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REMARKS ON THE PRODUCT OF TWO PROJECTIONS

JOHANNS DE ANDRADE BEZERRA

(Communicated by G. Misra)

Abstract. In this paper we investigate complex projections A and B so that AB is a diagonal-
izable matrix. Particularly, we provide necessary and/or sufficient conditions so that AB is a
diagonalizable matrix with its eigenvalues belonging to the real segment [0,1] . Moreover, we
investigate on eigenspaces and eigenvalues of the product of two projections.

1. Introduction

Throughout this paper, the matrices used are complex of order n . The symbols
A∗ , Tr(A) , σ(A) , Im(A) , Ker(A) , αA , δA and σA denote the conjugate transpose,
the trace, the spectrum, the range, the null space, the algebraic multiplicity of zero as
eigenvalue, the number of eigenvalues from C\ {0,1} and the number of singular val-
ues from R\{0,1} , respectively, of some matrix A . A matrix A is called an EP matrix
if Im(A) = Im(A∗) , or equivalently if Im(A) = (Ker(A))⊥ . More generally, a matrix
A is called a core matrix, that is, a matrix of index one, if Im(A)∩Ker(A) = {0} , or
equivalently if Im(A)⊕Ker(A) = Cn×1 . Particularly, a matrix A is called a projection
if A2 = A . We denote C

n×n
P , C

n×n
HP , C

n×n
D , C

n×n
N , C

n×n
EP and C

n×n
U the sets of all the

projections, of all the Hermitian projections, of all the diagonalizable matrices, of all
the normal matrices, of all the EP matrices and of all the unitary matrices, respectively.

Clearly, if A and B are projections, then A and B are diagonalizable matrices, but
in general, neither AB nor BA are diagonalizable matrices. Note that if A is a diagonal-
izable matrix, then A is a core matrix because Cn×1 = Ker(A)⊕Ker(A−λ1I)⊕ . . .⊕
Ker(A−λkI) , with λ1, . . . ,λk ∈ σ(A)\{0} and Im(A) = Ker(A−λ1I)⊕ . . .⊕Ker(A−
λkI) . We shall also use a definition of the polar decomposition of a complex matrix A :
Any singular complex matrix A can be represented in the form A = UP , where P is a
Hermitian nonnegative definite matrix (P � 0) and U is a unitary matrix. If A is non-
singular such a representation is unique, and so P is a Hermitian positive definite matrix
(P > 0) . Moreover, we shall use some information concerning the Moore-Penrose in-
verse for some A ∈ Cm×k : Recall that the Moore-Penrose inverse A† is the unique
matrix which satisfies AA†A = A , A†AA† = A† , (AA†)∗ = AA† and (A†A)∗ = A†A .

In this paper, we continue the investigations carried out in [5, section 3] on the
product of two projections A and B . Thus, in section 2, given A,B ∈ C

n×n
P , we
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carry out some investigation on the eigenspaces and eigenvalues of AB . We start sec-
tion 2 with our first main result which establishes Ker(I −AB) = Im(A)∩ (Im(B)⊕
(Ker(A)∩Ker(B))) whenever AB ∈ C

n×n
D . Taking into account that, by [5, Remark 3],

δAB � min{dimKer(A),dimKer(B)} , we shall show, throughout section 2, some results
refining this last result. Moreover, we shall show results that provide a necessary and/or
sufficient condition so that δAB = 0 or δAB = Tr(A) .

In section 3, we take up, above all, with the following question: Once a projection
A is fixed, we investigate projections B so that AB is a diagonalizable matrix with
σ(AB)⊂ [0,1] or with arbitrary spectrum. Moreover, we shall show results that provide
a necessary and/or sufficient condition so that AB is diagonalizable, where A and B are
projections with some restrictions. Particularly, in [7, Theorem 1], for example, Groß
and Trenkler provided a necessary and sufficient condition so that AB is a projection
whenever A and B are projections, and in this case δAB = 0. In this section, our
main result is the Theorem 3.1 that takes up with the following problem: Once fixed a
Hermitian projection A and given a projection B , the normality of AB implies that AB
is a Hermitian projection, and soon after, Remark 6 characterizes such projections B .

2. On eigenspaces and eigenvalues of the product of two projections

For any two projections A and B of same order, by [10, Corollary 9], we have
that Im(AB) = Im(A)∩ (Im(B) + Ker(A)) . Particularly, in our first main result, we
shall prove that Ker(I−AB) = Im(A)∩ (Im(B)⊕ (Ker(A)∩Ker(B))) whenever AB is
diagonalizable, and for that we shall make use of the following lemma:

LEMMA 2.1. If A,B ∈ C
n×n
P , then dimKer(I − AB) = dim(Im(A) ∩ Im(B)) +

dim((Im(A)+ Im(B))∩Ker(A)∩Ker(B)) .

Proof. Let W and U be two subspaces such that W ⊕ Im(A)∩ Im(B) = Ker(I −
AB) and U ⊕ Im(A)∩ Im(B) = Ker(I−BA) . Consider v = w+u ∈ (Im(A)+ Im(B))∩
Ker(A)∩Ker(B) , where w ∈ Im(A) and u ∈ Im(B) , and so Aw = w , Bu = u and
Av = Bv = 0. Hence, Av = w+Au = 0 and Bv = Bw+u = 0, which implies ABw = w
and BAu = u . If w,u ∈ Im(A)∩ Im(B) , then clearly v = 0. Thus, let v = w + u =
w−Bw = (I−B)w , with w∈W and u∈U . Since Im(B)∩W = Ker(I−B)∩W = {0} ,
it follows that dim((Im(A)+ Im(B))∩Ker(A)∩Ker(B)) � dimW .

Conversely, let v = w + u , where ABw = w and BAu = u for all w ∈ W and
u ∈ U , hence Av = w +Au = ABw+ABu = ABv , and so A(I −B)v = 0, which im-
plies (I − B)v ∈ Ker(A)∩Ker(B) . Since (I − B)v = w + u− Bw− u = (I − B)w ∈
Im(A)+ Im(B) , it follows that (I−B)w ∈ (Im(A)+ Im(B))∩Ker(A)∩Ker(B) , which
implies dimW � dim((Im(A) + Im(B)) ∩Ker(A) ∩Ker(B)) , and therefore dimW =
dim((Im(A)+ Im(B))∩Ker(A)∩Ker(B)) . �

REMARK 1. According to Lemma 2.1 and keeping in mind that (Im(A)∩Im(B))⊂
Ker(I−AB) , we may conclude that Ker(I−AB)= Im(A)∩Im(B) if and only if (Im(A)+
Im(B))∩Ker(A)∩Ker(B) = {0} .
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THEOREM 2.2. If A,B ∈ C
n×n
P and AB ∈ C

n×n
D , then Ker(I − AB) = Im(A)∩

(Im(B)⊕ (Ker(A)∩Ker(B))) .

Proof. Clearly, (Im(A)∩ Im(B)) ⊂ Ker(I−AB) and (Im(A)∩ Im(B)) ⊂ Im(A)∩
(Im(B)⊕ (Ker(A)∩Ker(B))) . Now, note that Im(A)∩ (Im(B)⊕ (Ker(A)∩Ker(B))) ⊂
Im(A)∩(Im(B)+Ker(A)) = Im(AB) = Ker(I−AB)⊕Ker(λ1I−AB)⊕ . . .⊕Ker(λkI−
AB) since AB is diagonalizable, where λ1, . . . ,λk ∈ σ(AB)∩C\{0,1} . Thus, consider
v ∈ Cn×1 and λ ∈ C \ {0} so that ABv = λv and v = w+ u , where v ∈ Im(A) , w ∈
Im(B) and u ∈ Ker(A)∩Ker(B) . Hence, Av = v = Aw+Au = Aw . Moreover, ABv =
λv = ABw+ABu = Aw = v , which implies λ = 1, and so we conclude that Im(A)∩
(Im(B)⊕ (Ker(A)∩Ker(B))) ⊂ Ker(I−AB) .

