REMARKS ON THE PRODUCT OF TWO PROJECTIONS

Johanns de Andrade Bezerra

(Communicated by G. Misra)

Abstract

In this paper we investigate complex projections A and B so that $A B$ is a diagonalizable matrix. Particularly, we provide necessary and/or sufficient conditions so that $A B$ is a diagonalizable matrix with its eigenvalues belonging to the real segment $[0,1]$. Moreover, we investigate on eigenspaces and eigenvalues of the product of two projections.

1. Introduction

Throughout this paper, the matrices used are complex of order n. The symbols $A^{*}, \operatorname{Tr}(A), \sigma(A), \operatorname{Im}(A), \operatorname{Ker}(A), \alpha_{A}, \delta_{A}$ and σ_{A} denote the conjugate transpose, the trace, the spectrum, the range, the null space, the algebraic multiplicity of zero as eigenvalue, the number of eigenvalues from $\mathbb{C} \backslash\{0,1\}$ and the number of singular values from $\mathbb{R} \backslash\{0,1\}$, respectively, of some matrix A. A matrix A is called an EP matrix if $\operatorname{Im}(A)=\operatorname{Im}\left(A^{*}\right)$, or equivalently if $\operatorname{Im}(A)=(\operatorname{Ker}(A))^{\perp}$. More generally, a matrix A is called a core matrix, that is, a matrix of index one, if $\operatorname{Im}(A) \cap \operatorname{Ker}(A)=\{0\}$, or equivalently if $\operatorname{Im}(A) \oplus \operatorname{Ker}(A)=\mathbb{C}^{n \times 1}$. Particularly, a matrix A is called a projection if $A^{2}=A$. We denote $\mathbb{C}_{P}^{n \times n}, \mathbb{C}_{H P}^{n \times n}, \mathbb{C}_{D}^{n \times n}, \mathbb{C}_{N}^{n \times n}, \mathbb{C}_{E P}^{n \times n}$ and $\mathbb{C}_{U}^{n \times n}$ the sets of all the projections, of all the Hermitian projections, of all the diagonalizable matrices, of all the normal matrices, of all the EP matrices and of all the unitary matrices, respectively.

Clearly, if A and B are projections, then A and B are diagonalizable matrices, but in general, neither $A B$ nor $B A$ are diagonalizable matrices. Note that if A is a diagonalizable matrix, then A is a core matrix because $\mathbb{C}^{n \times 1}=\operatorname{Ker}(A) \oplus \operatorname{Ker}\left(A-\lambda_{1} I\right) \oplus \ldots \oplus$ $\operatorname{Ker}\left(A-\lambda_{k} I\right)$, with $\lambda_{1}, \ldots, \lambda_{k} \in \sigma(A) \backslash\{0\}$ and $\operatorname{Im}(A)=\operatorname{Ker}\left(A-\lambda_{1} I\right) \oplus \ldots \oplus \operatorname{Ker}(A-$ $\left.\lambda_{k} I\right)$. We shall also use a definition of the polar decomposition of a complex matrix A : Any singular complex matrix A can be represented in the form $A=U P$, where P is a Hermitian nonnegative definite matrix $(P \geqslant 0)$ and U is a unitary matrix. If A is nonsingular such a representation is unique, and so P is a Hermitian positive definite matrix $(P>0)$. Moreover, we shall use some information concerning the Moore-Penrose inverse for some $A \in \mathbb{C}^{m \times k}$: Recall that the Moore-Penrose inverse A^{\dagger} is the unique matrix which satisfies $A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger}$ and $\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$.

In this paper, we continue the investigations carried out in [5, section 3] on the product of two projections A and B. Thus, in section 2, given $A, B \in \mathbb{C}_{P}^{n \times n}$, we

[^0]carry out some investigation on the eigenspaces and eigenvalues of $A B$. We start section 2 with our first main result which establishes $\operatorname{Ker}(I-A B)=\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus$ $(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$ whenever $A B \in \mathbb{C}_{D}^{n \times n}$. Taking into account that, by [5, Remark 3], $\delta_{A B} \leqslant \min \{\operatorname{dim} \operatorname{Ker}(A), \operatorname{dim} \operatorname{Ker}(B)\}$, we shall show, throughout section 2, some results refining this last result. Moreover, we shall show results that provide a necessary and/or sufficient condition so that $\delta_{A B}=0$ or $\delta_{A B}=\operatorname{Tr}(A)$.

In section 3, we take up, above all, with the following question: Once a projection A is fixed, we investigate projections B so that $A B$ is a diagonalizable matrix with $\sigma(A B) \subset[0,1]$ or with arbitrary spectrum. Moreover, we shall show results that provide a necessary and/or sufficient condition so that $A B$ is diagonalizable, where A and B are projections with some restrictions. Particularly, in [7, Theorem 1], for example, Groß and Trenkler provided a necessary and sufficient condition so that $A B$ is a projection whenever A and B are projections, and in this case $\delta_{A B}=0$. In this section, our main result is the Theorem 3.1 that takes up with the following problem: Once fixed a Hermitian projection A and given a projection B, the normality of $A B$ implies that $A B$ is a Hermitian projection, and soon after, Remark 6 characterizes such projections B.

2. On eigenspaces and eigenvalues of the product of two projections

For any two projections A and B of same order, by [10, Corollary 9], we have that $\operatorname{Im}(A B)=\operatorname{Im}(A) \cap(\operatorname{Im}(B)+\operatorname{Ker}(A))$. Particularly, in our first main result, we shall prove that $\operatorname{Ker}(I-A B)=\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$ whenever $A B$ is diagonalizable, and for that we shall make use of the following lemma:

LEMMA 2.1. If $A, B \in \mathbb{C}_{P}^{n \times n}$, then $\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+$ $\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))$.

Proof. Let W and U be two subspaces such that $W \oplus \operatorname{Im}(A) \cap \operatorname{Im}(B)=\operatorname{Ker}(I-$ $A B)$ and $U \oplus \operatorname{Im}(A) \cap \operatorname{Im}(B)=\operatorname{Ker}(I-B A)$. Consider $v=w+u \in(\operatorname{Im}(A)+\operatorname{Im}(B)) \cap$ $\operatorname{Ker}(A) \cap \operatorname{Ker}(B)$, where $w \in \operatorname{Im}(A)$ and $u \in \operatorname{Im}(B)$, and so $A w=w, B u=u$ and $A v=B v=0$. Hence, $A v=w+A u=0$ and $B v=B w+u=0$, which implies $A B w=w$ and $B A u=u$. If $w, u \in \operatorname{Im}(A) \cap \operatorname{Im}(B)$, then clearly $v=0$. Thus, let $v=w+u=$ $w-B w=(I-B) w$, with $w \in W$ and $u \in U$. Since $\operatorname{Im}(B) \cap W=\operatorname{Ker}(I-B) \cap W=\{0\}$, it follows that $\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B)) \leqslant \operatorname{dim} W$.

Conversely, let $v=w+u$, where $A B w=w$ and $B A u=u$ for all $w \in W$ and $u \in U$, hence $A v=w+A u=A B w+A B u=A B v$, and so $A(I-B) v=0$, which implies $(I-B) v \in \operatorname{Ker}(A) \cap \operatorname{Ker}(B)$. Since $(I-B) v=w+u-B w-u=(I-B) w \in$ $\operatorname{Im}(A)+\operatorname{Im}(B)$, it follows that $(I-B) w \in(\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B)$, which implies $\operatorname{dim} W \leqslant \operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, and therefore $\operatorname{dim} W=$ $\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))$.

REMARK 1. According to Lemma 2.1 and keeping in mind that $(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \subset$ $\operatorname{Ker}(I-A B)$, we may conclude that $\operatorname{Ker}(I-A B)=\operatorname{Im}(A) \cap \operatorname{Im}(B)$ if and only if $(\operatorname{Im}(A)+$ $\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B)=\{0\}$.

THEOREM 2.2. If $A, B \in \mathbb{C}_{P}^{n \times n}$ and $A B \in \mathbb{C}_{D}^{n \times n}$, then $\operatorname{Ker}(I-A B)=\operatorname{Im}(A) \cap$ $(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$.

Proof. Clearly, $(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \subset \operatorname{Ker}(I-A B)$ and $(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \subset \operatorname{Im}(A) \cap$ $(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$. Now, note that $\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \subset$ $\operatorname{Im}(A) \cap(\operatorname{Im}(B)+\operatorname{Ker}(A))=\operatorname{Im}(A B)=\operatorname{Ker}(I-A B) \oplus \operatorname{Ker}\left(\lambda_{1} I-A B\right) \oplus \ldots \oplus \operatorname{Ker}\left(\lambda_{k} I-\right.$ $A B)$ since $A B$ is diagonalizable, where $\lambda_{1}, \ldots, \lambda_{k} \in \sigma(A B) \cap \mathbb{C} \backslash\{0,1\}$. Thus, consider $v \in \mathbb{C}^{n \times 1}$ and $\lambda \in \mathbb{C} \backslash\{0\}$ so that $A B v=\lambda v$ and $v=w+u$, where $v \in \operatorname{Im}(A), w \in$ $\operatorname{Im}(B)$ and $u \in \operatorname{Ker}(A) \cap \operatorname{Ker}(B)$. Hence, $A v=v=A w+A u=A w$. Moreover, $A B v=$ $\lambda v=A B w+A B u=A w=v$, which implies $\lambda=1$, and so we conclude that $\operatorname{Im}(A) \cap$ $(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \subset \operatorname{Ker}(I-A B)$.

