REMARKS ON THE PRODUCT OF TWO PROJECTIONS

JOHANNS DE ANDRADE BEZERRA

(Communicated by G. Misra)

Abstract. In this paper we investigate complex projections A and B so that AB is a diagonalizable matrix. Particularly, we provide necessary and/or sufficient conditions so that AB is a diagonalizable matrix with its eigenvalues belonging to the real segment [0,1]. Moreover, we investigate on eigenspaces and eigenvalues of the product of two projections.

1. Introduction

Throughout this paper, the matrices used are complex of order *n*. The symbols A^* , $\operatorname{Tr}(A)$, $\sigma(A)$, $\operatorname{Im}(A)$, $\operatorname{Ker}(A)$, α_A , δ_A and σ_A denote the conjugate transpose, the trace, the spectrum, the range, the null space, the algebraic multiplicity of zero as eigenvalue, the number of eigenvalues from $\mathbb{C} \setminus \{0,1\}$ and the number of singular values from $\mathbb{R} \setminus \{0,1\}$, respectively, of some matrix A. A matrix A is called an EP matrix if $\operatorname{Im}(A) = \operatorname{Im}(A^*)$, or equivalently if $\operatorname{Im}(A) = (\operatorname{Ker}(A))^{\perp}$. More generally, a matrix A is called a core matrix, that is, a matrix of index one, if $\operatorname{Im}(A) \cap \operatorname{Ker}(A) = \{0\}$, or equivalently if $\operatorname{Im}(A) \oplus \operatorname{Ker}(A) = \mathbb{C}^{n \times 1}$. Particularly, a matrix A is called a projection if $A^2 = A$. We denote $\mathbb{C}_P^{n \times n}$, $\mathbb{C}_{HP}^{n \times n}$, $\mathbb{C}_N^{n \times n}$, $\mathbb{C}_{EP}^{n \times n}$ and $\mathbb{C}_U^{n \times n}$ the sets of all the projections, of all the Hermitian projections, of all the unitary matrices, respectively.

Clearly, if *A* and *B* are projections, then *A* and *B* are diagonalizable matrices, but in general, neither *AB* nor *BA* are diagonalizable matrices. Note that if *A* is a diagonalizable matrix, then *A* is a core matrix because $\mathbb{C}^{n\times 1} = \operatorname{Ker}(A) \oplus \operatorname{Ker}(A - \lambda_1 I) \oplus \ldots \oplus$ $\operatorname{Ker}(A - \lambda_k I)$, with $\lambda_1, \ldots, \lambda_k \in \sigma(A) \setminus \{0\}$ and $\operatorname{Im}(A) = \operatorname{Ker}(A - \lambda_1 I) \oplus \ldots \oplus \operatorname{Ker}(A - \lambda_k I)$. We shall also use a definition of the polar decomposition of a complex matrix *A*: Any singular complex matrix *A* can be represented in the form A = UP, where *P* is a Hermitian nonnegative definite matrix $(P \ge 0)$ and *U* is a unitary matrix. If *A* is nonsingular such a representation is unique, and so *P* is a Hermitian positive definite matrix (P > 0). Moreover, we shall use some information concerning the Moore-Penrose inverse for some $A \in \mathbb{C}^{m \times k}$: Recall that the Moore-Penrose inverse A^{\dagger} is the unique matrix which satisfies $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^* = AA^{\dagger}$ and $(A^{\dagger}A)^* = A^{\dagger}A$.

In this paper, we continue the investigations carried out in [5, section 3] on the product of two projections A and B. Thus, in section 2, given $A, B \in \mathbb{C}_{P}^{n \times n}$, we

Keywords and phrases: Eigenvalue, eigenspace, diagonalizable matrix, product of two projections, EP matrix.

Mathematics subject classification (2020): 15A03, 15A18.

carry out some investigation on the eigenspaces and eigenvalues of *AB*. We start section 2 with our first main result which establishes $\text{Ker}(I - AB) = \text{Im}(A) \cap (\text{Im}(B) \oplus (\text{Ker}(A) \cap \text{Ker}(B)))$ whenever $AB \in \mathbb{C}_D^{n \times n}$. Taking into account that, by [5, Remark 3], $\delta_{AB} \leq \min\{\dim \text{Ker}(A), \dim \text{Ker}(B)\}$, we shall show, throughout section 2, some results refining this last result. Moreover, we shall show results that provide a necessary and/or sufficient condition so that $\delta_{AB} = 0$ or $\delta_{AB} = \text{Tr}(A)$.

In section 3, we take up, above all, with the following question: Once a projection A is fixed, we investigate projections B so that AB is a diagonalizable matrix with $\sigma(AB) \subset [0,1]$ or with arbitrary spectrum. Moreover, we shall show results that provide a necessary and/or sufficient condition so that AB is diagonalizable, where A and B are projections with some restrictions. Particularly, in [7, Theorem 1], for example, Groß and Trenkler provided a necessary and sufficient condition so that AB is a projection whenever A and B are projections, and in this case $\delta_{AB} = 0$. In this section, our main result is the Theorem 3.1 that takes up with the following problem: Once fixed a Hermitian projection, and soon after, Remark 6 characterizes such projections B.

2. On eigenspaces and eigenvalues of the product of two projections

For any two projections *A* and *B* of same order, by [10, Corollary 9], we have that $Im(AB) = Im(A) \cap (Im(B) + Ker(A))$. Particularly, in our first main result, we shall prove that $Ker(I - AB) = Im(A) \cap (Im(B) \oplus (Ker(A) \cap Ker(B)))$ whenever *AB* is diagonalizable, and for that we shall make use of the following lemma:

LEMMA 2.1. If $A, B \in \mathbb{C}_P^{n \times n}$, then dim Ker $(I - AB) = \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim((\operatorname{Im}(A) + \operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))$.

Proof. Let *W* and *U* be two subspaces such that $W \oplus \text{Im}(A) \cap \text{Im}(B) = \text{Ker}(I - AB)$ and $U \oplus \text{Im}(A) \cap \text{Im}(B) = \text{Ker}(I - BA)$. Consider $v = w + u \in (\text{Im}(A) + \text{Im}(B)) \cap \text{Ker}(A) \cap \text{Ker}(B)$, where $w \in \text{Im}(A)$ and $u \in \text{Im}(B)$, and so Aw = w, Bu = u and Av = Bv = 0. Hence, Av = w + Au = 0 and Bv = Bw + u = 0, which implies ABw = w and BAu = u. If $w, u \in \text{Im}(A) \cap \text{Im}(B)$, then clearly v = 0. Thus, let v = w + u = w - Bw = (I - B)w, with $w \in W$ and $u \in U$. Since $\text{Im}(B) \cap W = \text{Ker}(I - B) \cap W = \{0\}$, it follows that dim((Im(A) + Im(B)) \cap \text{Ker}(A) \cap \text{Ker}(B)) ≤ dimW.

Conversely, let v = w + u, where ABw = w and BAu = u for all $w \in W$ and $u \in U$, hence Av = w + Au = ABw + ABu = ABv, and so A(I - B)v = 0, which implies $(I - B)v \in \text{Ker}(A) \cap \text{Ker}(B)$. Since $(I - B)v = w + u - Bw - u = (I - B)w \in \text{Im}(A) + \text{Im}(B)$, it follows that $(I - B)w \in (\text{Im}(A) + \text{Im}(B)) \cap \text{Ker}(A) \cap \text{Ker}(B)$, which implies $\dim W \leq \dim((\text{Im}(A) + \text{Im}(B)) \cap \text{Ker}(A) \cap \text{Ker}(B))$, and therefore $\dim W = \dim((\text{Im}(A) + \text{Im}(B)) \cap \text{Ker}(A) \cap \text{Ker}(B))$. \Box

REMARK 1. According to Lemma 2.1 and keeping in mind that $(\text{Im}(A) \cap \text{Im}(B)) \subset \text{Ker}(I-AB)$, we may conclude that $\text{Ker}(I-AB) = \text{Im}(A) \cap \text{Im}(B)$ if and only if $(\text{Im}(A) + \text{Im}(B)) \cap \text{Ker}(A) \cap \text{Ker}(B) = \{0\}$.

THEOREM 2.2. If $A, B \in \mathbb{C}_P^{n \times n}$ and $AB \in \mathbb{C}_D^{n \times n}$, then $\operatorname{Ker}(I - AB) = \operatorname{Im}(A) \cap (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$.

Proof. Clearly, $(Im(A) \cap Im(B)) \subset Ker(I - AB)$ and $(Im(A) \cap Im(B)) \subset Im(A) \cap (Im(B) \oplus (Ker(A) \cap Ker(B)))$. Now, note that $Im(A) \cap (Im(B) \oplus (Ker(A) \cap Ker(B))) \subset Im(A) \cap (Im(B) + Ker(A)) = Im(AB) = Ker(I - AB) \oplus Ker(\lambda_1 I - AB) \oplus ... \oplus Ker(\lambda_k I - AB)$ since *AB* is diagonalizable, where $\lambda_1, ..., \lambda_k \in \sigma(AB) \cap \mathbb{C} \setminus \{0, 1\}$. Thus, consider $v \in \mathbb{C}^{n \times 1}$ and $\lambda \in \mathbb{C} \setminus \{0\}$ so that $ABv = \lambda v$ and v = w + u, where $v \in Im(A)$, $w \in Im(B)$ and $u \in Ker(A) \cap Ker(B)$. Hence, Av = v = Aw + Au = Aw. Moreover, $ABv = \lambda v = ABw + ABu = Aw = v$, which implies $\lambda = 1$, and so we conclude that $Im(A) \cap (Im(B) \oplus (Ker(A) \cap Ker(B))) \subset Ker(I - AB)$.

