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CBMO ESTIMATES FOR SOME MULTILINEAR
OPERATORS ON MIXED HERZ SPACES

YICHUN ZHAO, MINGQUAN WEI AND JIANG ZHOU *

(Communicated by D. Han)

Abstract. In this paper, we develop the CBMO estimates for the multilinear operators of singu-
lar integral operator, fractional integral operator, and Hardy-type operators in higher dimensional
cases, which include their commutators as special cases, on mixed Herz spaces. Furthermore,
some endpoint cases are also obtained, such as Hardy-type and weak-type estimates for multi-
linear operators. Particularly, it is demonstrated that in some extreme cases, these operators are
actually not bounded.

1. Introduction

In the past few decades, mixed Lebesgue spaces L? (R"), as natural extensions
of classical Lebesgue spaces L? (R"), have attracted widespread attention. The the-
ory of mixed-norm function spaces can be traced back to the work of Benedek and
Panzone [1], in which authors prove some basic properties and boundedness of Riesz
potential operator. Especially, mixed-norm spaces are more suitable for studying partial
differential equations problems, which usually involve both space and time variables.
In this sense, the topic of function spaces with mixed-norm has received a lot of inter-
est and has seen significant progress in recent years. Nowadays, mixed-norm function
spaces, such as mixed-norm Hardy spaces [2], mixed Morrey spaces [3], mixed-norm
Besov spaces and Triebel-Lizorkin spaces [4, 5] and mixed Herz spaces [6, 7, 8] are
intensively studied in harmonic analysis.

The study of Herz spaces originated from the work of Beurling [9]. In the 1990s,
Lu and Yang [10] introduced the Herz space K;‘ P(R™), which can be seen as a sub-
stitute of Lebesgue spaces with power weight. Later, certain special multilinear op-
erators, which recover Coifman commutators in the one order case, are investigated
in [11,12,13]. Lu and Wu [11] investigated multilinear singular integral commuta-
tors on Herz spaces and Lu and Zhao [13] established CBMO estimates for multilinear
Hardy operator commutators on Lebesgue space and Herz space. Note that recently
Wei [6] introduced mixed Herz spaces Kg’p (R™), in which boundedness of some clas-
sical operators and commutators are obtained via extrapolation theory on mixed spaces.
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In this paper, we mainly consider the boundedness of various multilinear oper-
ators, such as singular integral operators, fractional integral operator and Hardy-type
operators in high dimensional cases. As an application, we also obtain the boundedness
of Coifman commutators. Furthermore, we also obtain some endpoint estimates for
multilinear operators.

Throughout this paper, we use the following notations. The letter § will denote
n-tuples of the numbers in (0,0 (n > 1), 4= (q1,92,---,9n). By definition, the
inequality 0 < ¢ < oo means that 0 < g; < oo forall i. For § = (q1,42,--.,qn), write

1 1 1 1 , P ,

S=\ T Ty T/ ) g = I P AERRD) g €< l’oon’

(b)) A=) @€ L)
where ¢} = ¢i/(gqi — 1) is conjugate exponent of ¢;. |B| denotes the volume of the ball
B, y, is the characteristic function of a set E. A ~ B means that A <B and B S A, [d]
denotes take the integer number for a. Let By = {x € R": |x| < 2¥} and E; = B\Bx_1
forany k € Z. Denote y, = y, forany k€ Z. mp(f) is the mean value of function f
on B.

2. Preliminaries

In this section, we will recall the definition and some properties of the homoge-
neous mixed Herz space Kg’p (R") and the central bounded mean oscillation space

CBMO(R"). The definitions associated to multilinear operators are also given. Let us
first recall the mixed Lebesgue spaces.

DEFINITION 2.1. (Mixed Lebesgue spaces) ([1]) Let p= (p1,p2,---,pn) € (0,00]".
Then the mixed Lebesgue space LP(R") is defined by the set of all measurable func-
tions f such that

1
== /(/ (/ | (1,2, ) [P dx1> dx2> Y
R R \/R
If pj = oo, then we have to make appropriate modifications.

DEFINITION 2.2. ([6]) Let « € R, 0 < p < o0, 0 < g < eo. The mixed homoge-
neous Herz space Kg P(R") is defined by

1/p
KiT(RY) = 0 f € Lo R\0D): | fllgor = (Z 2"“’”ka||§> <

keZ

And, if p = e, we define that ||fHK5c,oo = suprez 25| £ el -
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REMARK 2.1. HIfo0o<g= (g17Q2,...,qn) Keweand gy =@ =...=q,=4q,
then K" (R") = K;""(R"), where Kg""(R") is the classical Herz space.

(i1) The mixed homogeneous Herz space Kg’p (R™) is a quasi-Banach space. But,
if g,p > 1, itis a Banach space. These results can be inferred from definitions of mixed
Lebesgue spaces and classical Herz spaces.

The bounded mean oscillation space BMO(RR") is a natural generalize of essen-
tially bounded function space L*(R"). BMO(RR") often serves as a substitute for
L=(R"). For instance, classical singular integrals do not map L”(R") to L”(R") but
map L”(R") to BMO(R").

A function f € L} (R") belongs to BMO(R") if

1
Illswo = sup 12 /B F(x) — faldx < oo,

where the supremum is taken over all balls B in R”.
The John-Nirenberg inequality for BMO(IR") tells us that the following norms are
equivalent for any 1 < p < oo,

1 ,
o, =sup (15 170~ falar) "

where the supremum is taken over all balls B in R".

However, the John-Nirenberg inequality fails for the central bounded mean oscil-
lation space CBMO(RR"). For any 1 < p < oo, the definition of CBMO(R") is defined
as follows.

Let 1 < p <o, a function f € Lf (R") is said to belong to the central bounded
mean oscillation space CBMO,, (R") if

1 » Z
= —_— — Al d. < oo,
||fHCBMo,, igg <|B(O,r)| /B(o,r) |f(x) fB(o, )| x)

In fact, the relationship CBMO,, (R") C CBMO,,, (R") is true forany 1 < p; < ps <ee
via Holder’s inequality. In the norm sense, we have ||f|cemo,, < [|fllcemo,, under
finite measure case.