In order to conclude that $\operatorname{Ker}(I-A B)=\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$, it suffices to prove that, taking into account Lemma 2.1, $\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dim}(\operatorname{Im}(A) \cap$ $\operatorname{Im}(B))+\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))=\operatorname{dim}(\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap$ $\operatorname{Ker}(B)))$). $\operatorname{Indeed}, \operatorname{dim}(\operatorname{Im}(A)+\operatorname{Im}(B)+(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))=\operatorname{dim}(\operatorname{Im}(A)+\operatorname{Im}(B))+$ $\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))-\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))=\operatorname{dimIm}(A)+$ $\operatorname{dim} \operatorname{Im}(B)-\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))-\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap$ $\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, which implies $\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A)$ $\cap \operatorname{Ker}(B))=\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dimIm}(A)+\operatorname{dim} \operatorname{Im}(B)+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))-$ $\operatorname{dim}(\operatorname{Im}(A)+\operatorname{Im}(B)+(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$. On the other hand, we have that $\operatorname{dim}(\operatorname{Im}(A)+$ $\operatorname{Im}(B)+(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))=\operatorname{dimIm}(A)+\operatorname{dim}(\operatorname{Im}(B)+(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))-$ $\operatorname{dim}(\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))))=\operatorname{dim} \operatorname{Im}(A)+\operatorname{dim}(\operatorname{Im}(B))+\operatorname{dim}(\operatorname{Ker}(A) \cap$ $\operatorname{Ker}(B))-\operatorname{dim}(\operatorname{Im}(B) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))-\operatorname{dim}(\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))))$ $=\operatorname{dim} \operatorname{Im}(A)+\operatorname{dim}(\operatorname{Im}(B)+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))-\operatorname{dim}(\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap$ $\operatorname{Ker}(B)))$), and therefore we may conclude that
$\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dim}(\operatorname{Im}(A) \cap(\operatorname{Im}(B) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))))$.
Let $c_{A B}(x)=x^{m_{o}}(x-1)^{m_{1}}\left(x-\lambda_{2}\right)^{m_{2}} \ldots\left(x-\lambda_{k+1}\right)^{m_{k+1}}$ and $m_{A B}(x)=x^{n_{o}}(x-1)^{n_{1}}$ $\left(x-\lambda_{2}\right)^{n_{2}} \ldots\left(x-\lambda_{k+1}\right)^{n_{k+1}}$ be the characteristic and minimal polynomial, respectively, of $A B$, where A and B are projections of order n and $\lambda_{2}, \ldots, \lambda_{k+1} \in \mathbb{C} \backslash\{0,1\}$.

Proposition 2.3. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Thus, if $c_{A B}(x)=x^{m_{o}}(x-1)^{m_{1}}\left(x-\lambda_{2}\right)^{m_{2}} \ldots$ $\left(x-\lambda_{k+1}\right)^{m_{k+1}}$ and $m_{A B}(x)=x^{m_{o}}(x-1)^{n_{1}}\left(x-\lambda_{2}\right)^{n_{2}} \ldots\left(x-\lambda_{k+1}\right)^{n_{k+1}}$ are the characteristic and minimal polynomial, respectively, of $A B$, then $\delta_{A B} \leqslant 1$, which implies $k=1$ and $m_{2} \leqslant 1$.

Proof. By hypothesis, clearly $\operatorname{dim} \operatorname{Ker}(A B)=1$, and as $\operatorname{dim} \operatorname{Ker}(A B)=\operatorname{dim}(\operatorname{Ker}(A)$ $\cap \operatorname{Im}(B))+\operatorname{dim} \operatorname{Ker}(B)$ and $\operatorname{dim} \operatorname{Ker}(B) \geqslant 1$, it follows that $\operatorname{dim} \operatorname{Ker}(B)=1$, and as $\delta_{A B} \leqslant \min \{\operatorname{dim} \operatorname{Ker}(A), \operatorname{dim} \operatorname{Ker}(B)\}$, we conclude that $\delta_{A B} \leqslant 1$, which implies $k=1$ and $m_{2} \leqslant 1$, that is, $A B$ has at most three distinct eigenvalues.

Now, take into account the following information: Let W_{1}, W_{2}, W_{3} and W_{4} be subspaces from $\mathbb{C}^{n \times 1}$ so that $W_{1} \oplus(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus(\operatorname{Im}(A) \cap \operatorname{Ker}(B))=\operatorname{Im}(A), W_{2} \oplus$ $(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))=\operatorname{Im}(B), W_{3} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus(\operatorname{Ker}(A) \cap$ $\operatorname{Ker}(B))=\operatorname{Ker}(A)$ and $W_{4} \oplus(\operatorname{Im}(A) \cap \operatorname{Ker}(B)) \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))=\operatorname{Ker}(B)$, where A and B are matrices of index one of order n.

Lemma 2.4. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Thus, $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ and $\operatorname{rank}(A(I-$ $B)=\operatorname{rank}((I-B) A)$ if and and only if $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}=\operatorname{dim} W_{3}=\operatorname{dim} W_{4}$.

Proof. According to [10, Corollary 9], $\operatorname{Ker}(A B)=\operatorname{Ker}(B) \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))$, which implies $n-\operatorname{rank}(A B)=\operatorname{dim} \operatorname{Ker}(A B)=\operatorname{dim} \operatorname{Ker}(B)+\operatorname{dim}(\operatorname{Im}(B) \cap \operatorname{Ker}(A))$, hence $n-\operatorname{rank}(A B)+\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{2}=\operatorname{dim} \operatorname{Ker}(B)+\operatorname{dim}(\operatorname{Im}(B) \cap$ $\operatorname{Ker}(A))+\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{2}=n$, and so $\operatorname{rank}(A B)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+$ $\operatorname{dim} W_{2}$. Similarly, we have that $\operatorname{rank}(B A)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{1}, \operatorname{rank}(A(I-$ $B))=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Ker}(B))+\operatorname{dim} W_{4}$ and $\operatorname{rank}((I-B) A)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Ker}(B))+$ $\operatorname{dim} W_{1}$.

This implies that if $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ and $\operatorname{rank}(A(I-B))=\operatorname{rank}((I-B) A)$, then $\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{2}=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{1}$ and $\operatorname{dim}(\operatorname{Im}(A) \cap$ $\operatorname{Ker}(B))+\operatorname{dim} W_{4}=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Ker}(B))+\operatorname{dim} W_{1}$, which implies $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}=$ $\operatorname{dim} W_{4}$, and as $\operatorname{dim} W_{1}+\operatorname{dim} W_{3}=\operatorname{dim} W_{2}+\operatorname{dim} W_{4}$, see [5, Lemma 3.1], we have that $\operatorname{dim} W_{3}=\operatorname{dim} W_{1}$.

Conversely, if $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}=\operatorname{dim} W_{3}=\operatorname{dim} W_{4}$, then, clearly, $\operatorname{rank}(A B)=$ $\operatorname{rank}(B A)$ and $\operatorname{rank}(A(I-B))=\operatorname{rank}((I-B) A)$.

Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Thus, we have that $\delta_{A B} \leqslant \min \{\operatorname{dim} \operatorname{Ker}(A), \operatorname{dim} \operatorname{Ker}(B)\}$, hence $\delta_{A B} \leqslant n / 2$ (take, for example, $A, B \in \mathbb{C}_{H P}^{n \times n}$ with $\lambda_{1}, \ldots, \lambda_{n / 2} \in(0,1)$ eigenvalues of $A B$ and $\operatorname{Im}(A) \cap \operatorname{Im}(B)=\{0\}, \operatorname{Im}(A) \cap \operatorname{Ker}(B)=\{0\}, \operatorname{Im}(B) \cap \operatorname{Ker}(A)=\{0\}, \operatorname{Ker}(A) \cap$ $\operatorname{Ker}(B)=\{0\}$ and $\operatorname{dim} \operatorname{Ker}(A)=\operatorname{dim} \operatorname{Ker}(B)=n / 2$, and so, in this case, $\left.\delta_{A B}=n / 2\right)$. Moreover, it is easy to see that $\delta_{A B} \leqslant \operatorname{dim} W_{1}$ and $\delta_{B A} \leqslant \operatorname{dim} W_{2}$, and as $\delta_{A B}=\delta_{B A}$, we have that $\delta_{A B} \leqslant \operatorname{dim} W_{2}$, and by proof of [5, Theorem 3.3], $\operatorname{dim} W_{2} \leqslant \operatorname{dim} W_{3}+$ $\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, hence $\delta_{A B} \leqslant \operatorname{dim} W_{3}+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$.

Particularly, by Lemma 2.4, if $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ and $\operatorname{rank}(A(I-B))=$ $\operatorname{rank}((I-B) A)$, then $\delta_{A B} \leqslant \operatorname{dim} W_{1}=\operatorname{dim} W_{3}$. In this way, the following result provides another sufficient condition so that $\delta_{A B} \leqslant \operatorname{dim} W_{3}$.

Proposition 2.5. If $A, B \in \mathbb{C}_{P}^{n \times n}$ and $(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) \subset(\operatorname{Im}(A)+\operatorname{Im}(B))$, then $\delta_{A B} \leqslant \operatorname{dim} W_{3}$.

Proof. According to Lemma 2.1, $\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+$ $\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, and as $(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) \subset(\operatorname{Im}(A)+\operatorname{Im}(B))$, we have that $\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$. Since $\operatorname{Ker}(I-A B) \oplus \operatorname{Ker}\left(\lambda_{2} I-A B\right)^{n_{2}} \oplus \ldots \oplus \operatorname{Ker}\left(\lambda_{k+1} I-A B\right)^{n_{k+1}} \subset \operatorname{Im}(A B)$. It follows that $\operatorname{dim} \operatorname{Ker}(I-A B)+\delta_{A B}=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))+\delta_{A B} \leqslant$ $\operatorname{rank}(A B)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{2}$ since $\delta_{A B}=\operatorname{dim}\left(\operatorname{Ker}\left(\lambda_{2} I-A B\right)^{n_{2}} \oplus \ldots \oplus\right.$ $\left.\operatorname{Ker}\left(\lambda_{k+1} I-A B\right)^{n_{k+1}}\right)$, which implies $\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))+\delta_{A B} \leqslant \operatorname{dim} W_{2}$, and so, keeping in mind that $\operatorname{dim} W_{2} \leqslant \operatorname{dim} W_{3}+\operatorname{dim}(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$. we may conclude that $\delta_{A B} \leqslant \operatorname{dim} W_{3}$.

REMARK 2. Let $A, B \in \mathbb{C}_{H P}^{n \times n}$. Then $\operatorname{Im}(A)+\operatorname{Im}(B)=\left(\operatorname{Ker}\left(A^{*}\right) \cap \operatorname{Ker}\left(B^{*}\right)\right)^{\perp}=$ $(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))^{\perp}$, which implies $(\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B)=\{0\}$, and by Lemma 2.1, $\operatorname{Ker}(I-A B)=\operatorname{Im}(A) \cap \operatorname{Im}(B)$. Moreover, since $A B, B A, A(I-B),(I-$ $B) A \in \mathbb{C}_{D}^{n \times n}$, it follows that $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ and $\operatorname{rank}(A(I-B))=\operatorname{rank}((I-$ $B) A$), see [5, Theorem 3.7], and by Lemma 2.4, it follows that $\delta_{A B}=\operatorname{dim} W_{1}=\operatorname{dim} W_{3}$.

Let $A \in \mathbb{C}_{P}^{n \times n}$. Thus, it is well known that $\sigma_{A} \geqslant 1$ if and only if $A \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$. Moreover, if $\sigma_{1}, \ldots, \sigma_{k} \in \mathbb{R} \backslash\{0,1\}$ are singular values of $A \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$, then $\sigma_{i}>1$ for each $i \in\{1, \ldots, k\}$.

