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Abstract. In this paper several positive answers are given to the Aleksandrov type problems and
the Tingley type problems for some expansive and nonexpansive operators between a real p -
normed space and a real q -normed space (0 < p,q � 1) . On the basis of the characteristics of
p -normed spaces, the notion of isometry is generalized to the case of with some parameters. It is
obtained that some operators of distance preserving can become isometries, and some isometric
operators can be extended from the unit sphere to the whole space.

1. Introduction

Let X and Y be two real normed spaces. Aleksandrov [3] in 1970 proposed the
following problem: under what conditions is an operator T : X → Y preserving unit
distance an isometry? Tingley [30] in 1987 proposed the following problem: let T0 be
a bijective isometry between the unit spheres S(X) and S(Y ) of X ,Y respectively. Is it
true that T0 extends to a linear (bijective) isometry T from X to Y ?

The foregoing Aleksandrov problem and Tingley problem are all related to iso-
metric operators. Solving the two problems has always aroused extensive attentions. In
the process of solving we can explore the properties of operators through the geometric
structure of spaces. It is really impressive the development of machinery and technics
that the two problems have led to. During the past two decades, many mathematicians
have been working on these topics, in particular, the two problems have been solved
in positive for many concrete classical normed spaces (see [5, 7, 8, 9, 10, 15, 20, 21, 25,
28, 29, 33] and the references therein). It is worth mentioning that a number of pub-
lications have covered the two problems in the F-spaces or n -normed spaces. Several
counterexamples in [2, 17] illustrate that there does not exist any isometric operator in
some specific form of spaces. A series of positive answers have been given in n -normed
spaces or p -normed spaces (see [6, 11, 12, 14, 16, 17, 18, 26, 27, 32, 35, 37]).

Expansive operators and nonexpansive operators are the two kinds of operators
that are closest to isometries. On the basis of the characteristics of p -normed spaces,
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in this paper we generalize the notions of expansive, nonexpansive and isometric oper-
ators to the case of with some parameters (see Definition 2.1). We will systematically
consider the following Tingley type and Aleksandrov type problems for r -isometries
between a real p -normed space X and a real q -normed space Y (0 < p,q � 1) which
have never been studied (to the best of our knowledge):

PROBLEM A. Let T0 be a r -isometry between the unit spheres S(X) and S(Y )
of X ,Y respectively. What assumptions warrant the conclusion that T0 extends to an
r -isometry T from X to Y ?

PROBLEM B. Under what conditions is an operator T : X →Y which satisfies the
distance power r preserving property, an r -isometry?

As a result, we obtain several positive answers to Problem A in Section 3 and to
Problem B in Section 4: some r isometric operators can be extended from the unit
sphere to the whole space, and some operators of distance power r preserving can
become r -isometries.

2. Preliminaries and some lemmas

Throughout the paper, X denotes a linear space over R with origin θ , where R is
the field of real numbers. By N we mean the set of all nonnegative integers. A p -norm
on X is a nonnegative real-valued functional ‖ ·‖p on X with 0 < p � 1, satisfying the
following conditions:

(a) ‖x‖p = 0 if and only if x = θ ;
(b) ‖λx‖p = |λ |p‖x‖p , for all x ∈ X , λ ∈ R ;
(c) ‖x+ y‖p � ‖x‖p +‖y‖p , for all x,y ∈ X .
A linear space X endowed with a p -norm is called a p -normed space and is

denoted by (X ,‖ · ‖p) . If p = 1, then it is a normed space, and the norm is denoted
by ‖ · ‖ . A normed space (X ,‖ · ‖) is strictly convex means that, whenever x,y ∈ X
and ‖x+y‖= ‖x‖+‖y‖ , one of the two vectors must be a nonnegative real multiple of
the other. A p -normed space (X ,‖ · ‖p) is also a metric linear space with a translation
invariant metric dX , where dX is defined by dX(x,y) = ‖x−y‖p for x,y ∈ X . The class
of p -normed spaces (0 < p � 1) is an important generalization of classical normed
spaces, and it has a rich topological and geometrical structure. If 0 < p < 1, then the
p -norm is nonhomogeneous, and the unit ball with center θ may not necessarily be a
convex set. This determines that there are many differences between a p -normed space
(0 < p < 1) and a normed space (see for examples [4, 13, 23, 34, 36]).

In the sequel, S(X) and B(X) denote the unit sphere and the unit ball (with center
θ ) of a p -normed space X , respectively.

