LIE SUPERALGEBRAS BASED ON $\mathfrak{s l}(2, \mathbb{F})$

Yuqiu Sheng, Wende Liu and XingXue Miao*

(Communicated by E. Poon)

Abstract

In this paper, we study a class of Lie superalgebras based on the Lie algebra $\mathfrak{s l}(2, \mathbb{F})$ over a field of characteristic not equal to 2. Applying matrix techniques and methods, we determine their automorphisms group and local automorphisms, and characterize their superderivations and local superderivations.

1. Introduction and basics

The even part of a Lie superalgebra is a Lie algebra and the odd part is a module of the Lie algebra by means of the adjoint representation. Thus, one can construct Lie superalgebras from a Lie algebra and its modules. This point of view of constructing Lie superalgebras is quite useful for studying Lie superalgebras [1].

Let \mathfrak{g}_{0} be a Lie algebra with multiplication $\langle\rangle,, \mathfrak{g}_{\overline{1}}$ an \mathfrak{g}_{0}-module with module action ".", and $P: \mathfrak{g}_{\overline{1}} \times \mathfrak{g}_{\overline{1}} \longrightarrow \mathfrak{g}_{\overline{0}}$ a symmetric bilinear mapping. We construct a super vector space $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$, where \mathfrak{g}_{0} is even part and $\mathfrak{g}_{\overline{1}}$ is odd part. Define a multiplication [,] on \mathfrak{g} by

$$
[x, y]=\langle x, y\rangle, \quad[x, u]=-[u, x]=x \cdot u, \quad[u, v]=P(u, v), x, y \in \mathfrak{g}_{0}, u, v \in \mathfrak{g}_{1}
$$

Then \mathfrak{g} is a Lie superalgebra if and only if the mapping P satisfies that

$$
\begin{gather*}
P(u \cdot v, w)+P(v, u \cdot w)=[u, P(v, w)], \quad u \in \mathfrak{g}_{\overline{0}}, \quad v, w \in \mathfrak{g}_{1} \tag{1.1}\\
P(u, v) \cdot w+P(v, w) \cdot u+P(w, u) \cdot v=0, \quad u, v, w \in \mathfrak{g}_{\overline{1}} \tag{1.2}
\end{gather*}
$$

A Lie superalgebra \mathfrak{g} constructed in such way is called a Lie superalgebra based on the Lie algebra \mathfrak{g}_{0} and \mathfrak{g}_{0}-module \mathfrak{g}_{1}.

[^0]Throughout the paper, \mathbb{F} is a field of characteristic not 2 , any additional assumption will be mentioned explicitly. \mathbb{F}^{*} refers the multiplicative group of \mathbb{F}. Let V be a 2-dimensional linear space over \mathbb{F} and ψ a non-degenerate skew-symmetric bilinear form on V. Then there exists a basis $\left\{\omega_{1}, \omega_{-1}\right\}$ of V such that $\psi\left(\omega_{1}, \omega_{-1}\right)=1$. Let \mathfrak{g}_{0} be the symplectic Lie algebra $\mathfrak{s p}(\psi)$ and $\mathfrak{g}_{1}=V$. Suppose that the bilinear mapping

$$
p: V \times V \rightarrow \mathfrak{s p}(\psi)
$$

satisfies

$$
\begin{equation*}
p(u, v) \omega=\psi(v, \omega) u-\psi(\omega, u) v, u, v, \omega \in V \tag{1.3}
\end{equation*}
$$

Obviously, p is symmetric and satisfies (1.1) and (1.2). Then $\mathfrak{g}=\mathfrak{s p}(\psi) \oplus V$ is a Lie superalgebra. Since $\mathfrak{s p}(\psi)$ is isomorphic to $\mathfrak{s l}(2, \mathbb{F})$, we call \mathfrak{g} a Lie superalgebra based on Lie algebra $\mathfrak{s l}(2, \mathbb{F})$ and its module V.

From [1, Page 17], $\mathfrak{g}=\mathfrak{s p}(\psi) \oplus V$ is a Lie superalgebra if and only if there exists $d \in \mathbb{F}$ such that $[u, v]=d p(u, v), u, v \in V$. Denote $\mathfrak{g}=\Gamma(d)$. Write $\Pi=\{\Gamma(d) \mid d \in \mathbb{F}\}$ for all Lie superalgebras based on Lie algebra $\mathfrak{s l}(2, \mathbb{F})$ and its module V.

In this paper, we will give the isomorphic classification of Π, determine their automorphisms, local automorphisms, superderivations and local superderivations.

For a Lie superalgebra \mathfrak{g}, denote by $\operatorname{Aut}(\mathfrak{g})$ and $\operatorname{LAut}(\mathfrak{g})$ the automorphism group and the local automorphism group of the Lie superalgebra \mathfrak{g}, respectively. Denote by $\operatorname{Der}(\mathfrak{g})$ and $\operatorname{ad}(\mathfrak{g})$ the superderivation algebra and inner superderivation algebra, and $\operatorname{LDer}(\mathfrak{g})$ the set of all local superderivations, respectively. We denote by $A \oplus B$ the block matrix $\left(\begin{array}{cc}A & O \\ O & B\end{array}\right)$, and by $A \bar{\oplus} B$ the block matrix $\left(\begin{array}{cc}O & A \\ B & O\end{array}\right)$, respectively.

The concepts of local automorphism and local derivation first appeared in references [2] and [3]. Here the notion of local superderivation are from [4]. In view of the difference of algebra structure of Lie superalgebra and Lie algebra, it is slightly different from local derivation in [2] and [3]. Next, we introduce the definitions of local automorphism and local superderivation of a Lie superalgebra.

DEFINITION 1.1. Let φ be a linear transformation of a Lie superalgebra \mathfrak{g}. We call φ a local automorphism of \mathfrak{g}, if for any $x \in \mathfrak{g}$ there exists an automorphism ϕ_{x} of \mathfrak{g} such that $\varphi(x)=\phi_{x}(x)$.

Definition 1.2. Suppose that \mathfrak{g} is a Lie superalgebra, $\varphi: \mathfrak{g} \rightarrow \mathfrak{g}$ is a linear homogeneous mapping of degree $\alpha, \alpha \in\{\overline{0}, \overline{1}\}$. If for any $x \in \mathfrak{g}$ there exists a superderivation ϕ_{x} of \mathfrak{g} such that $\varphi(x)=\phi_{x}(x)$, then we call φ a local homogeneous superderivation of degree α. Let $\operatorname{LDer}_{\alpha}(\mathfrak{g})$ be the set of all local homogeneous superderivations of degree $\alpha, \operatorname{LDer}(\mathfrak{g})=\operatorname{LDer}_{\overline{0}}(\mathfrak{g}) \oplus \operatorname{LDer}_{\overline{1}}(\mathfrak{g})$. The element of $\operatorname{LDer}(\mathfrak{g})$ is called a local superderivation of \mathfrak{g}.

