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REMARKS ON THE PRODUCT OF TWO PROJECTIONS

JOHANNS DE ANDRADE BEZERRA

(Communicated by G. Misra)

Abstract. In this paper we investigate complex projections A and B so that AB is a diagonal-
izable matrix. Particularly, we provide necessary and/or sufficient conditions so that AB is a
diagonalizable matrix with its eigenvalues belonging to the real segment [0, 1]. Moreover, we
investigate on eigenspaces and eigenvalues of the product of two projections.

1. Introduction

Throughout this paper, the matrices used are complex of order n. The symbols
A*, Tr(A), o(A), Im(A), Ker(A), oa, d4 and o4 denote the conjugate transpose,
the trace, the spectrum, the range, the null space, the algebraic multiplicity of zero as
eigenvalue, the number of eigenvalues from C\ {0, 1} and the number of singular val-
ues from R\ {0, 1}, respectively, of some matrix A. A matrix A is called an EP matrix
if Im(A) = Im(A*), or equivalently if Im(A) = (Ker(A))*. More generally, a matrix
A is called a core matrix, that is, a matrix of index one, if Im(A) NKer(A) = {0}, or
equivalently if Im(A) @ Ker(A) = C™*!. Particularly, a matrix A is called a projection
if A2=A. We denote C}*", Cjj5t, CH", Cr", Cri" and C}" the sets of all the
projections, of all the Hermitian projections, of all the diagonalizable matrices, of all
the normal matrices, of all the EP matrices and of all the unitary matrices, respectively.

Clearly, if A and B are projections, then A and B are diagonalizable matrices, but
in general, neither AB nor BA are diagonalizable matrices. Note that if A is a diagonal-
izable matrix, then A is a core matrix because C"*! = Ker(A) ® Ker(A —MI) ... &
Ker(A —A0), with Ay,..., 4 € 6(A)\ {0} and Im(A) =Ker(A—A1) ... ®Ker(A —
M) . We shall also use a definition of the polar decomposition of a complex matrix A:
Any singular complex matrix A can be represented in the form A = UP, where P is a
Hermitian nonnegative definite matrix (P > 0) and U is a unitary matrix. If A is non-
singular such a representation is unique, and so P is a Hermitian positive definite matrix
(P > 0). Moreover, we shall use some information concerning the Moore-Penrose in-
verse for some A € C"™*K: Recall that the Moore-Penrose inverse A’ is the unique
matrix which satisfies AATA = A, ATAAT = AT, (AAT)* = AAT and (ATA)* = ATA.

In this paper, we continue the investigations carried out in [5, section 3] on the
product of two projections A and B. Thus, in section 2, given A,B € C3*", we
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carry out some investigation on the eigenspaces and eigenvalues of AB. We start sec-
tion 2 with our first main result which establishes Ker(I — AB) = Im(A) N (Im(B) &
(Ker(A)NKer(B))) whenever AB € C};*". Taking into account that, by [5, Remark 3],
0ap < min{dimKer(A),dimKer(B)}, we shall show, throughout section 2, some results
refining this last result. Moreover, we shall show results that provide a necessary and/or
sufficient condition so that d45 = 0 or ds5 = Tr(A).

In section 3, we take up, above all, with the following question: Once a projection
A 1is fixed, we investigate projections B so that AB is a diagonalizable matrix with
0 (AB) C [0,1] or with arbitrary spectrum. Moreover, we shall show results that provide
anecessary and/or sufficient condition so that AB is diagonalizable, where A and B are
projections with some restrictions. Particularly, in [7, Theorem 1], for example, Grof3
and Trenkler provided a necessary and sufficient condition so that AB is a projection
whenever A and B are projections, and in this case 845 = 0. In this section, our
main result is the Theorem 3.1 that takes up with the following problem: Once fixed a
Hermitian projection A and given a projection B, the normality of AB implies that AB
is a Hermitian projection, and soon after, Remark 6 characterizes such projections B.

2. On eigenspaces and eigenvalues of the product of two projections

For any two projections A and B of same order, by [10, Corollary 9], we have
that Im(AB) = Im(A) N (Im(B) + Ker(A)). Particularly, in our first main result, we
shall prove that Ker(/ — AB) = Im(A) N (Im(B) & (Ker(A) NKer(B))) whenever AB is
diagonalizable, and for that we shall make use of the following lemma:

LEMMA 2.1. If A,B € C}*", then dimKer(I —AB) = dim(Im(A) NIm(B)) +
dim((Im(A) +Im(B)) NKer(A) NKer(B)).

Proof. Let W and U be two subspaces such that W @ Im(A) NIm(B) = Ker(I —
AB) and U @ Im(A) NIm(B) = Ker(I — BA). Consider v=w+u € (Im(A) +Im(B))N
Ker(A) NKer(B), where w € Im(A) and u € Im(B), and so Aw =w, Bu = u and
Av=Bv=0. Hence, Av = w+Au =0 and Bv = Bw+u = 0, which implies ABw =w
and BAu = u. If w,u € Im(A) NIm(B), then clearly v =0. Thus, let v=w+u =
w—Bw=(I—B)w,withwe W and u € U. Since Im(B) "W = Ker(I —B)NW = {0},
it follows that dim((Im(A) 4+ Im(B)) NKer(A) NKer(B)) < dimW .

Conversely, let v =w +u, where ABw =w and BAu = u for all w € W and
u € U, hence Av =w+Au = ABw+ ABu = ABv, and so A(I — B)v = 0, which im-
plies (I —B)v € Ker(A) NKer(B). Since (I —B)v=w+u—Bw—u=(I—B)w €
Im(A)+1Im(B), it follows that (I — B)w € (Im(A) 4+ Im(B)) NKer(A) NKer(B), which
implies dimW < dim((Im(A) 4+ Im(B)) NKer(A) NKer(B)), and therefore dimW =
dim((Im(A) +Im(B)) NKer(A) NKer(B)). O

REMARK 1. According to Lemma 2.1 and keeping in mind that (Im(A)NIm(B)) C
Ker(7I—AB), we may conclude that Ker( —AB) = Im(A) NIm(B) if and only if (Im(A) +
Im(B)) NKer(A) NKer(B) = {0} .



REMARKS ON THE PRODUCT OF TWO PROJECTIONS 39

THEOREM 2.2. If A,B € C5" and AB € CI", then Ker(I — AB) = Im(A) N
(Im(B) @ (Ker(A) NKer(B))).