Vogt [31] generalized the notion of isometry to the case of with a gauge function.
Similarly, on the basis of the characteristics of p -normed spaces, we will need the
following definitions.

DEFINITION 2.1. Let (X ,dX) and (Y,dY ) be two metric spaces, and r,σ > 0. An
operator T : X → Y is said to be r -nonexpansive if

dY (Tx,Ty) � [dX(x,y)]r, for all x,y ∈ X ; (2.1)



THE AT PROBLEM FOR EXPANSIVE AND NONEXPANSIVE OPERATORS 55

and to be r -expansive if

dY (Tx,Ty) � [dX(x,y)]r, for all x,y ∈ X . (2.2)

T is said to be an r -isometry if equality holds in (2.1) or (2.2) for all x,y ∈ X . If
r = 1, then T is nonexpansive, expansive and isometric in the usual sense, respectively.
T is said to be locally r -nonexpansive if the inequality (2.1) holds for x,y ∈ X with
dX(x,y) � α , where α is a positive constant. An operator T : X → Y is said to satisfy
the distance σ power r preserving property if

dX(x,y) = σ ⇒ dY (Tx,Ty) = σ r, for all x,y ∈ X .

In the implication above, if σ = 1, then T satisfies the distance one preserving property.
T : X → Y is said to satisfy the strong distance σ power r preserving property if

dX(x,y) = σ ⇔ dY (Tx,Ty) = σ r, for all x,y ∈ X .

DEFINITION 2.2. Let X and Y be two linear spaces, and r > 0. An operator
T : X → Y is said to be positively r -homogeneous if

T (αx) = αrT x, for all x ∈ X and α � 0.

If r = 1, then T is positively homogeneous in the usual sense.

LEMMA 2.1. Let r > 0 , α � 0 and β � 0 . Then (α +β )r � αr +β r ⇔ 0 < r � 1 ,
and |α −β |r � |αr −β r| ⇔ r � 1 .

LEMMA 2.2. Let X be a p-normed space (0 < p � 1) . Let y0 ∈ B(X) , x0 ∈ X
and x0 �= y0 . Then there exist z0 ∈ S(X) and λ0 ∈ (0,1] such that y0 = λ0z0 + (1−
λ0)x0 .

Proof. If y0 ∈ S(X) , then we take z0 = y0 and λ0 = 1, and so the assertion holds.
Now we suppose that ‖y0‖p < 1 and z(t) = y0 + t(y0 − x0) for t ∈ [0,+∞) . Then
‖z(t)‖p is continuous on [0,+∞) . Since x0 �= y0 and ‖z(t)‖p � t p‖y0− x0‖p−‖y0‖p ,
we have lim

t→+∞
‖z(t)‖p = +∞ . Thus, from ‖z(0)‖p = ‖y0‖p < 1 and the intermediate

value theorem it follows that there exists t0 ∈ (0,+∞) such that ‖z(t0)‖p = 1. By
taking z0 = z(t0) and λ0 = 1

1+t0
, we have y0 = λ0z0 +(1−λ0)x0 , which is the desired

equality. �

LEMMA 2.3. Let X be a p-normed space (0 < p � 1) , r > 0 and rp � 1 . Then
for any y ∈ B(X) and x ∈ X with x �= y, there holds

sup
u∈S(X)

∣∣‖x−u‖p−‖u− y‖p
∣∣r � ‖x− y‖r

p � sup
u∈S(X)

(‖x−u‖r
p−‖u− y‖r

p

)
.

Proof. For any u ∈ S(X) , we have
∣∣‖x−u‖p−‖u− y‖p

∣∣r � ‖x− y‖r
p , and hence

sup
u∈S(X)

∣∣‖x−u‖p−‖u− y‖p
∣∣r � ‖x− y‖r

p.
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On the other hand, by Lemma 2.2 there exist u0 ∈ S(X) and λ0 ∈ (0,1] such that
y = λ0u0 + (1− λ0)x . This implies that ‖x− y‖r

p = λ pr
0 ‖x− u0‖r

p and ‖u0 − y‖r
p =

(1−λ0)pr‖x−u0‖r
p . Thus, by Lemma 2.1 we have

sup
u∈S(X)

(‖x−u‖r
p−‖u− y‖r

p

)
� ‖x−u0‖r

p−‖u0− y‖r
p

=
1− (1−λ0)pr

λ pr
0

‖x− y‖r
p

� ‖x− y‖r
p,

which is the desired inequality. �

REMARK 2.1. For Lemma 2.3 to hold with r = 1, we need p = 1. Thus for a
normed space X we have

‖x− y‖= sup
u∈S(X)

(‖x−u‖−‖u− y‖), ∀x ∈ X , ∀y ∈ B(X), x �= y.