REMARK 1.3. It is easy to see that, by Definition 1.2 , if φ is a local automorphism, then φ is invertible, and φ^{-1} is also a local automorphism.

2. Isomorphism classification of Π

The matrix of $p(u, v)$ with respect to the basis $\left\{\omega_{1}, \omega_{-1}\right\}$ is

$$
p\left(\omega_{1}, \omega_{-1}\right)=-h, \quad p\left(\omega_{1}, \omega_{1}\right)=2 e, \quad p\left(\omega_{-1}, \omega_{-1}\right)=-2 f
$$

where

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

For any $x \in \mathfrak{s p}(\psi)$, we also denote by x its matrix with respect to the basis $\left\{\omega_{1}, \omega_{-1}\right\}$.
In the following, if we refer to the matrix of a linear transformation of $\Gamma(d)$, then it means the matrix with respect to the fixed basis $\left\{h, e, f, \omega_{1}, \omega_{-1}\right\}$.

Similar to [5, Lemma 2.5], we have the following lemma.
Lemma 2.1. Suppose that φ is an invertible linear mapping on $\mathfrak{s l}(2, \mathbb{F})$ whose matrix with respect to the basis $\{h, e, f\}$ is A. Then φ is an automorphism of Lie algebras if and only

$$
\begin{equation*}
P^{-1} A^{T} P=A^{*} \tag{2.1}
\end{equation*}
$$

where $P=E_{11}+\frac{1}{2} E_{23}+\frac{1}{2} E_{32}, A^{T}$ and A^{*} are the transpose and adjugate matrix of A, respectively.

For any $d_{1}, d_{2} \in \mathbb{F}$, let $\varphi: \Gamma\left(d_{1}\right) \rightarrow \Gamma\left(d_{2}\right)$ be a linear mapping such that

$$
\varphi\left(h, e, f, \omega_{1}, \omega_{-1}\right)=\left(h, e, f, \omega_{1}, \omega_{-1}\right)\left(\begin{array}{cc}
A & O \tag{2.2}\\
O & B
\end{array}\right)
$$

where $A \in M_{3}(\mathbb{F})$. Denote $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$. Then,

$$
\begin{align*}
& \operatorname{ad}(\varphi(h))\left(\omega_{1}, \omega_{-1}\right)=\left(\omega_{1}, \omega_{-1}\right) A_{h} \tag{2.3}\\
& \operatorname{ad}(\varphi(e))\left(\omega_{1}, \omega_{-1}\right)=\left(\omega_{1}, \omega_{-1}\right) A_{e} \tag{2.4}\\
& \operatorname{ad}(\varphi(f))\left(\omega_{1}, \omega_{-1}\right)=\left(\omega_{1}, \omega_{-1}\right) A_{f} \tag{2.5}
\end{align*}
$$

where

$$
A_{h}=\left(\begin{array}{cc}
a_{11} & a_{21} \tag{2.6}\\
a_{31} & -a_{11}
\end{array}\right), \quad A_{e}=\left(\begin{array}{cc}
a_{12} & a_{22} \\
a_{32} & -a_{12}
\end{array}\right), \quad A_{f}=\left(\begin{array}{cc}
a_{13} & a_{23} \\
a_{33} & -a_{13}
\end{array}\right)
$$

Using these symbols, we characterize the conditions under which φ becomes an isomorphic mapping.

THEOREM 2.2. Suppose that φ is described as above. If φ is invertible, then φ is a Lie superalgebra isomorphism of $\Gamma\left(d_{1}\right)$ to $\Gamma\left(d_{2}\right)$ if and only if $A_{x} B=B x$, for $x=h, e$ and f, and one of the following conditions holds.
(1) $d_{1}=d_{2}=0$;
(2) $d_{1} d_{2} \neq 0$ and $\operatorname{det}(B)=\frac{d_{1}}{d_{2}}$.

Proof. By definition of isomorphism we have

$$
\begin{equation*}
\varphi([x, y])=[\varphi(x), \varphi(y)], x, y \in \Gamma\left(d_{1}\right) \tag{2.7}
\end{equation*}
$$

Since $\left[h, \omega_{1}\right]=\omega_{1}$ and $\left[h, \omega_{-1}\right]=-\omega_{-1}$, we have $\phi\left(\omega_{1}\right)=\left[\phi(h), \phi\left(\omega_{1}\right)\right]$ and $-\phi\left(\omega_{-1}\right)$ $=\left[\phi(h), \phi\left(\omega_{-1}\right)\right]$. By (2.2) and (2.6), we have

$$
\begin{aligned}
b_{11} \omega_{1}+b_{21} \omega_{-1} & =\left[a_{11} h+a_{21} e+a_{31} f, b_{11} \omega_{1}+b_{21} \omega_{-1}\right] \\
& =\left(a_{11} b_{11}+a_{21} b_{21}\right) \omega_{1}+\left(-a_{11} b_{21}+a_{31} b_{11}\right) \omega_{-1}, \\
-\left(b_{12} \omega_{1}+b_{22} \omega_{-1}\right) & =\left[a_{11} h+a_{21} e+a_{31} f, b_{12} \omega_{1}+b_{22} \omega_{-1}\right] \\
& =\left(a_{11} b_{12}+a_{21} b_{22}\right) \omega_{1}+\left(-a_{11} b_{22}+a_{31} b_{12}\right) \omega_{-1} .
\end{aligned}
$$

Then

$$
\begin{gathered}
b_{11}=a_{11} b_{11}+a_{21} b_{21}, \quad b_{12}=-a_{11} b_{12}-a_{21} b_{22} \\
b_{21}=a_{31} b_{11}-a_{11} b_{21}, \quad b_{22}=a_{11} b_{22}-a_{31} b_{12}
\end{gathered}
$$

i.e.,

$$
\left(\begin{array}{cc}
a_{11} & a_{21} \\
a_{31} & -a_{11}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{l}
b_{11}-b_{12} \\
b_{21}
\end{array}-b_{22}\right)=B\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Thus, $A_{h} B=B h$. Similarly, we have $A_{e} B=B e$ and $A_{f} B=B f$. That is

$$
\begin{equation*}
A_{x} B=B x, \quad x \in\{h, e, f\} . \tag{2.8}
\end{equation*}
$$