Now, consider $A \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$. Then, by [8, Corollary 3.4.3.3], there is $U \in$ $\mathbb{C}_{U}^{n \times n}$ so that $U^{*} A U=\operatorname{diag}\left(A_{1}, \ldots, A_{k}, 1, \ldots, 1,0, \ldots, 0\right)$, where $A_{i}=\left(\begin{array}{c}1\left(\sigma_{i}-1\right)^{\frac{1}{2}} \\ 0\end{array} 0\right.$ and $\sigma_{i}>1$ is a singular value of A for each $i \in\{1, \ldots, k\}$.

Consider, also, $B \in \mathbb{C}_{H P}^{n \times n}$ so that $U^{*} B U=\operatorname{diag}\left(P_{1}, \ldots, P_{s}, 1, \ldots, 1,0, \ldots, 0\right)$, where $P_{i}=\left(\begin{array}{l}a_{i} \\ b_{i} \\ b_{i} \\ c_{i}\end{array}\right) \in \mathbb{C}_{H P}^{2 \times 2}, i=1, \ldots, s$ and $s \geqslant k$.

Thus, the following two results establish a relation between $\delta_{A B}$ and σ_{A}.
Proposition 2.6. Let $A \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}, B \in \mathbb{C}_{H P}^{n \times n}$ and $U \in \mathbb{C}_{U}^{n \times n}$ as defined above. Thus, if $b_{i} \in \mathbb{C} \backslash \mathbb{R}$ for each $i \in\{1, \ldots, k\}$, then $\delta_{A B}=\sigma_{A}$.

Proof. According to the notations above, we have that $U^{*} A B U=\operatorname{diag}\left(E_{1}, \ldots, E_{k}\right.$, $\left.P_{k+1}, \ldots, P_{s}, 1, \ldots, 1,0, \ldots, 0\right)$, where

$$
E_{i}=\left(\begin{array}{cc}
1\left(\sigma_{i}-1\right)^{\frac{1}{2}} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{i} \overline{b_{i}} \\
b_{i} & c_{i}
\end{array}\right)=\left(\begin{array}{cc}
a_{i}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i} \overline{b_{i}}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} c_{i} \\
0 & 0
\end{array}\right)
$$

Since $P_{i} \in \mathbb{C}_{H P}^{2 \times 2}$, it follows that $a_{i}, c_{i} \in \mathbb{R}$. Suppose that $a_{i}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}=1$. Then $1-a_{i}=\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}$, but this represents a contradiction because $1-a_{i},\left(\sigma_{i}-1\right)^{\frac{1}{2}} \in \mathbb{R}$ and, by hypothesis, $b_{i} \notin \mathbb{R}$.

Similarly, suppose that $a_{i}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}=0$. Then $a_{i}=-\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}$, which implies a contradiction too.

On the other hand, consider $b_{i} \in \mathbb{R}$ for each $i \in\{1, \ldots, k\}$. Clearly, if $b_{1}=b_{2}=$ $\ldots=b_{k}=0$, then we conclude that $\delta_{A B}=0$. Thus, in our next result we shall take into account that $b_{1}, \ldots, b_{k} \in \mathbb{R} \backslash\{0\}$.

Proposition 2.7. Let $A \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}, B \in \mathbb{C}_{H P}^{n \times n}$ and $U \in \mathbb{C}_{U}^{n \times n}$ as defined above. Thus, if $b_{i} \in \mathbb{R}, \sigma_{i} a_{i} \neq 1$ and $\sigma_{i} c_{i} \neq 1$ for each $i \in\{1, \ldots, k\}$, then $\delta_{A B}=\sigma_{A}$.

Proof. We have that $U^{*} A B U=\operatorname{diag}\left(E_{1}, \ldots, E_{k}, P_{k+1}, \ldots, P_{s}, 1, \ldots, 1,0, \ldots, 0\right)$, where $E_{i}=\binom{a_{i}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i} \overline{b_{i}}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} c_{i}}{0}$.

Since $P_{i} \in \mathbb{C}_{H P}^{2 \times 2}$, it follows that $a_{i}, c_{i} \in \mathbb{R}, a_{i}+c_{i}=1$ and $a_{i} c_{i}=b_{i}^{2}$.
Suppose that $a_{i}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}=1=a_{i}+c_{i}$. Then $c_{i}=\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}$, which implies $a_{i}\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}=b_{i}^{2}$, that is, $b_{i}=a_{i}\left(\sigma_{i}-1\right)^{\frac{1}{2}}$. Hence, $c_{i}=\left(\sigma_{i}-1\right)^{\frac{1}{2}} a_{i}\left(\sigma_{i}-1\right)^{\frac{1}{2}}=$ $\left(\sigma_{i}-1\right) a_{i}$, and so $a_{i}+\left(\sigma_{i}-1\right) a_{i}=\sigma_{i} a_{i}=1$, but this represents a contradiction for each $i \in\{1, \ldots, k\}$.

Similarly, suppose that $a_{i}+\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}=0$. Then $a_{i}=-\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i}$, which implies $-\left(\sigma_{i}-1\right)^{\frac{1}{2}} b_{i} c_{i}=b_{i}^{2}$, that is, $b_{i}=-\left(\sigma_{i}-1\right)^{\frac{1}{2}} c_{i}$. Hence, $a_{i}=-\left(\sigma_{i}-1\right)^{\frac{1}{2}}\left(-\left(\sigma_{i}-\right.\right.$
$\left.1)^{\frac{1}{2}} c_{i}\right)=\left(\sigma_{i}-1\right) c_{i}$, and so $\left(\sigma_{i}-1\right) c_{i}+c_{i}=\sigma_{i} c_{i}=1$, but this represents a contradiction for each $i \in\{1, \ldots, k\}$ too.

Consider the decompositions given below for the projections A, B and C :
$Y_{A} A Y_{A}^{-1}=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right), Y_{B} B Y_{B}^{-1}=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right)$ and $Y_{A} B Y_{A}^{-1}=C=Y_{C}^{-1}\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) Y_{C}=\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)$,
where Y_{A}, Y_{B} and Y_{C} are nonsingular matrices, $\operatorname{rank}(A)=r, \operatorname{rank}(B)=s$ and $C_{1} \in$ $\mathbb{C}^{r \times r}$.

Moreover, consider that there is a simultaneous triangularization between two projections A and B, and so, clearly, $\delta_{A B}=0$. Particularly, if $\operatorname{rank}(A B-B A) \leqslant 1$, then $\delta_{A B}=0$ too, see [11, Theorem 40.5]. However, in our next result we shall characterize the projections A and B so that $\delta_{A B}=0$.

Proposition 2.8. Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1). Then $\delta_{A B}=$ 0 if and only if $A B-B A$ is nilpotent.

Proof. Taking into account that $Y_{A} A B Y_{A}^{-1}=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & 0\end{array}\right)$, we have that $\delta_{A B}=0$ implies that $\delta_{C_{1}}=0$, and so if λ is an eigenvalue of C_{1}, then $\lambda=0$ or $\lambda=1$. Since $C \in \mathbb{C}_{P}^{n \times n}$, it follows that $C_{2} C_{3}=C_{1}-C_{1}^{2}$. Hence, $C_{2} C_{3}$ is nilpotent.

Conversely, if $C_{2} C_{3}$ is nilpotent, then any eigenvalue of $C_{2} C_{3}$ is equal to zero. Thus, if λ is an eigenvalue of C_{1}, then $\lambda-\lambda^{2}$ is eigenvalue of $C_{1}-C_{1}^{2}=C_{2} C_{3}$, which implies $\lambda-\lambda^{2}=0$, hence $\lambda=0$ or $\lambda=1$, that is, $\delta_{C_{1}}=0$, and so $\delta_{A B}=0$.

Now, we have that $Y_{A} B A Y_{A}^{-1}=\left(\begin{array}{ll}C_{1} & 0 \\ C_{3} & 0\end{array}\right)$, which implies $Y_{A} A B Y_{A}^{-1}-Y_{A} B A Y_{A}^{-1}=$ $Y_{A}(A B-B A) Y_{A}^{-1}=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & 0\end{array}\right)-\left(\begin{array}{ll}C_{1} & 0 \\ C_{3} & 0\end{array}\right)=\left(\begin{array}{cc}0 & C_{2} \\ -C_{3} & 0\end{array}\right)$, hence $Y_{A}(A B-B A)^{2} Y_{A}^{-1}=$ $\left(\begin{array}{cc}-C_{2} C_{3} & 0 \\ 0 & -C_{3} C_{2}\end{array}\right)$.

Since $C_{2} C_{3}$ is nilpotent $\Leftrightarrow C_{3} C_{2}$ is nilpotent, it follows that $(A B-B A)^{2}$ is nilpotent $\Leftrightarrow C_{2} C_{3}$ is nilpotent, and as $(A B-B A)^{2}$ is nilpotent $\Leftrightarrow A B-B A$ is nilpotent, we may already conclude that $\delta_{A B}=0 \Leftrightarrow A B-B A$ is nilpotent.

Particularly, the following result provides a necessary and sufficient condition so that $A B \in \mathbb{C}_{P}^{n \times n}$ whenever $A, B \in \mathbb{C}_{P}^{n \times n}$.

Corollary 2.9. Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1). Then $A B \in$ $\mathbb{C}_{P}^{n \times n}$ if and only if $C_{2} C_{3}=0$ and $\operatorname{Im}\left(C_{2}\right) \subset \operatorname{Im}\left(C_{1}\right)$.

Proof. Consider that $Y_{A} A B Y_{A}^{-1}=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & 0\end{array}\right)$. If $A B \in \mathbb{C}_{P}^{n \times n}$, then, by [5, Theorem 2.11], $C_{1} \in \mathbb{C}_{P}^{r \times r}$ and $\operatorname{Im}\left(C_{2}\right) \subset \operatorname{Im}\left(C_{1}\right)$. Since $C_{2} C_{3}=C_{1}-C_{1}^{2}$, it follows that $C_{2} C_{3}=0$.

Conversely, if $C_{2} C_{3}=0$, then $C_{1}=C_{1}^{2}$, and as $\operatorname{Im}\left(C_{2}\right) \subset \operatorname{Im}\left(C_{1}\right)$, again by [5, Theorem 2.11], we have that $A B \in \mathbb{C}_{P}^{n \times n}$.

On the other hand, the next result provides a sufficient condition so that $\delta_{A B}$ reaches its maximum value, that is, $\delta_{A B}=\operatorname{dim} W_{1}$.

Proposition 2.10. If $A, B \in \mathbb{C}_{P}^{n \times n}$ and $A B-B A$ is nonsingular, then $\delta_{A B}=$ $\operatorname{Tr}(A)$.