Next, we will recall the corresponding mixed-norm version of BMO(R"). Similar
to classical cases, by the John-Nirenberg inequality for mixed norm spaces [14], we can

easily check that for any p = (p1,...,pn) € [1,00)", the mixed-norm bounded mean
oscillation spaces BMO3(IR") is also equivalent to
I(f = f5) x5ll5

| fllBMO,; = sup
Py 1285

The definition of the mixed-norm central bounded mean oscillation space CBMO;(R")
is as follows.
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DEFINITION 2.3. Let p=(p1,...,pn) € (1,00)". Then the mixed central bounded
mean oscillation space CBMOj; (R") is defined by

(£ = Fz0) 2800 |5
|| fllcemo, = sup < oo,
r>0 x50l B

REMARK 2.2. Likewise, the space CBMOj;(IR") does not satisfies the John-Niren-
berg inequality, and CBMOg (R") C CBMO;(R") if 1 <7 < g < oo. Especially,
CBMOj (R") is a Banach space in the sense that two functions differ by a constant
are regarded as a function in this space. In fact, BMO(R") € CBMOj (R") for all p =
(P1s---ypn) € (1,00)". Similar to CBMO(R"), we have the following equivalent norm
of CBMOj (R").

H(f_C)XB(O,r)Hﬁ

< oo,
2800 7

£ llcemo, ~ sup inf

LEMMA 2.1. Suppose that f € CBMOy(R"), 1 < p <o, and 1,1’ >0, then

/

log(~)

(£ = Fz0.)) X80 || 5 e <1+
%80l ;

) | fllcBmo;-

Proof. By the triangle inequality, we have

| (F = foon) 2805 |(F = Fo0.0) + foor) — fa0.) XB(0.) Hﬁ

p =
a0l a0, 1
| (f = fa0.) X801 | (F80.) — f300.0)) XB(0.1) Hif
2505 2505

By computing can easily get,

| fa0.) — F80.0 | = | FB0.) — FB(0.2) + FB(0.20) — FB(0,877) F - - -
_fBOr’|log( /1)) +fBOr’|10g (r'/r)) fBOr |

We only estimate the first part in the following since others are similar.

| fa0.) fBO2r’|\ 0 / — fa0.2) | dy
r| B(0,r)

d
0r|/02r' ) — f0.2)| dy

S M 1(f = Fooar) xs02m |5 X802 || 5
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Taking the mixed-norm of both sides, we get

H(fB(OJJ) _fB(O,Qr’))XB(OJ/)Hﬁ 1
: = ‘B(O7V/)| H(f_fB(O,Zr’))%B(O,Zr’) ||ﬁ ||%B(072",)H

[ x80.) | 7 v

1B(0,27)| [1(f = fz02)) 230,27 |5
h |B(O7r/)‘ ||XB(O,2r’)||ﬁ

Combine the above estimate, then

(£ = Fo0.0) 280 |5
250.) 15

r/

) fllcemo,.

This proof is completed. [

In the following part, we will give several operators considered in this paper.

The investigations of singular integral operators originated in Hilbert transform,
which was initially defined as a convolution operator with a certain principal value dis-
tribution. We define the following singular integral operators via modifying the kernel
conditions.

Let T be an L? bounded singular integral operator

Tf(x) =p.v. /R Ke=y)7(v)dy,
with the kernel K satisfying the following conditions:
@) |[K@x)| <clx|™, if x#0;

Y/ .
W,lf ‘)C—y| ZZ‘y—yl|,Where[3 =

(B1,--+,By) is any multi-index and |B| = By + -+ + Bn.

. 9B oB / |y* /‘
i) | 25K ()~ 25K (x—1)| < Cpr

Other than singular integral operators, fractional integral operators are also signif-
icant in harmonic analysis For 0 < o < n, the fractional integral operator 7, can be
defined by

raf) = [ L0y

R Jx—y[nm o

The boundedness of the fractional integral operator on LP(R") can be founded in [15],
which is also called the Hardy-Littlewood-Sobolev inequality.
In 1920, Hardy [16] introduced the Hardy operator in one-dimensional case,

Hf(x) = }C/Oxf(t)dz X 20,

The adjoint operator of H is defined by

H f(x):= /xm@dt x#0.



1144 Y. ZHAO, M. WEI AND J. ZHOU

Later, Faris [17] defined the n-dimensional Hardy operator and its adjoint operators on
R",
1

N

HIW = [ v xeRN{0},
[yl<|x|

And

" f(x) ::/ f(y)dy, x e R"™\{0}.
bl "
The central bounded mean oscillation space CBMO;(IR") plays an important role in
the commutator theory of Hardy-type operators. Let us recall the definition of Coifman
commutators.
The commutator generated by the function b and the operator T is defined by

[b,T]f(x) = b(X)Tf(x) =T (bf)(x). (1)

A well-known result of Coifman, Rochberg and Weiss [18] states that [b, T] is bounded
on some LP(R"), 1 < p < oo, if and only if b € BMO(R"). In 2007, Fu et al. [19]
established the boundedness of Hardy commutators generated by CBMO functions.
Recently, Wei [7] used the commutators’ boundedness of Hardy operator on mixed
Herz space to characterize the central BMO functions CBMO3(R").

We now define the multilinear singular integral, fractional integral and Hardy op-
erator.

Let A be a function on R" having derivatives of order one in CBMOj (R"). For
x,y € R", set

R(A;x,y) =A(x) —A(y) — VA(y) (x — ).