In order to conclude that $\operatorname{Ker}(I - AB) = \operatorname{Im}(A) \cap (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$, it suffices to prove that, taking into account Lemma 2.1, dim $\operatorname{Ker}(I - AB) = \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim((\operatorname{Im}(A) + \operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))) = \dim(\operatorname{Im}(A) \cap (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))))$. Indeed, dim $(\operatorname{Im}(A) + \operatorname{Im}(B) + (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) = \dim(\operatorname{Im}(A) + \operatorname{Im}(B)) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) - \dim((\operatorname{Im}(A) + \operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B))) = \dim(\operatorname{Im}(A) + \operatorname{Im}(B)) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) - \dim((\operatorname{Im}(A) - \operatorname{Im}(B)) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) = \dim(\operatorname{Im}(A) + \operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B)) + \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim(\operatorname{Im}(A) - \operatorname{Im}(B)) + \dim(\operatorname{Im}(A) + \operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B)) = \dim\operatorname{Ker}(I - AB) = \dim(\operatorname{Im}(A) + \dim(\operatorname{Im}(B) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) - \dim(\operatorname{Im}(A) + \operatorname{Im}(B) + (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))))$. On the other hand, we have that dim(\operatorname{Im}(A) + \operatorname{Im}(B) + (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))) = \dim(\operatorname{Im}(A) + \dim(\operatorname{Im}(B) + (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) - \dim(\operatorname{Im}(A) - (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))) = \dim(\operatorname{Im}(A) + \dim(\operatorname{Im}(B)) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))) = \dim(\operatorname{Im}(A) + \dim(\operatorname{Im}(B) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))) = \dim(\operatorname{Im}(A) - (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))) = \dim(\operatorname{Im}(A) - (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))))) $= \dim(\operatorname{Im}(A) + \dim(\operatorname{Im}(B) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) - \dim(\operatorname{Im}(A) \cap (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))))$ $= \dim(\operatorname{Im}(A) + \dim(\operatorname{Im}(B) + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) - \dim(\operatorname{Im}(A) \cap (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))))$

 $\dim \operatorname{Ker}(I - AB) = \dim(\operatorname{Im}(A) \cap (\operatorname{Im}(B) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))). \square$

Let $c_{AB}(x) = x^{m_0}(x-1)^{m_1}(x-\lambda_2)^{m_2}\dots(x-\lambda_{k+1})^{m_{k+1}}$ and $m_{AB}(x) = x^{n_0}(x-1)^{n_1}(x-\lambda_2)^{n_2}\dots(x-\lambda_{k+1})^{n_{k+1}}$ be the characteristic and minimal polynomial, respectively, of *AB*, where *A* and *B* are projections of order *n* and $\lambda_2,\dots,\lambda_{k+1} \in \mathbb{C} \setminus \{0,1\}$.

PROPOSITION 2.3. Let $A, B \in \mathbb{C}_P^{n \times n}$. Thus, if $c_{AB}(x) = x^{m_o}(x-1)^{m_1}(x-\lambda_2)^{m_2} \dots (x-\lambda_{k+1})^{m_{k+1}}$ and $m_{AB}(x) = x^{m_o}(x-1)^{n_1}(x-\lambda_2)^{n_2}\dots(x-\lambda_{k+1})^{n_{k+1}}$ are the characteristic and minimal polynomial, respectively, of AB, then $\delta_{AB} \leq 1$, which implies k = 1 and $m_2 \leq 1$.

Proof. By hypothesis, clearly dim Ker(AB) = 1, and as dim Ker(AB) = dim(Ker(A) \cap Im(B)) + dim Ker(B) and dim Ker(B) \geq 1, it follows that dim Ker(B) = 1, and as $\delta_{AB} \leq \min\{\dim \text{Ker}(A), \dim \text{Ker}(B)\}$, we conclude that $\delta_{AB} \leq 1$, which implies k = 1 and $m_2 \leq 1$, that is, AB has at most three distinct eigenvalues. \Box

Now, take into account the following information: Let W_1 , W_2 , W_3 and W_4 be subspaces from $\mathbb{C}^{n\times 1}$ so that $W_1 \oplus (\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus (\operatorname{Im}(A) \cap \operatorname{Ker}(B)) = \operatorname{Im}(A)$, $W_2 \oplus (\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A)) = \operatorname{Im}(B)$, $W_3 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) = \operatorname{Ker}(A)$ and $W_4 \oplus (\operatorname{Im}(A) \cap \operatorname{Ker}(B)) \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) = \operatorname{Ker}(B)$, where *A* and *B* are matrices of index one of order *n*. LEMMA 2.4. Let $A, B \in \mathbb{C}_P^{n \times n}$. Thus, $\operatorname{rank}(AB) = \operatorname{rank}(BA)$ and $\operatorname{rank}(A(I - B)) = \operatorname{rank}((I - B)A)$ if and and only if $\dim W_1 = \dim W_2 = \dim W_3 = \dim W_4$.

Proof. According to [10, Corollary 9], $\operatorname{Ker}(AB) = \operatorname{Ker}(B) \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A))$, which implies $n - \operatorname{rank}(AB) = \dim \operatorname{Ker}(AB) = \dim \operatorname{Ker}(B) + \dim(\operatorname{Im}(B) \cap \operatorname{Ker}(A))$, hence $n - \operatorname{rank}(AB) + \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim W_2 = \dim \operatorname{Ker}(B) + \dim(\operatorname{Im}(B) \cap \operatorname{Ker}(A)) + \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim W_2 = n$, and so $\operatorname{rank}(AB) = \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim W_2$. Similarly, we have that $\operatorname{rank}(BA) = \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim W_1$, $\operatorname{rank}(A(I - B)) = \dim(\operatorname{Im}(A) \cap \operatorname{Ker}(B)) + \dim W_4$ and $\operatorname{rank}((I - B)A) = \dim(\operatorname{Im}(A) \cap \operatorname{Ker}(B)) + \dim W_1$.

This implies that if $\operatorname{rank}(AB) = \operatorname{rank}(BA)$ and $\operatorname{rank}(A(I-B)) = \operatorname{rank}((I-B)A)$, then $\dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim W_2 = \dim(\operatorname{Im}(A) \cap \operatorname{Im}(B)) + \dim W_1$ and $\dim(\operatorname{Im}(A) \cap \operatorname{Ker}(B)) + \dim W_4 = \dim(\operatorname{Im}(A) \cap \operatorname{Ker}(B)) + \dim W_1$, which implies $\dim W_1 = \dim W_2 = \dim W_4$, and as $\dim W_1 + \dim W_3 = \dim W_2 + \dim W_4$, see [5, Lemma 3.1], we have that $\dim W_3 = \dim W_1$.

Conversely, if $\dim W_1 = \dim W_2 = \dim W_3 = \dim W_4$, then, clearly, $\operatorname{rank}(AB) = \operatorname{rank}(BA)$ and $\operatorname{rank}(A(I-B)) = \operatorname{rank}((I-B)A)$. \Box

Let $A, B \in \mathbb{C}_P^{n \times n}$. Thus, we have that $\delta_{AB} \leq \min\{\dim \operatorname{Ker}(A), \dim \operatorname{Ker}(B)\}$, hence $\delta_{AB} \leq n/2$ (take, for example, $A, B \in \mathbb{C}_{HP}^{n \times n}$ with $\lambda_1, \ldots, \lambda_{n/2} \in (0, 1)$ eigenvalues of AB and $\operatorname{Im}(A) \cap \operatorname{Im}(B) = \{0\}$, $\operatorname{Im}(A) \cap \operatorname{Ker}(B) = \{0\}$, $\operatorname{Im}(B) \cap \operatorname{Ker}(A) = \{0\}$, $\operatorname{Ker}(A) \cap \operatorname{Ker}(B) = \{0\}$ and $\dim \operatorname{Ker}(A) = \dim \operatorname{Ker}(B) = n/2$, and so, in this case, $\delta_{AB} = n/2$). Moreover, it is easy to see that $\delta_{AB} \leq \dim W_1$ and $\delta_{BA} \leq \dim W_2$, and as $\delta_{AB} = \delta_{BA}$, we have that $\delta_{AB} \leq \dim W_2$, and by proof of [5, Theorem 3.3], $\dim W_2 \leq \dim W_3 + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$, hence $\delta_{AB} \leq \dim W_3 + \dim(\operatorname{Ker}(A) \cap \operatorname{Ker}(B))$.

Particularly, by Lemma 2.4, if $\operatorname{rank}(AB) = \operatorname{rank}(BA)$ and $\operatorname{rank}(A(I-B)) = \operatorname{rank}((I-B)A)$, then $\delta_{AB} \leq \dim W_1 = \dim W_3$. In this way, the following result provides another sufficient condition so that $\delta_{AB} \leq \dim W_3$.

PROPOSITION 2.5. If $A, B \in \mathbb{C}_P^{n \times n}$ and $(\operatorname{Ker}(A) \cap \operatorname{Ker}(B)) \subset (\operatorname{Im}(A) + \operatorname{Im}(B))$, then $\delta_{AB} \leq \dim W_3$.

Proof. According to Lemma 2.1, dim Ker(*I* − *AB*) = dim(Im(*A*) ∩ Im(*B*)) + dim((Im(*A*) + Im(*B*)) ∩ Ker(*A*) ∩ Ker(*B*)), and as (Ker(*A*) ∩ Ker(*B*)) ⊂ (Im(*A*) + Im(*B*)), we have that dim Ker(*I* − *AB*) = dim(Im(*A*) ∩ Im(*B*)) + dim(Ker(*A*) ∩ Ker(*B*)). Since Ker(*I* − *AB*) ⊕ Ker(λ₂*I* − *AB*)^{n₂} ⊕ ... ⊕ Ker(λ_{k+1}*I* − *AB*)^{n_{k+1}} ⊂ Im(*AB*). It follows that dim Ker(*I* − *AB*) + δ_{AB} = dim(Im(*A*) ∩ Im(*B*)) + dim(Ker(*A*) ∩ Ker(*B*)) + δ_{AB} ≤ rank(*AB*) = dim(Im(*A*) ∩ Im(*B*)) + dimW₂ since δ_{AB} = dim(Ker(λ₂*I* − *AB*)^{n₂} ⊕ ... ⊕ Ker(λ_{k+1}*I* − *AB*)^{n_{k+1}}), which implies dim(Ker(*A*) ∩ Ker(*B*)) + δ_{AB} ≤ dimW₂, and so, keeping in mind that dimW₂ ≤ dimW₃ + dim(Ker(*A*) ∩ Ker(*B*)). we may conclude that δ_{AB} ≤ dimW₃. □

REMARK 2. Let $A, B \in \mathbb{C}_{HP}^{n \times n}$. Then $\operatorname{Im}(A) + \operatorname{Im}(B) = (\operatorname{Ker}(A^*) \cap \operatorname{Ker}(B^*))^{\perp} = (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))^{\perp}$, which implies $(\operatorname{Im}(A) + \operatorname{Im}(B)) \cap \operatorname{Ker}(A) \cap \operatorname{Ker}(B) = \{0\}$, and by Lemma 2.1, $\operatorname{Ker}(I - AB) = \operatorname{Im}(A) \cap \operatorname{Im}(B)$. Moreover, since $AB, BA, A(I - B), (I - B)A \in \mathbb{C}_D^{n \times n}$, it follows that $\operatorname{rank}(AB) = \operatorname{rank}(BA)$ and $\operatorname{rank}(A(I - B)) = \operatorname{rank}((I - B)A)$, see [5, Theorem 3.7], and by Lemma 2.4, it follows that $\delta_{AB} = \operatorname{dim}_1 = \operatorname{dim}_3$.