LEMMA 2.4. Let X be a p-normed space and Y a q-normed space (0 < p,q �
1) . Let r > 0 and rp � 1 . If T : X → Y is a locally r -nonexpansive operator, then T
is r -nonexpansive.

Proof. Since T : X → Y is locally r -nonexpansive, we have

‖Tx−Ty‖q � ‖x− y‖r
p for x,y ∈ X , with ‖x− y‖p � α for certain α > 0. (2.3)

Now we suppose ‖x− y‖p > α . Then there exists n0 ∈ N with n0 � 2 such that
(n0 − 1)pα < ‖x− y‖p � np

0α . Taking xi = x + i
n0

(y− x) , i = 0,1, · · · ,n0 , we have

‖xi− xi−1‖p = ‖x−y‖p

np
0

� α . From (2.3) it follows that

‖Txi −Txi−1‖q � ‖xi− xi−1‖r
p =

‖y− x‖r
p

npr
0

.

Hence

‖Ty−Tx‖q = ‖Txn0 −Tx0‖q =

∥∥∥∥∥
n0

∑
i=1

(Txi −Txi−1)

∥∥∥∥∥
q

�
n0

∑
i=1

‖Txi−Txi−1‖q

�
n0

∑
i=1

‖xi− xi−1‖r
p =

n0

∑
i=1

‖y− x‖r
p

npr
0

= n1−pr
0 ‖y− x‖r

p � ‖y− x‖r
p,

which shows that T is r -nonexpansive. �
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LEMMA 2.5. Let X be a p-normed space and Y a q-normed space (0 < p,q �
1) . Let T : X → Y be an r -nonexpansive operator, where rp � 1 . If T satisfies the
distance σ power r preserving property, then ‖Tx−Ty‖q = ‖x−y‖r

p for x,y ∈ X with
‖x− y‖p � σ .

Proof. If x = y ∈ X , then from r -nonexpansion of T we have Tx = Ty . For
x,y ∈ X , and x �= y , we set c = ‖x− y‖p , and prove that

‖Tx−Ty‖q = ‖x− y‖r
p if ‖x− y‖p = c � σ . (2.4)

Clearly, (2.4) holds in the cases of c = 0 and c = σ , since T satisfies the distance
σ power r preserving property. Without loss of generality, we suppose 0 < c = ‖x−
y‖p < σ . If ‖Tx− Ty‖q < ‖x− y‖r

p , then by taking z = x +
(σ

c

) 1
p (y− x) , we have

‖z− x‖p = σ and ‖z− y‖p =
∥∥∥∥(x− y)

[
1− (σ

c

) 1
p

]∥∥∥∥
p

=
(

σ
1
p − c

1
p

)p
. Since T is r -

nonexpansive and distance σ power r preserving, by Lemma 2.1 we can deduce that

σ r = ‖Tz−Tx‖q � ‖Tz−Ty‖q +‖Ty−Tx‖q

< ‖z− y‖r
p +‖x− y‖r

p =
(

σ
1
p − c

1
p

)pr
+ cr

� σ r − cr + cr = σ r,

a contradiction. Hence (2.4) holds, which shows the assertion. �

3. Extension of isometries

THEOREM 3.1. Let X be a p-normed space and Y a q-normed space (0 <
p,q � 1) . Let r > 0,rp � 1 and s = q

pr . Let T0 : S(X) → S(Y ) be an r -isometry (not
necessarily surjective) satisfying

‖T0x−λT0y‖q � ‖x−λ sy‖r
p, for x,y ∈ S(X) and λ ∈ [0,1]. (3.1)

Then T0 can be extended to be an r -isometry T of X into Y and T is positively s−1 -
homogeneous.