Proof. Let $C=A B-B A$ nonsingular Then, by [12, Corollary 2.10], $\operatorname{Im}(A) \oplus$ $\operatorname{Im}(B)=\operatorname{Im}\left(A^{*}\right) \oplus \operatorname{Im}\left(B^{*}\right)=\mathbb{C}^{n \times 1}$ and $\operatorname{rank}(A B)=\operatorname{rank}(B A)=\operatorname{rank}(A)=\operatorname{rank}(B)$. Hence, $\operatorname{Im}(A) \cap \operatorname{Im}(B)=\{0\}$ and $\left(\operatorname{Im}\left(A^{*}\right) \oplus \operatorname{Im}\left(B^{*}\right)\right)^{\perp}=\left(\operatorname{Im}\left(A^{*}\right)\right)^{\perp} \cap\left(\operatorname{Im}\left(B^{*}\right)\right)^{\perp}=$ $\operatorname{Ker}(A) \cap \operatorname{Ker}(B)=\left(\mathbb{C}^{n \times 1}\right)^{\perp}=\{0\}$. Since, by Lemma 2.1, $\operatorname{dim} \operatorname{Ker}(I-A B)=\operatorname{dim}(\operatorname{Im}(A)$ $\cap \operatorname{Im}(B))+\operatorname{dim}((\operatorname{Im}(A)+\operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, it follows that $1 \notin \sigma(A B)$. Moreover, taking into account that $\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Ker}(B))=\operatorname{rank}(A)-\operatorname{rank}(B A)=\operatorname{dim}(\operatorname{Im}(B)$ $\cap \operatorname{Ker}(A))=\operatorname{rank}(B)-\operatorname{rank}(A B)=0$, we have that $\operatorname{Im}(A) \cap \operatorname{Ker}(B)=\operatorname{Im}(B) \cap \operatorname{Ker}(A)=$ $\{0\}$, which implies $\operatorname{Ker}(A B)=W_{4}$, and keeping in mind that $\operatorname{Im}(A) \cap \operatorname{Im}(B)=\{0\}$, we conclude that $W_{1}=\operatorname{Im}(A B)=\operatorname{Im}(A)$, and therefore $\delta_{A B}=\operatorname{rank}(A B)=\operatorname{rank}(A)=$ $\operatorname{Tr}(A)$.

REMARK 3. From Corollary 3.5, we see that the requiring $A B-B A$ to be nonsingular is not necessary for the conclusion: $\delta_{A B}=\operatorname{Tr}(A)$ in Proposition 2.10.

REMARK 4. Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1). Thus, we shall show a sufficient and necessary condition so that $\delta_{A B}=\operatorname{Tr}(A)$ whenever $\operatorname{rank}(A)=\operatorname{Tr}(A) \leqslant$ $n / 2$. Before, however, note that $\delta_{A B} \leqslant \operatorname{dim}\left(W_{1}\right) \leqslant \operatorname{rank}(A)$, and if $\delta_{A B}=\operatorname{Tr}(A)=$ $\operatorname{rank}(A)$, then $\delta_{A B}=\operatorname{dim}\left(W_{1}\right)$ and $1 \notin \sigma(A B)$. Moreover, $\operatorname{rank}(A B) \leqslant \operatorname{rank}(A)=$ $\delta_{A B} \leqslant \operatorname{rank}(A B)$, which implies $\delta_{A B}=\operatorname{rank}(A B)=\operatorname{rank}(A)$, hence we may conclude that $A B \in \mathbb{C}_{D}^{n \times n}$. Thus, taking into account this information and using Proposition 3.4, in section 3, we have that $\delta_{A B}=\operatorname{Tr}(A)$ if and only if $C_{2} C_{3} \in \mathbb{C}_{D}^{r \times r}$ and nonsingular whenever $\operatorname{Tr}(A) \leqslant n / 2$.

We have already showed that, given A and B projections of order $n, \delta_{A B} \leqslant$ $\operatorname{dim}\left(W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)$. Now, in our last main result of this section, we shall show a more refined result, where $\delta_{A B}=\operatorname{dim} \operatorname{Ker}\left(\lambda_{1} I-A B\right)+\ldots+\operatorname{dim} \operatorname{Ker}\left(\lambda_{k} I-\right.$ $A B) \leqslant \operatorname{dim}\left(\left(W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap\left(W_{1} \oplus W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))\right)\right)$ whenever $A B$ and $B A$ are diagonalizable and $\lambda_{1}, \ldots, \lambda_{k} \in \sigma(A B) \backslash\{0,1\}$ distinct. However, first we shall show a preliminary result and relevant to Theorem 2.12.

Proposition 2.11. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Thus, $\left(W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap(A \operatorname{Im}(B)$ $+\operatorname{Im}(B))=\{0\}$ if and only if $\operatorname{Im}(B)=(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus(\operatorname{Ker}(A) \cap \operatorname{Im}(B))$.

Proof. Consider $v \in \operatorname{Im}(A) \cap\left(\operatorname{Im}(B) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)=\operatorname{Im}(A B)$. Hence $v=u+w$, where $v \in \operatorname{Im}(A), u \in \operatorname{Im}(B)$ and $w \in W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$. This implies that $A v=v=A u+A w=A u=u+w$, hence $w=A u-u$, and so $w \in\left(W_{3} \oplus(\operatorname{Ker}(A) \cap\right.$ $\operatorname{Ker}(B))) \cap(A \operatorname{Im}(B)+\operatorname{Im}(B))$. Thus, if $\operatorname{Im}(B)=(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus(\operatorname{Ker}(A) \cap \operatorname{Im}(B))$, then $u=u_{1}+u_{2}$, where $u_{1} \in \operatorname{Im}(A) \cap \operatorname{Im}(B)$ and $u_{2} \in \operatorname{Ker}(A) \cap \operatorname{Im}(B)$, which implies $w=A\left(u_{1}+u_{2}\right)-\left(u_{1}+u_{2}\right)=u_{1}-u_{1}-u_{2}=-u_{2}$, and as $(\operatorname{Ker}(A) \cap \operatorname{Im}(B)) \cap\left(W_{3} \oplus\right.$ $(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))=\{0\}$, we have that $w=0$.

Conversely, consider $W_{2} \neq\{0\}, w_{2} \in W_{2}$ and $w_{2} \neq 0$. Hence, $u=u_{1}+u_{2}+w_{2}$, which implies $w=A\left(u_{1}+u_{2}+w_{2}\right)-\left(u_{1}+u_{2}+w_{2}\right)=u_{1}+A w_{2}-u_{1}-u_{2}-w_{2}=$
$A w_{2}-\left(u_{2}+w_{2}\right)$. Since $A w_{2} \notin \operatorname{Im}(B)$ and $-\left(u_{2}+w_{2}\right) \in \operatorname{Im}(B)$, it follows that $w \neq 0$, see [5, Lemma 3.2].

Therefore, we may conclude that if $\left(W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap(A \operatorname{Im}(B)+\operatorname{Im}(B))$ $=\{0\}$, then $W_{2}=\{0\}$, that is, $\operatorname{Im}(B)=(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus(\operatorname{Ker}(A) \cap \operatorname{Im}(B))$.

THEOREM 2.12. If $A, B \in \mathbb{C}_{P}^{n \times n}$ and $A B, B A \in \mathbb{C}_{D}^{n \times n}$, then $\delta_{A B} \leqslant \operatorname{dim}\left(\left(W_{3} \oplus\right.\right.$ $\left.(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap\left(W_{1} \oplus W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))\right)\right)$.

Proof. Since $A B, B A \in \mathbb{C}_{D}^{n \times n}$, it follows that $A B$ and $B A$ are core matrices, which implies, by [5, Lemma 2.5], $\operatorname{rank}(A B)=\operatorname{rank}(B A)$, and according to proof of Lemma 2.4, $\operatorname{rank}(A B)=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{2}=\operatorname{dim}(\operatorname{Im}(A) \cap \operatorname{Im}(B))+\operatorname{dim} W_{1}=$ $\operatorname{rank}(B A)$, hence $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}$ and $A W_{2}=W_{1}$. Taking into account that $A B \in$ $\mathbb{C}_{D}^{n \times n}$, we have that $\operatorname{Im}(A B)=(\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus W_{1}=\operatorname{Im}(A) \cap(\operatorname{Im}(B)+\operatorname{Ker}(A))=$ $\operatorname{Im}(A) \cap\left((\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)$. Now, note that $\operatorname{dim}\left(\operatorname{Im}(A) \cap\left(W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)\right)=\operatorname{rank}(A)+$ $\operatorname{dim} W_{2}+\operatorname{dim} \operatorname{Ker}(A)-\operatorname{dim}\left(\operatorname{Im}(A)+\left(W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)\right)$ $=\operatorname{dim} W_{2}+n-n=\operatorname{dim} W_{1}$, and so we may conclude that $\operatorname{Im}(A) \cap\left(W_{2} \oplus(\operatorname{Im}(B) \cap\right.$ $\left.\operatorname{Ker}(A)) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)=W_{1}$. Moreover, keeping in mind that $\operatorname{dim} W_{1}=$ $\operatorname{dim} W_{2}$, we have that $\operatorname{dim} W_{1} \leqslant \operatorname{dim} W_{2}+\operatorname{dim}(\operatorname{Im}(B) \cap \operatorname{Ker}(A))=t$, and since $\operatorname{Ker}\left(\lambda_{1} I-\right.$ $A B) \oplus \ldots \oplus \operatorname{Ker}\left(\lambda_{k} I-A B\right) \subset W_{1}$, it follows that $\delta_{A B}=\operatorname{dim} \operatorname{Ker}\left(\lambda_{1} I-A B\right)+\ldots+$ $\operatorname{dim} \operatorname{Ker}\left(\lambda_{k} I-A B\right) \leqslant \operatorname{dim} W_{1} \leqslant t$.

On the other hand, consider $v \in \operatorname{Im}(A) \cap\left(W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap\right.$ $\operatorname{Ker}(B))$), hence $v=u+w$, where $v \in \operatorname{Im}(A), u \in W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))$ and $w \in$ $W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, which implies $A v=v=A u+A w=A u=u+w$, that is, $w=$ $A u-u$, and so $w \in\left(W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap\left(W_{1} \oplus W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))\right)$ since $A\left(W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))=A W_{2}=W_{1}\right.$.

Let $\left\{u_{1}, \ldots, u_{k}, \ldots, u_{t}\right\}$ be a basis of $W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))$. Moreover, consider that $w_{1}=A u_{1}-u_{1}, \ldots, w_{k}=A u_{k}-u_{k}, \ldots, w_{t}=A u_{t}-u_{t}$ and $v_{1}=u_{1}+w_{1}, \ldots, v_{k}=$ $u_{k}+w_{k}$, where $A B v_{i}=\lambda_{i} v_{i}$ and $B A u_{i}=\lambda_{i} u_{i}$ for each $i \in\{1, \ldots, k\}$ since $W_{1}=\operatorname{Im}(A) \cap$ $\left(W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right)$.