Let $A \in \mathbb{C}_{P}^{n \times n}$. Thus, it is well known that $\sigma_{A} \ge 1$ if and only if $A \in \mathbb{C}_{P}^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$. Moreover, if $\sigma_{1}, \ldots, \sigma_{k} \in \mathbb{R} \setminus \{0, 1\}$ are singular values of $A \in \mathbb{C}_{P}^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$, then $\sigma_{i} > 1$ for each $i \in \{1, \ldots, k\}$.

Now, consider $A \in \mathbb{C}_P^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$. Then, by [8, Corollary 3.4.3.3], there is $U \in \mathbb{C}_U^{n \times n}$ so that $U^*AU = \operatorname{diag}(A_1, \dots, A_k, 1, \dots, 1, 0, \dots, 0)$, where $A_i = \begin{pmatrix} 1 & (\sigma_i - 1)^{\frac{1}{2}} \\ 0 & 0 \end{pmatrix}$

and $\sigma_i > 1$ is a singular value of A for each $i \in \{1, \ldots, k\}$.

Consider, also, $B \in \mathbb{C}_{HP}^{n \times n}$ so that $U^*BU = \text{diag}(P_1, \dots, P_s, 1, \dots, 1, 0, \dots, 0)$, where $P_i = \begin{pmatrix} a_i \ \overline{b_i} \\ b_i \ c_i \end{pmatrix} \in \mathbb{C}_{HP}^{2 \times 2}$, $i = 1, \dots, s$ and $s \ge k$.

Thus, the following two results establish a relation between δ_{AB} and σ_A .

PROPOSITION 2.6. Let $A \in \mathbb{C}_P^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$, $B \in \mathbb{C}_{HP}^{n \times n}$ and $U \in \mathbb{C}_U^{n \times n}$ as defined above. Thus, if $b_i \in \mathbb{C} \setminus \mathbb{R}$ for each $i \in \{1, \dots, k\}$, then $\delta_{AB} = \sigma_A$.

Proof. According to the notations above, we have that $U^*ABU = \text{diag}(E_1, \ldots, E_k, P_{k+1}, \ldots, P_s, 1, \ldots, 1, 0, \ldots, 0)$, where

$$E_{i} = \begin{pmatrix} 1 \ (\sigma_{i} - 1)^{\frac{1}{2}} \\ 0 \ 0 \end{pmatrix} \begin{pmatrix} a_{i} \ \overline{b_{i}} \\ b_{i} \ c_{i} \end{pmatrix} = \begin{pmatrix} a_{i} + (\sigma_{i} - 1)^{\frac{1}{2}} b_{i} \ \overline{b_{i}} + (\sigma_{i} - 1)^{\frac{1}{2}} c_{i} \\ 0 \ 0 \end{pmatrix}$$

Since $P_i \in \mathbb{C}_{HP}^{2 \times 2}$, it follows that $a_i, c_i \in \mathbb{R}$. Suppose that $a_i + (\sigma_i - 1)^{\frac{1}{2}} b_i = 1$. Then $1 - a_i = (\sigma_i - 1)^{\frac{1}{2}} b_i$, but this represents a contradiction because $1 - a_i, (\sigma_i - 1)^{\frac{1}{2}} \in \mathbb{R}$ and, by hypothesis, $b_i \notin \mathbb{R}$.

Similarly, suppose that $a_i + (\sigma_i - 1)^{\frac{1}{2}}b_i = 0$. Then $a_i = -(\sigma_i - 1)^{\frac{1}{2}}b_i$, which implies a contradiction too. \Box

On the other hand, consider $b_i \in \mathbb{R}$ for each $i \in \{1, ..., k\}$. Clearly, if $b_1 = b_2 = ... = b_k = 0$, then we conclude that $\delta_{AB} = 0$. Thus, in our next result we shall take into account that $b_1, ..., b_k \in \mathbb{R} \setminus \{0\}$.

PROPOSITION 2.7. Let $A \in \mathbb{C}_P^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$, $B \in \mathbb{C}_{HP}^{n \times n}$ and $U \in \mathbb{C}_U^{n \times n}$ as defined above. Thus, if $b_i \in \mathbb{R}$, $\sigma_i a_i \neq 1$ and $\sigma_i c_i \neq 1$ for each $i \in \{1, \ldots, k\}$, then $\delta_{AB} = \sigma_A$.

Proof. We have that $U^*ABU = \text{diag}(E_1, \dots, E_k, P_{k+1}, \dots, P_s, 1, \dots, 1, 0, \dots, 0)$, where $E_i = \begin{pmatrix} a_i + (\sigma_i - 1)^{\frac{1}{2}} b_i \ \overline{b_i} + (\sigma_i - 1)^{\frac{1}{2}} c_i \\ 0 & 0 \end{pmatrix}$.

Since $P_i \in \mathbb{C}_{HP}^{2 \times 2}$, it follows that $a_i, c_i \in \mathbb{R}$, $a_i + c_i = 1$ and $a_i c_i = b_i^2$.

Suppose that $a_i + (\sigma_i - 1)^{\frac{1}{2}} b_i = 1 = a_i + c_i$. Then $c_i = (\sigma_i - 1)^{\frac{1}{2}} b_i$, which implies $a_i(\sigma_i - 1)^{\frac{1}{2}} b_i = b_i^2$, that is, $b_i = a_i(\sigma_i - 1)^{\frac{1}{2}}$. Hence, $c_i = (\sigma_i - 1)^{\frac{1}{2}} a_i(\sigma_i - 1)^{\frac{1}{2}} = (\sigma_i - 1)a_i$, and so $a_i + (\sigma_i - 1)a_i = \sigma_i a_i = 1$, but this represents a contradiction for each $i \in \{1, \dots, k\}$.

Similarly, suppose that $a_i + (\sigma_i - 1)^{\frac{1}{2}} b_i = 0$. Then $a_i = -(\sigma_i - 1)^{\frac{1}{2}} b_i$, which implies $-(\sigma_i - 1)^{\frac{1}{2}} b_i c_i = b_i^2$, that is, $b_i = -(\sigma_i - 1)^{\frac{1}{2}} c_i$. Hence, $a_i = -(\sigma_i - 1)^{\frac{1}{2}} (-(\sigma_i - 1)^{\frac{1}{2}} c_i)$.

 $1)^{\frac{1}{2}}c_i = (\sigma_i - 1)c_i$, and so $(\sigma_i - 1)c_i + c_i = \sigma_i c_i = 1$, but this represents a contradiction for each $i \in \{1, ..., k\}$ too. \Box

Consider the decompositions given below for the projections A, B and C:

$$Y_A A Y_A^{-1} = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}, \ Y_B B Y_B^{-1} = \begin{pmatrix} I_s & 0\\ 0 & 0 \end{pmatrix} \text{ and } Y_A B Y_A^{-1} = C = Y_C^{-1} \begin{pmatrix} I_s & 0\\ 0 & 0 \end{pmatrix} Y_C = \begin{pmatrix} C_1 & C_2\\ C_3 & C_4 \end{pmatrix},$$
(1)

where Y_A , Y_B and Y_C are nonsingular matrices, rank(A) = r, rank(B) = s and $C_1 \in \mathbb{C}^{r \times r}$.

Moreover, consider that there is a simultaneous triangularization between two projections *A* and *B*, and so, clearly, $\delta_{AB} = 0$. Particularly, if rank $(AB - BA) \leq 1$, then $\delta_{AB} = 0$ too, see [11, Theorem 40.5]. However, in our next result we shall characterize the projections *A* and *B* so that $\delta_{AB} = 0$.

PROPOSITION 2.8. Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1). Then $\delta_{AB} = 0$ if and only if AB - BA is nilpotent.

Proof. Taking into account that $Y_A ABY_A^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ 0 & 0 \end{pmatrix}$, we have that $\delta_{AB} = 0$ implies that $\delta_{C_1} = 0$, and so if λ is an eigenvalue of C_1 , then $\lambda = 0$ or $\lambda = 1$. Since $C \in \mathbb{C}_P^{n \times n}$, it follows that $C_2 C_3 = C_1 - C_1^2$. Hence, $C_2 C_3$ is nilpotent.

Conversely, if C_2C_3 is nilpotent, then any eigenvalue of C_2C_3 is equal to zero. Thus, if λ is an eigenvalue of C_1 , then $\lambda - \lambda^2$ is eigenvalue of $C_1 - C_1^2 = C_2C_3$, which implies $\lambda - \lambda^2 = 0$, hence $\lambda = 0$ or $\lambda = 1$, that is, $\delta_{C_1} = 0$, and so $\delta_{AB} = 0$.

Now, we have that
$$Y_A BAY_A^{-1} = \begin{pmatrix} C_1 & 0 \\ C_3 & 0 \end{pmatrix}$$
, which implies $Y_A ABY_A^{-1} - Y_A BAY_A^{-1} = Y_A (AB - BA)Y_A^{-1} = \begin{pmatrix} C_1 & C_2 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} C_1 & 0 \\ C_3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & C_2 \\ -C_3 & 0 \end{pmatrix}$, hence $Y_A (AB - BA)^2 Y_A^{-1} = \begin{pmatrix} -C_2 C_3 & 0 \\ 0 & -C_3 C_2 \end{pmatrix}$.