Replacing x and y by ω_{1} in (2.7) yields

$$
\left\{\begin{array}{l}
d_{1} a_{12}=-d_{2} b_{11} b_{21} \tag{2.9}\\
d_{1} a_{22}=d_{2} b_{11}^{2} \\
d_{1} a_{32}=-d_{2} b_{21}^{2}
\end{array}\right.
$$

Then, both d_{1} and d_{2} are 0 or neither is 0 .
If $d_{1} d_{2} \neq 0$, by (2.8) and (2.9) we have

$$
\left\{\begin{array}{l}
\operatorname{det}(B) a_{12}=-b_{11} b_{21} \\
\operatorname{det}(B) a_{22}=b_{11}^{2} \\
\operatorname{det}(B) a_{32}=-b_{21}^{2}
\end{array}\right.
$$

Comparing the above equations with (2.9), it can be concluded that

$$
\left(\operatorname{det}(B)-\frac{d_{1}}{d_{2}}\right) a_{k 2}=0, \quad k=1,2,3
$$

Thus, $\operatorname{det}(B)=\frac{d_{1}}{d_{2}}$.
Conversely, if $d_{1} d_{2} \neq 0, \operatorname{det}(B)=\frac{d_{1}}{d_{2}}$ and $A_{x} B=B x$, for $x=h, e$ and f, from the proof of the necessity part we know (2.7) holds for any $x \in \Gamma\left(d_{1}\right)_{\overline{0}}, y \in \Gamma\left(d_{1}\right)_{\overline{1}}$. By
direct verification we have (2.7) holds for any $x, y \in \Gamma\left(d_{1}\right)_{\overline{1}}$. Moreover, (2.1) can be deduced by (2.8). By Lemma 2.1, (2.7) holds for any $x, y \in \Gamma\left(d_{1}\right)_{\overline{0}}$. Therefore, φ is a Lie superalgebra isomorphism of $\Gamma\left(d_{1}\right)$ into $\Gamma\left(d_{2}\right)$. Else if $d_{1}=d_{2}=0$ and $A_{x} B=B x$, for $x=h, e$ and f, we can prove that φ is an automorphism of $\Gamma(0)$ similarly.

By Theorem 2.2 and its proof, we have the following conclusions.
COROLLARY 2.3. Linear transformation of $\Gamma(d)$ is a Lie superalgebra automorphism if and only if its matrix is of the form

$$
b^{-1}\left(\begin{array}{ccc}
b_{11} b_{22}+b_{12} b_{21} & -b_{11} b_{21} & b_{12} b_{22} \\
-2 b_{11} b_{12} & b_{11}^{2} & -b_{12}^{2} \\
2 b_{21} b_{22} & -b_{21}^{2} & b_{22}^{2}
\end{array}\right) \oplus\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

where $b=\operatorname{det}\left(b_{i j}\right) \neq 0$, and if $d \neq 0$ then $b=1$.
Corollary 2.4. $\operatorname{Aut}(\Gamma(0))$ is isomorphic to $G L(2, \mathbb{F})$ (the general linear group), and $\operatorname{Aut}(\Gamma(\mathrm{d}))$ is isomorphic to $\operatorname{SL}(2, \mathbb{F})$ (the special linear group), where $d \neq 0$.

THEOREM 2.5. Up to the Lie superalgebra isomorphism, there are only two classes in $\Pi: \Gamma(0)$ and $\Gamma(1)$.

Proof. By Theorem 2.2, the only one that can be isomorphic to $\Gamma(0)$ is $\Gamma(0)$. If $0 \neq d \in \mathbb{F}$, we can choose a 2×2 matrix B over \mathbb{F} such that $\operatorname{det}(B)=d$, then the matrix A is determined by (2.8). Thus, the proof of Theorem 2.2 shows that $\Gamma(d)$ is isomorphic to $\Gamma(1)$.

3. Local automorphisms of $\Gamma(1)$ and $\Gamma(0)$

Lemma 3.1. Suppose that $\mathfrak{g}=\Gamma(0)$ or $\Gamma(1)$. If $\phi \in \operatorname{LAut}(\mathfrak{g})$, then the matrix of ϕ is of the form $A \oplus B$, where

$$
A=b^{-1}\left(\begin{array}{ccc}
b_{11} b_{22}+b_{12} b_{21} & -\rho_{2} b_{11} b_{21} & \rho_{3} b_{12} b_{22} \\
-2 b_{11} b_{12} & \rho_{2} b_{11}^{2} & -\rho_{3} b_{12}^{2} \\
2 b_{21} b_{22} & -\rho_{2} b_{21}^{2} & \rho_{3} b_{22}^{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
b_{11} & \rho_{1} b_{12} \\
b_{21} & \rho_{1} b_{22}
\end{array}\right)
$$

$\operatorname{det}\left(b_{i j}\right)=b \neq 0$ and $\rho_{i} \in \mathbb{F}^{*}, i=1,2,3$.

Proof. By definition of local automorphism, we have

$$
\begin{equation*}
\phi(x)=\phi_{x}(x), \forall x \in \mathfrak{g} . \tag{3.1}
\end{equation*}
$$

where ϕ_{x} is an automorphism of \mathfrak{g}. Using Corollary 2.3, we can write $A^{x} \oplus B^{x}$ for the matrix of ϕ_{x}, where $A^{x}=\left(A_{1}^{x}, A_{2}^{x}, A_{3}^{x}\right), B^{x}=\left(B_{1}^{x}, B_{2}^{x}\right)$. Therefore, by (3.1) we can
obtain easily that the matrix of ϕ is of the form $A \oplus B$, where $A=\left(A_{1}, A_{2}, A_{3}\right)$ and $B=\left(B_{1}, B_{2}\right)$.

In a similar way to (2.3)-(2.5), we denote the matrix of $\left.\operatorname{ad}(\phi(y))\right|_{V}$ and $\left.\operatorname{ad}\left(\phi_{x}(y)\right)\right|_{V}$ with respect to the fixed basis $\left\{\omega_{1}, \omega_{-1}\right\}$ by A_{y} and A_{y}^{x}, respectively, where $x \in \mathfrak{g}, y \in$ $\{h, e, f\}$.