Now, note that if $c_{1} w_{1}+\ldots+c_{k} w_{k}+\ldots+c_{t} w_{t}=0$ with $c_{1}, \ldots, c_{t} \in \mathbb{C}$, then $c_{1}\left(A u_{1}-u_{1}\right)+\ldots+c_{k}\left(A u_{k}-u_{k}\right)+\ldots+c_{t}\left(A u_{t}-u_{t}\right)=A\left(c_{1} u_{1}+\ldots+c_{k} u_{k}+\ldots+\right.$ $\left.c_{t} u_{t}\right)-\left(c_{1} u_{1}+\ldots+c_{k} u_{k}+\ldots+c_{t} u_{t}\right)=0$, which implies $c_{1} u_{1}+\ldots+c_{k} u_{k}+\ldots+c_{t} u_{t} \in$ $\operatorname{Im}(A)$, but $c_{1} u_{1}+\ldots+c_{k} u_{k}+\ldots+c_{t} u_{t} \in W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))$, and as $\operatorname{Im}(A) \cap$ $\left(W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))\right)=\{0\}$, we have that $c_{1} u_{1}+\ldots+c_{k} u_{k}+\ldots+c_{t} u_{t}=0$, and so $c_{1}=\ldots=c_{k}=\ldots=c_{t}=0$. This implies that dimspan $\left(w_{1}, \ldots, w_{t}\right)=t$, hence we may conclude that $t \leqslant \operatorname{dim}\left(\left(W_{3} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap\left(W_{1} \oplus W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))\right)\right.$.

REMARK 5. Regarding Theorem 2.12, keeping in mind that $A B, B A \in \mathbb{C}_{D}^{n \times n}$, we may easily conclude, by symmetry, that $\delta_{B A} \leqslant \operatorname{dim}\left(\left(W_{4} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap\left(W_{1} \oplus\right.\right.$ $\left.\left.W_{2} \oplus(\operatorname{Im}(A) \cap \operatorname{Ker}(B))\right)\right)$, and as $\delta_{A B}=\delta_{B A}$, we claim that $\delta_{A B} \leqslant \min \left\{\operatorname{dim}\left(\left(W_{3} \oplus\right.\right.\right.$ $\left.(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap\left(W_{1} \oplus W_{2} \oplus(\operatorname{Im}(B) \cap \operatorname{Ker}(A))\right)\right), \operatorname{dim}\left(\left(W_{4} \oplus(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))\right) \cap\right.$ $\left.\left.\left(W_{1} \oplus W_{2} \oplus(\operatorname{Im}(A) \cap \operatorname{Ker}(B))\right)\right)\right\}$.

3. When the product of two projections is a diagonalizable matrix

In [5, Corollary 3.9], we have proved that if $D \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(D) \leqslant n / 2$ and with arbitrary spectrum, then there are $A, B \in \mathbb{C}_{P}^{n \times n}$ so that $A B=D$. Moreover, in [5, Theorem 3.12], we have proved that there are projections A and B so that $A B=$ D, where D is diagonalizable, if and only if $\delta_{D} \leqslant \alpha_{D}$. Similarly, in [12, page 81], Ballantine proved that given a singular diagonalizable matrix D and A and B of same order, $D=A B$ if and only if $\operatorname{rank}(I-D) \leqslant 2 \operatorname{dim} \operatorname{Ker}(D)$. Another relevant information is that, by [2, Theorem 3.2.11.1], we may conclude that given projections A and $B, A B$ is diagonalizable if and only if $B A$ is diagonalizable whenever $A B$ and $B A$ are core matrices. In this section, we shall show some necessary and/or sufficient conditions so that $A B$ is diagonalizable with arbitrary spectrum or restricted to the real segment $[0$, 1].

In [5, Corollary 3.10], we have proved that if $N \in \mathbb{C}_{N}^{n \times n}$ with rank at most $n / 2$ and arbitrary spectrum, then there are $A, B \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$ so that $A B=N$. However, if $A \in \mathbb{C}_{H P}^{n \times n}, N \in \mathbb{C}_{N}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$, then $A B \neq N$ for any $B \in \mathbb{C}_{P}^{n \times n}$. Our next main result is able to demonstrate this.

THEOREM 3.1. If $A \in \mathbb{C}_{H P}^{n \times n}, B \in \mathbb{C}_{P}^{n \times n}$ and $N \in \mathbb{C}_{N}^{n \times n}$ so that $A B=N$, then $N \in \mathbb{C}_{H P}^{n \times n}$.

Proof. According to [1, p. 42], $A X=N$ if and only if $A A^{\dagger} N=N$ for some $X \in \mathbb{C}^{n \times n}$. Since $A \in \mathbb{C}_{H P}^{n \times n}$, it follows that $A=A^{2}=A^{*}=A^{\dagger}$, so $A X=N$ is solvable if and only if $A N=N$. Suppose that $N \notin \mathbb{C}_{H P}^{n \times n}$. Thus, take $U \in \mathbb{C}_{U}^{n \times n}$ so that $U^{*} N U=\left(\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right)$, where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right), \lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C} \backslash\{0\}$ and at least one $\lambda_{i} \in \mathbb{C} \backslash\{0,1\}$ with $i \in\{1, \ldots, r\}$. Consider $U^{*} A U=\binom{A_{1} A_{2}}{A_{3} A_{4}}$ with $A_{1} \in \mathbb{C}^{r \times r}$. Hence, $U^{*} A N U=U^{*} A U U^{*} N U=U^{*} N U$, which implies $\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right)\left(\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right)$, and so we have that $A_{1}=I_{r}$ and $A_{3}=0$, and as $U^{*} A U \in \mathbb{C}_{H P}^{n \times n}$, we also have that $A_{2}=0$ and $A_{4} \in \mathbb{C}_{H P}^{n-r \times n-r}$. Again by [1, p. 42], $X=A^{\dagger} N+\left(I-A^{\dagger} A\right) M=N+(I-A) M$ is the general solution of the equation $A X=N$ for any $M \in \mathbb{C}^{n \times n}$. This implies that $X=U\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right) U^{*}+\left[\left(\begin{array}{cc}I_{r} & 0 \\ 0 & I_{n-r}\end{array}\right)-U\left(\begin{array}{cc}I_{r} & 0 \\ 0 & A_{4}\end{array}\right) U^{*}\right] M$, that is,

$$
U^{*} X U=\left(\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{lc}
0 & 0 \\
0 & I_{n-r}-A_{4}
\end{array}\right)\binom{M_{1} M_{2}}{M_{3} M_{4}}=\left(\begin{array}{cc}
D & 0 \\
\left(I_{n-r}-A_{4}\right) M_{3}\left(I_{n-r}-A_{4}\right) M_{4}
\end{array}\right)
$$

where $U^{*} M U=\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)$ and $M_{1} \in \mathbb{C}^{r \times r}$. Hence, taking into account that $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ $=\sigma(D) \subset \sigma(X)$, we may conclude that $X \notin \mathbb{C}_{P}^{n \times n}$, but this contradicts our hypothesis that $X=B \in \mathbb{C}_{P}^{n \times n}$.

REMARK 6. Taking into account the proof of Theorem 3.1 and if $A, N \in \mathbb{C}_{H P}^{n \times n}$ and $A N=N$, then $D=I_{r}$ and $A N=N=N^{*}=N A$. Thus, take $U \in \mathbb{C}_{U}^{n \times n}$ so that
$U^{*} A U U^{*} N U=U^{*} N U=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & A_{4}\end{array}\right)\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$, where $A_{4}=\left(\begin{array}{cc}I_{t_{1}} & 0 \\ 0 & 0\end{array}\right)$ and $t_{1}+t_{2}=$ $n-r$. Hence, $X=U\left(\begin{array}{cc}I_{r} & 0 \\ V & W\end{array}\right) U^{*}$ is the general solution of the equation $A X=N$, where

$$
V=\left[\left(\begin{array}{cc}
I_{t_{1}} & 0 \\
0 & I_{t_{2}}
\end{array}\right)-\left(\begin{array}{cc}
I_{t_{1}} & 0 \\
0 & 0
\end{array}\right)\right] M_{3}=\left(\begin{array}{cc}
0 & 0 \\
0 & I_{t_{2}}
\end{array}\right) M_{3}
$$

and

$$
W=\left[\left(\begin{array}{cc}
I_{t_{1}} & 0 \\
0 & I_{t_{2}}
\end{array}\right)-\left(\begin{array}{cc}
I_{t_{1}} & 0 \\
0 & 0
\end{array}\right)\right] M_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & I_{t_{2}}
\end{array}\right) M_{4}
$$

for any $M=U\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right) U^{*} \in \mathbb{C}^{n \times n}$, and consequently M_{1}, M_{2}, M_{3} and M_{4} are arbitrary submatrices. Therefore, we may conclude that $X \in \mathbb{C}_{P}^{n \times n}$ if and only if $W V=$ 0 and $W^{2}=W$.

REMARK 7. Consider $E \in \mathbb{C}_{E P}^{n \times n}$. Thus, by [3, Lemma 2], $Q^{*} E Q=\left(\begin{array}{ll}T & 0 \\ 0 & 0\end{array}\right)$ for some $Q \in \mathbb{C}_{U}^{n \times n}$ and $T \in \mathbb{C}^{t \times t}$ nonsingular. Again, taking into account the proof of Theorem 3.1, we may similarly conclude that if $A \in \mathbb{C}_{H P}^{n \times n}, B \in \mathbb{C}_{P}^{n \times n}$ and $E \in \mathbb{C}_{E P}^{n \times n}$ so that $A B=E$, then $E \in \mathbb{C}_{H P}^{n \times n}$.

Now, it follows a result which provides a sufficient condition so that $A B \in \mathbb{C}_{E P}^{n \times n}$, where $A \in \mathbb{C}_{P}^{n \times n}$ and $B \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$.

Proposition 3.2. Let $A \in \mathbb{C}_{P}^{n \times n}$ and $B \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$. Let $P_{A} U_{A}$ and $U_{B} P_{B}$ be polar decompositions, respectively, of A and B, where $U_{A}, U_{B} \in \mathbb{C}_{U}^{n \times n}, P_{A} \geqslant 0, P_{B} \geqslant$ and $Q=U_{A} U_{B}$. Thus, if $P_{A} Q \in \mathbb{C}_{E P}^{n \times n}, \operatorname{Ker}\left(P_{B}\right) \subset \operatorname{Ker}\left(P_{A} Q\right)$ and $P_{B}\left(\operatorname{Ker}\left(P_{A} Q\right)\right) \subset$ $\operatorname{Ker}\left(P_{A} Q\right)$, then $A B \in \mathbb{C}_{E P}^{n \times n}$.