Since C_2C_3 is nilpotent $\Leftrightarrow C_3C_2$ is nilpotent, it follows that $(AB - BA)^2$ is nilpotent $\Leftrightarrow C_2C_3$ is nilpotent, and as $(AB - BA)^2$ is nilpotent $\Leftrightarrow AB - BA$ is nilpotent, we may already conclude that $\delta_{AB} = 0 \Leftrightarrow AB - BA$ is nilpotent. \Box

Particularly, the following result provides a necessary and sufficient condition so that $AB \in \mathbb{C}_P^{n \times n}$ whenever $A, B \in \mathbb{C}_P^{n \times n}$.

COROLLARY 2.9. Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1). Then $AB \in \mathbb{C}_P^{n \times n}$ if and only if $C_2C_3 = 0$ and $\operatorname{Im}(C_2) \subset \operatorname{Im}(C_1)$.

Proof. Consider that $Y_A ABY_A^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ 0 & 0 \end{pmatrix}$. If $AB \in \mathbb{C}_P^{n \times n}$, then, by [5, Theorem 2.11], $C_1 \in \mathbb{C}_P^{r \times r}$ and $\operatorname{Im}(C_2) \subset \operatorname{Im}(C_1)$. Since $C_2 C_3 = C_1 - C_1^2$, it follows that $C_2 C_3 = 0$.

Conversely, if $C_2C_3 = 0$, then $C_1 = C_1^2$, and as $\text{Im}(C_2) \subset \text{Im}(C_1)$, again by [5, Theorem 2.11], we have that $AB \in \mathbb{C}_P^{n \times n}$. \Box

On the other hand, the next result provides a sufficient condition so that δ_{AB} reaches its maximum value, that is, $\delta_{AB} = \dim W_1$.

PROPOSITION 2.10. If $A, B \in \mathbb{C}_P^{n \times n}$ and AB - BA is nonsingular, then $\delta_{AB} = \text{Tr}(A)$.

Proof. Let *C* = *AB* − *BA* nonsingular Then, by [12, Corollary 2.10], Im(*A*) ⊕ Im(*B*) = Im(*A*^{*}) ⊕ Im(*B*^{*}) = $\mathbb{C}^{n \times 1}$ and rank(*AB*) = rank(*BA*) = rank(*A*) = rank(*B*). Hence, Im(*A*) ∩ Im(*B*) = {0} and (Im(*A*^{*}) ⊕ Im(*B*^{*}))[⊥] = (Im(*A*^{*}))[⊥] ∩ (Im(*B*^{*}))[⊥] = Ker(*A*) ∩ Ker(*B*) = ($\mathbb{C}^{n \times 1}$)[⊥] = {0}. Since, by Lemma 2.1, dim Ker(*I*−*AB*) = dim(Im(*A*) ∩ Im(*B*)) + dim((Im(*A*) + Im(*B*)) ∩ Ker(*A*) ∩ Ker(*B*)), it follows that 1 ∉ $\sigma(AB)$. Moreover, taking into account that dim(Im(*A*) ∩ Ker(*B*)) = rank(*A*) − rank(*BA*) = dim(Im(*B*) ∩ Ker(*A*)) = rank(*B*) − rank(*AB*) = 0, we have that Im(*A*) ∩ Ker(*B*) = Im(*B*) ∩ Ker(*A*) = {0}, which implies Ker(*AB*) = W₄, and keeping in mind that Im(*A*) ∩ Im(*B*) = {0}, we conclude that $W_1 = Im(AB) = Im(A)$, and therefore $\delta_{AB} = rank(AB) = rank(A) = Tr(A)$. □

REMARK 3. From Corollary 3.5, we see that the requiring AB - BA to be nonsingular is not necessary for the conclusion: $\delta_{AB} = \text{Tr}(A)$ in Proposition 2.10.

REMARK 4. Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1). Thus, we shall show a sufficient and necessary condition so that $\delta_{AB} = \text{Tr}(A)$ whenever $\text{rank}(A) = \text{Tr}(A) \leq n/2$. Before, however, note that $\delta_{AB} \leq \dim(W_1) \leq \text{rank}(A)$, and if $\delta_{AB} = \text{Tr}(A) = \text{rank}(A)$, then $\delta_{AB} = \dim(W_1)$ and $1 \notin \sigma(AB)$. Moreover, $\text{rank}(AB) \leq \text{rank}(A) = \delta_{AB} \leq \text{rank}(AB)$, which implies $\delta_{AB} = \text{rank}(AB) = \text{rank}(A)$, hence we may conclude that $AB \in \mathbb{C}_D^{n \times n}$. Thus, taking into account this information and using Proposition 3.4, in section 3, we have that $\delta_{AB} = \text{Tr}(A)$ if and only if $C_2C_3 \in \mathbb{C}_D^{r \times r}$ and nonsingular whenever $\text{Tr}(A) \leq n/2$.

We have already showed that, given *A* and *B* projections of order *n*, $\delta_{AB} \leq \dim(W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$. Now, in our last main result of this section, we shall show a more refined result, where $\delta_{AB} = \dim \operatorname{Ker}(\lambda_1 I - AB) + \ldots + \dim \operatorname{Ker}(\lambda_k I - AB) \leq \dim((W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A))))$ whenever *AB* and *BA* are diagonalizable and $\lambda_1, \ldots, \lambda_k \in \sigma(AB) \setminus \{0, 1\}$ distinct. However, first we shall show a preliminary result and relevant to Theorem 2.12.

PROPOSITION 2.11. Let $A, B \in \mathbb{C}_P^{n \times n}$. Thus, $(W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (A\operatorname{Im}(B) + \operatorname{Im}(B)) = \{0\}$ if and only if $\operatorname{Im}(B) = (\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus (\operatorname{Ker}(A) \cap \operatorname{Im}(B))$.

Proof. Consider $v \in \text{Im}(A) \cap (\text{Im}(B) \oplus W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B))) = \text{Im}(AB)$. Hence v = u + w, where $v \in \text{Im}(A)$, $u \in \text{Im}(B)$ and $w \in W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B))$. This implies that Av = v = Au + Aw = Au = u + w, hence w = Au - u, and so $w \in (W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B))) \cap (A\text{Im}(B) + \text{Im}(B))$. Thus, if $\text{Im}(B) = (\text{Im}(A) \cap \text{Im}(B)) \oplus (\text{Ker}(A) \cap \text{Im}(B))$, then $u = u_1 + u_2$, where $u_1 \in \text{Im}(A) \cap \text{Im}(B)$ and $u_2 \in \text{Ker}(A) \cap \text{Im}(B)$, which implies $w = A(u_1 + u_2) - (u_1 + u_2) = u_1 - u_1 - u_2 = -u_2$, and as $(\text{Ker}(A) \cap \text{Im}(B)) \cap (W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B))) = \{0\}$, we have that w = 0.

Conversely, consider $W_2 \neq \{0\}$, $w_2 \in W_2$ and $w_2 \neq 0$. Hence, $u = u_1 + u_2 + w_2$, which implies $w = A(u_1 + u_2 + w_2) - (u_1 + u_2 + w_2) = u_1 + Aw_2 - u_1 - u_2 - w_2 = u_1 + Aw_2 - u_1 - u_2 - w_2$ $Aw_2 - (u_2 + w_2)$. Since $Aw_2 \notin Im(B)$ and $-(u_2 + w_2) \in Im(B)$, it follows that $w \neq 0$, see [5, Lemma 3.2].

Therefore, we may conclude that if $(W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (A\operatorname{Im}(B) + \operatorname{Im}(B)) = \{0\}$, then $W_2 = \{0\}$, that is, $\operatorname{Im}(B) = (\operatorname{Im}(A) \cap \operatorname{Im}(B)) \oplus (\operatorname{Ker}(A) \cap \operatorname{Im}(B))$. \Box

THEOREM 2.12. If $A, B \in \mathbb{C}_P^{n \times n}$ and $AB, BA \in \mathbb{C}_D^{n \times n}$, then $\delta_{AB} \leq \dim((W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A)))).$

Proof. Since *AB*, *BA* ∈ $\mathbb{C}_D^{n \times n}$, it follows that *AB* and *BA* are core matrices, which implies, by [5, Lemma 2.5], rank(*AB*) = rank(*BA*), and according to proof of Lemma 2.4, rank(*AB*) = dim(Im(*A*) ∩ Im(*B*)) + dim *W*₂ = dim(Im(*A*) ∩ Im(*B*)) + dim *W*₁ = rank(*BA*), hence dim *W*₁ = dim *W*₂ and *AW*₂ = *W*₁. Taking into account that *AB* ∈ $\mathbb{C}_D^{n \times n}$, we have that Im(*AB*) = (Im(*A*) ∩ Im(*B*)) ⊕ *W*₁ = Im(*A*) ∩ (Im(*B*) + Ker(*A*)) = Im(*A*) ∩ ((Im(*A*) ∩ Im(*B*)) ⊕ *W*₂ ⊕ (Im(*B*) ∩ Ker(*A*)) ⊕ *W*₃ ⊕ (Ker(*A*) ∩ Ker(*B*))). Now, note that dim(Im(*A*) ∩ (*W*₂ ⊕ (Im(*B*) ∩ Ker(*A*)) ⊕ *W*₃ ⊕ (Ker(*A*) ∩ Ker(*B*)))) = rank(*A*) + dim *W*₂ + dim Ker(*A*) − dim(Im(*A*) + (*W*₂ ⊕ (Im(*B*) ∩ Ker(*A*)) ⊕ *W*₃ ⊕ (Ker(*A*) ∩ Ker(*B*)))) = dim *W*₂ + *n* − *n* = dim *W*₁, and so we may conclude that Im(*A*) ∩ (*W*₂ ⊕ (Im(*B*) ∩ Ker(*A*)) ⊕ *W*₃ ⊕ (Ker(*A*) ∩ Ker(*B*))) = *W*₁. Moreover, keeping in mind that dim *W*₁ = dim *W*₂, we have that dim *W*₁ ≤ dim *W*₂ + dim(Im(*B*) ∩ Ker(*A*)) = *t*, and since Ker(*λ*₁*I* − *AB*) ⊕ ... ⊕ Ker(*λ*_{*kI* − *AB*) ⊂ *W*₁, it follows that δ_{AB} = dim Ker(*λ*₁*I* − *AB*) + ... + dim Ker(*λ*_{*kI* − *AB*) ≤ dim *W*₁ ≤ *t*.}}

On the other hand, consider $v \in \text{Im}(A) \cap (W_2 \oplus (\text{Im}(B) \cap \text{Ker}(A)) \oplus W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B)))$, hence v = u + w, where $v \in \text{Im}(A)$, $u \in W_2 \oplus (\text{Im}(B) \cap \text{Ker}(A))$ and $w \in W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B))$, which implies Av = v = Au + Aw = Au = u + w, that is, w = Au - u, and so $w \in (W_3 \oplus (\text{Ker}(A) \cap \text{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\text{Im}(B) \cap \text{Ker}(A)))$ since $A(W_2 \oplus (\text{Im}(B) \cap \text{Ker}(A)) = AW_2 = W_1$.