For any $i \in\{1,-1\}$ and $y \in\{h, e, f\}$, substituting $x=y+\omega_{i}$ into (3.1), then we have

$$
\begin{gather*}
B_{1}^{y+\omega_{1}}=B_{1}, \quad B_{2}^{y+\omega_{-1}}=B_{2} \tag{3.2}\\
A_{1}^{h+\omega_{i}}=A_{1}, \quad A_{2}^{e+\omega_{i}}=A_{2}, \quad A_{3}^{f+\omega_{i}}=A_{3} . \tag{3.3}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
A_{h}^{h+\omega_{i}}=A_{h}, \quad A_{e}^{e+\omega_{i}}=A_{e}, \quad A_{f}^{f+\omega_{i}}=A_{f}, \quad i=1,-1 \tag{3.4}
\end{equation*}
$$

By Theorem 2.2 we have

$$
A_{y}^{x}\left(B_{1}^{x}, B_{2}^{x}\right)=\left(B_{1}^{x}, B_{2}^{x}\right) y, \quad y=h, e, f .
$$

Then using (3.4) we conclude that

$$
\begin{align*}
A_{h}\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right) & =\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{3.5}\\
A_{h}\left(B_{1}^{h+\omega_{-1}}, B_{2}^{h+\omega_{-1}}\right) & =\left(B_{1}^{h+\omega_{-1}}, B_{2}^{h+\omega_{-1}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
A_{e}\left(B_{1}^{e+\omega_{1}}, B_{2}^{e+\omega_{1}}\right) & =\left(B_{1}^{e+\omega_{1}}, B_{2}^{e+\omega_{1}}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \tag{3.6}\\
A_{e}\left(B_{1}^{e+\omega_{-1}}, B_{2}^{e+\omega_{-1}}\right) & =\left(B_{1}^{e+\omega_{-1}}, B_{2}^{e+\omega_{-1}}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \tag{3.7}\\
A_{f}\left(B_{1}^{f+\omega_{1}}, B_{2}^{f+\omega_{1}}\right) & =\left(B_{1}^{f+\omega_{1}}, B_{2}^{f+\omega_{1}}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \tag{3.8}\\
A_{f}\left(B_{1}^{f+\omega_{-1}}, B_{2}^{f+\omega_{-1}}\right) & =\left(B_{1}^{f+\omega_{-1}}, B_{2}^{f+\omega_{-1}}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) . \tag{3.9}
\end{align*}
$$

It is easy to see that there exist $\rho_{i} \in \mathbb{F}^{*}, i=1,2,3$ such that

$$
\begin{equation*}
B_{2}^{h+\omega_{-1}}=\rho_{1} B_{2}^{h+\omega_{1}}, \quad B_{1}^{e+\omega_{-1}}=\rho_{2} B_{1}^{e+\omega_{1}}, \quad B_{2}^{f+\omega_{-1}}=\rho_{3} B_{2}^{f+\omega_{1}} \tag{3.10}
\end{equation*}
$$

Then,

$$
\begin{aligned}
A_{h}\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right) & \stackrel{(3.5)}{=}\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right) h, \\
A_{e}\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right) & \stackrel{(3.2)}{=} A_{e}\left(B_{1}^{e+\omega_{1}}, \rho_{1}^{-1} B_{2}^{h+\omega_{-1}}\right) \stackrel{(3.2)}{=} A_{e}\left(B_{1}^{e+\omega_{1}}, \rho_{1}^{-1} B_{2}^{e+\omega_{-1}}\right) \\
& =\left(A_{e} B_{1}^{e+\omega_{1}}, \rho_{1}^{-1} A_{e} B_{2}^{e+\omega_{-1}}\right) \stackrel{(3.6)}{=}\left(0, \rho_{1}^{-1} B_{1}^{e+\omega_{-1}}\right) \\
& \stackrel{(3.7)}{=}\left(0, \rho_{1}^{-1} \rho_{2} B_{1}^{e+\omega_{1}}\right) \stackrel{(3.2)}{=}\left(0, \rho_{1}^{-1} \rho_{2} B_{1}^{h+\omega_{1}}\right) \\
& =\rho_{1}^{-1} \rho_{2}\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right) e, \\
A_{f}\left(B_{1}^{h+\omega_{1}}, B_{2}^{h+\omega_{1}}\right) & \stackrel{(3.2)}{=} A_{f}\left(B_{1}^{f+\omega_{1}}, \rho_{1}^{-1} B_{2}^{h+\omega_{-1}}\right) \stackrel{(3.2)}{=} A_{f}\left(B_{1}^{f+\omega_{1}}, \rho_{1}^{-1} B_{2}^{f+\omega_{-1}}\right) \\
& (3.10) \\
& =\left(A_{f} B_{1}^{f+\omega_{1}}, \rho_{1}^{-1} A_{f} B_{2}^{f+\omega_{-1}}\right) \stackrel{(3.8)}{=}\left(B_{2}^{f+\omega_{1}}, 0\right) \stackrel{(3.10)}{=}\left(\rho_{3}^{-1} B_{2}^{f+\omega_{-1}}, 0\right) \\
& (3.2) \\
= & \left(\rho_{3}^{-1} B_{2}^{h+\omega_{-1}}, 0\right) \stackrel{(3.10)}{=}\left(\rho_{3}^{-1} \rho_{1} B_{2}^{h+\omega_{1}}, 0\right)
\end{aligned}
$$

Therefore, $A_{h}=A_{h}^{h+\omega_{1}}, A_{e}=\rho_{1}^{-1} \rho_{2} A_{e}^{h+\omega_{1}}, A_{f}=\rho_{3}^{-1} \rho_{1} A_{f}^{h+\omega_{1}}$. Thus, using (3.3), (3.2) and (3.10) we have $A=\left(A_{1}^{h+\omega_{1}}, \rho_{1}^{-1} \rho_{2} A_{2}^{h+\omega_{1}}, \rho_{3}^{-1} \rho_{1} A_{3}^{h+\omega_{1}}\right)$ and $B=\left(B_{1}^{h+\omega_{1}}, \rho_{1} B_{2}^{h+\omega_{1}}\right)$. Denote $B^{h+\omega_{1}}=\left(b_{i j}\right)_{2 \times 2}$ and $\operatorname{det}\left(B^{h+\omega_{1}}\right)=b$, then by Corollary 2.3 we know

$$
A=b^{-1}\left(\begin{array}{ccc}
b_{11} b_{22}+b_{12} b_{21} & -\rho_{1}^{-1} \rho_{2} b_{11} b_{21} & \rho_{3}^{-1} \rho_{1} b_{12} b_{22} \\
-2 b_{11} b_{12} & \rho_{1}^{-1} \rho_{2} b_{11}^{2} & -\rho_{3}^{-1} \rho_{1} b_{12}^{2} \\
2 b_{21} b_{22} & -\rho_{1}^{-1} \rho_{2} b_{21}^{2} & \rho_{3}^{-1} \rho_{1} b_{22}^{2}
\end{array}\right)
$$