LEMMA 2.2. ([20]) Let A be a function on R" with derivatives of order one in
L1(R") for some q > n. Then

1 1/q
A)—AG)| < Clr—y| [ ——— VAQR)%dz)
40 -0 < bl (i [ 9aGIa:)

where Q'(x,y) is the cube centered at x with sides parallel to the axes and whose side
length is 2+/n|x —y|

REMARK 2.3. Lemma 2.2 can easily be generalized to the mixed-norm case via
Holder’s inequality on mixed spaces, that is to say, when ¢ > n,

[A() —AW)| < Cl—yl 2ol VA 2o -

We also consider a class of multilinear singular integrals and fractional integral
operator, which are defined as follows

TAf(x) _ pv/ K(x—y)Rm(A;x7y)f(y)

dy, (2
R” bx =y



CBMO ESTIMATES FOR MULTILINEAR OPERATORS ON MIXED HERZ SPACES 1145

o R(A:x.3)f()
SXY) Y
TA :/ ——= ]y, 3
O(f(x) - \x—y\"fo“rl y 3
Furthermore, define the multilinear Hardy operators /% and JZ;" as
1 )
g0 =—— [ R(Asxy)dy. xeR"\{0} 4)
Valx™ Jiyi<px [x = |
and ) )
% y
A f ) = [ RAdy, xR0}, (5)
A ( ) Vn M>|X| ‘y‘n‘x_y‘ ( ) \{ }
where v,, denotes the volume of the unit ball in R” and v,, = 1_(%/:/2) The operators

J, and JZ)" are adjoint mutually,

s S dx = [ [0 gx)dx

Rll
3. Main results and their proofs

3.1. The general case

This part establishes the boundedness results of various multilinear operators on
mixed Herz spaces. Furthermore, as a corollary, we gain the boundedness of Coifman
commutators.

THEOREM 3.1. Let T4 be defined as in (2), where A has derivatives of order
one in CBMO~(R”) If0 < p <eoo, 1<G1,Go <o, and 5= = o+ o=, ou satisfies

- 1q1 <oy <n—YL 1; and 0 = 0 — then

llq

|71l o2 < CIIVAllemano, 1]
q2 41

Proof. We only prove the case 0 < p < oo, p = oo follows after slight modifica-
tions.

o k2 py /P
Il <e{ £ 2 (5 1w, |

—=—o0

_,:1 py /P
{ 5 z( 3 ||TA<fxl>xk;|%> }
k=—o0 I=k—1
- ry l/p
» HTA(fxl)xku%) }
k+2

+C { pkeap
k= =

=L+ L+
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In the following case, we assume that fixed &,
Ar(x) = A(x) —mp, (VA)y. (6)

It is easy to check that R(A;x,y) = R(Ag;x,y).
We first estimate I;, x € E, y € E;, and [ < k—2, then |x —y| ~ |x| ~ 2, then

IR (Aix,y)| < |Ak(x) = Ae(y)] + [VA®) — mp, (VA)| [x =y
S =yl {B/()@y)ln"§1 [ VAGs 5+ |VAG) — ms, (VA)| } @)

< =31 (IVAllcovio, + [VAG) —mp, (V4)])

Furthermore, by (7) and Holder’s inequality on mixed-norm Lebesgue spaces, we can
get

IR(A:x, )| f ()]
E; |x_y|n+l

< [ 5 (I9llcowo, +[VAG) ~ms (V)] ) £y

T2 (f)(x)| < dy

—kn l<n7.2 ‘iiii-2 ‘IIT>
<27 |IVAlleno, + VAG) —ms, (VA) 2| 1l 2\ 75

k1S, 1+l< 1l oy 1
—kn o n— e a1
<2 = g P A AV

> ||VA||CBM03 Hf%l“z?l .
Then

-0n-3 L) 15t
HTA(sz)Xquz <2 ( f:'q2’>2 =1 VA eemoyllf 211G,

Taking the mixed Herz (quasi-)norm, one can get

oo k—2 py l/p
i <c{ 5 z( > HTA(fmku%) }

k=—oo =—oo
2 " 1 ry U/p
s — *H("*Z *) L3 =
Sy e Y2 =120 2 =1 VA eemoy 1 216,
k=—co JA—
When 0 < p <1,
I/p

= = (sz>p(n—i i.faz)
I S|IVA|lcamo, § D, 217 Y, 2 =2 fallf
[ St

|=——oco

- 1/p
N VACBMOE{ > 2la1p||fll§1} =S ||VA||CBMO,7Hf||Kgl~P~
1
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When 1 < p < eo,

1

-~ | p/2
) A

INSES

it o (sz)<n7
I SIIVAllesmo, § 2 27 Y 2
|=—o0 k=I1+2

p/p ) P

=3

(-0 (=3 Lo )p)2
x| X2 ey £,

k=1+2

S ”VA”CBMO,;Hf”K;’LP.
1

For I, let ¢ € C5(R") and supp ¢ C B(0,4), ¢(x) =1 when x € B(0,2). Denote
M = ||V¢||w. Take yo € Ex.4 and let

A () = (Ae(x) — Ac(30)) (2 ). (8
It is easy to show that R(A;x,y) = R(A,q{);x,y). That is to say,

TA(F20) () (%) = T (F20) (00 ().

By x€ Ey,y€E; and k— 1 <1 < k+ 1, inequality (7), we obtain

0.,
GACIEA ‘R(A};’_ yy)nUfc(y)) dy

< AL () —AL0) = VAL D) =IO,
E;

\x—y\"‘*‘l

AL (x) — AL (D)1 £ (v) IVA? D)1 )]
d+/ VAWV,
/El \x y‘nﬂ E; Y

e —y|
=11 + 1.