Proof. Clearly, (Im(A)NIm(B)) C Ker(/ —AB) and (Im(A) NIm(B)) C Im(A) N
(Im(B) @ (Ker(A) NKer(B))). Now, note that Im(A) N (Im(B) @ (Ker(A) NKer(B))) C
Im(A) N (Im(B) +Ker(A)) = Im(AB) = Ker(I — AB) & Ker(A;/ —AB) @ ... @ Ker(Af —
AB) since AB is diagonalizable, where Ai,...,4; € 6(AB)NC\ {0, 1}. Thus, consider
veC™! and A € C\ {0} so that ABv = Av and v =w +u, where v € Im(A), w €
Im(B) and u € Ker(A) NKer(B). Hence, Av = v = Aw + Au = Aw. Moreover, ABy =
Av = ABw+ ABu = Aw = v, which implies A = 1, and so we conclude that Im(A) N
(Im(B) @ (Ker(A) NKer(B))) C Ker(I — AB).

In order to conclude that Ker(I —AB) = Im(A) N (Im(B) & (Ker(A) NKer(B))), it
suffices to prove that, taking into account Lemma 2.1, dimKer(7/ — AB) = dim(Im(A) N
Im(B))+dim((Im(A) +Im(B)) NKer(A) NKer(B)) = dim(Im(A) N (Im(B) & (Ker(A) N
Ker(B)))). Indeed, dim(Im(A)+Im(B)+ (Ker(A) NKer(B))) = dim(Im(A) +Im(B)) +
dim(Ker(A) N Ker(B)) — dim((Im(A) + Im(B)) N Ker(A) N Ker(B)) = dimIm(A) +
dimIm(B) — dim(Im(A) N Im(B)) + dim(Ker(A) N Ker(B)) — dim((Im(A) + Im(B)) N
Ker(A)NKer(B)), which implies dim(Im(A) NIm(B)) +dim((Im(A) +Im(B)) NKer(A)
NKer(B)) = dimKer(I — AB) = dimIm(A) + dimIm(B) + dim(Ker(4) N Ker(B)) —
dlm(lm( )+Im(B)+ (Ker(A)NKer(B))). On the other hand, we have that dim(Im(A) +

Im(B) + (Ker(A) N Ker(B))) = dimIm(A) + dim(Im(B) + (Ker(A) N Ker(B))) —
dim(Im(A) N (Im(B) ¢ (Ker(A) NKer(B)))) = dimIm(A) +dim(Im(B)) +dim(Ker(A) N
Ker(B)) — dim(Im(B) NKer(A) NKer(B)) —dim(Im(A) N (Im(B) & (Ker(A) NKer(B))))
= dimIm(A) + dim(Im(B) 4 dim(Ker(A) NKer(B)) — dim(Im(A) N (Im(B) & (Ker(A) N
Ker(B)))), and therefore we may conclude that

dimKer(I — AB) = dim(Im(A) N (Im(B) & (Ker(A) NKer(B)))). O

Let cap(x) =x™ (x— 1) (x — A2)"2 ... (x — Aga1)™+1 and migp(x) = x"% (x— 1)™
(x—22)" ... (x— A1)+ be the characteristic and minimal polynomial, respectively,
of AB, where A and B are projections of order n and Ay,..., A1 € C\{0,1}.

PROPOSITION 2.3. Let A,B € Cp*". Thus, if cap(x) =x" (x—1)"™ (x—2A2)"™ ...
(x = A 1)™+1 and myp(x) = X" (x — 1)" (x — A2)"2 ... (x — Agq1)"™+! are the charac-
teristic and minimal polynomial, respectively, of AB, then S;p < 1, which implies k=1
and my < 1.

Proof. By hypothesis, clearly dimKer(AB) =1, and as dim Ker(AB) = dim(Ker(A)
NIm(B)) + dimKer(B) and dimKer(B) > 1, it follows that dimKer(B) = 1, and as
Oap < min{dimKer(A),dimKer(B)}, we conclude that ds5 < 1, which implies k =1
and my < 1, thatis, AB has at most three distinct eigenvalues. [

Now, take into account the following information: Let Wy, W,, W3 and Wy be
subspaces from C"*! so that Wy @ (Im(A)NIm(B)) @ (Im(A)NKer(B)) =Im(A), Wo @
(Im(A) NIm(B)) ® (Im(B) NKer(A)) = Im(B), W3 @& (Im(B) NKer(A)) & (Ker(A) N
Ker(B)) = Ker(A) and Wy @ (Im(A) NKer(B)) @ (Ker(A) NKer(B)) = Ker(B), where
A and B are matrices of index one of order 7.
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LEMMA 2.4. Let A,B € C}*". Thus, rank(AB) = rank(BA) and rank(A(I —
B)) =rank((I — B)A) if and and only if dimW; = dimW, = dimW; = dimW,.

Proof. According to [10, Corollary 9], Ker(AB) = Ker(B) & (Im(B) N Ker(A)
which implies n — rank(AB) = dimKer(AB) = dimKer(B) + dim(Im(B) N Ker(A)),
hence n — rank(AB) + dim(Im(A) N Im(B)) + dimW, = dimKer(B) + dim(Im(B)
Ker(A)) +dim(Im(A) NIm(B)) +dimW, = n, and so rank(AB) = dim(Im(A) NIm(B)
dimW, . Similarly, we have that rank(BA) = dim(Im(A) NIm(B)) +dimW, , rank(A(1
B)) = dim(Im(A) NKer(B)) + dimW, and rank((/ — B)A) = dim(Im(A) N Ker(B))
dile .

This implies that if rank(AB) = rank(BA) and rank(A(/ — B)) = rank((I — B)A),
then dim(Im(A) NIm(B)) 4 dimW, = dim(Im(A) NIm(B)) + dimW; and dim(Im(A) N
Ker(B)) +dimW; = dim(Im(A) NKer(B)) +dimW, , which implies dimW; = dimW, =
dimWy, and as dimW; + dimW; = dimW, + dimW,, see [5, Lemma 3.1], we have that
dimW; = dimW; .

Conversely, if dimW; = dimW, = dimW; = dimW,, then, clearly, rank(AB) =
rank(BA) and rank(A(7 — B)) =rank((/ —B)A). O

Let A,B € Ci*". Thus, we have that 45 < min{dimKer(A),dimKer(B)}, hence
Oap < n/2 (take, for example, A, B € Cip" with 4;,...,4,/, € (0,1) eigenvalues of AB
and Im(A) NIm(B) = {0}, Im(A )ﬂKer( )= {0}, Im(B) NKer(A) = {0}, Ker(A)N
Ker(B) = {0} and dimKer(A) = dimKer(B) = n/2, and so, in this case, dq5 =n/2).
Moreover, it is easy to see that oqp < dimW; and Ops < dimW,, and as Ssp = Opa,
we have that 8,3 < dimW,, and by proof of [5, Theorem 3.3], dimW, < dimW; +
dim(Ker(A) NKer(B)), hence o5 < dimWs + dim(Ker(A) NKer(B)).