THEOREM 3.2. $\operatorname{LAut}(\Gamma(0))=\operatorname{Aut}(\Gamma(0))$.
Proof. Suppose that $\phi \in \operatorname{LAut}(\Gamma(0))$. By Lemma 3.1 we can assume the matrix of ϕ is $A \oplus B$, where

$$
A=b^{-1}\left(\begin{array}{ccc}
b_{11} b_{22}+b_{12} b_{21} & -\rho_{2} b_{11} b_{21} & \rho_{3} b_{12} b_{22} \\
-2 b_{11} b_{12} & \rho_{2} b_{11}^{2} & -\rho_{3} b_{12}^{2} \\
2 b_{21} b_{22} & -\rho_{2} b_{21}^{2} & \rho_{3} b_{22}^{2}
\end{array}\right), \quad B=\left(\begin{array}{ll}
b_{11} & \rho_{1} b_{12} \\
b_{21} & \rho_{1} b_{22}
\end{array}\right)
$$

$\rho_{1}, \rho_{2}, \rho_{3} \in \mathbb{F}^{*}$ and $b=\operatorname{det}\left(b_{i j}\right) \neq 0$. Then

$$
A^{-1}=b^{-1}\left(\begin{array}{ccc}
b_{11} b_{22}+b_{12} b_{21} & b_{21} b_{22} & -b_{12} b_{11} \\
2 \rho_{2}^{-1} b_{22} b_{12} & \rho_{2}^{-1} b_{22}^{2} & -\rho_{2}^{-1} b_{12}^{2} \\
-2 \rho_{3}^{-1} b_{21} b_{11} & -\rho_{3}^{-1} b_{21}^{2} & \rho_{3}^{-1} b_{11}^{2}
\end{array}\right)
$$

$$
B^{-1}=\left(\begin{array}{cc}
b^{-1} b_{22} & -b^{-1} b_{12} \\
-\rho_{1}^{-1} b^{-1} b_{21} & \rho_{1}^{-1} b^{-1} b_{11}
\end{array}\right)
$$

But, ϕ^{-1} is also a local automorphism of $\Gamma(0)$. By Lemma 3.1, we can assume that the matrix of ϕ^{-1} is $G \oplus C$, where

$$
G=c^{-1}\left(\begin{array}{ccc}
c_{11} c_{22}+c_{12} c_{21} & -\varepsilon_{2} c_{11} c_{21} & \varepsilon_{3} c_{12} c_{22} \tag{3.11}\\
-2 c_{11} c_{12} & \varepsilon_{2} c_{11}^{2} & -\varepsilon_{3} c_{12}^{2} \\
2 c_{21} c_{22} & -\varepsilon_{2} c_{21}^{2} & \varepsilon_{3} c_{22}^{2}
\end{array}\right), \quad C=\left(\begin{array}{cc}
c_{11} & \varepsilon_{1} c_{12} \\
c_{21} & \varepsilon_{1} c_{22}
\end{array}\right)
$$

$c=\operatorname{det}\left(c_{i j}\right)_{2 \times 2} \neq 0, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \neq 0$. Then $G=A^{-1}$ and $C=B^{-1}$. Therefore,

$$
\begin{equation*}
c_{11}=b^{-1} b_{22}, \quad \varepsilon_{1} c_{12}=-b^{-1} b_{12}, \quad c_{21}=-\rho_{1}^{-1} b^{-1} b_{21}, \quad \varepsilon_{1} c_{22}=\rho_{1}^{-1} b^{-1} b_{11} \tag{3.12}
\end{equation*}
$$

Case 1. If $b_{11} \neq 0$, then using (3.12) and by the (3,3)-entry of A^{-1} and G, we have $\rho_{1}^{2} \varepsilon_{1}^{2} b c=\rho_{3} \varepsilon_{3}$.

Subcase 1.1. Suppose that $b_{12} \neq 0$. Then using (3.12) and by the (1,3)-entry and (2,3)-entry of A^{-1} and G, we have $\rho_{2}^{-1}=\rho_{3}=\rho_{1}$. Thus, by Corollary 2.3 we know $\phi \in \operatorname{Aut}(\Gamma(0))$.

Subcase 1.2. Suppose that $b_{12}=0$ and $b_{21} \neq 0$. Then using (3.12) and by the (3,1)-entry and (3,2)-entry of A^{-1} and G, we have $\varepsilon_{2}^{-1}=\varepsilon_{3}=\varepsilon_{1}$. Thus, by Corollary 2.3 we know $\phi^{-1} \in \operatorname{Aut}(\Gamma(0))$ and therefore $\phi \in \operatorname{Aut}(\Gamma(0))$.

Subcase 1.3. Suppose that $b_{12}=b_{21}=0$. Then $b_{22} \neq 0$ and

$$
A=\frac{1}{b_{11} b_{22}}\left(\begin{array}{ccc}
b_{11} b_{22} & 0 & 0 \\
0 & \rho_{2} b_{11}^{2} & 0 \\
0 & 0 & \rho_{3} b_{22}^{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
b_{11} & 0 \\
0 & \rho_{1} b_{22}
\end{array}\right)
$$

Since $\phi\left(h+e+f+\omega_{1}\right)=\phi_{h+e+f+\omega_{1}}\left(h+e+f+\omega_{1}\right), \rho_{2} \rho_{3}=1$. Denote $b_{11}=\delta_{1}$, $\rho_{1} b_{22}=\delta_{2}$ and $\rho_{2} b_{11} b_{22}^{-1}=\delta_{3}$, then

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3.13}\\
0 & \delta_{3} & 0 \\
0 & 0 & \delta_{3}^{-1}
\end{array}\right), \quad B=\left(\begin{array}{cc}
\delta_{1} & 0 \\
0 & \delta_{2}
\end{array}\right)
$$

Finally, let us prove $\delta_{3}=\delta_{1} \delta_{2}^{-1}$, and therefore, by Corollary 2.3, we will obtain $\phi \in \operatorname{Aut}(\Gamma(0))$.