Proof. Suppose that x,y ∈ S(X) and λ ∈ [0,1] . Since T0 is an r -isometry, from
(3.1) we have ‖T0x−T0u‖q = ‖x− u‖r

p and ‖T0u−λT0y‖q � ‖u−λ sy‖r
p for all u ∈

S(X) . This implies that

‖x−u‖r
p−‖u−λ sy‖r

p � ‖T0x−T0u‖q−‖T0u−λT0y‖q � ‖T0x−λT0y‖q. (3.2)

By Lemma 2.3, the inequality (3.2) yields

‖x−λ sy‖r
p � sup

u∈S(X)
(‖x−u‖r

p−‖u−λ sy‖r
p) � ‖T0x−λT0y‖q. (3.3)

Combining (3.1) and (3.3) we can infer that

‖T0x−λT0y‖q = ‖x−λ sy‖r
p, for x,y ∈ S(X) and λ ∈ [0,1]. (3.4)
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Now we define an operator T : X → Y by

Tx =

⎧⎪⎨
⎪⎩

‖x‖
r
q
p T0

(
x

‖x‖
1
p
p

)
, x �= θ ;

θ , x = θ .

Then for α > 0 we have T (αx) = α
pr
q T x = αs−1

Tx , i.e., T is positively s−1 -homo-
geneous. It is evident that ‖Tx‖q = ‖x‖r

p for all x ∈ X . Evidently, Tx = T0x for all
x ∈ S(X) , i.e., T is an extension of T0 . For any x,y ∈ X , if x = θ or y = θ , then
‖Tx−Ty‖q = ‖x− y‖r

p ; if x �= θ and y �= θ , without loss of generality we can assume

that ‖y‖p � ‖x‖p and λ =
( ‖y‖p
‖x‖p

) r
q
, then from (3.4) we have

‖Tx−Ty‖q = ‖x‖r
p

∥∥∥∥∥∥T0

⎛
⎝ x

‖x‖
1
p
p

⎞
⎠−

(‖y‖p

‖x‖p

) r
q

T0

⎛
⎝ y

‖y‖
1
p
p

⎞
⎠
∥∥∥∥∥∥

q

= ‖x‖r
p

∥∥∥∥∥∥
x

‖x‖
1
p
p

−
(‖y‖p

‖x‖p

) rs
q y

‖y‖
1
p
p

∥∥∥∥∥∥
r

p

= ‖x− y‖r
p.

Therefore T is an r -isometry. This completes the proof. �

THEOREM 3.2. Let X be a p-normed space and Y a q-normed space (0 < p,q�
1) . Let 0 < r � q and s = q

pr . Let T0 : S(X) → S(Y ) be a surjectively r -isometric
operator satisfying

‖T0x−λT0y‖q � ‖x−λ sy‖r
p, for x,y ∈ S(X) and λ ∈ [0,1]. (3.5)

Then T0 can be extended to be an r -isometry T of X onto Y and T is positively
s−1 -homogeneous.

Proof. Since T0 : S(X) → S(Y ) is an r -isometric operator, we derive that T0 is
an injection. Since T0 is also surjective, we see that T0 is bijective. Thus, S0 = T−1

0 :
S(Y ) → S(X) is an r−1 -isometry. Let μ = λ s and t = s−1 . From (3.5) we have

‖S0x− μS0y‖p � ‖x− μ ty‖
1
r
q , for x,y ∈ S(Y ) and μ ∈ [0,1].

By Theorem 3.1, S0 can be extended to be a bijective r−1 -isometry S of Y onto X
and S is positively t−1 -homogeneous. Setting T = S−1 , then as an extension of T0 , T
is r -isometric from X onto Y and is positively s−1 -homogeneous. This completes the
proof. �

THEOREM 3.3. Let X be a p-normed space and Y a q-normed space (0 <
p,q � 1) . Let r > 0,rp � 1 and s = q

pr . Let T : X →Y be an r -nonexpansive operator
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(not necessarily surjective) such that the restriction T |S(X) is an r -isometry. If T is
positively s−1 -homogeneous, then T is a r -isometry.

Proof. Firstly, we verify that

‖Tx−Ty‖q = ‖x− y‖r
p, for x ∈ S(X) and y ∈ B(X). (3.6)

Assume that (3.6) does not hold. Since T is r -nonexpansive and T |S(X) : S(X)→ S(Y )
is a r -isometry, there exist x0,y0 ∈ X with ‖x0‖p = 1 and ‖y0‖p < 1 such that

‖Tx0−Ty0‖q < ‖x0− y0‖r
p.