Particularly, by Lemma 2.4, if rank(AB) = rank(BA) and rank(A(l — B)) =
rank((I — B)A), then d45 < dimW; = dimWs. In this way, the following result pro-
vides another sufficient condition so that S, < dimWs.

PROPOSITION 2.5. If A,B € C" and (Ker(A) NKer(B)) C (Im(A) +Im(B)),
then Sup < dimWs.

Proof. According to Lemma 2.1, dimKer(/ — AB) = dim(Im(A) N Im(B)) +
dim((Im(A) +Im(B)) NKer(A)NKer(B)), and as (Ker(A)NKer(B)) C (Im(A)+Im(B))
we have that dimKer(/ — AB) = dim(Im(A) NIm(B)) + dim(Ker(A) NKer(B)). Since
Ker(I — AB) @ Ker(A2 —AB)2 @ ... @ Ker(4441] — AB)"+1 C Im(AB). It follows
that dimKer(I — AB) + 843 = dim(Im(A) N Im(B)) + dim(Ker(A) N Ker(B)) + dap <
rank(AB) = dim(Im(A) NIm(B)) + dimW, since S4p = dim(Ker(Axl —AB)2 @ ... D
Ker(Ax4 11 — AB)"+1), which implies dim(Ker(A) NKer(B)) + dap < dimWa, and S0,
keeping in mind that dimW, < dimWj; + dim(Ker(A) NKer(B)). we may conclude that
6AB < dlIIlW3 . g

REMARK 2. Let A,B € C};y". Then Im(A) + Im(B) = (Ker(A*) NKer(B*))* =
(Ker(A) N Ker(B))*, which implies (Im(A) +Im(B)) N Ker(A) NKer(B) = {0}, and
by Lemma 2.1, Ker(I — AB) = Im(A) NIm(B). Moreover, since AB,BA,A(I —B), (I —
B)A € Cj", it follows that rank(AB) = rank(BA) and rank(A( — B)) = rank((I —
B)A), see [5, Theorem 3.7], and by Lemma 2.4, it follows that d45 = dimW; = dimWs.
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Let A € C*". Thus, it is well known that o4 > 1 if and only if A € C*"\ C}".
Moreover, if o1,...,0r € R\ {0, 1} are singular values of A € C*"\ C};p", then oi>1
foreach i € {1,...,k}.

Now, con51der A e Cp*"\ C}jp". Then, by [8, Corollary 3.4.3.3], there is U €

1
CIX" 5o that U*AU = diag(Ay,...,Ar,1,...,1,0,...,0), where A; = ((1) ("151)2)
and o; > 1 is a singular value of A foreach i € {1,...,k}.

Consider, also, B € C};" so that U*BU = diag(P;,..., P, 1,...,1,0,...,0), where

P = (“" b") eCy?, i=1,....sand s > k.
bi Ci
Thus, the following two results establish a relation between d,p and Oy .

PROPOSITION 2.6. Let A € Cy*"\ C}p', B € Cyp' and U € C*" as defined
above. Thus, if bi € C\R foreach i € {1,...,k}, then d,5 = C4.

Proof. According to the notations above, we have that U*ABU = diag(Ey, ..., Ey,
Piit,...,B,1,...,1,0,...,0), where

b _ (1(0i=1)% (@i b\ _ (ai+ (0~ 1)2b; bit (0~ 1)3e;
N0 0 b; ci 0 0 '

Since P; € (C%ﬁ,z, it follows that a;,¢; € R. Suppose that a;+ (0; — 1)%b,- =1.Then
l—a;i=(0;— l)%bi, but this represents a contradiction because 1 — a;, (0; — l)% eR
and, by hypothesis, b; ¢ R.

Similarly, suppose that a; + (0; — 1)
implies a contradiction too. [J

A=

bi = 0. Then a; = —(0; — 1)2b;, which

On the other hand, consider b; € R for each i € {1,...,k}. Clearly, if by = by =
.. = by =0, then we conclude that 845 = 0. Thus, in our next result we shall take into
account that by,...,b; € R\ {0}.

PROPOSITION 2.7. Let A € Cy*"\ C}p', B € Cip' and U € C*" as defined
above. Thus, if b; € R, o;a; # 1 and oic; # 1 foreach i € {1,...,k}, then ;5 = O4.

Proof. We have that U*ABU = diag(E\,...,Ex,Pit1,-..,P5,1,...,1,0,...,0),
1, -~ 1
where E; — ai+(6i—1)2b; bi+(0;i—1)2¢; )
0 0

Since P; € C%ﬁf, it follows that a;,¢; € R, a;+¢; = 1 and a;c; = b?.

Suppose that a; + (0; — 1)%b,- =1=a;+c¢;. Then ¢; = (0; — 1)%b,-, which implies
a,-(G,- — 1)%b,‘ = bi27 that is, b; = a,-(G,- — 1)% . Hence, ¢; = (G,' — 1)%611'(0,' — 1)% =
(0; — 1)a;, and so a; + (0; — 1)a; = cja; = 1, but this represents a contradiction for
each i€ {1,...,k}.

Similarly, suppose that a; + (0; — 1)2b; = 0. Then a; = —(0; — 1)2b;, which im-

1

7
plies —(0; — 1)2bic; = b?, that is, b; = —(0; — 1) ¢;. Hence, a; = —(0;— 1)¥ (—(0; —
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1)%c,-) = (0;—1)ci, and so (0; — 1)ci+¢; = ojc; = 1, but this represents a contradiction
foreach i€ {1,...,k} too. O

Consider the decompositions given below for the projections A, B and C:

-1 _ IrO -1 _ I\O -1 _ ~_ y—1 Iso _ C1C2
Y4AY, _<00 YeBYy = (0 ) and VY, =C =Y (o) Ye=(a &)

(1
where Y4, Yz and Y¢ are nonsingular matrices, rank(A) = r, rank(B) = s and C; €
CVXT .

Moreover, consider that there is a simultaneous triangularization between two pro-
jections A and B, and so, clearly, 045 = 0. Particularly, if rank(AB — BA) < 1, then
04 = 0 too, see [11, Theorem 40.5]. However, in our next result we shall characterize
the projections A and B so that §45 = 0.