In order to conclude that Ker(I−AB) = Im(A)∩ (Im(B)⊕ (Ker(A)∩Ker(B))) , it
suffices to prove that, taking into account Lemma 2.1, dimKer(I−AB) = dim(Im(A)∩
Im(B))+dim((Im(A)+ Im(B))∩Ker(A)∩Ker(B)) = dim(Im(A)∩(Im(B)⊕(Ker(A)∩
Ker(B)))) . Indeed, dim(Im(A)+Im(B)+(Ker(A)∩Ker(B)))= dim(Im(A)+Im(B))+
dim(Ker(A) ∩ Ker(B)) − dim((Im(A) + Im(B)) ∩ Ker(A) ∩ Ker(B)) = dimIm(A) +
dimIm(B)− dim(Im(A)∩ Im(B)) + dim(Ker(A)∩Ker(B))− dim((Im(A) + Im(B))∩
Ker(A)∩Ker(B)) , which implies dim(Im(A)∩Im(B))+dim((Im(A)+Im(B))∩Ker(A)
∩ Ker(B)) = dimKer(I − AB) = dimIm(A) + dimIm(B) + dim(Ker(A) ∩ Ker(B)) −
dim(Im(A)+Im(B)+(Ker(A)∩Ker(B))) . On the other hand, we have that dim(Im(A)+
Im(B) + (Ker(A) ∩ Ker(B))) = dimIm(A) + dim(Im(B) + (Ker(A) ∩ Ker(B))) −
dim(Im(A)∩(Im(B)⊕(Ker(A)∩Ker(B))))= dimIm(A)+dim(Im(B))+dim(Ker(A)∩
Ker(B))−dim(Im(B)∩Ker(A)∩Ker(B))−dim(Im(A)∩(Im(B)⊕(Ker(A)∩Ker(B))))
= dimIm(A)+dim(Im(B)+dim(Ker(A)∩Ker(B))−dim(Im(A)∩(Im(B)⊕(Ker(A)∩
Ker(B)))) , and therefore we may conclude that

dimKer(I−AB) = dim(Im(A)∩ (Im(B)⊕ (Ker(A)∩Ker(B)))) . �

Let cAB(x) = xmo(x−1)m1(x−λ2)m2 . . . (x−λk+1)mk+1 and mAB(x) = xno(x−1)n1

(x−λ2)n2 . . . (x−λk+1)nk+1 be the characteristic and minimal polynomial, respectively,
of AB , where A and B are projections of order n and λ2, . . . ,λk+1 ∈ C\ {0,1} .

PROPOSITION 2.3. Let A,B∈C
n×n
P . Thus, if cAB(x) = xmo(x−1)m1(x−λ2)m2 . . .

(x−λk+1)mk+1 and mAB(x) = xmo(x−1)n1(x−λ2)n2 . . . (x−λk+1)nk+1 are the charac-
teristic and minimal polynomial, respectively, of AB, then δAB � 1 , which implies k = 1
and m2 � 1 .

Proof. By hypothesis, clearly dimKer(AB)= 1, and as dimKer(AB)= dim(Ker(A)
∩ Im(B)) + dimKer(B) and dimKer(B) � 1, it follows that dimKer(B) = 1, and as
δAB � min{dimKer(A),dimKer(B)} , we conclude that δAB � 1, which implies k = 1
and m2 � 1, that is, AB has at most three distinct eigenvalues. �

Now, take into account the following information: Let W1 , W2 , W3 and W4 be
subspaces from Cn×1 so that W1⊕(Im(A)∩Im(B))⊕(Im(A)∩Ker(B))= Im(A) , W2⊕
(Im(A)∩ Im(B))⊕ (Im(B)∩Ker(A)) = Im(B) , W3 ⊕ (Im(B)∩Ker(A))⊕ (Ker(A)∩
Ker(B)) = Ker(A) and W4 ⊕ (Im(A)∩Ker(B))⊕ (Ker(A)∩Ker(B)) = Ker(B) , where
A and B are matrices of index one of order n .
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LEMMA 2.4. Let A,B ∈ C
n×n
P . Thus, rank(AB) = rank(BA) and rank(A(I −

B)) = rank((I−B)A) if and and only if dimW1 = dimW2 = dimW3 = dimW4 .

Proof. According to [10, Corollary 9], Ker(AB) = Ker(B)⊕ (Im(B)∩Ker(A)) ,
which implies n − rank(AB) = dimKer(AB) = dimKer(B) + dim(Im(B) ∩Ker(A)) ,
hence n − rank(AB) + dim(Im(A) ∩ Im(B)) + dimW2 = dimKer(B) + dim(Im(B) ∩
Ker(A))+dim(Im(A)∩Im(B))+dimW2 = n , and so rank(AB)= dim(Im(A)∩Im(B))+
dimW2 . Similarly, we have that rank(BA) = dim(Im(A)∩ Im(B))+dimW1 , rank(A(I−
B)) = dim(Im(A)∩Ker(B)) + dimW4 and rank((I −B)A) = dim(Im(A)∩Ker(B)) +
dimW1 .

This implies that if rank(AB) = rank(BA) and rank(A(I −B)) = rank((I −B)A) ,
then dim(Im(A)∩ Im(B))+dimW2 = dim(Im(A)∩ Im(B))+dimW1 and dim(Im(A)∩
Ker(B))+dimW4 = dim(Im(A)∩Ker(B))+dimW1 , which implies dimW1 = dimW2 =
dimW4 , and as dimW1 + dimW3 = dimW2 + dimW4 , see [5, Lemma 3.1], we have that
dimW3 = dimW1 .

Conversely, if dimW1 = dimW2 = dimW3 = dimW4 , then, clearly, rank(AB) =
rank(BA) and rank(A(I−B)) = rank((I−B)A) . �

Let A,B ∈ C
n×n
P . Thus, we have that δAB � min{dimKer(A),dimKer(B)} , hence

δAB � n/2 (take, for example, A,B∈C
n×n
HP with λ1, . . . ,λn/2 ∈ (0,1) eigenvalues of AB

and Im(A)∩ Im(B) = {0} , Im(A)∩Ker(B) = {0} , Im(B)∩Ker(A) = {0} , Ker(A)∩
Ker(B) = {0} and dimKer(A) = dimKer(B) = n/2, and so, in this case, δAB = n/2).
Moreover, it is easy to see that δAB � dimW1 and δBA � dimW2 , and as δAB = δBA ,
we have that δAB � dimW2 , and by proof of [5, Theorem 3.3], dimW2 � dimW3 +
dim(Ker(A)∩Ker(B)) , hence δAB � dimW3 +dim(Ker(A)∩Ker(B)) .

Particularly, by Lemma 2.4, if rank(AB) = rank(BA) and rank(A(I − B)) =
rank((I −B)A) , then δAB � dimW1 = dimW3 . In this way, the following result pro-
vides another sufficient condition so that δAB � dimW3 .

PROPOSITION 2.5. If A,B ∈ C
n×n
P and (Ker(A)∩Ker(B)) ⊂ (Im(A)+ Im(B)) ,

then δAB � dimW3 .