We first estimate 1. By |yo| —|y| < |yo —y| < |y +yo| ~ 2%, and B'(x,y) is a Ball
centered at x with a radius |x —y|. We have

VAL 0] = [V (45) — Axtr)) 6 27H)|
< | VA0 )|+ 274 Akr) — Ax(ro)| [ Vo2 4)|

<M (VA +2714(y) — Axlv0) )
1
B00)]

M<|VAk( ) +27 km/ )|y — }’odf)

s (Iac)+2° [0 -agolaz)  ©)
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-1

B 451
SMIVAG)+275 |y =30l [B'0ry0)| " 5 VAR 2w
<M (IVAK)| +11VAK(2) cavio, ) -

By the above estimate and Holder’s inequality on mixed-norm Lebesgue spaces, there
holds

o
|
M (|VA) |+ [ VA(2)

~ JE lx —y["

lcBmo, ) 10|

< M|[VAG) |+ VA oo |

Hn-Y L— 1> S
<SM2 (n tzl i2 " izlqi

Next, we estimate /1, . Firstly,

I
-

A2 () = AL )] S =18 (e )|

TS

(10)

< b= yllB () VA) |+ VA lleno, e,

S =yl (IB’(x,y)l CET VA | +VACBMO~>

S e =yllIVAleamo;-

Consequently, /1; has the following estimate:

VAl cemo, | (v)

L3
E e —y

dy

< 2!1111> —kn
2 [VA|[cmo, | £ 21112,

A

n n
l<n—z L,)—knﬂ y L
AN =1\ VA | eemoy | 21l -

A

Combining the above estimates for /7; and II,, we arrive at

7+2

o (n-3
T ()| 52 (-bi)omdi (IVAllesvio, /a7,



CBMO ESTIMATES FOR MULTILINEAR OPERATORS ON MIXED HERZ SPACES 1149

Furthermore,
A? < i,%)* +qu, kiqlzz
| |, <2V F|VA oo | Fl 2
2
(- )( z,,;l) I3k
S2 i=1 = VA| emo, 21, -

Taking the mixed Herz (quasi-)norm on both sides of the above inequalities, it yields

n ry /p
& ket (l—k)(n—x L.) 1y L
L< Y 2| ¥ o2 =120 2 = VA esmoy 1 211G,
[ 1=k—1
n ry U/p
I . +1 l* ( Zqz 012)
< [IVA[lcmo, § Y, 2! 2 2 = o llg,
|——oo
- 1/p
S VACBMOE{ D 2’°‘lp||fxz§1}
I——oo
S [[VAlleemoy, || 1l g p-
q1
For I3, since x € E; and y € E; when [ > k+ 2, similar to I;, we have
R(A;x,y)[|f ()]
T4 ()| < [ RAEDIFO,
} (f l)| £ |x_y|n+1 y
(174l oo, + [VAG) — ma (VA ) /O]
~Y y
E e —y|"
l<n7-§' q%—i ‘llt>
<2\ AT SN VA eno, [VAW) —max (VA | L2

l(n—fi §i> I+l 3 L
S22\ At &t =1 VA esmo, 1521117, -
As aresult,

1 noy n 1
__2 _> ln+lz k3
T =1 g = IVA]|cemoy, 112113,

INSE

I n—
HTA(fXI)Xquz<2< ,

<2,

™M=

1
e Z
122 S| VA eemog 211, -

The above estimates imply that

o Py +
135{ » z( S 7 () xkuqz) }

k=—oo I=k+2

Ny L izt ! %
S,HVAHCBMOE Z ykonp 2 iS1%ig X ||leH

k=—c0 I=k+2
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When 0< p<1,

1
5L ) !
I < [[VA[|cBmoy, Z 2lep Z 2 < i 127,
[ fA—

< || VAl camoy [ £l gea-r-
q1

When 1 < p < oo,

oo 1
< + 2>P/2
L S| VA|lcemo, § D, 217 2 A Il

|=—o0 k= —oo

2 )<n 1 ) ) p/p Y VP
— =D Y 4w )p'/2
<[ X2 = Ifll2,

k=—oco

S IVAlcmog | f 1l goar-
a
This proof is completed. [

THEOREM 3.2. Let [b,T] be defined as in (1), where b in CBMO*(R") If0 <

p<oo,l<2]'1,c']’2<ooandi_z——f——,alsansﬁes— <op<n—y"

11‘11 ’1511:

and op = o — then

llq

116, T1f I geor < ClIbllcpmo, 11 ger -
q2 a1

Proof. The commutators [b,T] can be seen as multilinear operators T4 in a cer-
tain case that functions A are the continuous functions. Similar to the proof of Theorem
3.1, we can easily get the desired result. Here we omit the details. [

REMARK 3.1. If g1, = ¢q; and g2; = g2, where i = 1,2,---,n, Theorem 3.2 re-
duces to the corresponding result on classical Herz spaces which was obtained by
Grafakos et al. [21].

THEOREM 3.3. Let T2 be defined as in (3), where A has derivatives of order one
in CBMOﬂ(R”) IfO0<p<eo, 1 <qp,go<eo, and 1 = L + 11 — o, oq satisfies

- 1q1 <oy<n—o—3", L and oy =0y —

i=1 g1 then

llq

172 f || ger < ClIVAllcpmo, /1 ger-
q2 q1
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Proof. We only prove the case 0 < p < oo, p = oo follows after slight modifica-
tions. Write

|=—oo

o k—2 py l/p
||T£f“K;,22>,, SC{ 2 2ka2p< 2 HT&‘ (f%l)%k“,n> }
k=—oo

. k1 "
+C{ 5 2ka2P< v ||T§(f%z)%k’|qz> }
I=k—1

k—=—o0

) _ ry 1/p
+C{ 5 zko‘zP( > HTo?(sz)Xquz> }

k= —oo [=k+2
=K+ K, +Kjs.