By definition of local automorphism, there exists an automorphism $\phi_{e+f+\omega_{1}+\omega_{-1}}$ such that

$$
\begin{equation*}
\phi\left(e+f+\omega_{1}+\omega_{-1}\right)=\phi_{e+f+\omega_{1}+\omega_{-1}}\left(e+f+\omega_{1}+\omega_{-1}\right) \tag{3.14}
\end{equation*}
$$

By Corollary 2.3, we assume that the matrix of $\phi_{h+e+f+\omega_{1}+\omega_{-1}}$ is

$$
d^{-1}\left(\begin{array}{ccc}
d_{11} d_{22}+d_{12} d_{21} & -d_{11} d_{21} & d_{12} d_{22} \\
-2 d_{11} d_{12} & d_{11}^{2} & -d_{12}^{2} \\
2 d_{21} d_{22} & -d_{21}^{2} & d_{22}^{2}
\end{array}\right) \oplus\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)
$$

where $d=\operatorname{det}\left(d_{i j}\right) \neq 0$. Then, by (3.14) we have

$$
\begin{gather*}
-d_{11} d_{21}+d_{12} d_{22}=0 \tag{3.15}\\
d_{11}^{2}-d_{12}^{2}=d \delta_{3} \tag{3.16}\\
d_{22}^{2}-d_{21}^{2}=d \delta_{3}^{-1} \tag{3.17}\\
d_{11}+d_{12}=\delta_{1} \tag{3.18}\\
d_{21}+d_{22}=\delta_{2} \tag{3.19}
\end{gather*}
$$

Subcase 1.3.1. Suppose that $d_{21}=0$. Then $d_{22} \neq 0$. By (3.15) we have $d_{12}=0$. Using (3.16),(3.18) and (3.19) we obtain $\delta_{3}=\delta_{1} \delta_{2}^{-1}$.

Subcase 1.3.2. Suppose that $d_{21} \neq 0$. Then by (3.16) and (3.18) we have $2 d_{11}=$ $\delta_{1}+d \delta_{3} \delta_{1}^{-1}$ and $2 d_{12}=\delta_{1}-d \delta_{3} \delta_{1}^{-1}$. Similarly, by (3.17) and (3.19) we have $2 d_{22}=$ $\delta_{2}+d \delta_{3}^{-1} \delta_{2}^{-1}$ and $2 d_{21}=\delta_{2}-d \delta_{3}^{-1} \delta_{2}^{-1}$. Then, by (3.15) we can obtain

$$
\begin{equation*}
\delta_{3}^{2}=\delta_{1}^{2} \delta_{2}^{-2} \tag{3.20}
\end{equation*}
$$

and
$4 d=4 d_{11} d_{22}+d_{12} d_{21}=\left(\delta_{1}+d \delta_{3} \delta_{1}^{-1}\right)\left(\delta_{2}+d \delta_{3}^{-1} \delta_{2}^{-1}\right)-\left(\delta_{1}-d \delta_{3} \delta_{1}^{-1}\right)\left(\delta_{2}-d \delta_{3}^{-1} \delta_{2}^{-1}\right)$.
Thus,

$$
\begin{equation*}
\delta_{1} \delta_{2}^{-1} \delta_{3}^{-1}+\delta_{2} \delta_{3} \delta_{1}^{-1}=2 \tag{3.21}
\end{equation*}
$$

Hence, by (3.20) and (3.21) we obtain $\delta_{3}=\delta_{1} \delta_{2}^{-1}$.
Case 2. If $b_{11}=0$ and $b_{22} \neq 0$, then $b_{21} \neq 0$. By the (1,2)-entry and (2,2)-entry of A^{-1} and G, we have $\rho_{2}^{-1}=\rho_{3}=\rho_{1}$. Thus, by Corollary 2.3 we know $\phi \in \operatorname{Aut}(\Gamma(0))$.

Case 3. If $b_{11}=b_{22}=0$, then we can deduce that

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & \tau_{3} \\
0 & \tau_{3}^{-1} & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & \tau_{1} \\
\tau_{2} & 0
\end{array}\right), \quad \tau_{1}, \tau_{2}, \tau_{3} \in \mathbb{F}^{*}
$$

In a similar way to Case 1 , we obtain $\phi \in \operatorname{Aut}(\Gamma(0))$.
THEOREM 3.3. $\operatorname{LAut}(\Gamma(1))=\operatorname{Aut}(\Gamma(1))$.
Proof. Suppose that $\phi \in \operatorname{LAut}(\Gamma(1))$. Then by Lemma 3.1 and the proof of Theorem 3.2, we can assume the matrix of ϕ is

$$
A=b^{-1}\left(\begin{array}{ccc}
b_{11} b_{22}+b_{12} b_{21} & -b_{11} b_{21} & b_{12} b_{22} \\
-2 b_{11} b_{12} & b_{11}^{2} & -b_{12}^{2} \\
2 b_{21} b_{22} & -b_{21}^{2} & b_{22}^{2}
\end{array}\right) \oplus\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

where $b=\operatorname{det}\left(b_{i j}\right) \neq 0$.

By definition of local automorphism, there exists an automorphism $\phi_{f+\omega_{-1}}$ such that

$$
\begin{equation*}
\phi\left(f+\omega_{-1}\right)=\phi_{f+\omega_{-1}}\left(f+\omega_{-1}\right) \tag{3.22}
\end{equation*}
$$

By Corollary 2.3, we assume that the matrix of $\phi_{f+\omega_{-1}}$ is

$$
\left(\begin{array}{ccc}
c_{11} c_{22}+c_{12} c_{21} & -c_{11} c_{21} & c_{12} c_{22} \\
-2 c_{11} c_{12} & c_{11}^{2} & -c_{12}^{2} \\
2 c_{21} c_{22} & -c_{21}^{2} & c_{22}^{2}
\end{array}\right) \oplus\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

where $\operatorname{det}\left(c_{i j}\right)=1$. Then, by (3.22) we have

$$
b^{-1} b_{12}^{2}=c_{12}^{2}, b^{-1} b_{22}^{2}=c_{22}^{2}, \quad b_{12}=c_{12}, \quad b_{22}=c_{22}
$$

Thus, $b=1$. By Corollary 2.3, $\phi \in \operatorname{Aut}(\Gamma(1))$.

4. Superderivations of $\Gamma(0)$ and $\Gamma(1)$

In this section, \mathbb{F} is a field of characteristic different from 2 and 3.
THEOREM 4.1. A linear transformation of $\Gamma(0)$ is a superderivation if and only if its matrix is of the form

$$
\left(\begin{array}{ccccc}
0 & -b & c & 0 & 0 \tag{4.1}\\
-2 c & -a & 0 & 0 & 0 \\
2 b & 0 & a & 0 & 0 \\
\theta & d & 0 & \delta & c \\
-d & 0 & \theta & b & \delta+a
\end{array}\right)
$$

where $a, b, c, d, \delta, \theta \in \mathbb{F}$.