PROPOSITION 2.8. Let A,B,C € Cp*" be with representation in (1). Then dsp =
0 if and only if AB — BA is nilpotent.

Proof. Taking into account that YAABYA_1 = (I(; 8) (gl gz) = (C(;l C(')2>7 we
3 Cy

have that 45 = 0 implies that 6c, =0, and so if A is an eigenvalue of C;, then A =0

or A = 1. Since C € C3*", it follows that C;C3 = C| — Cf. Hence, C,C; is nilpotent.
Conversely, if C,Cs is nilpotent, then any eigenvalue of C>C3 is equal to zero.

Thus, if A is an eigenvalue of C , then A — A2 is eigenvalue of C; — C% = (,C3, which

implies A — A% =0, hence A =0 or A = 1, that s, 0c, =0,and so 45 =0.

C 0

C; 0

B 1 (GG (G0 [0 G a2yl
YA(AB — BA)Y,; _<0 0 cio) =g, o) hence Ya(aB—BA?Y ! =
-GG 0
0 -GG )

Since C,C; is nilpotent <> C3C; is nilpotent, it follows that (AB — BA)? is nilpo-
tent <> C,C; is nilpotent, and as (AB — BA)? is nilpotent <> AB — BA is nilpotent, we
may already conclude that d43 = 0 < AB — BA is nilpotent. [J

Now, we have that Y4BAY, ' = , which implies Y4ABY, ' — Y,BAY, !

Particularly, the following result provides a necessary and sufficient condition so
that AB € Cp*" whenever A,B € Cp™".

COROLLARY 2.9. Let A,B,C € C}*" be with representation in (1). Then AB €
Cy" if and only if C;C3 =0 and Im(C,) C Im(Cy).

Proof. Consider that Y4ABY, ! = (f) 8) (g gi) - (%1 %2>. If AB € Cl*",

then, by [5, Theorem 2.11], C; € C*" and Im(C,) C Im(Cy). Since C,C3 = C) — C%,
it follows that C,C3 = 0.

Conversely, if C;C3 =0, then C| = Cf, and as Im(C,) C Im(Cy), again by [5,
Theorem 2.11], we have that AB € Cp*". O
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On the other hand, the next result provides a sufficient condition so that 845 reaches
its maximum value, that is, 45 = dimW; .

PROPOSITION 2.10. If A,B € C}*" and AB — BA is nonsingular, then Oap =
Tr(A).

Proof. Let C = AB — BA nonsingular Then, by [12, Corollary 2.10], Im(A) @
Im(B) = Im(A*) © Im(B*) = C"*! and rank(AB) = rank(BA) = rank(A) = rank(B).
Hence, Im(A) NIm(B) = {0} and (Im(A*) ® Im(B*))* = (Im(A*))* N (Im(B*))*+ =
Ker(A)NKer(B) = (C"*!)+ = {0} . Since, by Lemma 2.1, dim Ker( —AB) = dim(Im(A)
NIm(B))+dim((Im(A)+Im(B))NKer(A)NKer(B)), it follows that 1 ¢ c(AB). More-
over, taking into account that dim(Im(A) NKer(B)) = rank(A) —rank(BA) = dim(Im(B)
NKer(A)) =rank(B) —rank(AB) = 0, we have that Im(A) NKer(B) =Im(B) NKer(A) =
{0}, which implies Ker(AB) = Wy, and keeping in mind that Im(A) NIm(B) = {0},
we conclude that W) = Im(AB) = Im(A), and therefore §4p = rank(AB) = rank(A) =
Tr(A). O

REMARK 3. From Corollary 3.5, we see that the requiring AB — BA to be nonsin-
gular is not necessary for the conclusion: 645 = Tr(A) in Proposition 2.10.

REMARK 4. Let A,B,C € C3*" be with representation in (1). Thus, we shall show
a sufficient and necessary condition so that 845 = Tr(A) whenever rank(A) = Tr(A) <
n/2. Before, however, note that 645 < dim(W;) < rank(A), and if S4p = Tr(A) =
rank(A), then 645 = dim(W;) and 1 ¢ o(AB). Moreover, rank(AB) < rank(A) =
Oap < rank(AB), which implies 64p = rank(AB) = rank(A), hence we may conclude
that AB € C};*". Thus, taking into account this information and using Proposition 3.4,
in section 3, we have that §45 = Tr(A) if and only if C,C3 € C;;*" and nonsingular
whenever Tr(A) < n/2.

We have already showed that, given A and B projections of order n, 4p <
dim(W5 & (Ker(A) NKer(B))). Now, in our last main result of this section, we shall
show a more refined result, where 045 = dimKer(A;/ — AB) + ... + dimKer(A4 —
AB) < dim((W3 @ (Ker(A) NKer(B))) N (W) & W2 @ (Im(B) NKer(A)))) whenever AB
and BA are diagonalizable and A,,...,A44 € 6(AB)\ {0,1} distinct. However, first we
shall show a preliminary result and relevant to Theorem 2.12.

PROPOSITION 2.11. Let A,B € Cp*". Thus, (W3® (Ker(A)NKer(B)))N(AIm(B)
+1Im(B)) = {0} if and only if Im(B) = (Im(A) NIm(B)) & (Ker(A) NIm(B)).

Proof. Consider v € Im(A) N (Im(B) W5 @ (Ker(A)NKer(B))) = Im(AB). Hence
v=u+w, where veIm(A), u € Im(B) and w € W3 & (Ker(A) NKer(B)). This implies
that Av =v=Au+Aw =Au=u+w, hence w=Au—u, and so w € (W3 @ (Ker(A) N
Ker(B))) N (AIm(B)+1Im(B)). Thus, if Im(B) = (Im(A) NIm(B)) & (Ker(A) NIm(B)),
then u = u; +us, where u; € Im(A) NIm(B) and uy € Ker(A) NIm(B), which implies
w=A(u +uy) — (uy +uy) = uy —uy —up = —uy, and as (Ker(A) NIm(B)) N (W5 @
(Ker(A) NKer(B))) = {0}, we have that w =0.

Conversely, consider W, # {0}, wy € W and wy # 0. Hence, u = uj +uz +w,
which implies w = A(uy +uy +wo) — (uy +up +wa) = ug +Awy —uy —up —wy =
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Awy — (up +wy). Since Awy ¢ Im(B) and —(up +wz) € Im(B), it follows that w # 0,
see [5, Lemma 3.2].