Let $\{u_1, \ldots, u_k, \ldots, u_t\}$ be a basis of $W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A))$. Moreover, consider that $w_1 = Au_1 - u_1, \ldots, w_k = Au_k - u_k, \ldots, w_t = Au_t - u_t$ and $v_1 = u_1 + w_1, \ldots, v_k = u_k + w_k$, where $ABv_i = \lambda_i v_i$ and $BAu_i = \lambda_i u_i$ for each $i \in \{1, \ldots, k\}$ since $W_1 = \operatorname{Im}(A) \cap (W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A)) \oplus W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B)))$.

Now, note that if $c_1w_1 + \ldots + c_kw_k + \ldots + c_tw_t = 0$ with $c_1, \ldots, c_t \in \mathbb{C}$, then $c_1(Au_1 - u_1) + \ldots + c_k(Au_k - u_k) + \ldots + c_t(Au_t - u_t) = A(c_1u_1 + \ldots + c_ku_k + \ldots + c_tu_t) - (c_1u_1 + \ldots + c_ku_k + \ldots + c_tu_t) = 0$, which implies $c_1u_1 + \ldots + c_ku_k + \ldots + c_tu_t \in \operatorname{Im}(A)$, but $c_1u_1 + \ldots + c_ku_k + \ldots + c_tu_t \in W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A))$, and as $\operatorname{Im}(A) \cap (W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A))) = \{0\}$, we have that $c_1u_1 + \ldots + c_ku_k + \ldots + c_tu_t = 0$, and so $c_1 = \ldots = c_k = \ldots = c_t = 0$. This implies that dim $span(w_1, \ldots, w_t) = t$, hence we may conclude that $t \leq \dim((W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A)))$. \Box

REMARK 5. Regarding Theorem 2.12, keeping in mind that $AB, BA \in \mathbb{C}_D^{n \times n}$, we may easily conclude, by symmetry, that $\delta_{BA} \leq \dim((W_4 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\operatorname{Im}(A) \cap \operatorname{Ker}(B))))$, and as $\delta_{AB} = \delta_{BA}$, we claim that $\delta_{AB} \leq \min\{\dim((W_3 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\operatorname{Im}(B) \cap \operatorname{Ker}(A)))))$, $\dim((W_4 \oplus (\operatorname{Ker}(A) \cap \operatorname{Ker}(B))) \cap (W_1 \oplus W_2 \oplus (\operatorname{Im}(A) \cap \operatorname{Ker}(B))))\}$.

3. When the product of two projections is a diagonalizable matrix

In [5, Corollary 3.9], we have proved that if $D \in \mathbb{C}_D^{n \times n}$ with rank $(D) \leq n/2$ and with arbitrary spectrum, then there are $A, B \in \mathbb{C}_P^{n \times n}$ so that AB = D. Moreover, in [5, Theorem 3.12], we have proved that there are projections A and B so that AB = D, where D is diagonalizable, if and only if $\delta_D \leq \alpha_D$. Similarly, in [12, page 81], Ballantine proved that given a singular diagonalizable matrix D and A and B of same order, D = AB if and only if rank $(I - D) \leq 2 \dim \text{Ker}(D)$. Another relevant information is that, by [2, Theorem 3.2.11.1], we may conclude that given projections A and B, AB is diagonalizable if and only if BA is diagonalizable whenever AB and BA are core matrices. In this section, we shall show some necessary and/or sufficient conditions so that AB is diagonalizable with arbitrary spectrum or restricted to the real segment [0, 1].

In [5, Corollary 3.10], we have proved that if $N \in \mathbb{C}_N^{n \times n}$ with rank at most n/2and arbitrary spectrum, then there are $A, B \in \mathbb{C}_P^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$ so that AB = N. However, if $A \in \mathbb{C}_{HP}^{n \times n}$, $N \in \mathbb{C}_N^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$, then $AB \neq N$ for any $B \in \mathbb{C}_P^{n \times n}$. Our next main result is able to demonstrate this.

THEOREM 3.1. If $A \in \mathbb{C}_{HP}^{n \times n}$, $B \in \mathbb{C}_{P}^{n \times n}$ and $N \in \mathbb{C}_{N}^{n \times n}$ so that AB = N, then $N \in \mathbb{C}_{HP}^{n \times n}$.

Proof. According to [1, p. 42], AX = N if and only if $AA^{\dagger}N = N$ for some $X \in \mathbb{C}^{n \times n}$. Since $A \in \mathbb{C}^{n \times n}_{HP}$, it follows that $A = A^2 = A^* = A^{\dagger}$, so AX = N is solvable if and only if AN = N. Suppose that $N \notin \mathbb{C}^{n \times n}_{HP}$. Thus, take $U \in \mathbb{C}^{n \times n}_{U}$ so that $U^*NU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, where $D = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$, $\lambda_1, \dots, \lambda_r \in \mathbb{C} \setminus \{0\}$ and at least one $\lambda_i \in \mathbb{C} \setminus \{0,1\}$ with $i \in \{1,\dots,r\}$. Consider $U^*AU = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$ with $A_1 \in \mathbb{C}^{r \times r}$. Hence, $U^*ANU = U^*AUU^*NU = U^*NU$, which implies $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, and so we have that $A_1 = I_r$ and $A_3 = 0$, and as $U^*AU \in \mathbb{C}^{n \times n}_{HP}$, we also have that $A_2 = 0$ and $A_4 \in \mathbb{C}^{n-r \times n-r}_{HP}$. Again by [1, p. 42], $X = A^{\dagger}N + (I - A^{\dagger}A)M = N + (I - A)M$ is the general solution of the equation AX = N for any $M \in \mathbb{C}^{n \times n}$. This implies that $X = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} U^* + \left[\begin{pmatrix} I_r & 0 \\ 0 & I_{n-r} \end{pmatrix} - U \begin{pmatrix} I_r & 0 \\ 0 & A_4 \end{pmatrix} U^* \right] M$, that is, $U^*XU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} - A_4 \end{pmatrix} \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = \begin{pmatrix} D & 0 \\ (I_{n-r} - A_4)M_3 & (I_{n-r} - A_4)M_4 \end{pmatrix}$,

where $U^*MU = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$ and $M_1 \in \mathbb{C}^{r \times r}$. Hence, taking into account that $\{\lambda_1, \dots, \lambda_r\}$ = $\sigma(D) \subset \sigma(X)$, we may conclude that $X \notin \mathbb{C}_P^{n \times n}$, but this contradicts our hypothesis that $X = B \in \mathbb{C}_P^{n \times n}$. \Box

REMARK 6. Taking into account the proof of Theorem 3.1 and if $A, N \in \mathbb{C}_{HP}^{n \times n}$ and AN = N, then $D = I_r$ and $AN = N = N^* = NA$. Thus, take $U \in \mathbb{C}_U^{n \times n}$ so that

$$U^*AUU^*NU = U^*NU = \begin{pmatrix} I_r & 0\\ 0 & A_4 \end{pmatrix} \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}, \text{ where } A_4 = \begin{pmatrix} I_{t_1} & 0\\ 0 & 0 \end{pmatrix} \text{ and } t_1 + t_2 = n - r. \text{ Hence, } X = U \begin{pmatrix} I_r & 0\\ V & W \end{pmatrix} U^* \text{ is the general solution of the equation } AX = N, \text{ where}$$
$$V = \begin{bmatrix} \begin{pmatrix} I_{t_1} & 0\\ 0 & I_{t_2} \end{pmatrix} - \begin{pmatrix} I_{t_1} & 0\\ 0 & 0 \end{pmatrix} \end{bmatrix} M_3 = \begin{pmatrix} 0 & 0\\ 0 & I_{t_2} \end{pmatrix} M_3$$
and

$$W = \left[\begin{pmatrix} I_{t_1} & 0 \\ 0 & I_{t_2} \end{pmatrix} - \begin{pmatrix} I_{t_1} & 0 \\ 0 & 0 \end{pmatrix} \right] M_4 = \begin{pmatrix} 0 & 0 \\ 0 & I_{t_2} \end{pmatrix} M_4$$

for any $M = U\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} U^* \in \mathbb{C}^{n \times n}$, and consequently M_1, M_2, M_3 and M_4 are arbitrary submatrices. Therefore, we may conclude that $X \in \mathbb{C}_p^{n \times n}$ if and only if WV =0 and $W^2 = W$.

REMARK 7. Consider $E \in \mathbb{C}_{EP}^{n \times n}$. Thus, by [3, Lemma 2], $Q^*EQ = \begin{pmatrix} T & 0 \\ 0 & 0 \end{pmatrix}$ for some $Q \in \mathbb{C}_{U}^{n \times n}$ and $T \in \mathbb{C}^{t \times t}$ nonsingular. Again, taking into account the proof of Theorem 3.1, we may similarly conclude that if $A \in \mathbb{C}_{HP}^{n \times n}$, $B \in \mathbb{C}_{P}^{n \times n}$ and $E \in \mathbb{C}_{EP}^{n \times n}$ so that AB = E, then $E \in \mathbb{C}_{HP}^{n \times n}$.