Proof. According to Lemma 2.1, dimKer(I − AB) = dim(Im(A) ∩ Im(B)) +
dim((Im(A)+Im(B))∩Ker(A)∩Ker(B)) , and as (Ker(A)∩Ker(B))⊂ (Im(A)+Im(B)) ,
we have that dimKer(I−AB) = dim(Im(A)∩ Im(B))+dim(Ker(A)∩Ker(B)) . Since
Ker(I − AB)⊕ Ker(λ2I − AB)n2 ⊕ . . .⊕ Ker(λk+1I − AB)nk+1 ⊂ Im(AB) . It follows
that dimKer(I −AB)+ δAB = dim(Im(A)∩ Im(B)) + dim(Ker(A)∩Ker(B)) + δAB �
rank(AB) = dim(Im(A)∩ Im(B))+ dimW2 since δAB = dim(Ker(λ2I −AB)n2 ⊕ . . .⊕
Ker(λk+1I −AB)nk+1) , which implies dim(Ker(A)∩Ker(B))+ δAB � dimW2 , and so,
keeping in mind that dimW2 � dimW3 +dim(Ker(A)∩Ker(B)) . we may conclude that
δAB � dimW3 . �

REMARK 2. Let A,B ∈ C
n×n
HP . Then Im(A)+ Im(B) = (Ker(A∗)∩Ker(B∗))⊥ =

(Ker(A)∩Ker(B))⊥ , which implies (Im(A) + Im(B))∩Ker(A)∩Ker(B) = {0} , and
by Lemma 2.1, Ker(I−AB) = Im(A)∩ Im(B) . Moreover, since AB,BA,A(I−B),(I−
B)A ∈ C

n×n
D , it follows that rank(AB) = rank(BA) and rank(A(I − B)) = rank((I −

B)A) , see [5, Theorem 3.7], and by Lemma 2.4, it follows that δAB = dimW1 = dimW3 .
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Let A ∈ C
n×n
P . Thus, it is well known that σA � 1 if and only if A ∈ C

n×n
P \C

n×n
HP .

Moreover, if σ1, . . . ,σk ∈R\{0,1} are singular values of A∈C
n×n
P \C

n×n
HP , then σi > 1

for each i ∈ {1, . . . ,k}.
Now, consider A ∈ C

n×n
P \C

n×n
HP . Then, by [8, Corollary 3.4.3.3], there is U ∈

C
n×n
U so that U∗AU = diag(A1, . . . ,Ak,1, . . . ,1,0, . . . ,0) , where Ai =

(
1 (σi −1)

1
2

0 0

)

and σi > 1 is a singular value of A for each i ∈ {1, . . . ,k}.
Consider, also, B∈C

n×n
HP so that U∗BU = diag(P1, . . . ,Ps,1, . . . ,1,0, . . . ,0) , where

Pi =
(

ai bi

bi ci

)
∈ C

2×2
HP , i = 1, . . . ,s and s � k .

Thus, the following two results establish a relation between δAB and σA .

PROPOSITION 2.6. Let A ∈ C
n×n
P \C

n×n
HP , B ∈ C

n×n
HP and U ∈ C

n×n
U as defined

above. Thus, if bi ∈ C\R for each i ∈ {1, . . . ,k} , then δAB = σA .

Proof. According to the notations above, we have that U∗ABU = diag(E1, . . . ,Ek,
Pk+1, . . . ,Ps,1, . . . ,1,0, . . . ,0) , where

Ei =
(

1 (σi −1)
1
2

0 0

)(
ai bi

bi ci

)
=

(
ai +(σi−1)

1
2 bi bi +(σi−1)

1
2 ci

0 0

)
.

Since Pi ∈C
2×2
HP , it follows that ai,ci ∈R . Suppose that ai+(σi−1)

1
2 bi = 1. Then

1− ai = (σi − 1)
1
2 bi , but this represents a contradiction because 1− ai,(σi − 1)

1
2 ∈ R

and, by hypothesis, bi /∈ R .

Similarly, suppose that ai + (σi − 1)
1
2 bi = 0. Then ai = −(σi − 1)

1
2 bi , which

implies a contradiction too. �

On the other hand, consider bi ∈ R for each i ∈ {1, . . . ,k}. Clearly, if b1 = b2 =
. . . = bk = 0, then we conclude that δAB = 0. Thus, in our next result we shall take into
account that b1, . . . ,bk ∈ R\ {0} .

PROPOSITION 2.7. Let A ∈ C
n×n
P \C

n×n
HP , B ∈ C

n×n
HP and U ∈ C

n×n
U as defined

above. Thus, if bi ∈ R , σiai �= 1 and σici �= 1 for each i ∈ {1, . . . ,k} , then δAB = σA .

Proof. We have that U∗ABU = diag(E1, . . . ,Ek,Pk+1, . . . ,Ps,1, . . . ,1,0, . . . ,0) ,

where Ei =
(

ai +(σi−1)
1
2 bi bi +(σi−1)

1
2 ci

0 0

)
.

Since Pi ∈ C
2×2
HP , it follows that ai,ci ∈ R , ai + ci = 1 and aici = b2

i .

Suppose that ai +(σi−1)
1
2 bi = 1 = ai +ci . Then ci = (σi−1)

1
2 bi , which implies

ai(σi − 1)
1
2 bi = b2

i , that is, bi = ai(σi − 1)
1
2 . Hence, ci = (σi − 1)

1
2 ai(σi − 1)

1
2 =

(σi − 1)ai , and so ai + (σi − 1)ai = σiai = 1, but this represents a contradiction for
each i ∈ {1, . . . ,k}.

Similarly, suppose that ai +(σi−1)
1
2 bi = 0. Then ai = −(σi−1)

1
2 bi , which im-

plies −(σi−1)
1
2 bici = b2

i , that is, bi = −(σi−1)
1
2 ci . Hence, ai = −(σi−1)

1
2 (−(σi−
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1)
1
2 ci) = (σi−1)ci , and so (σi−1)ci +ci = σici = 1, but this represents a contradiction

for each i ∈ {1, . . . ,k} too. �
Consider the decompositions given below for the projections A , B and C :

YAAY−1
A =

(
Ir 0
0 0

)
, YBBY−1

B =
(

Is 0
0 0

)
and YABY−1

A =C =Y−1
C

(
Is 0
0 0

)
YC =

(
C1 C2

C3 C4

)
,

(1)
where YA , YB and YC are nonsingular matrices, rank(A) = r , rank(B) = s and C1 ∈
Cr×r .

Moreover, consider that there is a simultaneous triangularization between two pro-
jections A and B , and so, clearly, δAB = 0. Particularly, if rank(AB−BA) � 1, then
δAB = 0 too, see [11, Theorem 40.5]. However, in our next result we shall characterize
the projections A and B so that δAB = 0.

PROPOSITION 2.8. Let A,B,C ∈ C
n×n
P be with representation in (1). Then δAB =

0 if and only if AB−BA is nilpotent.

Proof. Taking into account that YAABY−1
A =

(
Ir 0
0 0

)(
C1 C2

C3 C4

)
=

(
C1 C2

0 0

)
, we

have that δAB = 0 implies that δC1 = 0, and so if λ is an eigenvalue of C1 , then λ = 0
or λ = 1. Since C ∈ C

n×n
P , it follows that C2C3 = C1 −C2

1 . Hence, C2C3 is nilpotent.
Conversely, if C2C3 is nilpotent, then any eigenvalue of C2C3 is equal to zero.

Thus, if λ is an eigenvalue of C1 , then λ −λ 2 is eigenvalue of C1−C2
1 =C2C3 , which

implies λ −λ 2 = 0, hence λ = 0 or λ = 1, that is, δC1 = 0, and so δAB = 0.

Now, we have that YABAY−1
A =

(
C1 0
C3 0

)
, which implies YAABY−1

A −YABAY−1
A =

YA(AB− BA)Y−1
A =

(
C1 C2

0 0

)
−

(
C1 0
C3 0

)
=

(
0 C2

−C3 0

)
, hence YA(AB− BA)2Y−1

A =(−C2C3 0
0 −C3C2

)
.