By Lemma 2.2, there exist z0 ∈ S(X) and λ0 ∈ (0,1] such that y0 = λ0z0 +(1−λ0)x0 .
From Lemma 2.1 it follows that

‖x0− z0‖r
p �

[
λ pr

0 +(1−λ0)pr]‖x0− z0‖r
p = ‖x0− y0‖r

p +‖y0− z0‖r
p

> ‖Tx0−Ty0‖q +‖Ty0−Tz0‖q � ‖Tx0−Tz0‖q = ‖x0− z0‖r
p,

which is a contradiction.
Next, we will prove that

‖Tx−Ty‖q = ‖x− y‖r
p, for x,y ∈ B(X). (3.7)

Keeping in mind that (3.6) holds, without loss of generality, we suppose that ‖x‖p < 1
and ‖y‖p < 1 with y �= x . By Lemma 2.2, there exist z ∈ S(X) and μ ∈ (0,1] such that
y = μz+(1− μ)x . Thus, by Lemma 2.1 we have

‖x− z‖r
p � [μ pr +(1− μ)pr]‖x− z‖r

p = ‖x− y‖r
p +‖y− z‖r

p

� ‖Tx−Ty‖q +‖Ty−Tz‖q � ‖Tx−Tz‖q. (3.8)

For x,y ∈ B(X) and z ∈ S(X) , by using (3.6) we get

‖x− z‖r
p = ‖Tx−Tz‖q and ‖y− z‖r

p = ‖Ty−Tz‖q. (3.9)

Combining (3.8) and (3.9) we deduce that ‖Tx−Ty‖q = ‖x− y‖r
p , namely (3.7) holds.

Finally, we show that T is a r -isometry. In fact, for x,y ∈ X there is α > 0
such that αx,αy ∈ B(X) . Thus, by (3.7) and the positive s−1 -homogeneity of T we
conclude that

‖Tx−Ty‖q = α−qs−1‖T (αx)−T (αy)‖q = α−qs−1‖αx−αy‖r
p = ‖x− y‖r

p.

This completes the proof. �

THEOREM 3.4. Let X be a p-normed space and Y a q-normed space (0 < p,q�
1) . Let 0 < r � q and s = q

pr . Let T : X → Y be an r -expansive operator such that the

restriction T |S(X) is a surjective r -isometry. If T is positively s−1 -homogeneous, then
T is an r -isometry.

Proof. Since T |S(X) is surjective and T is positively s−1 -homogeneous, we see
that T is surjective. Taking into account the fact that T is r -expansive, we deduce that
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T is also injective, and so it is invertible. Hence T−1 : Y → X is r−1 -nonexpansive
such that the restriction T−1|S(Y ) is a r−1 -isometry. It is evident that q · 1

r � 1. Set
t = p

q· 1r
= pr

q = s−1 . Then T−1 is positively t−1 -homogeneous. Using Theorem 3.3,

we get that T−1 is an r−1 -isometry. Therefore T : X → Y is an r -isometry. �

Taking r = 1
p in Theorems 3.1 and r = q in Theorems 3.2, from Theorems 3.1

and 3.2 we obtain the following consequences, respectively.

COROLLARY 3.5. Let X be a p-normed space and Y a q-normed space (0 <
p,q � 1) . Let T0 : S(X) → S(Y ) be a p−1 -isometry (not necessarily surjective) satis-
fying

‖T0x−λT0y‖q � ‖x−λ qy‖
1
p
p , for x,y ∈ S(X) and λ ∈ [0,1].

Then T0 can be extended to be a p−1 -isometry T of X into Y and T is positively
1
q -homogeneous.

COROLLARY 3.6. Let X be a p-normed space and Y a q-normed space (0 <
p,q � 1) . Let T0 : S(X) → S(Y ) be a surjectively q-isometric operator satisfying

‖T0x−λT0y‖q � ‖x−λ
1
p y‖q

p, for x,y ∈ S(X) and λ ∈ [0,1].

Then T0 can be extended to be a q-isometry T of X onto Y and T is positively p-
homogeneous.

In Theorem 3.1, if r = 1, then we have p = 1. In Theorem 3.2, if r = 1, then we
have q = 1. Thus, from Theorems 3.1 and 3.2 we obtain the following consequences,
respectively.

COROLLARY 3.7. Let X be a normed space and Y a q-normed space (0 < q �
1) . Let T0 : S(X) → S(Y ) be an isometry (not necessarily surjective) satisfying

‖T0x−λT0y‖q � ‖x−λ qy‖, for x,y ∈ S(X) and λ ∈ [0,1].

Then T0 can be extended to be an isometry T of X into Y and T is positively 1
q -

homogeneous.