Therefore, we may conclude that if (W5 @ (Ker(A)NKer(B))) N (AIm(B)+Im(B))
= {0}, then W, = {0}, that is, Im(B) = (Im(A) NIm(B)) ¢ (Ker(A) NIm(B)). O

THEOREM 2.12. If A,B € C*" and AB,BA € C}", then Sp < dim((W3 @
(Ker(A) NKer(B))) N (W; & W2 @ (Im(B) NKer(A)))).

Proof. Since AB,BA € (C;')X”, it follows that AB and BA are core matrices, which
implies, by [5, Lemma 2.5], rank(AB) = rank(BA), and according to proof of Lemma
2.4, rank(AB) = dim(Im(A) NIm(B)) + dimW, = dim(Im(A) N Im(B)) + dimW; =
rank(BA), hence dimW; = dimW, and AW, = W,. Taking into account that AB €
C}H", we have that Im(AB) = (Im(A) NIm(B)) & W; = Im(A) N (Im(B) +Ker(A)) =
Im(A) N ((Im(A) NIm(B)) & W> @ (Im(B) NKer(A)) & W3 @ (Ker(A) NKer(B))). Now,
note that dim(Im(A) N (W, @ (Im(B) NKer(A)) & W5 @ (Ker(A) NKer(B)))) = rank(A) +
dimW, +dimKer(A) —dim(Im(A) 4+ (W2 @ (Im(B) NKer(A)) ®W; @ (Ker(A) NKer(B))))
=dimW, +n—n = dimW,, and so we may conclude that Tm(A) N (W, & (Im(B) N
Ker(A)) ® Ws @ (Ker(A) NKer(B))) = W; . Moreover, keeping in mind that dimW; =
dimW,, we have that dimW; < dimW, +dim(Im(B)NKer(A)) =¢, and since Ker(A,1—
AB) @ ... ® Ker(4 — AB) C Wy, it follows that 643 = dimKer(A4/ —AB) + ... +
dimKer(AI —AB) < dimW; <.

On the other hand, consider v € Im(A) N (W, @ (Im(B) NKer(A)) W5 @ (Ker(A)N
Ker(B))), hence v =u+w, where v € Im(A), u € Wo & (Im(B) NKer(A)) and w €
W3 @ (Ker(A) NKer(B)), which implies Av = v = Au+Aw = Au = u+w, that is, w =
Au—u, and so w € (W3 & (Ker(A) NKer(B))) N (W; & W, & (Im(B) NKer(A))) since
AWy & (Im(B) NKer(A)) = AW, = W, .

Let {ui,...,ug,...,u;} be abasis of W, @ (Im(B) NKer(A)). Moreover, consider
that wi = Auy —uy, ..., wy = Aug — ug, ..., w; = Ay —uy and v = up +wy,...,vp =
uy+wy, where ABv; = A;v; and BAu; = Au; foreach i€ {1,... k} since W; =Im(A)N
(W2 @ (Im(B) NKer(A)) & W3 @ (Ker(A) NKer(B))).

Now, note that if cywy +... +cwi +... +cwy =0 with ¢y,...,¢; € C, then
c1(Auy —uy) + oo+ cr(Aug —ug) + ...+ e (Auy —uy) = A(cruy + ...+ cpug + ... +
ciuy) — (crun + ...+ cpup+ ...+ ¢y ) =0, which implies cruy +...+cpup+ ...+ cuy €

m(A), but cjuy + ... +cup + ... +cu, € Wo @ (Im(B) NKer(A)), and as Im(A) N
(W2 @ (Im(B )ﬁKer( ))) = {0}, we have that cju; +...+cpug+ ... +cuy =0, and so
¢1=...=cy=...= ¢ =0. This implies that dimspan(wy,...,w;) =1, hence we may
conclude that ¢ < dlm((W3 @ (Ker(A)NKer(B)))N(W; @ W> @ (Im(B)NKer(A))). O

REMARK 5. Regarding Theorem 2.12, keeping in mind that AB,BA € Cj*", we
may easily conclude, by symmetry, that dg4 < dim((Ws @ (Ker(A) NKer(B))) N (W; @
W, @ (Im(A) NKer(B)))), and as dap = Opa, we claim that S4p < min{dim((W; @
(Ker(A)NKer(B))) N (W, & W, @ (Im(B) NKer(A)))),dim((Ws & (Ker(A) NKer(B))) N
(Wi @ Wr @ (Im(A) NKer(B))))}.
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3. When the product of two projections is a diagonalizable matrix

In [5, Corollary 3.9], we have proved that if D € C};*" with rank(D) < n/2 and
with arbitrary spectrum, then there are A, B € Cﬁx" so that AB = D. Moreover, in
[5, Theorem 3.12], we have proved that there are projections A and B so that AB =
D, where D is diagonalizable, if and only if dp < op. Similarly, in [12, page 81],
Ballantine proved that given a singular diagonalizable matrix D and A and B of same
order, D = AB if and only if rank(/ — D) < 2dimKer(D). Another relevant information
is that, by [2, Theorem 3.2.11.1], we may conclude that given projections A and B, AB
is diagonalizable if and only if BA is diagonalizable whenever AB and BA are core
matrices. In this section, we shall show some necessary and/or sufficient conditions so
that AB is diagonalizable with arbitrary spectrum or restricted to the real segment [0,
1].

In [5, Corollary 3.10], we have proved that if N € C" with rank at most n/2
and arbitrary spectrum, then there are A, B € C*"\ C};p" so that AB = N . However, if
AeCypt, N e Cy "\ Cypt, then AB # N for any B € Cp*". Our next main result is
able to demonstrate this.