Since C2C3 is nilpotent ⇔C3C2 is nilpotent, it follows that (AB−BA)2 is nilpo-
tent ⇔C2C3 is nilpotent, and as (AB−BA)2 is nilpotent ⇔ AB−BA is nilpotent, we
may already conclude that δAB = 0 ⇔ AB−BA is nilpotent. �

Particularly, the following result provides a necessary and sufficient condition so
that AB ∈ C

n×n
P whenever A,B ∈ C

n×n
P .

COROLLARY 2.9. Let A,B,C ∈ C
n×n
P be with representation in (1). Then AB ∈

C
n×n
P if and only if C2C3 = 0 and Im(C2) ⊂ Im(C1) .

Proof. Consider that YAABY−1
A =

(
Ir 0
0 0

)(
C1 C2

C3 C4

)
=

(
C1 C2

0 0

)
. If AB ∈ C

n×n
P ,

then, by [5, Theorem 2.11], C1 ∈ C
r×r
P and Im(C2) ⊂ Im(C1) . Since C2C3 = C1 −C2

1 ,
it follows that C2C3 = 0.

Conversely, if C2C3 = 0, then C1 = C2
1 , and as Im(C2) ⊂ Im(C1) , again by [5,

Theorem 2.11], we have that AB ∈ C
n×n
P . �
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On the other hand, the next result provides a sufficient condition so thatδAB reaches
its maximum value, that is, δAB = dimW1 .

PROPOSITION 2.10. If A,B ∈ C
n×n
P and AB− BA is nonsingular, then δAB =

Tr(A) .

Proof. Let C = AB− BA nonsingular Then, by [12, Corollary 2.10], Im(A)⊕
Im(B) = Im(A∗)⊕ Im(B∗) = C

n×1 and rank(AB) = rank(BA) = rank(A) = rank(B) .
Hence, Im(A)∩ Im(B) = {0} and (Im(A∗)⊕ Im(B∗))⊥ = (Im(A∗))⊥ ∩ (Im(B∗))⊥ =
Ker(A)∩Ker(B)= (Cn×1)⊥ = {0} . Since, by Lemma 2.1, dimKer(I−AB)= dim(Im(A)
∩Im(B))+dim((Im(A)+Im(B))∩Ker(A)∩Ker(B)) , it follows that 1 /∈σ(AB) . More-
over, taking into account that dim(Im(A)∩Ker(B))= rank(A)−rank(BA)= dim(Im(B)
∩Ker(A))= rank(B)−rank(AB)= 0, we have that Im(A)∩Ker(B)= Im(B)∩Ker(A)=
{0} , which implies Ker(AB) = W4 , and keeping in mind that Im(A)∩ Im(B) = {0} ,
we conclude that W1 = Im(AB) = Im(A) , and therefore δAB = rank(AB) = rank(A) =
Tr(A) . �

REMARK 3. From Corollary 3.5, we see that the requiring AB−BA to be nonsin-
gular is not necessary for the conclusion: δAB = Tr(A) in Proposition 2.10.

REMARK 4. Let A,B,C∈C
n×n
P be with representation in (1). Thus, we shall show

a sufficient and necessary condition so that δAB = Tr(A) whenever rank(A) = Tr(A) �
n/2. Before, however, note that δAB � dim(W1) � rank(A) , and if δAB = Tr(A) =
rank(A) , then δAB = dim(W1) and 1 /∈ σ(AB) . Moreover, rank(AB) � rank(A) =
δAB � rank(AB) , which implies δAB = rank(AB) = rank(A) , hence we may conclude
that AB ∈ C

n×n
D . Thus, taking into account this information and using Proposition 3.4,

in section 3, we have that δAB = Tr(A) if and only if C2C3 ∈ C
r×r
D and nonsingular

whenever Tr(A) � n/2.
We have already showed that, given A and B projections of order n , δAB �

dim(W3 ⊕ (Ker(A)∩Ker(B))) . Now, in our last main result of this section, we shall
show a more refined result, where δAB = dimKer(λ1I − AB) + . . . + dimKer(λkI −
AB) � dim((W3 ⊕ (Ker(A)∩Ker(B)))∩ (W1 ⊕W2⊕ (Im(B)∩Ker(A)))) whenever AB
and BA are diagonalizable and λ1, . . . ,λk ∈ σ(AB)\ {0,1} distinct. However, first we
shall show a preliminary result and relevant to Theorem 2.12.

PROPOSITION 2.11. Let A,B∈C
n×n
P . Thus, (W3⊕(Ker(A)∩Ker(B)))∩(AIm(B)

+ Im(B)) = {0} if and only if Im(B) = (Im(A)∩ Im(B))⊕ (Ker(A)∩ Im(B)) .

Proof. Consider v∈ Im(A)∩(Im(B)⊕W3⊕(Ker(A)∩Ker(B)))= Im(AB) . Hence
v = u+w , where v∈ Im(A) , u∈ Im(B) and w∈W3⊕(Ker(A)∩Ker(B)) . This implies
that Av = v = Au+Aw = Au = u+w , hence w = Au−u , and so w ∈ (W3⊕ (Ker(A)∩
Ker(B)))∩(AIm(B)+ Im(B)) . Thus, if Im(B) = (Im(A)∩ Im(B))⊕(Ker(A)∩ Im(B)) ,
then u = u1 +u2 , where u1 ∈ Im(A)∩ Im(B) and u2 ∈ Ker(A)∩ Im(B) , which implies
w = A(u1 + u2)− (u1 + u2) = u1 − u1 − u2 = −u2 , and as (Ker(A)∩ Im(B))∩ (W3 ⊕
(Ker(A)∩Ker(B))) = {0} , we have that w = 0.

Conversely, consider W2 �= {0} , w2 ∈W2 and w2 �= 0. Hence, u = u1 +u2 +w2 ,
which implies w = A(u1 + u2 + w2)− (u1 + u2 + w2) = u1 + Aw2 − u1 − u2 −w2 =
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Aw2 − (u2 +w2) . Since Aw2 /∈ Im(B) and −(u2 +w2) ∈ Im(B) , it follows that w �= 0,
see [5, Lemma 3.2].

Therefore, we may conclude that if (W3⊕(Ker(A)∩Ker(B)))∩(AIm(B)+ Im(B))
= {0} , then W2 = {0} , that is, Im(B) = (Im(A)∩ Im(B))⊕ (Ker(A)∩ Im(B)) . �

THEOREM 2.12. If A,B ∈ C
n×n
P and AB,BA ∈ C

n×n
D , then δAB � dim((W3 ⊕

(Ker(A)∩Ker(B)))∩ (W1 ⊕W2⊕ (Im(B)∩Ker(A)))) .

