n−1)xp
2]

� 2|E|DT p−1

δ
[(1− xp

1)+ (n−1)xp
2]. (4.5)

(ϑQ(G)−T)pxp
2 � 2|E|DRe(v2)p−1

[
1− xp

2

δ
+

n

∑
k=1,k �=2

1
δ

xp
k

]

� 2|E|DRe(v2)p−1
[
1− xp

2

δ
+

n

∑
k=1,k �=2

1
δ

xp
1

]

=
2|E|DRe(v2)p−1

δ
[(1− xp

2)+ (n−1)xp
1]

� 2|E|DT p−1

δ
[(1− xp

2)+ (n−1)xp
1] (4.6)

From (4.5) and (4.6), we have

xp
2 � 2|E|DT p−1[1+(n−1)xp

1 ]
δ (ϑQ(G)−T )p+2|E|DT p−1 ,

xp
1 � 2δ |E|DT p−1(ϑQ(G)−T )p+4n(|E|DT p−1)2

δ 2(ϑQ(G)−T )2p+4δ |E|DT p−1(ϑQ(G)−T )p−4n2(|E|DT p−1)2+8n(|E|DT p−1)2 .

This completes the proof. �
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