Proof. We have that $\operatorname{Ker}\left(P_{B}\right) \subset \operatorname{Ker}\left(P_{A} Q\right) \Rightarrow\left(\operatorname{Ker}\left(P_{A} Q\right)\right)^{\perp} \subset\left(\operatorname{Ker}\left(P_{B}\right)\right)^{\perp} \Rightarrow$ $\operatorname{Im}\left(\left(P_{A} Q\right)^{*}\right) \subset \operatorname{Im}\left(P_{B}^{*}\right) \Rightarrow \operatorname{Im}\left(P_{A} Q\right) \subset \operatorname{Im}\left(P_{B}\right)$ since $P_{A} Q \in \mathbb{C}_{E P}^{n \times n}$, hence $\operatorname{Im}\left(P_{A} Q P_{B}\right) \subset$ $\operatorname{Im}\left(P_{B}\right)$. Moreover, since $P_{B}\left(\operatorname{Ker}\left(P_{A} Q\right)\right) \subset \operatorname{Ker}\left(P_{A} Q\right)$, it follows that $\operatorname{Ker}\left(P_{A} Q\right) \subset$ $\operatorname{Ker}\left(P_{A} Q P_{B}\right)$. Keeping in mind that $P_{A} Q, P_{B} \in \mathbb{C}_{E P}^{n \times n}$ and by [9, Theorem 2], if $\operatorname{Im}\left(P_{A} Q P_{B}\right)$ $\subset \operatorname{Im}\left(P_{B}\right)$ and $\operatorname{Ker}\left(P_{A} Q\right) \subset \operatorname{Ker}\left(P_{A} Q P_{B}\right)$, then $P_{A} Q P_{B}=A B \in \mathbb{C}_{E P}^{n \times n}$.

Now, consider the solvable matricial equation $A X=D$, where $A \in \mathbb{C}_{H P}^{n \times n}$ and $D \in \mathbb{C}_{D}^{n \times n} \backslash \mathbb{C}_{N}^{n \times n}$. Thus, if $\operatorname{rank}(A)=s \leqslant n-s$ and given $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C} \backslash\{0\}$ with $\operatorname{rank}(D)=r \leqslant s$, then there are $D \in \mathbb{C}_{D}^{n \times n} \backslash \mathbb{C}_{N}^{n \times n}$ and $X \in \mathbb{C}_{P}^{n \times n}$ so that $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset$ $\sigma(D)$ and $A X=D$. Our next result provides sufficient conditions for the projection X to satisfy the equation $A X=D$, under the conditions above established.

Consider the following decompositions for the projections A and B of order n :
$U_{A}^{*} A U_{A}=\left(\begin{array}{rl}I_{S} & 0 \\ 0 & 0\end{array}\right)=V_{B} B V_{B}^{-1}$, where $U_{A} \in \mathbb{C}_{U}^{n \times n}, V_{B} \in \mathbb{C}^{n \times n}$ and nonsingular, $B=\left(\begin{array}{cc}I_{s} & A_{2} \\ 0 & 0\end{array}\right), A_{2} \in \mathbb{C}^{s \times n-s}$ and $A_{2} \neq 0$. Hence, $A=T\left(\begin{array}{cc}I_{S} & A_{2} \\ 0 & 0\end{array}\right) T^{-1} \in \mathbb{C}_{H P}^{n \times n}$ with $T=$ $U_{A} V_{B}$. Consider, also, $D=T \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right) T^{-1} \in \mathbb{C}^{n \times n}, D_{\lambda}=\operatorname{diag}\left(\lambda_{1}-\right.$ $\left.1, \ldots, \lambda_{r}-1,-1, \ldots,-1\right) \in \mathbb{C}^{s \times s}, \lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C} \backslash\{0\}, r \leqslant s$ and $M_{3}=A_{2}^{\dagger} D_{\lambda}+\left(I_{n-s}-\right.$ $\left.A_{2}^{\dagger} A_{2}\right) W_{s}$ with $W_{s} \in \mathbb{C}^{n-s \times s}$.

Proposition 3.3. Let A, B, T, D, D_{λ} and M_{3} be matrices as represented above. Once an arbitrary Hermitian projection A of rank s is fixed and $X=T\left(\begin{array}{cc}I_{S} & 0 \\ M_{3} & 0\end{array}\right) T^{-1} \in$ $\mathbb{C}_{P}^{n \times n}$, we have that if $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C} \backslash\{0,1\}$ and $s \leqslant n-s$, then $A X=D$ for some $D \in$ $\mathbb{C}_{D}^{n \times n} \backslash \mathbb{C}_{N}^{n \times n}$ with $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\} \subset \sigma(D)$, for any $W_{s} \in \mathbb{C}^{n-s \times s}$ and for any $A_{2} \in \mathbb{C}^{s \times n-s}$ of rank s.

Proof. Consider $A \in \mathbb{C}_{H P}^{n \times n}$ and $B \in \mathbb{C}_{P}^{n \times n} \backslash \mathbb{C}_{H P}^{n \times n}$ with $\operatorname{rank}(A)=\operatorname{rank}(B)=s$. Then there are $U_{A} \in \mathbb{C}_{U}^{n \times n}, V_{B} \in \mathbb{C}^{n \times n} \backslash \mathbb{C}_{U}^{n \times n}$ and nonsingular so that $U_{A}^{*} A U_{A}=\left(\begin{array}{ll}I_{S} & 0 \\ 0 & 0\end{array}\right)$ $=V_{B} B V_{B}^{-1}$, that is, $\left(U_{A} V_{B}\right)^{-1} A U_{A} V_{B}=B=\left(\begin{array}{cc}I_{S} & A_{2} \\ 0 & 0\end{array}\right)$, and so $A=T\left(\begin{array}{cc}I_{S} & A_{2} \\ 0 & 0\end{array}\right) T^{-1} \in$ $\mathbb{C}_{H P}^{n \times n}$ for any $A_{2} \in \mathbb{C}^{s \times n-s}$, but $A_{2} \neq 0$ and $U_{A} V_{B}=T \notin \mathbb{C}_{U}^{n \times n}$. Now, consider the matricial equation

$$
\begin{equation*}
A X=D \tag{2}
\end{equation*}
$$

where $D=T \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right) T^{-1} \in \mathbb{C}^{n \times n}, \lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C} \backslash\{0,1\}$ and $r \leqslant s$. Keeping in mind that $A \in \mathbb{C}_{H P}^{n \times n}$, we have that $A A^{\dagger}=A^{\dagger} A=A=A^{\dagger}$, which implies $A A^{\dagger} D=A D=T\left(\begin{array}{cc}I_{s} & A_{2} \\ 0 & 0\end{array}\right) T^{-1} T\left(\begin{array}{cc}D_{s} & 0 \\ 0 & 0\end{array}\right) T^{-1}=T\left(\begin{array}{cc}D_{s} & 0 \\ 0 & 0\end{array}\right) T^{-1}=D$, where $D_{s}=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right) \in \mathbb{C}^{s \times s}$. This implies that $A A^{\dagger} D=D$, and by [2, p. 42], (2) is solvable for any $A_{2} \in \mathbb{C}^{s \times n-s}$ and $A_{2} \neq 0$. Again by [2, p. 42], in (2) the general solution is given by $X=A^{\dagger} D+\left(I-A^{\dagger} A\right) M=D+(I-A) M=T\left(\begin{array}{cc}D_{s} & 0 \\ 0 & 0\end{array}\right) T^{-1}+$ $\left[\left(\begin{array}{cc}I_{s} & 0 \\ 0 & I_{n-s}\end{array}\right)-T\left(\begin{array}{cc}I_{s} & A_{2} \\ 0 & 0\end{array}\right) T^{-1}\right] T T^{-1} M$ for any $M \in \mathbb{C}^{n \times n}$. Hence, $T^{-1} X T=\left(\begin{array}{cc}D_{s} & 0 \\ 0 & 0\end{array}\right)+$ $\left(\begin{array}{ll}0 & -A_{2} \\ 0 & I_{n-s}\end{array}\right)\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)=\left(\begin{array}{cc}D_{s} & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}-A_{2} M_{3} & -A_{2} M_{4} \\ M_{3} & M_{4}\end{array}\right)=\left(\begin{array}{cc}D_{s}-A_{2} M_{3} & -A_{2} M_{4} \\ M_{3} & M_{4}\end{array}\right)$, where $T^{-1} M T=\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)$ and $M_{1} \in \mathbb{C}^{s \times s}$. Note that if $M_{4}=0$ and $D_{s}-A_{2} M_{3}=I_{s}$, then $X \in \mathbb{C}_{P}^{n \times n}$. Thus, take $M_{4}=0$ and $D_{s}-A_{2} M_{3}=I_{s}$, that is,

$$
\begin{equation*}
A_{2} M_{3}=\operatorname{diag}\left(\lambda_{1}-1, \ldots, \lambda_{r}-1,-1, \ldots,-1\right)=D_{\lambda} \tag{3}
\end{equation*}
$$

Let $s \leqslant n-s$. Since $\lambda_{i} \neq 1$ for each $i \in\{1, \ldots, r\}$, it follows that $\operatorname{rank}\left(D_{\lambda}\right)=s$, which implies $\operatorname{rank}\left(A_{2}\right)=\operatorname{rank}\left(A_{2} A_{2}^{\dagger}\right)=s$, hence $A_{2} A_{2}^{\dagger}=I_{s}$, that is, $A_{2} A_{2}^{\dagger} D_{\lambda}=D_{\lambda}$, and so (3) is solvable for any $A_{2} \in \mathbb{C}^{s \times n-s}$ of rank s. In this case, the general solution of (3) is given by $M_{3}=A_{2}^{\dagger} D_{\lambda}+\left(I_{n-s}-A_{2}^{\dagger} A_{2}\right) W_{s}$ for any $W_{s} \in \mathbb{C}^{n-s \times s}$. Therefore, if $X=T\left(\begin{array}{rr}I_{s} & 0 \\ M_{3} & 0\end{array}\right) T^{-1} \in \mathbb{C}_{P}^{n \times n}$, with $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C} \backslash\{0,1\}$ and $s \leqslant n-s$, then X is a solution of (2) for any $W_{s} \in \mathbb{C}^{n-s \times s}$ and for any $A_{2} \in \mathbb{C}^{s \times n-s}$ of rank s.

Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1) and $\operatorname{rank}(A) \leqslant n / 2$. In the next result, we shall make use of the submatrices of the projection C to provide a necessary and sufficient condition so that $A B \in \mathbb{C}_{D}^{n \times n}, \operatorname{rank}(A B)=\operatorname{rank}(A)$ and $\operatorname{Ker}(I-A B)=$ $\{0\}$.

Proposition 3.4. Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1) and $r \leqslant n / 2$. Thus, $A B \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(A B)=r$ and $1 \notin \sigma(A B)$ if and only if $C_{2} C_{3} \in \mathbb{C}_{D}^{r \times r}$ and nonsingular.