COROLLARY 3.8. Let X be a p-normed space (0 < p � 1) and Y a normed
space. Let T0 : S(X) → S(Y ) be a surjectively isometric operator satisfying

‖T0x−λT0y‖ � ‖x−λ
1
p y‖p, for x,y ∈ S(X) and λ ∈ [0,1].

Then T0 can be extended to be an isometry T of X onto Y and T is positively p-
homogeneous.

REMARK 3.1. The well-known Mazur-Ulam theorem [19] states that any sur-
jective isometry T between two real normed spaces with T (θ ) = θ must be linear.
According to the Mazur-Ulam theorem, we can see that the operator in Theorem 3.2 is
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linear in the case of p = q = r = 1. From the following Corollary 3.9 we can see that
the operator in Theorem 3.1 in the case of p = q = r = 1 is linear if Y is strictly convex.
Theorem 3.1 in the case of p = q = r = 1 and Lemma 2.1 in [10] are the results under
different conditions: in Theorem 3.1 (and Corollary 3.9) in the case of p = q = r = 1,
the operator T0 : S(X) → S(Y ) may not necessarily be surjective, but Y is strictly con-
vex; in Lemma 2.1 in [10], the operator may necessarily be surjective. Another formal
difference between the two is λ ∈ [0,1] and λ > 0. Since the norm is continuous,
condition λ = 0 can be omitted. Since the unit sphere is symmetric, condition λ > 1
can be omitted. Considering the inverse operator in conditions in Theorem 3.2, we see
that Theorem 3.2 in the case of p = q = r = 1 and Lemma 2.1 in [10] are consistent.

COROLLARY 3.9. Let X be a p-normed space (0 < p � 1) and Y a strictly con-
vex normed space. Let T0 : S(X)→ S(Y ) be a p−1 -isometric operator (not necessarily
surjective) satisfying

‖T0x−λT0y‖ � ‖x−λy‖
1
p
p for x,y ∈ S(X) and λ ∈ [0,1].

Then T0 can be extended to be a linear p−1 -isometry T of X into Y .

Proof. Let x,y ∈ X and z = x+ y . Then

∥∥∥ z
2
− x
∥∥∥ 1

p

p
=
∥∥∥ z

2
− y
∥∥∥ 1

p

p
=

1
2
‖x− y‖

1
p
p .

Since T is a p−1 -isometry by Corollary 3.5 (q = 1) , we have∥∥∥T ( z
2

)
−Tx

∥∥∥=
∥∥∥T ( z

2

)
−Ty

∥∥∥=
1
2
‖Tx−Ty‖ , (3.10)

which follows that∥∥∥Tx−T
( z

2

)∥∥∥+
∥∥∥T ( z

2

)
−Ty

∥∥∥=
∥∥∥Tx−T

( z
2

)
+T

( z
2

)
−Ty

∥∥∥ .

Since Y is strictly convex, there exists γ > 0 such that

Tx−T
( z

2

)
= γ

[
T
( z

2

)
−Ty

]
.

From (3.10) implies that γ = 1, and thus T
( x+y

2

)
= Tx+Ty

2 . By Corollary 3.5 (q = 1) ,
T is positively homogeneous. So, we can infer that T is additive and T (θ ) = θ . Also,
from θ = T (x− x) = T (x)+T (−x) we have T (−x) = −T (x) , which follows that T
is homogeneous. Therefore, T is linear. This completes the proof. �

REMARK 3.2. If p = 1, then the result in Corollary 3.9 was given by Yang et
al [37].

REMARK 3.3. In Corollary 3.9, if T0 is a p−1 -isometric bijection, then by using
a generalization of the Mazur-Ulam theorem ( [1, 22, 24]) we see that the condition of
strictly convex space can be omitted.
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REMARK 3.4. A counterexample given in [2] is that Lp and Lq are not isometric,
where 0 < p < q � 1. It was pointed out in [17] that, for two normed spaces (X ,‖ · ‖)
and (Y,‖ · ‖) , if (Y,‖ · ‖) is a strictly convex and 0 < p < 1, then there does not exist
any isometry from (X ,‖ · ‖) to (Y,‖ · ‖p) . In our discussions, we consider r -isometry
with rp � 1 or 0 < r � q , avoid the above two situations.

4. Isometries of distance preserving

THEOREM 4.1. Let X be a p-normed space (0 < p � 1) and Y a strictly convex
normed space. Let T : X →Y be an r -nonexpansive operator. If T satisfies the distance
σ power r preserving property and rp � 1 , then T is an r -isometry.