Proof. Regard \mathfrak{g} as a \mathfrak{g}-module, by [6, Lemma 2.1], any superderivation of \mathfrak{g} is the sum of a zero weight-derivation and an inner superderivation. It is easy to see that $\mathfrak{g}_{0}=\langle h\rangle$ is the Cartan subalgebra of \mathfrak{g}_{0}. Suppose that ε is the dual basis of $\{h\}$. Then

$$
\mathfrak{g}_{-2 \varepsilon}=\langle f\rangle, \mathfrak{g}_{-\varepsilon}=\left\langle\omega_{-1}\right\rangle, \mathfrak{g}_{\varepsilon}=\left\langle\omega_{1}\right\rangle, \mathfrak{g}_{2 \varepsilon}=\langle e\rangle
$$

and the weight space decomposition of \mathfrak{g} is $\mathfrak{g}=\mathfrak{g}_{-2 \varepsilon} \oplus \mathfrak{g}_{-\varepsilon} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{\varepsilon} \oplus \mathfrak{g}_{2 \varepsilon}$. By direct calculation, the matrix of any zero weight-derivation is of the form $\operatorname{diag}(0, k,-k, l, l-$ k), and the matrix of any inner superderivation is of the form

$$
\left(\begin{array}{ccccc}
0 & -x_{3} & x_{2} & 0 & 0 \\
-2 x_{2} & 2 x_{1} & 0 & 0 & 0 \\
2 x_{3} & 0 & -2 x_{1} & 0 & 0 \\
-x_{4} & -x_{5} & 0 & x_{1} & x_{2} \\
x_{5} & 0 & -x_{4} & x_{3} & -x_{1}
\end{array}\right)
$$

where $k, l, x_{i} \in \mathbb{F}, i=1,2, \cdots, 5$. Thus, we deduce that the matrix of any superderivation of \mathfrak{g} is of the form (4.1), where $a=-2 x_{1}-k, b=x_{3}, c=x_{2}, d=-x_{5}, \theta=-x_{4}$, $\delta=x_{1}+l$.

Conversely, if the matrix of linear transformation ϕ of $\Gamma(0)$ is of the form (4.1), then it is easy to verify that $\phi \in \operatorname{Der}(\Gamma(0))$ by direct calculation.

Theorem 4.2. $\operatorname{LDer}(\Gamma(0))=\operatorname{Der}(\Gamma(0))$.
Proof. Suppose that $\phi \in \operatorname{LDer}_{\overline{0}}(\Gamma(0))$. Then for any $x \in \Gamma(0)$, there exists $\phi_{x} \in$ $\operatorname{Der}(\Gamma(0))$ such that

$$
\begin{equation*}
\phi(x)=\phi_{x}(x) . \tag{4.2}
\end{equation*}
$$

Suppose that the matrix of ϕ and ϕ_{x} are $A \oplus B$ and $\left(\begin{array}{cc}A_{x} & C_{x} \\ D_{x} & B_{x}\end{array}\right)$ respectively, where $A=\left(a_{i j}\right)_{3 \times 3}, B=\left(b_{i j}\right)_{2 \times 2}$ and

$$
A_{x}=\left(\begin{array}{ccc}
0 & -b_{x} & c_{x} \\
-2 c_{x} & -a_{x} & 0 \\
2 b_{x} & 0 & a_{x}
\end{array}\right), \quad C_{x}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), \quad D_{x}=\left(\begin{array}{ccc}
\theta_{x} & d_{x} & 0 \\
-d_{x} & 0 & \theta_{x}
\end{array}\right), \quad B_{x}=\left(\begin{array}{cc}
\delta_{x} & c_{x} \\
b_{x} & \delta_{x}+a_{x}
\end{array}\right)
$$

Substituting x in (4.2) with h, we have

$$
\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) e_{1}=\left(\begin{array}{cc}
A_{h} & C_{h} \\
D_{h} & B_{h}
\end{array}\right) e_{1}
$$

where e_{1} is the unit vector with 1 in the 1 -th entry and 0 elsewhere. Then

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -b_{h} & c_{h} \\
-2 c_{h} & -a_{h} & 0 \\
2 b_{h} & 0 & a_{h}
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

Thus, $a_{11}=0$. Similarly, substituting x in (4.2) with f and e respectively, we have $a_{23}=a_{32}=0$. To make it easier to see the goal, we denote

$$
A \oplus B=\left(\begin{array}{ccc}
0 & -b_{1} & c_{1} \\
-2 c_{2} & -a_{1} & 0 \\
2 b_{2} & 0 & a_{2}
\end{array}\right) \oplus\left(\begin{array}{cc}
e & c_{3} \\
b_{3} & k
\end{array}\right)
$$

By Theorem 4.1, to prove $\phi \in \operatorname{Der}_{\overline{0}}(\Gamma(0))$, we only need to show that

$$
a_{1}=a_{2}, \quad b_{1}=b_{2}=b_{3}, \quad c_{1}=c_{2}=c_{3}, \quad k=e+a_{1}
$$

Substituting x in (4.2) with $e+f$, then

$$
\left(\begin{array}{ccc}
0 & -b_{1} & c_{1} \\
-2 c_{2} & -a_{1} & 0 \\
2 b_{2} & 0 & a_{2}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
0 & -b_{e+f} & c_{e+f} \\
-2 c_{e+f} & -a_{e+f} & 0 \\
2 b_{e+f} & 0 & a_{e+f}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

Thus, $-a_{1}=-a_{e+f}, a_{2}=a_{e+f}$. Therefore, $a_{1}=a_{2}$. Similarly, substituting x in (4.2) with the following vectors

$$
h+e, h+f, f+\omega_{-1}, e+\omega_{1}
$$

respectively, we have

$$
b_{1}=b_{2}, c_{1}=c_{2}, c_{1}=c_{3}, \quad b_{1}=b_{3}
$$

Finally, substituting x in (4.2) with $h-e+f+\omega_{1}+\omega_{-1}$, we obtain $k=e+a_{1}$.
Suppose that $\psi \in \operatorname{LDer}_{\overline{1}}(\Gamma(0))$. Then for any $x \in \Gamma(0)$, there exists $\phi_{x} \in \operatorname{Der}(\Gamma(0))$ such that

$$
\begin{equation*}
\psi(x)=\phi_{x}(x) . \tag{4.3}
\end{equation*}
$$

In a similar way as above, by Theorem 4.1 and (4.3), we can assume that the matrix of ψ is

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
\theta_{1} & d_{1} & 0 \\
-d_{2} & 0 & \theta_{2}
\end{array}\right)
$$

Substituting x in (4.3) with $h-e+f$ and $h+e-f$ respectively, we conclude that $d_{1}=d_{2}$ and $\theta_{1}=\theta_{2}$. By Theorem 4.1, $\psi \in \operatorname{Der}_{\overline{1}}(\Gamma(0))$.

Next, we consider the case of $d \neq 0$.
PROPOSITION 4.3. $\operatorname{ad}(\Gamma(d))$ is isomorphic to $\Gamma(d)$ as a Lie superalgebra.