Proof. Taking into account that $Y_{A} A B Y_{A}^{-1}=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & 0\end{array}\right)$ and that a square matrix is diagonalizable if and only if its minimal polynomial is a product of pairwise distinct monic linear polynomials, we have that if $A B$ is diagonalizable, then so is C_{1}. Moreover, $1 \notin \sigma(A B)$ implies that $1 \notin \sigma\left(C_{1}\right)$, and also $\operatorname{rank}(A B)=r$ implies that $0 \notin \sigma\left(C_{1}\right)$ since $C_{1} \in \mathbb{C}^{r \times r}$ and $\operatorname{Im}\left(C_{2}\right) \subset \operatorname{Im}\left(C_{1}\right)$, see [5, Theorem 2.11].

Since $\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)=\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)$, it follows that

$$
\begin{equation*}
C_{2} C_{3}=C_{1}-C_{1}^{2} \tag{4}
\end{equation*}
$$

Hence $C_{2} C_{3} \in \mathbb{C}_{D}^{r \times r}$ and nonsingular.
Conversely, consider $m_{C}(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$ the minimal polynomial of $C_{2} C_{3}$. Thus, if $C_{2} C_{3} \in \mathbb{C}_{D}^{r \times r}$ and nonsingular, then $\lambda_{1}, \ldots, \lambda_{k}$ are distinct and nonzero, so $\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)\left(C_{2} C_{3}\right)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right) x(1-x)\left(C_{1}\right)=0$, and by $(4), \delta_{C_{1}}=r$ since $C_{2} C_{3}$ is nonsingular, and so we may conclude that $C_{1} \in \mathbb{C}_{D}^{r \times r}$. Now, note that $\operatorname{Im}\left(C_{2}\right) \subset \operatorname{Im}\left(C_{1}\right)$ since C_{1} is nonsingular, and therefore, by [5, Theorem 2.11], we conclude that $A B \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(A B)=r$ and $1 \notin \sigma(A B)$.

The following Corollary provides a sufficient condition so that $A B \in \mathbb{C}_{D}^{n \times n}, \operatorname{rank}(A B)$ $=\operatorname{rank}(A)$ and $\operatorname{Ker}(I-A B)=\{0\}$ whenever $A, B \in \mathbb{C}_{P}^{n \times n}$.

Corollary 3.5. Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1) and $\operatorname{rank}(A)=$ $r<n / 2$. Thus, if $(A B-B A)^{2} \in \mathbb{C}_{D}^{n \times n}$ and $\operatorname{rank}(A B-B A)^{2}=2 \operatorname{rank}(A)$, then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(A B)=r$ and $1 \notin \sigma(A B)$.

Proof. We have that $Y_{A} A B Y_{A}^{-1}=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & 0\end{array}\right)$ and $Y_{A} B A Y_{A}^{-1}=$ $\left(\begin{array}{ll}C_{1} & C_{2} \\ C_{3} & C_{4}\end{array}\right)\left(\begin{array}{ll}I_{r} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}C_{1} & 0 \\ C_{3} & 0\end{array}\right)$, which implies $Y_{A}(A B-B A)^{2} Y_{A}^{-1}=\left(\begin{array}{cc}-C_{2} C_{3} & 0 \\ 0 & -C_{3} C_{2}\end{array}\right)$.

Clearly, if $(A B-B A)^{2}$ is diagonalizable with $\operatorname{rank}(A B-B A)^{2}=2 \operatorname{rank}(A)=2 r$, then $-C_{2} C_{3}$ and $-C_{3} C_{2}$ are diagonalizable too with $\operatorname{rank}\left(-C_{2} C_{3}\right)+\operatorname{rank}\left(-C_{3} C_{2}\right)=$ $2 r$, and as $-C_{2} C_{3}$ and $-C_{3} C_{2}$ have the same nonzero eigenvalues, it follows that $\operatorname{rank}\left(-C_{2} C_{3}\right)=\operatorname{rank}\left(-C_{3} C_{2}\right)=r$, so $C_{2} C_{3}$ is nonsingular, and by Proposition 3.4, we may conclude that $A B \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(A B)=r$ and $1 \notin \sigma(A B)$.

REMARK 8. Regarding proposition 2.10, the condition $A B-B A$ being nonsingular to imply that $\delta_{A B}=\operatorname{Tr}(A)$ is not necessary because, according to Corollary 3.5, we have the following:

Let $A, B \in \mathbb{C}_{P}^{n \times n}$ be with $\operatorname{rank}(A)=\operatorname{Tr}(A)=r<n / 2$. Thus, if $C^{2}=(A B-B A)^{2} \in$ $\mathbb{C}_{D}^{n \times n}$ and $\operatorname{rank}\left(C^{2}\right)=2 \operatorname{rank}(A)=2 r<n$, then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(A B)=\operatorname{Tr}(A)$ and $1 \notin \sigma(A B)$. Hence, clearly, C is singular and $\delta_{A B}=\operatorname{Tr}(A)$.

From now on, once an arbitrary projection A is fixed, we shall show projections B so that $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$. Particularly, concerninig Lemma 3.6, Proposition 3.7 and Proposition 3.8, we shall need the following information:

We define k functions f_{k} by $f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)=\left\{0, \ldots, 0, \alpha_{1}, \ldots, \alpha_{k}, 1, \ldots, 1\right\}$, where $\alpha_{1}, \ldots, \alpha_{k} \in(0,1)$, the number of nonzero elements of $f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$ is equal to t_{k}, the number of zero elements of $f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$ is equal to $n-t_{k}$ and $0 \leqslant k \leqslant$ $n-t_{k}$. Hence, according to this definition for $f_{k}, k \leqslant t_{k} \leqslant n-k$ and $0 \leqslant k \leqslant n / 2$. Then, for every $k, 0 \leqslant k \leqslant n / 2$; for every $\alpha_{i} \in(0,1), i=1, \ldots, k$, and for every $t_{k}, k \leqslant t_{k} \leqslant$ $n-k$, there are Hermitian projections P and Q so that $\sigma(P Q)=f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$, with $\operatorname{rank}(P)=r, \operatorname{rank}(Q)=s$ and $t_{k}=\min \{r, s\}$. Note that $k \leqslant n-t_{k}$ is a necessary condition for $\sigma(P Q)=f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$ because $\delta_{P Q} \leqslant \min \{\operatorname{dim} \operatorname{Ker}(P), \operatorname{dim} \operatorname{Ker}(Q)\}$. Moreover, $P Q$ is a diagonalizable matrix, see [6, p. 144], which implies $\alpha_{P Q}=$ $\operatorname{dim} \operatorname{Ker}(P Q)$, and so $\alpha_{P Q}=\operatorname{dim} \operatorname{Ker}(P Q) \geqslant \operatorname{dim} \operatorname{Ker}(Q) \geqslant \delta_{P Q}$.

We should also consider Lemma 3.6, see proof in [4, Lemma 2.4].
Lemma 3.6. For every $k, 0 \leqslant k \leqslant n / 2$; for every $\alpha_{i} \in(0,1), i=1, \ldots, k$ and for every $t_{k}, k \leqslant t_{k} \leqslant n-k$, there are $E, F \in \mathbb{C}_{H P}^{n \times n}$ which are of block diagonal form with diagonal blocks of order 2 and of order 1 so that $\sigma(E F)=f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$, with $\operatorname{rank}(E)=r, \operatorname{rank}(F)=s$ and $t_{k}=\min \{r, s\}$.

Given projections A and B, in our next result we provide a necessary and sufficient condition so that $A B$ is diagonalizable with $\sigma(A B) \subset[0,1]$.

Proposition 3.7. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$ if and only if $A B$ is similar to $P Q$ for some $P, Q \in \mathbb{C}_{H P}^{n \times n}$.

Proof. Let $X \in \mathbb{C}^{n \times n}$ be nonsingular so that $X^{-1} A B X=P Q$, where $P, Q \in \mathbb{C}_{H P}^{n \times n}$. Thus, by [9, p. 143 and 144], we may conclude that $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$.

Conversely, if $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$, then there is some $Y \in \mathbb{C}^{n \times n}$ nonsingular so that $Y^{-1} A B Y=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}, 1, \ldots, 1,0, \ldots, 0\right)$, where $\lambda_{1}, \ldots, \lambda_{k} \in(0,1)$ and $k=\delta_{A B} \leqslant \min \{\operatorname{dim} \operatorname{Ker}(A), \operatorname{dim} \operatorname{Ker}(B)\} \leqslant \operatorname{dim} \operatorname{Ker}(A B)$. Hence, according to Lemma 3.6, there are $P, Q \in \mathbb{C}_{H P}^{n \times n}$ so that $Z^{-1} P Q Z=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}, 1, \ldots, 1,0, \ldots, 0\right)$ to some $Z \in \mathbb{C}^{n \times n}$ nonsingular, which implies $Y^{-1} A B Y=Z^{-1} P Q Z$, and therefore $\left(Y Z^{-1}\right)^{-1} A B Y Z^{-1}=P Q$.

Let $E_{j}, F_{j} \in \mathbb{C}_{H P}^{2 \times 2}$ be with the following entries: $E_{j}=\left(\begin{array}{cc}\frac{1}{2} & b_{1}+b_{2} i \\ b_{1}-b_{2} i & \frac{1}{2}\end{array}\right)$ and $F_{j}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ with $b_{1}, b_{2} \in \mathbb{R}, i=\sqrt{-1}$ and $j=1, \ldots, k$, where $b_{1}^{2}+b_{2}^{2}=\frac{1}{4}$ since E_{j} is singular. Moreover, for any $\alpha_{j} \in(0,1)$, there are $E_{j}, F_{j} \in \mathbb{C}_{H P}^{2 \times 2}$ so that α_{j} is the eigenvalue of $E_{j} F_{j}$ different of 0 and of 1 , where $b_{1}=\alpha_{j}-\frac{1}{2}$, see proof in [9, Lemma 2.4]. Now, let $E=\operatorname{diag}\left(E_{1}, \ldots, E_{k}, 1, \ldots, 1,0, \ldots, 0\right)$ and $F=\operatorname{diag}\left(F_{1}, \ldots, F_{k}, 1, \ldots, 1,0, \ldots, 0\right)$ be Hermitian projections of order n and with $\operatorname{rank}(E)=r$ and $\operatorname{rank}(F)=s$. Considering, also, the decompositions given below for the projections A, E and B :

$$
Y_{A} A Y_{A}^{-1}=Y_{E} E Y_{E}^{-1}=\left(\begin{array}{cc}
I_{r} & 0 \tag{5}\\
0 & 0
\end{array}\right) \quad \text { and } \quad Y_{B} B Y_{B}^{-1}=\left(\begin{array}{cc}
I_{S} & 0 \\
0 & 0
\end{array}\right)
$$

where Y_{A}, Y_{E} and Y_{B} are nonsingular matrices, $\operatorname{rank}(A)=r$ and $\operatorname{rank}(B)=s$. Moreover, $U_{A} P_{A}$ and $U_{B} P_{B}$ are the polar decompositions of Y_{A} and Y_{B}, respectively, with $P_{A}>0$ and $P_{B}>0$.