Proof. By Lemma 2.5 (q = 1) , we have

‖Tx−Ty‖= ‖x− y‖r
p if ‖x− y‖p � σ for x,y ∈ X . (4.1)

In order to reach the desired conclusion, it is enough to prove that

‖Tx−Ty‖= ‖x− y‖r
p if ‖x− y‖p � 2npσ for all n ∈ N and x,y ∈ X . (4.2)

Evidently, from (4.1) we see that (4.2) holds in the case of n = 0. We now assume that
(4.2) holds in the case of n = k and ‖x− y‖p � 2(k+1)pσ for x,y ∈ X . From (4.1) we
can suppose a = ‖x− y‖p > σ , which does not restrict the generality. Taking w = x+y

2

and u = w+
(σ

a

) 1
p (x−w) we have successively

‖x−w‖p = ‖y−w‖p =
‖x− y‖p

2p � 2kpσ , (4.3)

‖u−w‖p =
σ
a
‖x−w‖p =

σ
a
· a
2p =

σ
2p < σ , (4.4)

‖u− x‖
1
p
p =

∥∥∥∥(w− x)
[
1−
(σ

a

) 1
p
]∥∥∥∥

1
p

p
= ‖w− x‖

1
p
p

[
1−
(σ

a

) 1
p
]

= ‖w− x‖
1
p
p −‖w−u‖

1
p
p < 2kσ

1
p . (4.5)

In view of the inductive assumption, from (4.3), (4.4) and (4.5) we infer that

‖Tw−Tx‖ 1
rp = ‖Tw−Tu‖ 1

rp +‖Tu−Tx‖ 1
rp . (4.6)

Since rp � 1, it follows (4.6) and Lemma 2.1 that ‖Tw−Tx‖ � ‖Tw−Tu‖+ ‖Tu−
Tx‖ . Combining it with ‖Tw−Tx‖ � ‖Tw−Tu‖+‖Tu−Tx‖ , we obtain

‖Tw−Tx‖ = ‖Tw−Tu‖+‖Tu−Tx‖. (4.7)

Since Y is strictly convex, from (4.7) it follows that there exists β > 0 such that

Tu−Tx = β (Tw−Tu), (4.8)



THE AT PROBLEM FOR EXPANSIVE AND NONEXPANSIVE OPERATORS 63

and so ‖Tu−Tx‖= β‖Tw−Tu‖ . Moreover, in view of the inductive assumption, from
(4.7) we deduce that

‖w− x‖r
p = ‖w−u‖r

p +‖u− x‖r
p and ‖u− x‖r

p = β‖w−u‖r
p. (4.9)

Thus, (4.9) and (4.4) yield β =
(

a
σ
)r −1, and (4.8) means that

Tx = (1+ β )Tu−βTw. (4.10)

Likewise, taking v = w+
(σ

a

) 1
p (y−w) , in the similar way as above, we can infer that

Ty = (1+ β )Tv−βTw, (4.11)

where β =
(

a
σ
)r − 1. Keeping in mind that T satisfies the distance σ power r pre-

serving property, from the equalities ‖u− v‖= σ , (4.10) and (4.11) we conclude that

‖Tx−Ty‖= (1+ β )‖Tu−Tv‖ = (1+ β )σ r = ar = ‖x− y‖r
p, (4.12)

which shows that (4.2) holds in the case of n = k + 1. By induction, the proof is
completed. �

COROLLARY 4.2. Let X be a p-normed space (0 < p � 1) and Y a strictly
convex normed space. Let T : X → Y be a locally r -nonexpansive operator. If T
satisfies the distance σ power r preserving property and rp � 1 , then T is an r -
isometry.

Proof. It follows from Theorem 4.1 and Lemma 2.4. �

REMARK 4.1. If σ = 1 and r = 1
p , then the result in Corollary 4.2 was given by

Ma [17].

THEOREM 4.3. Let X be a strictly convex normed space and Y a q-normed space
(0 < q � 1) . Let T : X → Y be a surjectively r -expansive operator and r � q. If T
satisfies the strong distance σ power r preserving property, then T is an r -isometry.

Proof. Since T : X → Y is r -expansive, namely

‖Tx−Ty‖q � ‖x− y‖r, for x,y ∈ X , (4.13)

we can infer that T is an injection. Considering that T is surjective, we claim that T
is an invertible operator. From (4.13) we see that S = T−1 : Y → X satisfies

‖Sx−Sy‖� ‖x− y‖
1
r
q , for x,y ∈Y.