THEOREM 3.1. If A € C}p', Be Cy" and N € C" so that AB = N, then
N ey,

Proof. According to [1, p. 42], AX = N if and only if AATN = N for some
X € C™". Since A € C}', it follows that A = A> = A* = AT, so AX =N is solv-
able if and only if AN = N. Suppose that N ¢ C};p". Thus, take U € C}" so that

U*NU = <€ 8), where D = diag(A4,...,4:), A1,...,A- € C\ {0} and at least one
Ai € C\{0,1} with i€ {1,...,r}. Consider U*AU = i; ii with A} € C™7.
L. . Al As DO DO
* g% * _rr* —
Hence, U"ANU = U*AUU*NU = U*NU , which implies <A3 A4> (O 0) = (0 O)’

and so we have that A| =1, and A3 =0, and as U*AU € C};", we also have that A, =0
and Ay € C};"""". Againby [1, p. 42], X =ATN+ (I —-ATA)M =N+ (I1-A)M is
the general solution of the equation AX = N for any M € C"*". This implies that

DO\, L (L 0N (L 0N, . .
X—U(0 O)U +|:<Oln—r> U(OA4)U}M,that1s,
DO 0 0 M, M, D 0
U'XU = + = )
(0 0) (0 In—r_A4) (Ma M4) ((In—r_A4)M3 (In—r_A4)M4>

where U*MU = (%l %2) and M, € C"™". Hence, taking into account that {A;,...,A,}
3 My

= 0(D) C 6(X), we may conclude that X ¢ C}*", but this contradicts our hypothesis
that X =B Cy". O

REMARK 6. Taking into account the proof of Theorem 3.1 and if A,N € C};}!
and AN =N, then D =1, and AN =N = N* = NA. Thus, take U € C};*" so that
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I, 0 1,0 1,0 L, 0
* * * — 1 —
U*AUU*NU =U NU—<0A4> (O 0) = (O 0>,whereA4— (0 0) and 11+, =

I. 0
Vw

_[(n, 0\ (50 (00
v=(60) - (500
(0N (50 {00
W_{<Olfz) <00>}M4_<01f2)M4

M, M,
M5 My

arbitrary submatrices. Therefore, we may conclude that X € C*" if and only if WV =
0 and W2 =W.

n—r. Hence, X =U ( U™ is the general solution of the equation AX = N, where

for any M = U( )U* € C"" and consequently My, M,, M3 and M, are

REMARK 7. Consider E € C}". Thus, by [3, Lemma 2], Q*EQ = (g 8) for

some Q € C}" and T € C'*' nonsingular. Again, taking into account the proof of
Theorem 3.1, we may similarly conclude that if A € C}p", B€ Cp*" and E € CL}" so
that AB=E, then E € C}".

Now, it follows a result which provides a sufficient condition so that AB € (CZ-TD”,
where A € Cp*" and B € Cp™"\ C}".

PROPOSITION 3.2. Let A € Cp*" and B € Cp*"\ C}jp". Let PA\Us and UpPg be
polar decompositions, respectively, of A and B, where Uy,Up € C}[", Py >0, Pg >
and Q = UsUp. Thus, if P4Q € CL}", Ker(Pg) C Ker(P4Q) and Pg(Ker(P4Q)) C
Ker(PyQ), then AB € Cp}".

Proof. We have that Ker(Pg) C Ker(PyQ) = (Ker(P4Q))* C (Ker(Pg))* =
Im((P4Q)*) C Im(P;) = Im(P,Q) C Im(Pp) since P,Q € C}}", hence Im(P4QPg) C
Im(Pg). Moreover, since Pp(Ker(P4Q)) C Ker(P4Q), it follows that Ker(P4Q) C
Ker(P4QPs) . Keeping in mind that P,Q, Pg € C}" and by [9, Theorem 2], if Im(P,QOPg)
C Im(Pg) and Ker(PyQ) C Ker(P4OPg), then PAQPg =AB € Cip". O

Now, consider the solvable matricial equation AX = D, where A € C"HQ" and
D e Ci"\ Cy". Thus, if rank(A) =s < n—s and given o,...,a, € C\ {0} with
rank(D) = r < s, then there are D € Cj;"\ C}" and X € C}*" so that {o,..., 00} C
o6(D) and AX = D. Our next result provides sufficient conditions for the projection X
to satisfy the equation AX = D, under the conditions above established.

Consider the following decompositions for the projections A and B of order n:

viau, = (5°

00) = VBBVl;l, where Uy € C*", Vg € C"™" and nonsingular,

B = (I(; %2) ,Ay e C*" S and A, #0. Hence, A=T (I(; AO2> T-1¢ CHH?" with T —

UaVp. Consider, also, D = Tdiag(Ai,...,4,,0,...,0) T~! € C™", D, = diag(A; —
Lo d—1,=1,..,—1) €C™, Ay,..., A4, € C\{0}, r < s and M5 = A]D) + (I, —
ALA2)W, with Wy € C—%5.
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PROPOSITION 3.3. Let A, B, T, D, D) and M3 be matrices as represented above.
Once an arbitrary Hermitian projection A of rank s is fixed and X =T ( A{; 8) T 'e
3
Cp*", we have that if Ay,...,A, € C\{0,1} and s <n—s, then AX = D for some D €
CH"\CY" with {A1,..., A} C 6(D), for any Wy € C"°** and for any A, € C**"~*
of rank s.

Proof. Consider A € Cjjp" and B € Cp*"\ C}p" with rank(A) = rank(B) = s.
L0

Then there are Uy € C}", Vg € C""\ C}" and nonsingular so that U;AUy = 00

N———

= VgBV; !, that is, (UxVs) 'AUVE = B = (f) %2> Jandso A=T (f) %2) Tl e

Cypt for any Ay € C"=*, but Ay # 0 and UpVp =T ¢ C/". Now, consider the
matricial equation
AX =D, 2

where D = Tdiag(y,...,4,,0,...,0)0T~ 1 € C™", Ay,..., A, € C\{0,1} and r < s.
Keeping in mind that A € C};y", we have that AAT = ATA = A = A", which im-
I A D 0 D 0

; il _ s A2 -1 s -1 _ s -1 _ _
plies AA D—AD_T<O O)T T(O O)T —T<O O)T =D, where D; =
diag(Ay,...,A,,0,...,0) € C***. This implies that AA"D = D, and by [2, p. 42], (2)
is solvable for any A, € C**"7* and A; # 0. Again by [2, p. 42], in (2) the gen-

eral solution is givenby X =A'D+ (I —-ATA)M =D+ (I-AM =T (% 8) T-'+

I; 0 o Iy Ay -1 1 nxn _q B D, 0
[<Oln—s) T(O O)T }TT M forany M € C"*". Hence, T~ 'XT = 0 0 +

0—-Ay\ (M M\ (D;0 n —AM5 —AyMy\  (Ds—AM3 —ArMy where
0Li—s) \M3sMs) \ 0O M, My o M, My ’
M, M,

M; M,
X € Cp*". Thus, take My =0 and Dy — AoM3 = I, that is,

T-'MT = ) and M; € C**5. Note that if My = 0 and D; — AsM3 = I, then

A2M3:diag(?Ll—1,...,7L,—1,—1,...,—1):D;L. (3)

Let s <n—s. Since A; # 1 foreach i € {1,...,r}, it follows that rank(D; ) = s,
which implies rank(A;) = rank(AgA;) =, hence AzAz = [, that is, AgAgD;L =D,
and so (3) is solvable for any A, € C**"~% of rank s. In this case, the general solution
of (3) is given by M3 = A;D;L + (Li—s —A;AZ)WY for any Wy € C"5*%, Therefore, if
X = T(A{IS 8) T-1'e Cp", with A,...,4, € C\{0,1} and s <n—s, then X is a

3
solution of (2) for any Wy € C"™5* and for any A, € C**"~* of rank 5. [J

Let A,B,C € Cp*" be with representation in (1) and rank(A) < n/2. In the next
result, we shall make use of the submatrices of the projection C to provide a necessary
and sufficient condition so that AB € C,"", rank(AB) = rank(A) and Ker(I —AB) =

{0}
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PROPOSITION 3.4. Let A,B,C € C*" be with representation in (1) and r <n/2.
Thus, AB € Cj)*" with rank(AB) = r and 1 ¢ 6(AB) if and only if C,C3 € C;*" and
nonsingular.