Given $\alpha_{1}, \ldots, \alpha_{k} \in(0,1), 1 \leqslant k \leqslant n / 2$, once an arbitrary projection A of rank r is fixed, in our next result, we shall identify projections B of rank so that $A B$ is a diagonalizable matrix with $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subset \sigma(A B) \subset[0,1]$, where $k \leqslant \min \{\operatorname{dim} \operatorname{Ker}(A)$, $\operatorname{dim} \operatorname{Ker}(B)\}$ and $\operatorname{rank}(A B)=\min \{r, s\}$.

Proposition 3.8. Let $A, E \in \mathbb{C}_{P}^{n \times n}$ be with representation in (5). Once an arbitrary projection A is fixed, for any Y_{A}, for any Y_{E} and for any E, if $B=$ $Y_{A}^{-1} Y_{E} F\left(Y_{A}^{-1} Y_{E}\right)^{-1}$, then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B)=f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$ for any $\alpha_{i} \in$ $(0,1), i=1, \ldots, k, t_{k}=\min \{r, s\}$ and $\delta_{A B}=k$.

Proof. Since $\operatorname{rank}(E)=\operatorname{rank}(A)$, it follows that $Y_{E} E Y_{E}^{-1}=Y_{A} A Y_{A}^{-1}$, and so $Y_{A}^{-1} Y_{E} E Y_{E}^{-1} Y_{A}=A$. Consider that $X=Y_{A}^{-1} Y_{E}$ and $B=X F X^{-1}$. Hence, by Lemma 3.6, for any Y_{A}, for any Y_{E} and for any $E, A B=X E X^{-1} X F X^{-1}=X E F X^{-1} \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B)=f_{k}\left(t_{k}, \alpha_{1}, \ldots, \alpha_{k}\right)$ for any $\alpha_{i} \in(0,1), i=1, \ldots, k, t_{k}=\min \{r, s\}$ and $\delta_{A B}=k$.

In [5, Theorem 3.15], we have proved that if $P_{A}=P_{B}$, then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$ for some Y_{A} and Y_{B} with representation in (1), but the converse does not hold. However, the following two Lemmas are useful to the Propositions presented shortly thereafter.

LEMMA 3.9. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Then $P_{A}=P_{B}$ if and only if $Y_{B}=U Y_{A}$ for some $U \in \mathbb{C}_{U}^{n \times n}$.

Proof. If $P_{A}=P_{B}$, then $Y_{B}=U_{B} P_{A}=U_{B} U_{A}^{*} Y_{A}$, where $U=U_{B} U_{A}^{*} \in \mathbb{C}_{U}^{n \times n}$. Conversely, if $Y_{B}=U Y_{A}$ for some $U \in \mathbb{C}_{U}^{n \times n}$, then $Y_{B}=U_{B} P_{B}=U U_{A} P_{A}$, which implies $P_{A}=U_{A}^{*} U^{*} U_{B} P_{B}$, and so by the uniqueness of the polar decomposition of P_{A}, we may conclude that $U_{A}^{*} U^{*} U_{B}=I$ and $P_{A}=P_{B}$.

Lemma 3.10. Let $A, B \in \mathbb{C}^{n \times n}$. If $A^{*} A=B^{*} B$, then $A=U B$ for some $U \in \mathbb{C}_{U}^{n \times n}$.
Proof. Let $A=U_{A} P_{A}$ and $B=U_{B} P_{B}$ be the polar decompositions of A and B, respectively. Hence, if $A^{*} A=B^{*} B$, then $P_{A} U_{A}^{*} U_{A} P_{A}=P_{A}^{2}=P_{B} U_{B}^{*} U_{B} P_{B}=P_{B}^{2}$, which implies $P_{A}=P_{B}$, and so $A=U_{A} P_{A}=U_{A} P_{B}=U_{A} U_{B}^{*} B$, where $U_{A} U_{B}^{*} \in \mathbb{C}_{U}^{n \times n}$.

Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1). The next result provides a necessary and sufficient condition for C to be a Hermitian projection.

Proposition 3.11. Let $A, B, C \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1). Then $C=$ C^{*} if and only if $Y_{B}=U Y_{A}$ for some $U \in \mathbb{C}_{U}^{n \times n}$.

Proof. Since $Y_{A} B Y_{A}^{-1}=C$, it follows that $Y_{B}=Y_{C} Y_{A}$. Thus, if $Y_{B}=U Y_{A}=Y_{C} Y_{A}$, then $Y_{C}=U$, and so $C=C^{*}$.

Conversely, if $C=C^{*}$, then there is some $Y_{C}=U \in \mathbb{C}_{U}^{n \times n}$ so that $Y_{C} C Y_{C}^{-1}=$ $\operatorname{diag}\left(I_{s}, 0\right)$, hence $Y_{B}=U Y_{A}$ for some $U \in \mathbb{C}_{U}^{n \times n}$.

Now, we shall prove two results which provide sufficient conditions for $A B$ to be a diagonalizable matrix with $\sigma(A B) \subset[0,1]$, once an arbitrary projection A is fixed and for some projection B.

Proposition 3.12. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Consider also Y_{A} and Y_{B} with representation in (1), $U \in \mathbb{C}_{U}^{n \times n}$ and $D=\operatorname{diag}\left(D_{1}, D_{2}\right) \in \mathbb{C}^{n \times n}$, where D_{1} and D_{2} are nonsingular matrices with D_{1} of order r. Thus, if $Y_{A}=D U Y_{B}$, then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$.

Proof. According to (1),

$$
\begin{aligned}
& A B=Y_{A}^{-1}\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) Y_{A} Y_{B}^{-1}\left(\begin{array}{cc}
I_{S} & 0 \\
0 & 0
\end{array}\right) Y_{B} \Rightarrow \\
& Y_{A} A B Y_{A}^{-1}=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right) \\
& Y_{A} Y_{B}^{-1}\left(\begin{array}{rr}
I_{S} & 0 \\
0 & 0
\end{array}\right)\left(Y_{A} Y_{B}^{-1}\right)^{-1}=\left(\begin{array}{rr}
I_{r} & 0 \\
0 & 0
\end{array}\right) D U\left(\begin{array}{rr}
I_{S} & 0 \\
0 & 0
\end{array}\right) U^{-1} D^{-1} \Rightarrow \\
& \left(Y_{A}^{-1} D\right)^{-1} A B Y_{A}^{-1} D=D^{-1}\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) \\
& D U\left(\begin{array}{rr}
I_{S} & 0 \\
0 & 0
\end{array}\right) U^{-1}=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right) U\left(\begin{array}{rr}
I_{S} & 0 \\
0 & 0
\end{array}\right) U^{*} .
\end{aligned}
$$

Taking into account that $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right), U\left(\begin{array}{cc}I_{S} & 0 \\ 0 & 0\end{array}\right) U^{*} \in \mathbb{C}_{H P}^{n \times n}$, we may conclude that $A B \in$ $\mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$.

Proposition 3.13. Let $A, B \in \mathbb{C}_{P}^{n \times n}$ be with representation in (1). Thus, if $C=$ C^{*}, then $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$.

Proof. According to Proposition 3.11, if $C=C^{*}$, then $Y_{B}=U Y_{A}$ for some $U \in$ $\mathbb{C}_{U}^{n \times n}$, and by Lemma 3.9, $P_{A}=P_{B}$, and therefore $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$, see [5, Theorem 3.15].

REMARK 9. On the other hand, concerning Proposition 3.13, it may occur that $A B \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(A B) \subset[0,1]$, but $C \neq C^{*}$ for some Y_{A}. Indeed, it suffices to keep in mind the following example:

Let $A, B, C \in \mathbb{C}_{P}^{3 \times 3}$ and $Y_{A} \in \mathbb{C}^{3 \times 3}$ be so that

$$
A=\left(\begin{array}{llc}
1 & 0 & -0.5 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), A B=\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } Y_{A}=\left(\begin{array}{ccc}
1 & 0 & 0.4472 \\
0 & 1 & 0 \\
0 & 0 & 0.8944
\end{array}\right)
$$

Thus,

$$
Y_{A}^{-1} A Y_{A}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad Y_{A}^{-1} B Y_{A}=C=\left(\begin{array}{ccc}
0.5 & 0 & 0.2236 \\
0 & 1 & 0 \\
1.1180 & 0 & 0.5
\end{array}\right)
$$

Acknowledgements. The author is grateful to the referee for their valuable suggestions, which improved the presentation of this paper.

REFERENCES

[1] J. K. Baksalary, R. Kala, The matricial equation $A X-B Y=C$, Linear Algebra Appl. 25, (1979), 41-43.
[2] C. S. Ballantine, Products of idempotent matrices, Linear Algebra Appl. 19, (1978), 81-86.
[3] T. S. Baskett, I. J. Katz, Theorems on product of EP matrices, Linear Algebra Appl. 2, (1969), 87-103.
[4] J. A. BEZERRA, A note on completion to the unitary matrices, Linear Multilinear Algebra 69, (2019), 1825-1840.
[5] J. A. BEZERRA, A note on the product of two matrices of index one, Linear Multilinear Algebra 65, (2016), 1479-1492.
[6] J. Gross, On the product of orthogonal projectors, Linear Multilinear Algebra 289, (199), 141-150.
[7] J. Gross, G. Trenkler, On the product of oblique projectors, Linear Multilinear Algebra 44, (1997), 247-259.
[8] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, New York, 2013.
[9] J. J. Koliha, A simple proof of the product theorem for EP matrices, Linear Algebra Appl. 294, (1999), 213-215.
[10] A. Korporal, B. Regensburger, On the product of projectors and generalized inverses, Linear Multilinear Algebra 62, (2014), 1567-1582.
[11] V. V. Prasolov, Problems and theorems in linear algebra, AMS, Raleigh, 1994.
[12] Y. Tian, G. P. H. Styan, Rank equalities for idempotent and involutory matrices, Linear Algebra Appl. 335, (2001), 101-117.
(Received February 10, 2023)
Johanns de Andrade Bezerra
Paraiba da federal university (UFPB)
João Pessoa, PB, Brazil
e-mail: veganismo.direitoanimal@gmail.com

[^0]: Mathematics subject classification (2020): 15A03, 15A18.
 Keywords and phrases: Eigenvalue, eigenspace, diagonalizable matrix, product of two projections, EP matrix.