Similar to the proof of Theorem 3.1, for K|, x € E;, y € E;, and [ < k— 2, one has
|x —y| ~ |x| ~ 2. By using (7) and Holder’s inequality, we get

IR(Asx,)||f(y)]
El |x_y|n706+1

< s (IVAlcanio, + [VAG) —my, (VA)]) 1£0)ldy

B lx—yle

T2 (fr) ()] < dy

5 2—k(n—oc)

VA lcanio, + VAG) —ms, (V4) 1|

l<n—§ L 3 L)
X HleHZjlz =19 =

_k(n—oc)-&-li L.H(”—i L—i L)
<2 i [y =g [VA]|cemoy | £ 2111, -

As a consequence,

(I—k) <n7i %) zi L'
1 Te (Fo) el 5, <2 =22 = VAlesyog I 201, -

For K, let ¢ € C5(R") and supp ¢ C B(0,4), ¢(x) =1 when x € B(0,2). Denote,
M = ||V9|. Let A? be defined as in (8). Then

0.
T (fx)(x)] = /E , ‘R(ak_’y;)_‘affy))dy

_ / A7 () = A7 (v) = VAL () (x = )£ )]
~ E ‘x_y‘n—a-&-l

dy

< [ MO0, VAGISO)]
~JE e —y|rotd E =y
= KI, + KDL.
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Similar to the estimates of //; and 11, using the (9) and (10), we have

I n—

|Te (Fo) ()] S 2 < "

T

L_)-k(n—oc)-‘rli 1
iy =1 HVAHCBM03||JCXI||L71’

which further implies

l<n—.§, %)—k(n—a)+l i 1 kﬁ L
I7a (ol s 2 = =17 VA camo, [ F2ll7,2 =1

(Hc)(nfi %) 13 L
S2 =122 =T VA epmog |1 211, -

For K3, similar to the estimate of K, the following results can be obtained:

(b add) ot s
T (fx)| S22\ & = =1 || VAl cemo, | f 2l 5, -
Then

ny L

(k1) X 7= zﬁil
172 ) xllg, <2 =2 5% ||VA|cemo; I f 2l -

Taking the corresponding norm for the above three parts, we arrive at

_ s py U/p
K <c{ 3 zk“ﬂ’< )y IIT&“(fxlquz) }

k=—oc0 |=—oc0
o " " ry U/p
i — (l—k)(nfajZ f,) IS &
,S 2 ZkO‘ZP 2 2 =17 )9 iS4 HVAHCBMOq”fleZil
k=—oc0 |=—oc0
" ry /p
- S o )
1 =42
SIVAleemo, § D, 27 [ D) 2 i=1% £ 211,
|=—oc0 k=142
When 0 < p <1,
1/p

> > (l—k)p(n—oc—i i_—a2>
Ki S [[VAlcemo, Y, 2'%7 Y 2 Sl
[T S )

- 1/p
S VACBMO‘;{ Y Zlame%lSl} S ||VA||CBMO,7Hf||Kg1>P-
1

|=—oo
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When 1 < p < eo,
_ o . oo (l_k)<n o— Z qz: > r/2 »
K1 S|IVAlcemo, § D, 2 Yy 2 1 2llZ,
|=—o0 k=I1+2

oo Lo / v v
" 2 2(lfk)<nfa7i§lq—2ifa2>p/2

k=1+2

5 ||VA||CBMO;,‘Hf”]'(gl~P-
1

120,

Using a similar estimate of Kj, one gets for i = 2,3,

K; 5 ”VA”CBMO,;Hf”j(fw.
a
This implies the results of Theorem 3.3 [

THEOREM 3.4. Let [b,Ty] be defined as in (1), where b in CBMO*(R"). If

1
0 < p<oo, 1<q1,q2<°o, and — qz E+q_1_a oy satisfies — llql <o <
n—o—yr 1q— and 0p = 0 — X 1q then

16, Ta] f1] goar < C||b||c13Mo,7 £l goa-p-
q2 a1

Proof. This proof of Theorem 3.4 is similar to that of Theorem 3.3, and the details
are omitted. [

REMARK 3.2. Then multilinear operator TO/? with rough kernel on Herz spaces
was considered by Tang [12], in which the boundedness of multilinear operators and
Coifman commutators is obtained.

THEOREM 3.5. Let 0 < p < oo, 1 < § < oo and the function A has derivatives of
order one in CBMO 5 (R"). If i > ', o0 < XL, %, then

H%‘\f“&;‘;v” < ClIVAllcBMO oy “fHK‘i;‘ll"”’
and

||%4*f||13§22*1’ < ClIVAlcamO, 5 Hf”kglw,
where max{5,i} = (max{sy,u; },max{sy,ua},...,max{sy,u,}).

Proof. We only prove the case 0 < p < eo, p = oo just follows after slight modifi-
cations. Write

of(x) = 1 /0|x|) f(y)R(A;x,y)dy

[x]r lx —y]

1 F()R(A;x,y)
hon =T

~ =l
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R(A;x,
Z J)R( xy)dy
~ e W\X\" B el
FOIR(xY)
e X" JE, xX—=Y
R
(V)R(A;x,y)
+ 7@
ZIIXI x —y|

=J1+ .

For J;, since y € Ej, x € E, | <k—2, then |x —y| ~ |x| ~ 2F. Fixed k, let Ay(y) =
A(y) —mp,(VA)y. By (7) and Holder’s inequality on mixed-norm Lebesgue spaces, we
have

|11\N

[=—oo

/If NIIR(A:x.)| dy
IXI” =yl

i L O (VAo + [VAG) ~ ms, (V) dy

zfoo

13 L Z(n—'z ¥ )
e 2 Jxfn In 1£ill72 =" (IVAllcBmo; + | VAl cBmo, ) 2 =17 =1
|=—oo

n

Z uj l< . - i
N 2 | |n ||ﬁH 21 1 HVAHCBMOI“AX{?E}Z i=1 i=1

|=—oo

Taking the mixed-norm for J;, one can get
/ SOIRAxY) |
b e =yl
I n—

1§ 1 v L g1
”zu,) kY & 13
< 2 k—1) Hfl” ||VA||CBMOWX{M}2 S1 9 Sy g—kny Sy by 5

l—oo

l—°° ‘?