Proof. Since AB,BA ∈ C
n×n
D , it follows that AB and BA are core matrices, which

implies, by [5, Lemma 2.5], rank(AB) = rank(BA) , and according to proof of Lemma
2.4, rank(AB) = dim(Im(A) ∩ Im(B)) + dimW2 = dim(Im(A) ∩ Im(B)) + dimW1 =
rank(BA) , hence dimW1 = dimW2 and AW2 = W1 . Taking into account that AB ∈
C

n×n
D , we have that Im(AB) = (Im(A)∩ Im(B))⊕W1 = Im(A)∩ (Im(B)+Ker(A)) =

Im(A)∩ ((Im(A)∩ Im(B))⊕W2⊕ (Im(B)∩Ker(A))⊕W3⊕ (Ker(A)∩Ker(B))) . Now,
note that dim(Im(A)∩(W2⊕(Im(B)∩Ker(A))⊕W3⊕(Ker(A)∩Ker(B))))= rank(A)+
dimW2+dimKer(A)−dim(Im(A)+(W2⊕(Im(B)∩Ker(A))⊕W3⊕(Ker(A)∩Ker(B))))
= dimW2 + n− n = dimW1 , and so we may conclude that Im(A)∩ (W2 ⊕ (Im(B)∩
Ker(A))⊕W3 ⊕ (Ker(A)∩Ker(B))) = W1 . Moreover, keeping in mind that dimW1 =
dimW2 , we have that dimW1 � dimW2+dim(Im(B)∩Ker(A))= t , and since Ker(λ1I−
AB)⊕ . . . ⊕ Ker(λkI − AB) ⊂ W1 , it follows that δAB = dimKer(λ1I − AB) + . . . +
dimKer(λkI−AB) � dimW1 � t .

On the other hand, consider v∈ Im(A)∩(W2⊕(Im(B)∩Ker(A))⊕W3⊕(Ker(A)∩
Ker(B))) , hence v = u +w , where v ∈ Im(A) , u ∈ W2 ⊕ (Im(B)∩Ker(A)) and w ∈
W3⊕ (Ker(A)∩Ker(B)) , which implies Av = v = Au+Aw = Au = u+w , that is, w =
Au− u , and so w ∈ (W3 ⊕ (Ker(A)∩Ker(B)))∩ (W1 ⊕W2 ⊕ (Im(B)∩Ker(A))) since
A(W2⊕ (Im(B)∩Ker(A)) = AW2 = W1 .

Let {u1, . . . ,uk, . . . ,ut} be a basis of W2⊕ (Im(B)∩Ker(A)) . Moreover, consider
that w1 = Au1 − u1, . . . ,wk = Auk − uk, . . . ,wt = Aut − ut and v1 = u1 +w1, . . . ,vk =
uk +wk , where ABvi = λivi and BAui = λiui for each i∈ {1, . . . ,k} since W1 = Im(A)∩
(W2⊕ (Im(B)∩Ker(A))⊕W3⊕ (Ker(A)∩Ker(B))) .

Now, note that if c1w1 + . . . + ckwk + . . . + ctwt = 0 with c1, . . . ,ct ∈ C , then
c1(Au1 − u1) + . . . + ck(Auk − uk) + . . . + ct(Aut − ut) = A(c1u1 + . . . + ckuk + . . . +
ctut)−(c1u1+ . . .+ckuk + . . .+ctut) = 0, which implies c1u1+ . . .+ckuk + . . .+ctut ∈
Im(A) , but c1u1 + . . . + ckuk + . . . + ctut ∈ W2 ⊕ (Im(B)∩Ker(A)) , and as Im(A)∩
(W2⊕ (Im(B)∩Ker(A))) = {0} , we have that c1u1 + . . .+ckuk + . . .+ctut = 0, and so
c1 = . . . = ck = . . . = ct = 0. This implies that dimspan(w1, . . . ,wt) = t , hence we may
conclude that t � dim((W3⊕(Ker(A)∩Ker(B)))∩(W1⊕W2⊕(Im(B)∩Ker(A))) . �

REMARK 5. Regarding Theorem 2.12, keeping in mind that AB,BA ∈ C
n×n
D , we

may easily conclude, by symmetry, that δBA � dim((W4 ⊕ (Ker(A)∩Ker(B)))∩ (W1 ⊕
W2 ⊕ (Im(A)∩Ker(B)))) , and as δAB = δBA , we claim that δAB � min{dim((W3 ⊕
(Ker(A)∩Ker(B)))∩(W1⊕W2⊕ (Im(B)∩Ker(A)))),dim((W4⊕ (Ker(A)∩Ker(B)))∩
(W1⊕W2⊕ (Im(A)∩Ker(B))))} .
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3. When the product of two projections is a diagonalizable matrix

In [5, Corollary 3.9], we have proved that if D ∈ C
n×n
D with rank(D) � n/2 and

with arbitrary spectrum, then there are A , B ∈ C
n×n
P so that AB = D . Moreover, in

[5, Theorem 3.12], we have proved that there are projections A and B so that AB =
D , where D is diagonalizable, if and only if δD � αD . Similarly, in [12, page 81],
Ballantine proved that given a singular diagonalizable matrix D and A and B of same
order, D = AB if and only if rank(I−D) � 2dimKer(D) . Another relevant information
is that, by [2, Theorem 3.2.11.1], we may conclude that given projections A and B , AB
is diagonalizable if and only if BA is diagonalizable whenever AB and BA are core
matrices. In this section, we shall show some necessary and/or sufficient conditions so
that AB is diagonalizable with arbitrary spectrum or restricted to the real segment [0,
1].

In [5, Corollary 3.10], we have proved that if N ∈ C
n×n
N with rank at most n/2

and arbitrary spectrum, then there are A,B ∈ C
n×n
P \C

n×n
HP so that AB = N . However, if

A ∈ C
n×n
HP , N ∈ C

n×n
N \C

n×n
HP , then AB �= N for any B ∈ C

n×n
P . Our next main result is

able to demonstrate this.

THEOREM 3.1. If A ∈ C
n×n
HP , B ∈ C

n×n
P and N ∈ C

n×n
N so that AB = N , then

N ∈ C
n×n
HP .

Proof. According to [1, p. 42], AX = N if and only if AA†N = N for some
X ∈ Cn×n . Since A ∈ C

n×n
HP , it follows that A = A2 = A∗ = A† , so AX = N is solv-

able if and only if AN = N . Suppose that N /∈ C
n×n
HP . Thus, take U ∈ C

n×n
U so that

U∗NU =
(

D 0
0 0

)
, where D = diag(λ1, . . . ,λr) , λ1, . . . ,λr ∈ C \ {0} and at least one

λi ∈ C \ {0,1} with i ∈ {1, . . . ,r} . Consider U∗AU =
(

A1 A2

A3 A4

)
with A1 ∈ Cr×r .

Hence, U∗ANU =U∗AUU∗NU =U∗NU , which implies

(
A1 A2

A3 A4

)(
D 0
0 0

)
=

(
D 0
0 0

)
,

and so we have that A1 = Ir and A3 = 0, and as U∗AU ∈C
n×n
HP , we also have that A2 = 0

and A4 ∈ C
n−r×n−r
HP . Again by [1, p. 42], X = A†N +(I −A†A)M = N +(I−A)M is

the general solution of the equation AX = N for any M ∈ Cn×n . This implies that

X = U

(
D 0
0 0

)
U∗ +

[(
Ir 0
0 In−r

)
−U

(
Ir 0
0 A4

)
U∗

]
M , that is,

U∗XU =
(

D 0
0 0

)
+

(
0 0
0 In−r −A4

)(
M1 M2

M3 M4

)
=

(
D 0

(In−r −A4)M3 (In−r −A4)M4

)
,

where U∗MU =
(

M1 M2

M3 M4

)
and M1 ∈Cr×r . Hence, taking into account that {λ1, . . . ,λr}

= σ(D) ⊂ σ(X) , we may conclude that X /∈ C
n×n
P , but this contradicts our hypothesis

that X = B ∈ C
n×n
P . �

REMARK 6. Taking into account the proof of Theorem 3.1 and if A,N ∈ C
n×n
HP

and AN = N , then D = Ir and AN = N = N∗ = NA . Thus, take U ∈ C
n×n
U so that
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U∗AUU∗NU =U∗NU =
(

Ir 0
0 A4

)(
Ir 0
0 0

)
=

(
Ir 0
0 0

)
, where A4 =

(
It1 0
0 0

)
and t1+t2 =

n−r . Hence, X =U

(
Ir 0
V W

)
U∗ is the general solution of the equation AX = N , where

V =
[(

It1 0
0 It2

)
−

(
It1 0
0 0

)]
M3 =

(
0 0
0 It2

)
M3

and

W =
[(

It1 0
0 It2

)
−

(
It1 0
0 0

)]
M4 =

(
0 0
0 It2

)
M4

for any M = U

(
M1 M2

M3 M4

)
U∗ ∈ Cn×n , and consequently M1 , M2 , M3 and M4 are

arbitrary submatrices. Therefore, we may conclude that X ∈ C
n×n
P if and only if WV =

0 and W 2 = W .