Proof. Taking into account that YAABY;1 = (I(; 8) (gl 22) = (%1 C(')2> and
3 Cy

that a square matrix is diagonalizable if and only if its minimal polynomial is a product
of pairwise distinct monic linear polynomials, we have that if AB is diagonalizable,
then so is C;. Moreover, 1 ¢ 6(AB) implies that 1 ¢ o(Cy), and also rank(AB) =r
implies that 0 ¢ ¢(Cy) since C; € C"™*" and Im(C,) C Im(C}), see [5, Theorem 2.11].

. C, G C G o GG .
Since < Cs C4) ( G C4> = ( G C4> , it follows that
C,C3=C —C}. )

Hence C,C3 € C;*" and nonsingular.

Conversely, consider mc(x) = (x — A1)...(x — A) the minimal polynomial of
CCs. Thus, if C,C3 € C" and nonsingular, then A4, ...,A; are distinct and nonzero,
$0 (x—A1)...(x =) (C2C3) = (x— A1) ... (x—A)x(1 —x)(C1) =0,and by (4), Oc, =7
since C,C3 is nonsingular, and so we may conclude that C| € Cf)”. Now, note that
Im(C,) C Im(Cy) since C; is nonsingular, and therefore, by [5, Theorem 2.11], we
conclude that AB € C};*" with rank(AB) =r and 1 ¢ 6(AB). O

The following Corollary provides a sufficient condition so that AB € C};*", rank(AB)
=rank(A) and Ker(I —AB) = {0} whenever A,B € C},"".

COROLLARY 3.5. Let A,B,C € C*" be with representation in (1) and rank(A) =
r<n/2. Thus, if (AB—BA)? € C};'"" and rank(AB — BA)? =2rank(A), then AB € C},*"
with rank(AB) =r and 1 ¢ 6(AB).

00/ \cs ¢y 00

C G\ (LO\ _ [(co\ .. . an 1 (~CC 0
<C3 C4> (O 0)_<C3 0),Whlchlmphes YA(AB—BA)Y, = 0 -GG

Clearly, if (AB— BA)? is diagonalizable with rank(AB — BA)? = 2rank(A) = 2r,
then —C,C3 and —C3C;, are diagonalizable too with rank(—C,C3) 4 rank(—C3C,) =
2r, and as —C>C3 and —C3C, have the same nonzero eigenvalues, it follows that
rank(—CyC3) = rank(—C3C;) = r, so C>C3 is nonsingular, and by Proposition 3.4,
we may conclude that AB € C[;"" with rank(AB) =r and 1 ¢ 6(AB). O

Proof. We have that Y,ABY, ' = (I’ 0) (Cl C2) = (Cl C2) and Y\BAY, ' =

REMARK 8. Regarding proposition 2.10, the condition AB — BA being nonsingu-
lar to imply that 845 = Tr(A) is not necessary because, according to Corollary 3.5, we
have the following:

Let A,B € Cjy*" be with rank(A) = Tr(A) = r <n/2. Thus, if C> = (AB—BA)? €
C)" and rank(C?) = 2rank(A) = 2r < n, then AB € C};"" with rank(AB) = Tr(A) and
1 ¢ o(AB). Hence, clearly, C is singular and 845 = Tr(A).
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From now on, once an arbitrary projection A is fixed, we shall show projections B
so that AB € C};"" with 6(AB) C [0, 1]. Particularly, concerninig Lemma 3.6, Propo-
sition 3.7 and Proposition 3.8, we shall need the following information:

We define k functions f; by fi(tx,0u,...,04) = {0,...,0,0y,...,00,1,...,1},
where 0, ...,04 € (0,1), the number of nonzero elements of f;(f, 04, ...,04) is equal
to 7, the number of zero elements of fi (¢, ¢t,...,04) is equal to n— 1 and 0 < k <

n— 1. Hence, according to this definition for fi, k <#y <n—k and 0 <k <n/2. Then,
forevery k, 0 <k <n/2;forevery o; € (0,1), i=1,...,k, and for every f, k <1 <
n—k, there are Hermitian projections P and Q so that 6(PQ) = fi(, 0, . .., 04), with
rank(P) = r, rank(Q) = s and #x = min{r,s}. Note that k < n—7; is a necessary con-
dition for 6(PQ) = fi(tx,0u,...,04) because opp < min{dimKer(P),dimKer(Q)}.
Moreover, PQ is a diagonalizable matrix, see [6, p. 144], which implies cpp =
dimKer(PQ), and so opg = dimKer(PQ) > dimKer(Q) > dpg.
We should also consider Lemma 3.6, see proof in [4, Lemma 2.4].

LEMMA 3.6. For every k, 0 < k<n/2; forevery a; € (0,1), i=1,...,k and
for every t, k <ty <n—k, there are E,F € Cyjp" which are of block diagonal form
with diagonal blocks of order 2 and of order 1 so that 6(EF) = fi(ty, 04, ..., %), with
rank(E) = r, rank(F) = s and 1 = min{r,s}.

Given projections A and B, in our next result we provide a necessary and sufficient
condition so that AB is diagonalizable with 6(AB) C [0, 1].

PROPOSITION 3.7. Let A,B € Cp*". Then AB € C}y"" with 6(AB) C [0,1] ifand
only if AB is similar to PQ for some P 0eCyy.