Proof. It is obvious because of the injectivity of ad : $\Gamma(d) \rightarrow \operatorname{Der} \Gamma(d)$.
By direct calculation we have the following conclusion.

Lemma 4.4. Suppose that φ is a linear transformation of $\Gamma(1)$. Then $\varphi \in$ $\mathrm{ad}(\Gamma(1))$ if and only if its matrix is of the form

$$
\left(\begin{array}{ccccc}
0 & -b & c & d & \theta \\
-2 c & -2 a & 0 & -2 \theta & 0 \\
2 b & 0 & 2 a & 0 & 2 d \\
\theta & d & 0 & -a & c \\
-d & 0 & \theta & b & a
\end{array}\right)
$$

where $a, b, c, d, \theta \in \mathbb{F}$.

Proposition 4.5. $\operatorname{Der}(\Gamma(1))=\operatorname{ad}(\Gamma(1))$.

Proof. By Lemma 4.4, it is easy to prove that the Killing form of $\Gamma(1)$ is nondegenerate, and therefore every superderivation of $\Gamma(1)$ is inner.

THEOREM 4.6. $\operatorname{LDer}(\Gamma(1))=\operatorname{Der}(\Gamma(1))$.
Proof. Suppose that $\phi \in \operatorname{LDer}_{\overline{0}}(\Gamma(1))$. Then for any $x \in \Gamma(1)$, there exists $\varphi_{x} \in$ $\operatorname{Der}(\Gamma(1))$ such that

$$
\begin{equation*}
\phi(x)=\varphi_{x}(x) \tag{4.4}
\end{equation*}
$$

By Proposition 4.5, Lemma 4.4 and (4.4), we can assume that the matrix of ϕ is

$$
\left(\begin{array}{ccc}
0 & -b_{1} & c_{1} \\
-2 c_{2} & -2 a_{1} & 0 \\
2 b_{2} & 0 & 2 a_{2}
\end{array}\right) \oplus\left(\begin{array}{cc}
-a_{3} & c_{3} \\
b_{3} & a_{4}
\end{array}\right) .
$$

Substituting x in (4.4) with the following vectors

$$
e+f, h+e, h+f
$$

respectively, we have $a_{1}=a_{2}, b_{1}=b_{2}$ and $c_{1}=c_{2}$. Similarly, substituting x in (4.4) with the following vectors

$$
f+\omega_{1}, h+\omega_{1}, h+\omega_{-1}, e+\omega_{-1}
$$

respectively, we have

$$
a_{1}=a_{3}, \quad b_{1}=b_{3}, \quad c_{1}=c_{3}, \quad a_{1}=a_{4}
$$

By Proposition 4.5 and Lemma 4.4, $\phi \in \operatorname{Der}_{\overline{0}}(\Gamma(1))$.
Suppose that $\psi \in \operatorname{LDer}_{\overline{1}}(\Gamma(1))$. Then for any $x \in \Gamma(1)$, there exists $\varphi_{x} \in \operatorname{Der}(\Gamma(1))$ such that

$$
\begin{equation*}
\psi(x)=\varphi_{x}(x) \tag{4.5}
\end{equation*}
$$

By Proposition 4.5, Lemma 4.4 and (4.5), we can assume that the matrix of ψ is

$$
\left(\begin{array}{cc}
d_{1} & \theta_{1} \\
-2 \theta_{2} & 0 \\
0 & 2 d_{2}
\end{array}\right) \bar{\oplus}\left(\begin{array}{ccc}
\theta_{3} & d_{3} & 0 \\
-d_{4} & 0 & \theta_{4}
\end{array}\right)
$$

Substituting x in (4.3) with the following vectors

$$
h+\omega_{1}, \quad h+\omega_{-1}, \quad \omega_{1}+\omega_{-1}, \quad \omega_{1}+2 \omega_{-1}, \quad e+f+\omega_{1}+\omega_{-1}, \quad 4 e+f+4 \omega_{1}+2 \omega_{-1}
$$ respectively, we obtain the following equations,

$$
\begin{array}{cc}
d_{1}=d_{4}, & \theta_{1}=\theta_{3}, \quad d_{1}+\theta_{1}=d_{2}+\theta_{2}, \quad d_{1}+2 \theta_{1}=d_{2}+2 \theta_{2} \\
& d_{1}+\theta_{4}=\theta_{1}+d_{3}, \quad 2 d_{1}-\theta_{1}=2 d_{3}-\theta_{4}
\end{array}
$$

Thus, $d_{1}=d_{2}=d_{3}=d_{4}, \theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}$. By Proposition 4.5 and Lemma 4.4, $\psi \in \operatorname{Der}_{\overline{1}}(\Gamma(1))$.

REMARK 4.7. In this section, the condition that the characteristic of field \mathbb{F} is not 3 is only used to prove the non-degeneracy of killing type of $\Gamma(1)$. So the conclusions about $\Gamma(0)$ in this section also hold when the characteristic of \mathbb{F} is not 2 .

REFERENCES

[1] M. Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics 716, Springerverlag, (1979).
[2] R. V. KADISON, Local derivations, J. Algebra 130 (1990): 494-509.
[3] D. R. Larson, A. R. Sourour, Local derivations and local automorphisms of $\mathfrak{B}(X)$, Proc. Sympos. Pure Math. 51 (1990): 187-194.
[4] H. X. Chen, Y. WANG, J. Z. NAN, Local superderivations on basic classical Lie superalgebras, Algebra Colloq. 24 (2017): 673-684.
[5] Y. Pan, Q. Liu, C. Bai and L. Guo, PostLie algebra structures on the Lie algebra sl(2, $\mathbb{C})$, Electron. J. Linear algebra 23 (2012): 180-197.
[6] S. WANG, W. LiU, The first cohomology of $\mathfrak{s l}(2,1)$ with coefficients in χ-reduced Kac modules and simple modules, J. Pure Appl. Algebra 224 (2020): 106403.
(Received November 6, 2022)
Yuqiu Sheng
School of Mathematical Sciences
Bohai University
Jinzhou 121013, P. R. China
Wende Liu
School of Mathematics and Statistics
Hainan Normal University Haikou 571158, P. R. China

Xingxue Miao
School of Mathematical Sciences
Dalian University of Technology
Dalian 116024, P. R. China
e-mail: xingxuemiao@mail.dlut.edu.cn

[^0]: Mathematics subject classification (2020): 17B40, 15A04.
 Keywords and phrases: Lie superalgebra, automorphism, local automorphism, superderivation, local superderivation.

 Supported by the NSF of China (No. 12061029), the NSF of Hainan Province of China (Nos. 121MS0784, 120RC587) and the NSF of Heilongjiang Province of China (No. LH2020A020).

 * Corresponding author.