REMARK 7. Consider E ∈ C
n×n
EP . Thus, by [3, Lemma 2], Q∗EQ =

(
T 0
0 0

)
for

some Q ∈ C
n×n
U and T ∈ Ct×t nonsingular. Again, taking into account the proof of

Theorem 3.1, we may similarly conclude that if A ∈ C
n×n
HP , B ∈ C

n×n
P and E ∈ C

n×n
EP so

that AB = E , then E ∈ C
n×n
HP .

Now, it follows a result which provides a sufficient condition so that AB ∈ C
n×n
EP ,

where A ∈ C
n×n
P and B ∈ C

n×n
P \C

n×n
HP .

PROPOSITION 3.2. Let A ∈ C
n×n
P and B ∈ C

n×n
P \C

n×n
HP . Let PAUA and UBPB be

polar decompositions, respectively, of A and B, where UA,UB ∈ C
n×n
U , PA � 0 , PB �

and Q = UAUB . Thus, if PAQ ∈ C
n×n
EP , Ker(PB) ⊂ Ker(PAQ) and PB(Ker(PAQ)) ⊂

Ker(PAQ) , then AB ∈ C
n×n
EP .

Proof. We have that Ker(PB) ⊂ Ker(PAQ) ⇒ (Ker(PAQ))⊥ ⊂ (Ker(PB))⊥ ⇒
Im((PAQ)∗) ⊂ Im(P∗

B) ⇒ Im(PAQ) ⊂ Im(PB) since PAQ ∈ C
n×n
EP , hence Im(PAQPB) ⊂

Im(PB) . Moreover, since PB(Ker(PAQ)) ⊂ Ker(PAQ) , it follows that Ker(PAQ) ⊂
Ker(PAQPB) . Keeping in mind that PAQ,PB ∈C

n×n
EP and by [9, Theorem2], if Im(PAQPB)

⊂ Im(PB) and Ker(PAQ) ⊂ Ker(PAQPB) , then PAQPB = AB ∈ C
n×n
EP . �

Now, consider the solvable matricial equation AX = D , where A ∈ C
n×n
HP and

D ∈ C
n×n
D \C

n×n
N . Thus, if rank(A) = s � n− s and given α1, . . . ,αr ∈ C \ {0} with

rank(D) = r � s , then there are D ∈ C
n×n
D \C

n×n
N and X ∈ C

n×n
P so that {α1, . . . ,αr} ⊂

σ(D) and AX = D . Our next result provides sufficient conditions for the projection X
to satisfy the equation AX = D , under the conditions above established.

Consider the following decompositions for the projections A and B of order n :

U∗
AAUA =

(
Is 0
0 0

)
= VBBV−1

B , where UA ∈ C
n×n
U , VB ∈ Cn×n and nonsingular,

B =
(

Is A2

0 0

)
, A2 ∈ Cs×n−s and A2 �= 0. Hence, A = T

(
Is A2

0 0

)
T−1 ∈ C

n×n
HP with T =

UAVB . Consider, also, D = Tdiag(λ1, . . . ,λr,0, . . . ,0) T−1 ∈ Cn×n , Dλ = diag(λ1 −
1, . . . ,λr−1,−1, . . . ,−1)∈Cs×s , λ1, . . . ,λr ∈C\{0} , r � s and M3 = A†

2Dλ +(In−s−
A†

2A2)Ws with Ws ∈ C
n−s×s .
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PROPOSITION 3.3. Let A, B, T , D, Dλ and M3 be matrices as represented above.

Once an arbitrary Hermitian projection A of rank s is fixed and X = T

(
Is 0
M3 0

)
T−1 ∈

C
n×n
P , we have that if λ1, . . . ,λr ∈ C\{0,1} and s � n− s, then AX = D for some D ∈

C
n×n
D \C

n×n
N with {λ1, . . . ,λr} ⊂ σ(D) , for any Ws ∈ C

n−s×s and for any A2 ∈ C
s×n−s

of rank s.

Proof. Consider A ∈ C
n×n
HP and B ∈ C

n×n
P \C

n×n
HP with rank(A) = rank(B) = s .

Then there are UA ∈C
n×n
U , VB ∈Cn×n\C

n×n
U and nonsingular so that U∗

AAUA =
(

Is 0
0 0

)

= VBBV−1
B , that is, (UAVB)−1AUAVB = B =

(
Is A2

0 0

)
, and so A = T

(
Is A2

0 0

)
T−1 ∈

C
n×n
HP for any A2 ∈ Cs×n−s , but A2 �= 0 and UAVB = T /∈ C

n×n
U . Now, consider the

matricial equation
AX = D, (2)

where D = Tdiag(λ1, . . . ,λr,0, . . . ,0)T−1 ∈ Cn×n , λ1, . . . ,λr ∈ C \ {0,1} and r � s .
Keeping in mind that A ∈ C

n×n
HP , we have that AA† = A†A = A = A† , which im-

plies AA†D = AD = T

(
Is A2

0 0

)
T−1T

(
Ds 0
0 0

)
T−1 = T

(
Ds 0
0 0

)
T−1 = D , where Ds =

diag(λ1, . . . ,λr,0, . . . ,0) ∈ C
s×s . This implies that AA†D = D , and by [2, p. 42], (2)

is solvable for any A2 ∈ Cs×n−s and A2 �= 0. Again by [2, p. 42], in (2) the gen-

eral solution is given by X = A†D+(I −A†A)M = D+(I−A)M = T

(
Ds 0
0 0

)
T−1 +[(

Is 0
0 In−s

)
−T

(
Is A2

0 0

)
T−1

]
TT−1M for any M ∈Cn×n . Hence, T−1XT =

(
Ds 0
0 0

)
+(

0 −A2

0 In−s

)(
M1 M2

M3 M4

)
=

(
Ds 0
0 0

)
+

(−A2M3 −A2M4

M3 M4

)
=

(
Ds −A2M3 −A2M4

M3 M4

)
, where

T−1MT =
(

M1 M2

M3 M4

)
and M1 ∈ Cs×s . Note that if M4 = 0 and Ds −A2M3 = Is , then

X ∈ C
n×n
P . Thus, take M4 = 0 and Ds−A2M3 = Is , that is,

A2M3 = diag(λ1−1, . . . ,λr −1,−1, . . . ,−1) = Dλ . (3)

Let s � n− s . Since λi �= 1 for each i ∈ {1, . . . ,r} , it follows that rank(Dλ ) = s ,
which implies rank(A2) = rank(A2A

†
2) = s , hence A2A

†
2 = Is , that is, A2A

†
2Dλ = Dλ ,

and so (3) is solvable for any A2 ∈ Cs×n−s of rank s . In this case, the general solution
of (3) is given by M3 = A†

2Dλ +(In−s −A†
2A2)Ws for any Ws ∈ Cn−s×s . Therefore, if

X = T

(
Is 0
M3 0

)
T−1 ∈ C

n×n
P , with λ1, . . . ,λr ∈ C \ {0,1} and s � n− s , then X is a

solution of (2) for any Ws ∈ C
n−s×s and for any A2 ∈ C

s×n−s of rank s . �
Let A,B,C ∈ C

n×n
P be with representation in (1) and rank(A) � n/2. In the next

result, we shall make use of the submatrices of the projection C to provide a necessary
and sufficient condition so that AB ∈ C

n×n
D , rank(AB) = rank(A) and Ker(I −AB) =

{0} .
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PROPOSITION 3.4. Let A,B,C ∈ C
n×n
P be with representation in (1) and r � n/2 .