IR

k=2 (sz)<n7§i,>
<Y 2 S Al 1IVA CBMO s -

|=—oco

In the following, we will estimate J,. By a simple calculation,

2 J()R(A;x,y) dy

1\)6\" g |x—yl
koo f()R <AZ;x,y>
< T

I—k—1 x| JE x —y|

| f(y)I‘R<A§f:x7y)’dy

E x =y

2| <

dy
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af ) - 4L )]

2",{ / 1f(y) ‘ p
y
l ‘x‘n E |x—y|
+ Z H"/ £0)1[VAL )] @y
—1
51214-]22-

For x€ Ex, ye E; and k— 1 <1 <k, by (9), there holds
[VAL ()] < M (IVA)] + VA lcmwoy)

As a consequence,

Lol
1S Y = [ UO)IM (IVAG) |+ VAl cavos) dy
a7

k n noon
2 u; l<"i2 7.7.2 ;)
<M Y —||fl|| 2 51| VA cemo, g2 ¥ E1 T ST

~ I l| |71 'max{s,i}

k l<n—.§" q%) 1
SM z 2 =l n ”fl” HVAHCBMOmax{;;,}
flrall ]
Furthermore, taking the mixed-norm for J,;, we obtain

n
n—73%
I

k 1
o)
||J22Xk||zjf,Mlz 2 S £ill VA CBMO e -

=k—1
We also know that via (10),
A2 (6) = AL ()] < Mik— 1]}~ yI[IVA cavio-
Thus, by Holder’s inequality, we have

¢y oAl -Ao)

Jor = — dy
DI e

k
1
$ 3 o [ 1O~ 1 VA oo,y
l 1|x| E;

l<n7i L’)
M 21‘ z il IVAllcBMo 2 N =1/

Therefore, taking the corresponding mixed-norm, there holds
k z<n7 5 %-) (b1
Maillg v 3, 2% S fill | VAl epmo 272 1
I=k—1
k ¢ 1
(1—k) <n—.2 _i>
sM ¥ 2 E Y fillg VA csvo;-

I=k—1
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The definition of mixed Herz spaces assures
1

oo 14
|74 e = ( 5y 2k°"’|lf“éxf§>

k=—oo0
" ry 1/p
< < kap & Uik)(” ‘h)
S IVAlleBMO sy § 2 2 > 2 A I1/illz
= |=—oo
. " py U/p
= a-0(n- 1)
+M||VA[lcBMO ey § 20 27| X 2 = Al
J—— I=k—1
ry U/p

k (lfk)<n 5 )
+M||VA|cBmo, 4 D, 257 Y 2 X 1£1ll
=k

ST TS+
When 0 < p <1,

< noy l/p
—k)p(n—3% —.>
S VAl CBMO 51 Z 2ker Z 2! S Al

k= |=—oco

n 1/p
< HVAHCBMOMX{W} i slap i 2(l—k)p<i§1;11(—a> ”ﬁ”g
I=—e  k=It2
S IVAI cBMO s 5y Hf||1'(g*1’~
For J}, the following estimate is valid:
ST A A B R
Ty S VAl eBMO iy kz 2kop 212 =S ANE
S IVAI|cBMO s ||fH1’(§~P~
Similar to Jj, we have
Jé S MHVAHCBMOWW} Hf||1’(g*1’-
When 1 < p < oo,
b

/ < kop & Uﬁk)("ii fi%)
T S VAl camonata) § 2 2 22 = fillg

k=—co J=—oo

=

k22 -k(n-3 L)p2
§||VA||CBMomax(m){ y ok ¥ 2 ( ,~:1%> 1A1I%

k=—o0 J=—oo
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B 0 NP e
X kz,z 2(17]() <n7i§1 ”L'>p /2 }

J=—oo
S ||VA||CBMomax(§,ﬁ)Hf||1'(g~f’~
Likewise, for all i = 2,3, we obtain
VBS ||VA||CBMomax(-\iﬁ)Hf||1'(g*1’~

The proof of Theorem 3.5 is completed. [J

3.2. The extreme case

Just as proved in the previous section, Theorem 3.1 is true when ¢ is restricted to

-, L coy<n— >t L But, this is not the case at the endpoints. To establish the
qi1i qi1i

endpoint estimates, we resort to mixed Herz-Hardy spaces. In what follows, .7’ (R")
denotes tempered distribution spaces.

DEFINITION 3.1. ([8]) Let ¢ € R, 0 < p <o, 1 <G <o, and N > Nz =
[n (l + i) +n+ 2] +1, where g_ denote min{q,q2,...,g,}. The mixed homoge-
neous Herz-type Hardy space HK;” (R™) is defined by

HK? (R") = {f € " (R : | fl g = |l fl gz < o=}
where .y f denotes the grand maximal operators of function f.

Corresponding to the classical case, mixed Herz-Hardy spaces also have atom
decomposition. Now we will recall the definition of central atoms.

DEFINITION 3.2. ([8]) Let 1 <g <o, n—Y} ,1/g; < ot < o, and non-negative
integer s > [ —n+ Y 1/qi].
A function a on R” is said to be a central (o, q)-atom, if it satisfies

(i) suppa C B(0,r) ={x € R": |x| < r}.
(if) fallz <[B(O, )=,
(ii) fpna(x)xPdx=0,|B| <s.

LEMMA 3.1. ([8]) Let 1 <G <o, 0<p<ooand n—Y" 1/q < o < eo.
Then f € HKg’p (R™) if and only if f = Y5 _. May, in the sense of distribute, where

each ay is a central (a,q)-atom with support contained in By and Yy | M|’ < oo.
Moreover,

- 1/p
1fllgger ~=inf [ 3 1Al” |
K k=0

where the infimum is taken over all above decompositions of f.
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THEOREM 3.6. Suppose that b € CBMO; (R"), 1 <G <. If0<p <o, 1<
G1,Gr < oo and 1/q; = 1/qi+ 1/qii, then the following statements are equivalent:

. =2 aie o . . n
(i) [b,T] maps K V= (R continuously into CBMOy, (R").