Proof. Let X € C™" be nonsingular so that X “'ABX = PQ, where P,Q € C}.
Thus, by [9, p. 143 and 144], we may conclude that AB € C}*" with 6(AB) C [0, 1]
Conversely, if AB € Ci;*"" with 6(AB) C [0, 1], then there is some ¥ € C"*" non-
singular so that Y "'ABY = diag(Ay,..., A, 1,...,1,0,...,0), where Ay,..., A4 € (0,1)
and k = 645 < min{dimKer(A),dimKer(B)} < dimKer(AB). Hence, according to
Lemma 3.6, there are P,Q € C};" so that Z71PQ7 = diag(Ay, ..., A, 1,...,1,0,...,0)
to some Z € C"™" nonsingular, which implies Y 'ABY = Z~!'PQZ, and therefore
(yzH-'AByz ' =pP0. O
1 o
2 by +b21> and

Let E;,Fj € C%3? be with the following entries: E; = <b 2 pi ]
1=bai 3

11
Fi= (% %) with by,by €R, i=+/~T and j=1,...,k, where b} +b3 = I since E; is

22
singular. Moreover, for any o € (0,1), there are E;, F; € % so that o is the eigen-

value of E;F; different of 0 and of 1, where b = a; — %, see proof in [9, Lemma 2.4].
Now, let E =diag(E},...,E,1,...,1,0,...,0) and F =diag(F,...,F,1,...,1,0,...,0)
be Hermitian projections of order n and with rank(E) = r and rank(F) = s. Consider-
ing, also, the decompositions given below for the projections A, E and B:

VaAY ! = YeEY, ! = ({) 8) and YBBY31:<{')" 8), (5)
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where Y4, Yr and Yp are nonsingular matrices, rank(A) = r and rank(B) = s. More-
over, UsP4 and UpPp are the polar decompositions of Y4 and Yp, respectively, with
Py>0and Pg>0.

Given 0y,...,04 € (0,1), 1 <k <n/2, once an arbitrary projection A of rank r
is fixed, in our next result, we shall identify projections B of rank s so that AB is a
diagonalizable matrix with {¢,..., o} C 0(AB) C [0, 1], where k < min{dimKer(A),
dimKer(B)} and rank(AB) = min{r,s}.

PROPOSITION 3.8. Let A,E € C*" be with representation in (5). Once an
arbitrary projection A is fixed, for any Yu, for any Yp and for any E, if B =
Y WYeF (Y 'Ye)7!, then AB € CH" with 6(AB) = fi(tx,0u,...,04) for any o €
(0,1), i=1,....k,  =min{r,s} and dap = k.

Proof. Since rank(E) = rank(A), it follows that YzEY, ' = Y4AY, ', and so
Y, 'YgEY; 'Yy = A. Consider that X =Y, 'Yz and B= XFX~!. Hence, by Lemma
3.6, for any Yy, for any Yz and for any E, AB=XEX 'XFX ' =XEFX ! € C}"
with G(AB) = fk(l‘]“a],... ,Olk) for any o € (0,1), i=1,....k, tp = min{ns} and
oap=k. O

In [5, Theorem 3.15], we have proved that if P4 = Pg, then AB € Cjj" with
0(AB) C [0,1] for some Y4 and Yz with representation in (1), but the converse does
not hold. However, the following two Lemmas are useful to the Propositions presented
shortly thereafter.

LEMMA 3.9. Let A,B € C*". Then Py = Pg if and only if Yg = UY, for some
U e,

Proof. If Py = P, then Y = UpPy = UpU;Ys, where U = UgU; € C"". Con-
versely, if Y = UYy for some U € C", then Yp = UpPg = UU4Py, which implies
Py = U;U*UpPg, and so by the uniqueness of the polar decomposition of P4, we may
conclude that UsU*Up =1 and Py = Pg. [

LEMMA 3.10. Let A, B C"". If A*A=B*B, then A=UB for some U € C[;"".

Proof. Let A= UyPy and B = UpPp be the polar decompositions of A and B,
respectively. Hence, if A*A = B*B, then PAU;UsPy = P; = PgU;;UpPg = P}, which
implies Py = Pg, and so A = UyPy = UsPg = UsUgB, where UpUy € C[". O

Let A,B,C € C}*" be with representation in (1). The next result provides a nec-
essary and sufficient condition for C to be a Hermitian projection.

PROPOSITION 3.11. Let A,B,C € C*" be with representation in (1). Then C =
C* if and only if Yg = UY, for some U € C;".

Proof. Since YABYA_1 = C, it follows that Yz = YcYs. Thus, if Y = UYs =YYy,
then Yo =U,andso C =C*.

Conversely, if C = C*, then there is some Yo = U € C;" so that YcCY, -
diag(I,0), hence Yg = UY, for some U € C[". O
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Now, we shall prove two results which provide sufficient conditions for AB to be a
diagonalizable matrix with 6(AB) C [0,1], once an arbitrary projection A is fixed and
for some projection B.

PROPOSITION 3.12. Let A,B € C*"". Consider also Y, and Y with represen-
tation in (1), U € C}" and D = diag(D,,D,) € C"™", where Dy and D, are non-
singular matrices with Dy of order r. Thus, if Y4 = DUYp, then AB € C}*" with
o(AB) C [0,1].

Proof. According to (1),
AB=Y,! (f) 8) YaYy! ({) 8) Yp =
YAABY, ' = (g 8)
YaYy ! (IS 8) (Yavg ) ! = (6’ 8) DU (IS 8) v'p =

Tyl 1 1 (50
(Y;'D)'ABY,'D=D (00

Iso -1 _ IrO Iso *
ou(go)u=(6o)v(Go)v

Taking into account that (g 8) U <8 8) U* € C}p', we may conclude that AB €

CH" with 6(AB) C [0,1]. O

PROPOSITION 3.13. Let A,B € C*" be with representation in (1). Thus, if C =
C*, then AB € Cj)*" with 6(AB) C [0,1].

Proof. According to Proposition 3.11, if C = C*, then Yz = UY, for some U €
C{", and by Lemma 3.9, P4 = Pg, and therefore AB € C};"" with 6(AB) C [0,1], see
[5, Theorem 3.15]. [

REMARK 9. On the other hand, concerning Proposition 3.13, it may occur that
AB € Cj" with 6(AB) C [0,1], but C # C* for some Y4. Indeed, it suffices to keep
in mind the following example:

Let A,B,C € C3*? and ¥, € C**3 be so that

10-0.5 100 0500 100.4472
A=|01 0 |.,B=(010],AB=| 0 10| andvy={01 0
00 0 100 000 00 0.8944
hus,
0.5 00.2236
y-lay, = (29 d Y 'BY,=C= 0 1 0
a a=1gg) @ fa Pla=L=
1.11800 0.5
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