Now, it follows a result which provides a sufficient condition so that $AB \in \mathbb{C}_{FP}^{n \times n}$, where $A \in \mathbb{C}_{P}^{n \times n}$ and $B \in \mathbb{C}_{P}^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$.

PROPOSITION 3.2. Let $A \in \mathbb{C}_P^{n \times n}$ and $B \in \mathbb{C}_P^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$. Let $P_A U_A$ and $U_B P_B$ be polar decompositions, respectively, of A and B, where $U_A, U_B \in \mathbb{C}_U^{n \times n}$, $P_A \ge 0$, $P_B \ge$ and $Q = U_A U_B$. Thus, if $P_A Q \in \mathbb{C}_{FP}^{n \times n}$, $\operatorname{Ker}(P_B) \subset \operatorname{Ker}(P_A Q)$ and $P_B(\operatorname{Ker}(P_A Q)) \subset$ $\operatorname{Ker}(P_AQ)$, then $AB \in \mathbb{C}_{FP}^{n \times n}$.

Proof. We have that $\operatorname{Ker}(P_B) \subset \operatorname{Ker}(P_AQ) \Rightarrow (\operatorname{Ker}(P_AQ))^{\perp} \subset (\operatorname{Ker}(P_B))^{\perp} \Rightarrow$ $\operatorname{Im}((P_AQ)^*) \subset \operatorname{Im}(P_B^*) \Rightarrow \operatorname{Im}(P_AQ) \subset \operatorname{Im}(P_B)$ since $P_AQ \in \mathbb{C}_{EP}^{n \times n}$, hence $\operatorname{Im}(P_AQP_B) \subset \operatorname{Im}(P_AQ)^*$ Im(P_B). Moreover, since $P_B(\text{Ker}(P_AQ)) \subset \text{Ker}(P_AQ)$, it follows that $\text{Ker}(P_AQ) \subset$ Ker(P_AQP_B). Keeping in mind that $P_AQ, P_B \in \mathbb{C}_{EP}^{n \times n}$ and by [9, Theorem 2], if Im(P_AQP_B) \subset Im(P_B) and Ker(P_AQ) \subset Ker(P_AQP_B), then $P_AQP_B = AB \in \mathbb{C}_{FP}^{n \times n}$.

Now, consider the solvable matricial equation AX = D, where $A \in \mathbb{C}_{HP}^{n \times n}$ and $D \in \mathbb{C}_D^{n \times n} \setminus \mathbb{C}_N^{n \times n}$. Thus, if rank $(A) = s \leq n - s$ and given $\alpha_1, \ldots, \alpha_r \in \mathbb{C} \setminus \{0\}$ with rank $(D) = r \leq s$, then there are $D \in \mathbb{C}_D^{n \times n} \setminus \mathbb{C}_N^{n \times n}$ and $X \in \mathbb{C}_P^{n \times n}$ so that $\{\alpha_1, \dots, \alpha_r\} \subset \mathbb{C}_D^{n \times n}$ $\sigma(D)$ and AX = D. Our next result provides sufficient conditions for the projection X to satisfy the equation AX = D, under the conditions above established.

Consider the following decompositions for the projections A and B of order n:

 $U_A^*AU_A = \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} = V_B B V_B^{-1}$, where $U_A \in \mathbb{C}_U^{n \times n}$, $V_B \in \mathbb{C}^{n \times n}$ and nonsingular, $B = \begin{pmatrix} I_s & A_2 \\ 0 & 0 \end{pmatrix}$, $A_2 \in \mathbb{C}^{s \times n-s}$ and $A_2 \neq 0$. Hence, $A = T \begin{pmatrix} I_s & A_2 \\ 0 & 0 \end{pmatrix} T^{-1} \in \mathbb{C}_{HP}^{n \times n}$ with T = $U_A V_B$. Consider, also, $D = T \operatorname{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0)$ $T^{-1} \in \mathbb{C}^{n \times n}$, $D_{\lambda} = \operatorname{diag}(\lambda_1 - 1)$ $1, \ldots, \lambda_r - 1, -1, \ldots, -1) \in \mathbb{C}^{s \times s}, \lambda_1, \ldots, \lambda_r \in \mathbb{C} \setminus \{0\}, r \leq s \text{ and } M_3 = A_2^{\dagger} D_{\lambda} + (I_{n-s} - I_{n-s}) = 0$ $A_{2}^{\dagger}A_{2}W_{s}$ with $W_{s} \in \mathbb{C}^{n-s \times s}$.

PROPOSITION 3.3. Let A, B, T, D, D_{λ} and M_3 be matrices as represented above. Once an arbitrary Hermitian projection A of rank s is fixed and $X = T \begin{pmatrix} I_s & 0 \\ M_3 & 0 \end{pmatrix} T^{-1} \in \mathbb{C}_P^{n \times n}$, we have that if $\lambda_1, \ldots, \lambda_r \in \mathbb{C} \setminus \{0, 1\}$ and $s \leq n-s$, then AX = D for some $D \in \mathbb{C}_D^{n \times n} \setminus \mathbb{C}_N^{n \times n}$ with $\{\lambda_1, \ldots, \lambda_r\} \subset \sigma(D)$, for any $W_s \in \mathbb{C}^{n-s \times s}$ and for any $A_2 \in \mathbb{C}^{s \times n-s}$ of rank s.

Proof. Consider $A \in \mathbb{C}_{HP}^{n \times n}$ and $B \in \mathbb{C}_{P}^{n \times n} \setminus \mathbb{C}_{HP}^{n \times n}$ with $\operatorname{rank}(A) = \operatorname{rank}(B) = s$. Then there are $U_A \in \mathbb{C}_U^{n \times n}$, $V_B \in \mathbb{C}^{n \times n} \setminus \mathbb{C}_U^{n \times n}$ and nonsingular so that $U_A^* A U_A = \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix}$ $= V_B B V_B^{-1}$, that is, $(U_A V_B)^{-1} A U_A V_B = B = \begin{pmatrix} I_s & A_2 \\ 0 & 0 \end{pmatrix}$, and so $A = T \begin{pmatrix} I_s & A_2 \\ 0 & 0 \end{pmatrix} T^{-1} \in \mathbb{C}_{P}^{n \times n}$

 $\mathbb{C}_{HP}^{n \times n}$ for any $A_2 \in \mathbb{C}^{s \times n-s}$, but $A_2 \neq 0$ and $U_A V_B = T \notin \mathbb{C}_U^{n \times n}$. Now, consider the matricial equation

$$AX = D, (2)$$

where $D = T \operatorname{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0) T^{-1} \in \mathbb{C}^{n \times n}$, $\lambda_1, \dots, \lambda_r \in \mathbb{C} \setminus \{0, 1\}$ and $r \leq s$. Keeping in mind that $A \in \mathbb{C}_{HP}^{n \times n}$, we have that $AA^{\dagger} = A^{\dagger}A = A = A^{\dagger}$, which implies $AA^{\dagger}D = AD = T \begin{pmatrix} I_s A_2 \\ 0 & 0 \end{pmatrix} T^{-1}T \begin{pmatrix} D_s & 0 \\ 0 & 0 \end{pmatrix} T^{-1} = T \begin{pmatrix} D_s & 0 \\ 0 & 0 \end{pmatrix} T^{-1} = D$, where $D_s = \operatorname{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0) \in \mathbb{C}^{s \times s}$. This implies that $AA^{\dagger}D = D$, and by [2, p. 42], (2) is solvable for any $A_2 \in \mathbb{C}^{s \times n - s}$ and $A_2 \neq 0$. Again by [2, p. 42], in (2) the general solution is given by $X = A^{\dagger}D + (I - A^{\dagger}A)M = D + (I - A)M = T \begin{pmatrix} D_s & 0 \\ 0 & 0 \end{pmatrix} T^{-1} + \left[\begin{pmatrix} I_s & 0 \\ 0 & I_{n-s} \end{pmatrix} - T \begin{pmatrix} I_s & A_2 \\ 0 & 0 \end{pmatrix} T^{-1} \right] TT^{-1}M$ for any $M \in \mathbb{C}^{n \times n}$. Hence, $T^{-1}XT = \begin{pmatrix} D_s & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 - A_2 \\ 0 & I_{n-s} \end{pmatrix} \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = \begin{pmatrix} D_s & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -A_2M_3 & -A_2M_4 \\ M_3 & M_4 \end{pmatrix} = \begin{pmatrix} D_s - A_2M_3 & -A_2M_4 \\ M_3 & M_4 \end{pmatrix}$, where $T^{-1}MT = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$ and $M_1 \in \mathbb{C}^{s \times s}$. Note that if $M_4 = 0$ and $D_s - A_2M_3 = I_s$, then $X \in \mathbb{C}_P^{n \times n}$. Thus, take $M_4 = 0$ and $D_s - A_2M_3 = I_s$, that is,

$$A_2 M_3 = \operatorname{diag}(\lambda_1 - 1, \dots, \lambda_r - 1, -1, \dots, -1) = D_{\lambda}.$$
 (3)

Let $s \leq n-s$. Since $\lambda_i \neq 1$ for each $i \in \{1, ..., r\}$, it follows that $\operatorname{rank}(D_{\lambda}) = s$, which implies $\operatorname{rank}(A_2) = \operatorname{rank}(A_2A_2^{\dagger}) = s$, hence $A_2A_2^{\dagger} = I_s$, that is, $A_2A_2^{\dagger}D_{\lambda} = D_{\lambda}$, and so (3) is solvable for any $A_2 \in \mathbb{C}^{s \times n-s}$ of rank s. In this case, the general solution of (3) is given by $M_3 = A_2^{\dagger}D_{\lambda} + (I_{n-s} - A_2^{\dagger}A_2)W_s$ for any $W_s \in \mathbb{C}^{n-s \times s}$. Therefore, if $X = T\begin{pmatrix}I_s & 0\\M_3 & 0\end{pmatrix}T^{-1} \in \mathbb{C}_P^{n \times n}$, with $\lambda_1, \ldots, \lambda_r \in \mathbb{C} \setminus \{0, 1\}$ and $s \leq n-s$, then X is a solution of (2) for any $W_s \in \mathbb{C}^{n-s \times s}$ and for any $A_2 \in \mathbb{C}^{s \times n-s}$ of rank s.

Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1) and $\operatorname{rank}(A) \leq n/2$. In the next result, we shall make use of the submatrices of the projection *C* to provide a necessary and sufficient condition so that $AB \in \mathbb{C}_D^{n \times n}$, $\operatorname{rank}(AB) = \operatorname{rank}(A)$ and $\operatorname{Ker}(I - AB) = \{0\}$.

PROPOSITION 3.4. Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1) and $r \leq n/2$. Thus, $AB \in \mathbb{C}_D^{n \times n}$ with rank(AB) = r and $1 \notin \sigma(AB)$ if and only if $C_2C_3 \in \mathbb{C}_D^{r \times r}$ and nonsingular.

Proof. Taking into account that $Y_A ABY_A^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ 0 & 0 \end{pmatrix}$ and that a square matrix is diagonalizable if and only if its minimal polynomial is a product of pairwise distinct monic linear polynomials, we have that if *AB* is diagonalizable, then so is C_1 . Moreover, $1 \notin \sigma(AB)$ implies that $1 \notin \sigma(C_1)$, and also rank(AB) = r implies that $0 \notin \sigma(C_1)$ since $C_1 \in \mathbb{C}^{r \times r}$ and $\text{Im}(C_2) \subset \text{Im}(C_1)$, see [5, Theorem 2.11].

Since
$$\begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}$$
, it follows that
$$C_2 C_3 = C_1 - C_1^2.$$
(4)

Hence $C_2C_3 \in \mathbb{C}_D^{r \times r}$ and nonsingular.

Conversely, consider $m_C(x) = (x - \lambda_1) \dots (x - \lambda_k)$ the minimal polynomial of C_2C_3 . Thus, if $C_2C_3 \in \mathbb{C}_D^{r \times r}$ and nonsingular, then $\lambda_1, \dots, \lambda_k$ are distinct and nonzero, so $(x - \lambda_1) \dots (x - \lambda_k)(C_2C_3) = (x - \lambda_1) \dots (x - \lambda_k)x(1 - x)(C_1) = 0$, and by (4), $\delta_{C_1} = r$ since C_2C_3 is nonsingular, and so we may conclude that $C_1 \in \mathbb{C}_D^{r \times r}$. Now, note that $\operatorname{Im}(C_2) \subset \operatorname{Im}(C_1)$ since C_1 is nonsingular, and therefore, by [5, Theorem 2.11], we conclude that $AB \in \mathbb{C}_D^{n \times n}$ with $\operatorname{rank}(AB) = r$ and $1 \notin \sigma(AB)$. \Box

The following Corollary provides a sufficient condition so that $AB \in \mathbb{C}_D^{n \times n}$, rank(AB) = rank(A) and Ker $(I - AB) = \{0\}$ whenever $A, B \in \mathbb{C}_P^{n \times n}$.

COROLLARY 3.5. Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1) and rank(A) = r < n/2. Thus, if $(AB - BA)^2 \in \mathbb{C}_D^{n \times n}$ and rank $(AB - BA)^2 = 2$ rank(A), then $AB \in \mathbb{C}_D^{n \times n}$ with rank(AB) = r and $1 \notin \sigma(AB)$.

Proof. We have that
$$Y_A A B Y_A^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} = \begin{pmatrix} C_1 & C_2 \\ 0 & 0 \end{pmatrix}$$
 and $Y_A B A Y_A^{-1} = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} C_1 & 0 \\ C_3 & 0 \end{pmatrix}$, which implies $Y_A (AB - BA)^2 Y_A^{-1} = \begin{pmatrix} -C_2 C_3 & 0 \\ 0 & -C_3 C_2 \end{pmatrix}$.

Clearly, if $(AB - BA)^2$ is diagonalizable with $\operatorname{rank}(AB - BA)^2 = 2\operatorname{rank}(A) = 2r$, then $-C_2C_3$ and $-C_3C_2$ are diagonalizable too with $\operatorname{rank}(-C_2C_3) + \operatorname{rank}(-C_3C_2) = 2r$, and as $-C_2C_3$ and $-C_3C_2$ have the same nonzero eigenvalues, it follows that $\operatorname{rank}(-C_2C_3) = \operatorname{rank}(-C_3C_2) = r$, so C_2C_3 is nonsingular, and by Proposition 3.4, we may conclude that $AB \in \mathbb{C}_D^{n \times n}$ with $\operatorname{rank}(AB) = r$ and $1 \notin \sigma(AB)$. \Box

REMARK 8. Regarding proposition 2.10, the condition AB - BA being nonsingular to imply that $\delta_{AB} = \text{Tr}(A)$ is not necessary because, according to Corollary 3.5, we have the following:

Let $A, B \in \mathbb{C}_{P}^{n \times n}$ be with $\operatorname{rank}(A) = \operatorname{Tr}(A) = r < n/2$. Thus, if $C^2 = (AB - BA)^2 \in \mathbb{C}_{D}^{n \times n}$ and $\operatorname{rank}(C^2) = 2\operatorname{rank}(A) = 2r < n$, then $AB \in \mathbb{C}_{D}^{n \times n}$ with $\operatorname{rank}(AB) = \operatorname{Tr}(A)$ and $1 \notin \sigma(AB)$. Hence, clearly, *C* is singular and $\delta_{AB} = \operatorname{Tr}(A)$.

From now on, once an arbitrary projection *A* is fixed, we shall show projections *B* so that $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0, 1]$. Particularly, concerning Lemma 3.6, Proposition 3.7 and Proposition 3.8, we shall need the following information:

We define k functions f_k by $f_k(t_k, \alpha_1, ..., \alpha_k) = \{0, ..., 0, \alpha_1, ..., \alpha_k, 1, ..., 1\}$, where $\alpha_1, ..., \alpha_k \in (0, 1)$, the number of nonzero elements of $f_k(t_k, \alpha_1, ..., \alpha_k)$ is equal to t_k , the number of zero elements of $f_k(t_k, \alpha_1, ..., \alpha_k)$ is equal to $n - t_k$ and $0 \le k \le$ $n - t_k$. Hence, according to this definition for f_k , $k \le t_k \le n - k$ and $0 \le k \le n/2$. Then, for every k, $0 \le k \le n/2$; for every $\alpha_i \in (0, 1)$, i = 1, ..., k, and for every t_k , $k \le t_k \le$ n - k, there are Hermitian projections P and Q so that $\sigma(PQ) = f_k(t_k, \alpha_1, ..., \alpha_k)$, with rank(P) = r, rank(Q) = s and $t_k = \min\{r, s\}$. Note that $k \le n - t_k$ is a necessary condition for $\sigma(PQ) = f_k(t_k, \alpha_1, ..., \alpha_k)$ because $\delta_{PQ} \le \min\{\dim \text{Ker}(P), \dim \text{Ker}(Q)\}$. Moreover, PQ is a diagonalizable matrix, see [6, p. 144], which implies $\alpha_{PQ} =$ dim Ker(PQ), and so $\alpha_{PQ} = \dim \text{Ker}(PQ) \ge \dim \text{Ker}(Q) \ge \delta_{PQ}$.

We should also consider Lemma 3.6, see proof in [4, Lemma 2.4].

LEMMA 3.6. For every k, $0 \le k \le n/2$; for every $\alpha_i \in (0,1)$, i = 1,...,k and for every t_k , $k \le t_k \le n-k$, there are $E, F \in \mathbb{C}_{HP}^{n \times n}$ which are of block diagonal form with diagonal blocks of order 2 and of order 1 so that $\sigma(EF) = f_k(t_k, \alpha_1, ..., \alpha_k)$, with rank(E) = r, rank(F) = s and $t_k = \min\{r, s\}$.

Given projections A and B, in our next result we provide a necessary and sufficient condition so that AB is diagonalizable with $\sigma(AB) \subset [0,1]$.

PROPOSITION 3.7. Let $A, B \in \mathbb{C}_P^{n \times n}$. Then $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0,1]$ if and only if AB is similar to PQ for some $P, Q \in \mathbb{C}_{HP}^{n \times n}$.

Proof. Let $X \in \mathbb{C}^{n \times n}$ be nonsingular so that $X^{-1}ABX = PQ$, where $P, Q \in \mathbb{C}_{HP}^{n \times n}$. Thus, by [9, p. 143 and 144], we may conclude that $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0, 1]$.

Conversely, if $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0,1]$, then there is some $Y \in \mathbb{C}^{n \times n}$ nonsingular so that $Y^{-1}ABY = \operatorname{diag}(\lambda_1, \dots, \lambda_k, 1, \dots, 1, 0, \dots, 0)$, where $\lambda_1, \dots, \lambda_k \in (0,1)$ and $k = \delta_{AB} \leq \min\{\dim \operatorname{Ker}(A), \dim \operatorname{Ker}(B)\} \leq \dim \operatorname{Ker}(AB)$. Hence, according to Lemma 3.6, there are $P, Q \in \mathbb{C}_{HP}^{n \times n}$ so that $Z^{-1}PQZ = \operatorname{diag}(\lambda_1, \dots, \lambda_k, 1, \dots, 1, 0, \dots, 0)$ to some $Z \in \mathbb{C}^{n \times n}$ nonsingular, which implies $Y^{-1}ABY = Z^{-1}PQZ$, and therefore $(YZ^{-1})^{-1}ABYZ^{-1} = PQ$. \Box

Let $E_j, F_j \in \mathbb{C}_{HP}^{2 \times 2}$ be with the following entries: $E_j = \begin{pmatrix} \frac{1}{2} & b_1 + b_2 i \\ b_1 - b_2 i & \frac{1}{2} \end{pmatrix}$ and $F_j = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ with $b_1, b_2 \in \mathbb{R}$, $i = \sqrt{-1}$ and $j = 1, \dots, k$, where $b_1^2 + b_2^2 = \frac{1}{4}$ since E_j is singular. Moreover, for any $\alpha_j \in (0, 1)$, there are $E_j, F_j \in \mathbb{C}_{HP}^{2 \times 2}$ so that α_j is the eigenvalue of $E_j F_j$ different of 0 and of 1, where $b_1 = \alpha_j - \frac{1}{2}$, see proof in [9, Lemma 2.4]. Now, let $E = \text{diag}(E_1, \dots, E_k, 1, \dots, 1, 0, \dots, 0)$ and $F = \text{diag}(F_1, \dots, F_k, 1, \dots, 1, 0, \dots, 0)$ be Hermitian projections of order n and with rank(E) = r and rank(F) = s. Considering, also, the decompositions given below for the projections A, E and B:

$$Y_A A Y_A^{-1} = Y_E E Y_E^{-1} = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} \quad \text{and} \quad Y_B B Y_B^{-1} = \begin{pmatrix} I_s & 0\\ 0 & 0 \end{pmatrix}, \tag{5}$$

where Y_A , Y_E and Y_B are nonsingular matrices, rank(A) = r and rank(B) = s. Moreover, $U_A P_A$ and $U_B P_B$ are the polar decompositions of Y_A and Y_B , respectively, with $P_A > 0$ and $P_B > 0$.