(i) [b,T] maps HK" Ziei Varip (R™) continuously into Kﬂ Zict Vazip PR,

(i) b is a constant. That is, [b,T] = 0.

Proof. From dual theory of Herz and Herz-Hardy spaces [8], K, Zici Vi (R™)
is the dual space of K;,fzgzll/ il (R") and CBMOg, (R") is the dual space of
1

HI'(;,_Z?ZI Va2i! (Rm) | which imply that (i) can conclude (ii). And, (iii) implies (i) via a
2
simple computation. So, we just need to show (ii) = (iii).

To this end, by Lemma 3.1, we only need to consider the behavior of [b,T] acting
on a central (n—Y} |1/q1;,q1)-atom. Let a be such an atom with support Bg. For
u € By, let

Vi (x> = XBir2 (x) [b7 T] a(x)a
Va5 = i ) [0~ )] [ (0C2) K ),

V) = e [ (K,y) = Kx,0) [b(y) =, (8)] a0y

k
and

Va(X,1) = X (B, ) (XK (x, 1) " b(y)a(y)dy.

By the vanishing condition of a, it is easy to check that
(b, Ta(x) = vi(x) + va(x,u) — v3(x,u) — va(x,u).
It follows from the (L9,L7) boundedness of the commutator [b, T] that

1/p
k+2

j(nai ',>
||v1||Kf72?:11/42i*P< ,22 = HX/ [b,T]a Hp
i Jj=—eo
k2 < §¢> 7
q
<C 22 = lall el
j:—nx)

<C.

By the size condition of central (n— Y ; 1/q1;,¢1)-atoms, the kernel difference con-
dition of operator T4 and some standard calculation, we obtain

G

, J X eV innd 2 ar
Va5, < lellcmmno, (=02 202 5 0,
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Furthermore, the following result can be got,

i 1/p
Vol 57 v <€ {z B vy }

‘iz j=k+3

1/p
{ 2 2rtk= J k)P ||b||CBMoﬂ}

Jj=k+3
< C[[b|cBmo; -

Likewise, for v3,

||V3 Hk’ji?’:l 1/q2i:p < C”b”CBMOq-
i
For vy, assume that L(b,a) = [ b(y)a(y)dy. Then

n

L, —jtn=3 Lp
||V4H WS g z 2 =1 92 =1 92i |L(b7a)|17

qu Jj=k+3
N
=C Y

j=k+3

Noting that ”a”Hi("fz?: Wy < Land |lvy || w5t /gy < C, as aresultof (ii), we have
a2 ‘12

H V4 HK{HZ?:I 1/qi.p < C.
92

Consequently, when N — oo, then, L(b,a) = 0, which implies b is a constant. [J

Compared with the commutators, the multilinear singular integrals have better
properties when o = —Y" | 1/qi;. But when o =n—3 | 1/q);, they have a similar
property. The precise results are contained in the following two theorems.

THEOREM 3.7. Suppose that function A has derivatives of order one in
CBMO; (R"), n< g <eo. If 1 <§i, §o <o and 1/qz =1/qi+1/qu;, then T*

maps KL?—ZZ,'-':I Vazie (R™) continuously into CBMOyg, (R").

Proof. By Remark 2.2, this proof only needs to show that exists c; such that

(T4 f =) x|

2 <Ol sp e
HkaHZiz h qu =

We write fi = fxp,,, and fo = f — f1, taking yo € Ex,2, and let ¢; = T4 f>(yo), then
(T~ xmllgy _ | ) amllg, (T2 = TAA200)) 280 lg,

~
x5 13, %8, 132 x5,
=1 +1D.
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By the boundedness of 74 on mixed Lebesgue spaces, we have
() 2.l .
qu <Al sz, < F g lmeea gl Iz, < HfIIK Sy gy
Billg> i

Let Ax(y) = A(y) — mp,(VA)y, can easily check that R,,(A;x,y) = Ry(Ax;x,2). By
using inequality (7) and Holder’s inequality on mixed Lebesgue spaces, there holds

(Rm(Ak§y7Z) Rm(Ak;yO’Z))f(z)dZ‘

1\

[T f2(y) = T* f2(30)| <

ly —z[+! lyo — 2|1
Rin(Ag; 2 Rin(Ax;y0,2
Z / ( m == |+| m( n+1)| |f(Z)|dZ
J=ktS ly—z| [vo — 2|
B i / (VACBMoﬁ+VA(y)—mBk(VA>|)f()d
= 2)|dz
j=k+57Ej ly —z|
ik jn-$ Loy 1
2 ||VA||CBMO 2= lqufX/quz iy
j=k+5
oo jiql, ]il . j(n—.i L._n L)
'%SHVA”CBMOqZ =1 Hf)(j”,ylZ st dig=jngt S Sy
i

< C|[VA]|cmoyll /1l =y

K\
Hence,
h < HVAHCBMOquHKjZ}’ZIl/qli»w
a

Combining the estimates I, and I, the proof is completed. [

THEOREM 3.8. Suppose that function A has derivatives of order one in
CBMO; (R"), n<g<eo. If0<p <o, 1<qi, g2 <o and 1/qs=1/qi+1/qu,
then the following statements are equivalent:

() T4 maps HK;;Z":ll/q“’p (R™) continuously into K;;Zi:l azi.p (R").
(ii) A is a polynomial of degree no more than one. That is, TA =0

Proof. The proof is similar to that of Theorem 3.6, by using the atom decompo-
sition of functions in Herz-Hardy spaces, we only need to consider the behavior of T4
acting on a central (n—Y | 1/q1;,q1)-atom. Let a be such an atom with support By.
For u € Ej15, let

() = 2oy ()T ().
o) = K ) [

By

)atay,

=yl e—ul

( K(x—y) (Ac () —Ac(y)) — K(x—u)(Ar(x)—A(w))
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Hae.0) = 2oy, o (¥) [ (K Gr—3) = K(x—10)] VAL 1)a(r)dy

k

and

Ma(x,u) = X8, e (K (x —u) A VAi(y)a(y)dy.