Thus, AB ∈ C
n×n
D with rank(AB) = r and 1 /∈ σ(AB) if and only if C2C3 ∈ C

r×r
D and

nonsingular.

Proof. Taking into account that YAABY−1
A =

(
Ir 0
0 0

)(
C1 C2

C3 C4

)
=

(
C1 C2

0 0

)
and

that a square matrix is diagonalizable if and only if its minimal polynomial is a product
of pairwise distinct monic linear polynomials, we have that if AB is diagonalizable,
then so is C1 . Moreover, 1 /∈ σ(AB) implies that 1 /∈ σ(C1) , and also rank(AB) = r
implies that 0 /∈ σ(C1) since C1 ∈ Cr×r and Im(C2) ⊂ Im(C1) , see [5, Theorem 2.11].

Since

(
C1 C2

C3 C4

)(
C1 C2

C3 C4

)
=

(
C1 C2

C3 C4

)
, it follows that

C2C3 = C1 −C2
1 . (4)

Hence C2C3 ∈ C
r×r
D and nonsingular.

Conversely, consider mC(x) = (x− λ1) . . . (x− λk) the minimal polynomial of
C2C3 . Thus, if C2C3 ∈ C

r×r
D and nonsingular, then λ1, . . . ,λk are distinct and nonzero,

so (x−λ1) . . . (x−λk)(C2C3)= (x−λ1) . . . (x−λk)x(1−x)(C1)= 0, and by (4), δC1 = r
since C2C3 is nonsingular, and so we may conclude that C1 ∈ C

r×r
D . Now, note that

Im(C2) ⊂ Im(C1) since C1 is nonsingular, and therefore, by [5, Theorem 2.11], we
conclude that AB ∈ C

n×n
D with rank(AB) = r and 1 /∈ σ(AB) . �

The followingCorollary provides a sufficient condition so that AB∈C
n×n
D , rank(AB)

= rank(A) and Ker(I−AB) = {0} whenever A,B ∈ C
n×n
P .

COROLLARY 3.5. Let A,B,C∈C
n×n
P be with representation in (1) and rank(A) =

r < n/2 . Thus, if (AB−BA)2 ∈C
n×n
D and rank(AB−BA)2 = 2rank(A) , then AB∈C

n×n
D

with rank(AB) = r and 1 /∈ σ(AB) .

Proof. We have that YAABY−1
A =

(
Ir 0
0 0

)(
C1 C2

C3 C4

)
=

(
C1 C2

0 0

)
and YABAY−1

A =(
C1 C2

C3 C4

)(
Ir 0
0 0

)
=

(
C1 0
C3 0

)
, which implies YA(AB−BA)2Y−1

A =
(−C2C3 0

0 −C3C2

)
.

Clearly, if (AB−BA)2 is diagonalizable with rank(AB−BA)2 = 2rank(A) = 2r ,
then −C2C3 and −C3C2 are diagonalizable too with rank(−C2C3)+ rank(−C3C2) =
2r , and as −C2C3 and −C3C2 have the same nonzero eigenvalues, it follows that
rank(−C2C3) = rank(−C3C2) = r , so C2C3 is nonsingular, and by Proposition 3.4,
we may conclude that AB ∈ C

n×n
D with rank(AB) = r and 1 /∈ σ(AB) . �

REMARK 8. Regarding proposition 2.10, the condition AB−BA being nonsingu-
lar to imply that δAB = Tr(A) is not necessary because, according to Corollary 3.5, we
have the following:

Let A,B∈ C
n×n
P be with rank(A) = Tr(A) = r < n/2. Thus, if C2 = (AB−BA)2 ∈

C
n×n
D and rank(C2) = 2rank(A) = 2r < n , then AB∈C

n×n
D with rank(AB) = Tr(A) and

1 /∈ σ(AB) . Hence, clearly, C is singular and δAB = Tr(A) .



REMARKS ON THE PRODUCT OF TWO PROJECTIONS 49

From now on, once an arbitrary projection A is fixed, we shall show projections B
so that AB ∈ C

n×n
D with σ(AB) ⊂ [0,1] . Particularly, concerninig Lemma 3.6, Propo-

sition 3.7 and Proposition 3.8, we shall need the following information:
We define k functions fk by fk(tk,α1, . . . ,αk) = {0, . . . ,0,α1, . . . ,αk,1, . . . ,1} ,

where α1, . . . ,αk ∈ (0,1) , the number of nonzero elements of fk(tk,α1, . . . ,αk) is equal
to tk , the number of zero elements of fk(tk,α1, . . . ,αk) is equal to n− tk and 0 � k �
n−tk . Hence, according to this definition for fk , k � tk � n−k and 0 � k � n/2. Then,
for every k , 0 � k � n/2; for every αi ∈ (0,1) , i = 1, . . . ,k , and for every tk , k � tk �
n−k , there are Hermitian projections P and Q so that σ(PQ) = fk(tk,α1, . . . ,αk) , with
rank(P) = r , rank(Q) = s and tk = min{r,s} . Note that k � n− tk is a necessary con-
dition for σ(PQ) = fk(tk,α1, . . . ,αk) because δPQ � min{dimKer(P),dimKer(Q)} .
Moreover, PQ is a diagonalizable matrix, see [6, p. 144], which implies αPQ =
dimKer(PQ) , and so αPQ = dimKer(PQ) � dimKer(Q) � δPQ .

We should also consider Lemma 3.6, see proof in [4, Lemma 2.4].

LEMMA 3.6. For every k , 0 � k � n/2 ; for every αi ∈ (0,1) , i = 1, . . . ,k and
for every tk , k � tk � n− k , there are E,F ∈ C

n×n
HP which are of block diagonal form

with diagonal blocks of order 2 and of order 1 so that σ(EF) = fk(tk,α1, . . . ,αk) , with
rank(E) = r , rank(F) = s and tk = min{r,s} .

Given projections A and B , in our next result we provide a necessary and sufficient
condition so that AB is diagonalizable with σ(AB) ⊂ [0,1] .

PROPOSITION 3.7. Let A,B∈C
n×n
P . Then AB∈C

n×n
D with σ(AB)⊂ [0,1] if and

only if AB is similar to PQ for some P,Q ∈ C
n×n
HP .

Proof. Let X ∈ Cn×n be nonsingular so that X−1ABX = PQ , where P,Q ∈ C
n×n
HP .

Thus, by [9, p. 143 and 144], we may conclude that AB ∈ C
n×n
D with σ(AB) ⊂ [0,1] .