Given $\alpha_1, \ldots, \alpha_k \in (0,1)$, $1 \le k \le n/2$, once an arbitrary projection *A* of rank *r* is fixed, in our next result, we shall identify projections *B* of rank *s* so that *AB* is a diagonalizable matrix with $\{\alpha_1, \ldots, \alpha_k\} \subset \sigma(AB) \subset [0,1]$, where $k \le \min\{\dim \text{Ker}(A), \dim \text{Ker}(B)\}$ and rank $(AB) = \min\{r, s\}$.

PROPOSITION 3.8. Let $A, E \in \mathbb{C}_P^{n \times n}$ be with representation in (5). Once an arbitrary projection A is fixed, for any Y_A , for any Y_E and for any E, if $B = Y_A^{-1}Y_EF(Y_A^{-1}Y_E)^{-1}$, then $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) = f_k(t_k, \alpha_1, \dots, \alpha_k)$ for any $\alpha_i \in (0, 1), i = 1, \dots, k, t_k = \min\{r, s\}$ and $\delta_{AB} = k$.

Proof. Since rank(*E*) = rank(*A*), it follows that $Y_E E Y_E^{-1} = Y_A A Y_A^{-1}$, and so $Y_A^{-1} Y_E E Y_E^{-1} Y_A = A$. Consider that $X = Y_A^{-1} Y_E$ and $B = X F X^{-1}$. Hence, by Lemma 3.6, for any Y_A , for any Y_E and for any *E*, $AB = X E X^{-1} X F X^{-1} = X E F X^{-1} \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) = f_k(t_k, \alpha_1, \dots, \alpha_k)$ for any $\alpha_i \in (0, 1)$, $i = 1, \dots, k$, $t_k = min\{r, s\}$ and $\delta_{AB} = k$. \Box

In [5, Theorem 3.15], we have proved that if $P_A = P_B$, then $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0,1]$ for some Y_A and Y_B with representation in (1), but the converse does not hold. However, the following two Lemmas are useful to the Propositions presented shortly thereafter.

LEMMA 3.9. Let $A, B \in \mathbb{C}_P^{n \times n}$. Then $P_A = P_B$ if and only if $Y_B = UY_A$ for some $U \in \mathbb{C}_U^{n \times n}$.

Proof. If $P_A = P_B$, then $Y_B = U_B P_A = U_B U_A^* Y_A$, where $U = U_B U_A^* \in \mathbb{C}_U^{n \times n}$. Conversely, if $Y_B = UY_A$ for some $U \in \mathbb{C}_U^{n \times n}$, then $Y_B = U_B P_B = U U_A P_A$, which implies $P_A = U_A^* U^* U_B P_B$, and so by the uniqueness of the polar decomposition of P_A , we may conclude that $U_A^* U^* U_B = I$ and $P_A = P_B$. \Box

LEMMA 3.10. Let $A, B \in \mathbb{C}^{n \times n}$. If $A^*A = B^*B$, then A = UB for some $U \in \mathbb{C}^{n \times n}_U$.

Proof. Let $A = U_A P_A$ and $B = U_B P_B$ be the polar decompositions of A and B, respectively. Hence, if $A^*A = B^*B$, then $P_A U_A^* U_A P_A = P_A^2 = P_B U_B^* U_B P_B = P_B^2$, which implies $P_A = P_B$, and so $A = U_A P_A = U_A P_B = U_A U_B^*B$, where $U_A U_B^* \in \mathbb{C}_U^{n \times n}$. \Box

Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1). The next result provides a necessary and sufficient condition for *C* to be a Hermitian projection.

PROPOSITION 3.11. Let $A, B, C \in \mathbb{C}_P^{n \times n}$ be with representation in (1). Then $C = C^*$ if and only if $Y_B = UY_A$ for some $U \in \mathbb{C}_U^{n \times n}$.

Proof. Since $Y_A B Y_A^{-1} = C$, it follows that $Y_B = Y_C Y_A$. Thus, if $Y_B = U Y_A = Y_C Y_A$, then $Y_C = U$, and so $C = C^*$.

Conversely, if $C = C^*$, then there is some $Y_C = U \in \mathbb{C}_U^{n \times n}$ so that $Y_C C Y_C^{-1} = \text{diag}(I_s, 0)$, hence $Y_B = U Y_A$ for some $U \in \mathbb{C}_U^{n \times n}$. \Box

Now, we shall prove two results which provide sufficient conditions for *AB* to be a diagonalizable matrix with $\sigma(AB) \subset [0,1]$, once an arbitrary projection *A* is fixed and for some projection *B*.

PROPOSITION 3.12. Let $A, B \in \mathbb{C}_{P}^{n \times n}$. Consider also Y_A and Y_B with representation in (1), $U \in \mathbb{C}_{U}^{n \times n}$ and $D = \text{diag}(D_1, D_2) \in \mathbb{C}^{n \times n}$, where D_1 and D_2 are nonsingular matrices with D_1 of order r. Thus, if $Y_A = DUY_B$, then $AB \in \mathbb{C}_{D}^{n \times n}$ with $\sigma(AB) \subset [0, 1]$.

Proof. According to (1),

$$AB = Y_A^{-1} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Y_A Y_B^{-1} \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} Y_B \Rightarrow$$

$$Y_A ABY_A^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

$$Y_A Y_B^{-1} \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} (Y_A Y_B^{-1})^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} DU \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} U^{-1} D^{-1} \Rightarrow$$

$$(Y_A^{-1}D)^{-1}ABY_A^{-1}D = D^{-1} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

$$DU \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} U^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} U \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} U^*.$$

Taking into account that $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}, U \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} U^* \in \mathbb{C}_{HP}^{n \times n}$, we may conclude that $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0,1]$. \Box

PROPOSITION 3.13. Let $A, B \in \mathbb{C}_P^{n \times n}$ be with representation in (1). Thus, if $C = C^*$, then $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0,1]$.

Proof. According to Proposition 3.11, if $C = C^*$, then $Y_B = UY_A$ for some $U \in \mathbb{C}_U^{n \times n}$, and by Lemma 3.9, $P_A = P_B$, and therefore $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0, 1]$, see [5, Theorem 3.15]. \Box

REMARK 9. On the other hand, concerning Proposition 3.13, it may occur that $AB \in \mathbb{C}_D^{n \times n}$ with $\sigma(AB) \subset [0,1]$, but $C \neq C^*$ for some Y_A . Indeed, it suffices to keep in mind the following example:

Let
$$A, B, C \in \mathbb{C}_{P}^{3 \times 3}$$
 and $Y_{A} \in \mathbb{C}^{3 \times 3}$ be so that
 $A = \begin{pmatrix} 1 & 0 & -0.5 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, AB = \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $Y_{A} = \begin{pmatrix} 1 & 0 & 0.4472 \\ 0 & 1 & 0 \\ 0 & 0 & 0.8944 \end{pmatrix}$.

Thus,

$$Y_A^{-1}AY_A = \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $Y_A^{-1}BY_A = C = \begin{pmatrix} 0.5 & 0 & 0.2236 \\ 0 & 1 & 0 \\ 1.1180 & 0 & 0.5 \end{pmatrix}$.

Acknowledgements. The author is grateful to the referee for their valuable suggestions, which improved the presentation of this paper.

J. DE ANDRADE BEZERRA

REFERENCES

- [1] J. K. BAKSALARY, R. KALA, *The matricial equation* AX BY = C, Linear Algebra Appl. **25**, (1979), 41–43.
- [2] C. S. BALLANTINE, Products of idempotent matrices, Linear Algebra Appl. 19, (1978), 81-86.
- [3] T. S. BASKETT, I. J. KATZ, *Theorems on product of EP_r matrices*, Linear Algebra Appl. 2, (1969), 87–103.
- [4] J. A. BEZERRA, A note on completion to the unitary matrices, Linear Multilinear Algebra 69, (2019), 1825–1840.
- [5] J. A. BEZERRA, A note on the product of two matrices of index one, Linear Multilinear Algebra 65, (2016), 1479–1492.
- [6] J. GROSS, On the product of orthogonal projectors, Linear Multilinear Algebra 289, (199), 141–150.
- [7] J. GROSS, G. TRENKLER, On the product of oblique projectors, Linear Multilinear Algebra 44, (1997), 247–259.
- [8] R. A. HORN, C. R. JOHNSON, Matrix analysis, Cambridge University Press, New York, 2013.
- [9] J. J. KOLIHA, A simple proof of the product theorem for EP matrices, Linear Algebra Appl. 294, (1999), 213–215.
- [10] A. KORPORAL, B. REGENSBURGER, On the product of projectors and generalized inverses, Linear Multilinear Algebra 62, (2014), 1567–1582.
- [11] V. V. PRASOLOV, Problems and theorems in linear algebra, AMS, Raleigh, 1994.
- [12] Y. TIAN, G. P. H. STYAN, Rank equalities for idempotent and involutory matrices, Linear Algebra Appl. 335, (2001), 101–117.

(Received February 10, 2023)

Johanns de Andrade Bezerra Paraiba da federal university (UFPB) João Pessoa, PB, Brazil e-mail: veganismo.direitoanimal@gmail.com

Operators and Matrices www.ele-math.com oam@ele-math.com