It is not difficult to check that

T4a(x) = w1 (x) + o (x, ) — 3 (o, 1) — g (x, ).
For 1, from the boundedness of operators 74 on mixed Lebesgue spaces, we have

I/p
k42

(-5%)
HHIHKf’Z?:l'/qu‘J’ < Z 2 =1 pfo (TAa)ng
2

Jj=—o0

I/p
k42

< iq_;z)p P P
<c| X 2V AR Yalp )l

Jj=—o0

<C.

For x € Ej, y € By and u € By, by Lemma 2.2, the size and difference condition of
kernel of operators T4 yields that

A(x) —A(y)  Aplx) —Ag(u)

o Ko=) = K(x —u)[|A(x) — Ac(y)|
x— |1 x— u[r+1

bx =y
N K (x—u)||Ae(y) — Ar(u)|
Jox — ul
<27/ 2K VA||cmo, -

Thus, we have

—j(n+1)+j s

i— 1‘721

[t2x)llg, < C2 ||a||qz||VA||CBMoq~

Then, using similar estimates,

]| - z, Wayr SCIVA[cemo,  (k=2,3).

For vy, assume that Cy = [ VA(y)a(y)dy.

i ',)p J(n— 2 )P
Hol'l“4||;)172;.1:11/qzl-p >C Z 2 -1 e |CY‘p
7 J=k+3
N
=C Z |Gyl

k3
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Noting that HaH T Vi <1 and HVIHK"*Z?ZHMZM’ < C, as aresult of (i), we have
K4, [}

HV4HK11*Z?:1 Vagin S C.
i
Then, when N — co, we need [p VA(y)a(y)dy = 0, thus, function A is a polynomial

of degree not more than one. [

The above conclusions show that multilinear operators are bounded from mixed
Herz spaces to CBMOg;(R") spaces. However, we will prove that some weak type
estimates hold for these operators.

DEFINITION 3.3. Let ¢ € R, 0 < p <0 and 0 < g < eo. A measurable function
f on R" is said to belong to the homogeneous weak Herz spaces Wkg’p (R™) if

=

1/p
| Flyger@n =supAs X 2 b8 <o,
q A>0

k=—oo

where E) = {x€ E: |f(x)] > A}.

THEOREM 3.9. Let 0 < p <1, 1 <§y, Go < oo and 1/q2i = 1/q;i +1/qi;.
(i) Suppose that b € CBMOg (R"), 1 < g < eo.

Then [b,T] maps HK;;Zi:ll/q'i’p (R™) continuously into WK;;Zi:ll/qu’p (R");
(ii) Suppose that A has derivatives of order one in CBMOg(R"), n < g < ee.
Then T maps HK;;Zi:l Hai.p (R") continuously into WK;;Zi:l azi.p (R").

Proof. 1t is obvious that (ii) is just a direct corollary of (i). By the atom decom-
position of Herz-Hardy spaces, we can write f =" __ Aza; with each a; a central
(n—3",1/q1i,¢1)-atom supported on By and Y |A|" < o. Write

Ejp ={x<€E;: |[b,T]f(x)] > A}.

By Definition 3.2 and the inclusion relationship, there holds

Ej)LZ{XEEj 3 Aelb, Tlag(x >%}
k=j—
U{XEEJ‘Z Elk( ka)Tak() >%}
k=—co
2
U{er,-; S T (b b)) ar) () >§}
k=—co

=EL +EH +E}



CBMO ESTIMATES FOR MULTILINEAR OPERATORS ON MIXED HERZ SPACES

Thus, by the above decomposition of the set £, , we have

o 1/p

. n p

1B, TIFN st 1/an < SUPA 2J(n— i:ll/qu)pHx .
WKy SR 0 ,-:2_;, Einllg,

5]

o 1/p
— P
+Csupi l Y 2i(n- i:ll/‘hi)z’H%Ej%1 ﬂ]
Jj=—c0 q2

A>0
oo » 1/p
+Csuph | Y 0J(n=31 1 1/ai)p X2,
A>0 j=_.><, J 5?2
=G1+G2+Gs.

1163

From the boundedness of operators 7 on mixed Lebesgue space and Holder’s inequal-
ity on mixed Lebesgue spaces, and the size condition of the central (n — Y, 1/q1;,41)-

atoms, when x € £, y € E; and k > j— 1, we obtain
16, TJa(x)] S 27" (|6(x) g, ()| + 1Bllcmvio ) -
Hence,
1B Tla()ll,, <2775 | |bl| oo,

As aresult,

i _ p/p
Y 2i(n- ;—111/%‘)1’( Y |7Lk’|([b,T]ak)%quz> ]

G <C
j=—c0 k=j—1
- 1/p
SCbCBMOq< > |7Lk|p> :
k= —oo0
For G,, we have
|Tak(x)| < |ak(y)lldy§2*]n,
By bx =y

which means

—jntjyr -

16— mp (0))Ta 15|, <277 5130 | Bllewmo, | 2117
s L

<2 GRS qli)HbHCBMOqHXjHLT

Thus

k—=—oo

- 1/p
G2 5 |1bllemo; ( > lk|p> :
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To estimate G3, note that when x € E;,

j=2 =

> AT ((b—bp,)a) (x)| <C277"|bllcamo, D, |Ml-
[ e

Take jo € Z such that

=

200" <3CA|blcomo, Y, Akl < 2Uothm

k=—oco

Obviously, if j > jo+ 1, the set

j—2

XGEjI Z lkT((b—ka)ak)(x) >
f—e oo

W] >

is empty. Thus,

; 1/p
G3 <Csupi f n(-as)r |E, |7/
A>0 j=—o0

< Clbllcmo,; D, ||

ke —oo
- 1/p
<Clbllcamo, | X 14l

k=—oo

This proof is finished. [
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