Conversely, if AB ∈ C
n×n
D with σ(AB) ⊂ [0,1] , then there is some Y ∈ Cn×n non-

singular so that Y−1ABY = diag(λ1, . . . ,λk,1, . . . ,1,0, . . . ,0) , where λ1, . . . ,λk ∈ (0,1)
and k = δAB � min{dimKer(A),dimKer(B)} � dimKer(AB) . Hence, according to
Lemma 3.6, there are P,Q ∈ C

n×n
HP so that Z−1PQZ = diag(λ1, . . . ,λk,1, . . . ,1,0, . . . ,0)

to some Z ∈ Cn×n nonsingular, which implies Y−1ABY = Z−1PQZ , and therefore
(YZ−1)−1ABYZ−1 = PQ . �

Let Ej,Fj ∈ C
2×2
HP be with the following entries: Ej =

( 1
2 b1 +b2i

b1−b2i
1
2

)
and

Fj =
( 1

2
1
2

1
2

1
2

)
with b1,b2 ∈R , i =

√−1 and j = 1, . . . ,k , where b2
1+b2

2 = 1
4 since Ej is

singular. Moreover, for any α j ∈ (0,1) , there are Ej,Fj ∈C
2×2
HP so that α j is the eigen-

value of EjFj different of 0 and of 1, where b1 = α j − 1
2 , see proof in [9, Lemma 2.4].

Now, let E = diag(E1, . . . ,Ek,1, . . . ,1,0, . . . ,0) and F = diag(F1, . . . ,Fk,1, . . . ,1,0, . . . ,0)
be Hermitian projections of order n and with rank(E) = r and rank(F) = s . Consider-
ing, also, the decompositions given below for the projections A , E and B :

YAAY−1
A = YEEY−1

E =
(

Ir 0
0 0

)
and YBBY−1

B =
(

Is 0
0 0

)
, (5)
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where YA , YE and YB are nonsingular matrices, rank(A) = r and rank(B) = s . More-
over, UAPA and UBPB are the polar decompositions of YA and YB , respectively, with
PA > 0 and PB > 0.

Given α1, . . . ,αk ∈ (0,1) , 1 � k � n/2, once an arbitrary projection A of rank r
is fixed, in our next result, we shall identify projections B of rank s so that AB is a
diagonalizable matrix with {α1, . . . ,αk}⊂σ(AB)⊂ [0,1] , where k � min{dimKer(A),
dimKer(B)} and rank(AB) = min{r,s} .

PROPOSITION 3.8. Let A,E ∈ C
n×n
P be with representation in (5). Once an

arbitrary projection A is fixed, for any YA , for any YE and for any E , if B =
Y−1

A YEF(Y−1
A YE)−1 , then AB ∈ C

n×n
D with σ(AB) = fk(tk,α1, . . . ,αk) for any αi ∈

(0,1) , i = 1, . . . ,k , tk = min{r,s} and δAB = k .

Proof. Since rank(E) = rank(A) , it follows that YEEY−1
E = YAAY−1

A , and so
Y−1

A YEEY−1
E YA = A . Consider that X = Y−1

A YE and B = XFX−1 . Hence, by Lemma
3.6, for any YA , for any YE and for any E , AB = XEX−1XFX−1 = XEFX−1 ∈ C

n×n
D

with σ(AB) = fk(tk,α1, . . . ,αk) for any αi ∈ (0,1) , i = 1, . . . ,k , tk = min{r,s} and
δAB = k . �

In [5, Theorem 3.15], we have proved that if PA = PB , then AB ∈ C
n×n
D with

σ(AB) ⊂ [0,1] for some YA and YB with representation in (1), but the converse does
not hold. However, the following two Lemmas are useful to the Propositions presented
shortly thereafter.

LEMMA 3.9. Let A,B ∈ C
n×n
P . Then PA = PB if and only if YB = UYA for some

U ∈ C
n×n
U .

Proof. If PA = PB , then YB = UBPA = UBU∗
AYA , where U = UBU∗

A ∈ C
n×n
U . Con-

versely, if YB = UYA for some U ∈ C
n×n
U , then YB = UBPB = UUAPA , which implies

PA = U∗
AU∗UBPB , and so by the uniqueness of the polar decomposition of PA , we may

conclude that U∗
AU∗UB = I and PA = PB . �

LEMMA 3.10. Let A,B∈Cn×n . If A∗A = B∗B, then A =UB for some U ∈C
n×n
U .

Proof. Let A = UAPA and B = UBPB be the polar decompositions of A and B ,
respectively. Hence, if A∗A = B∗B , then PAU∗

AUAPA = P2
A = PBU∗

BUBPB = P2
B , which

implies PA = PB , and so A = UAPA = UAPB = UAU∗
BB , where UAU∗

B ∈ C
n×n
U . �

Let A,B,C ∈ C
n×n
P be with representation in (1). The next result provides a nec-

essary and sufficient condition for C to be a Hermitian projection.

PROPOSITION 3.11. Let A,B,C ∈ C
n×n
P be with representation in (1). Then C =

C∗ if and only if YB = UYA for some U ∈ C
n×n
U .

Proof. Since YABY−1
A = C , it follows that YB = YCYA . Thus, if YB =UYA = YCYA ,

then YC =U , and so C = C∗ .
Conversely, if C = C∗ , then there is some YC = U ∈ C

n×n
U so that YCCY−1

C =
diag(Is,0) , hence YB = UYA for some U ∈ C

n×n
U . �
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Now, we shall prove two results which provide sufficient conditions for AB to be a
diagonalizable matrix with σ(AB) ⊂ [0,1] , once an arbitrary projection A is fixed and
for some projection B .

PROPOSITION 3.12. Let A,B ∈ C
n×n
P . Consider also YA and YB with represen-

tation in (1), U ∈ C
n×n
U and D = diag(D1,D2) ∈ Cn×n , where D1 and D2 are non-

singular matrices with D1 of order r . Thus, if YA = DUYB , then AB ∈ C
n×n
D with

σ(AB) ⊂ [0,1] .

Proof. According to (1),

AB = Y−1
A

(
Ir 0
0 0

)
YAY

−1
B

(
Is 0
0 0

)
YB ⇒

YAABY−1
A =

(
Ir 0
0 0

)

YAY
−1
B

(
Is 0
0 0

)
(YAY

−1
B )−1 =

(
Ir 0
0 0

)
DU

(
Is 0
0 0

)
U−1D−1 ⇒

(Y−1
A D)−1ABY−1

A D = D−1
(

Ir 0
0 0

)

DU

(
Is 0
0 0

)
U−1 =

(
Ir 0
0 0

)
U

(
Is 0
0 0

)
U∗.

Taking into account that

(
Ir 0
0 0

)
,U

(
Is 0
0 0

)
U∗ ∈ C

n×n
HP , we may conclude that AB ∈

C
n×n
D with σ(AB) ⊂ [0,1] . �

PROPOSITION 3.13. Let A,B ∈ C
n×n
P be with representation in (1). Thus, if C =

C∗ , then AB ∈ C
n×n
D with σ(AB) ⊂ [0,1] .

Proof. According to Proposition 3.11, if C = C∗ , then YB = UYA for some U ∈
C

n×n
U , and by Lemma 3.9, PA = PB , and therefore AB ∈ C

n×n
D with σ(AB)⊂ [0,1] , see

[5, Theorem 3.15]. �
REMARK 9. On the other hand, concerning Proposition 3.13, it may occur that

AB ∈ C
n×n
D with σ(AB) ⊂ [0,1] , but C �= C∗ for some YA . Indeed, it suffices to keep

in mind the following example:
Let A,B,C ∈ C

3×3
P and YA ∈ C3×3 be so that

A =

⎛
⎝1 0 −0.5

0 1 0
0 0 0

⎞
⎠ , B =

⎛
⎝1 0 0

0 1 0
1 0 0

⎞
⎠ , AB =

⎛
⎝0.5 0 0

0 1 0
0 0 0

⎞
⎠ and YA =

⎛
⎝1 0 0.4472

0 1 0
0 0 0.8944

⎞
⎠ .

Thus,

Y−1
A AYA =

(
I2 0
0 0

)
and Y−1

A BYA = C =

⎛
⎝ 0.5 0 0.2236

0 1 0
1.1180 0 0.5

⎞
⎠ .
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