This means that S is 1
r -nonexpansive and q

r � 1. Moreover, in view of the hypothesis,
we deduce that S satisfies the strong distance σ power 1

r preserving property. By
Theorem 4.1, S is an 1

r -isometry. Therefore T is an r -isometry. This completes the
proof. �
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REMARK 4.2. The condition r � q in Theorem 4.3 is necessary. Let X ,Y be
normed spaces (namely q = 1) and r > 1. We now point out that there does not exist
any r -isometry from X to Y . Assume that T is an r -isometry from X to Y , x,y ∈ X
with x �= y , then we can infer that

‖x− y‖r = ‖Tx−Ty‖�
∥∥∥∥Tx−T

(
x+ y

2

)∥∥∥∥+
∥∥∥∥T
(

x+ y
2

)
−Ty

∥∥∥∥
=
∥∥∥∥x− x+ y

2

∥∥∥∥
r

+
∥∥∥∥x+ y

2
− y

∥∥∥∥
r

= 21−r‖x− y‖r,

which contradicts with 21−r < 1.

THEOREM 4.4. Let X and Y be two normed spaces. Let T : X → Y be a sur-
jectively expansive operator. If T satisfies the strong distance σ preserving property,
and

‖x− y‖< σ ⇒ ‖Tx−Ty‖< σ , for x,y ∈ X , (4.14)

then T is an isometry.

Proof. We first prove that

‖Tx−Ty‖� σ ⇒ ‖Tx−Ty‖� ‖x− y‖, for x,y ∈ X . (4.15)

Clearly, since T satisfies the strong distance σ preserving property, (4.15) holds in the
case of ‖Tx−Ty‖ = σ . Without loss of generality, we suppose ‖Tx−Ty‖ < σ and
Tx �= Ty . Take u = Tx + σ

b (Ty−Tx) , where b = ‖Tx−Ty‖ . Since T is surjective,
there exists z ∈ X such that u = Tz , namely Tz = Tx+ σ

b (Ty−Tx) . Thus, we have
‖Tz−Tx‖ = σ and ‖Tz−Ty‖ =

∥∥(Tx−Ty)
[
1− σ

b

]∥∥= σ −b . Since T is expansive
and strong distance σ preserving, we obtain

‖Tx−Ty‖ = b = σ −‖Tz−Ty‖� σ −‖z− y‖
= ‖z− x‖−‖z− y‖� ‖x− y‖.

Hence (4.15) holds. Again, taking into account that T is expansive and strong distance
σ preserving, we have

‖x− y‖= σ ⇔ ‖Tx−Ty‖= σ ; for x,y ∈ X . (4.16)

‖Tx−Ty‖� σ ⇒ ‖x− y‖� σ , for x,y ∈ X . (4.17)

Combining (4.14), (4.16) and (4.17) we deduce that

‖x− y‖� σ ⇔ ‖Tx−Ty‖� σ , for x,y ∈ X . (4.18)

Thus, (4.18) and (4.15) yield

‖x− y‖� σ ⇒ ‖Tx−Ty‖� ‖x− y‖, for x,y ∈ X ,

which means that T is locally nonexpansive. By Lemma 2.4, T is nonexpansive in the
whole space. Finally, keeping in mind that T is expansive, we conclude that T is an
isometry. This completes the proof. �
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THEOREM 4.5. Let X be a p-normed space and Y a q-normed space (0 < p,q�
1) . Let T : X → Y be a locally r -nonexpansive operator, where rp � 1 . If T satisfies
the distance nσ power r preserving property for each n ∈ N , then T is an r -isometry.

Proof. Since T is locally r -nonexpansive, and rp � 1, by Lemma 2.4 we see that
T is r -nonexpansive. Since T satisfies the distance σ power r preserving property, by
Lemma 2.5 we have

‖Tx−Ty‖q = ‖x− y‖r
p if ‖x− y‖p � σ . (4.19)

Now we suppose that x,y ∈ X , ‖x− y‖p > σ , and set ‖x− y‖p = b . Then there exists
n ∈ N such that nσ < ‖x− y‖p � (n+1)σ . If ‖Tx−Ty‖q < ‖x− y‖r

p , then by taking

w = x+(n+1)
1
p
(σ

b

) 1
p (y− x) , we have ‖w− x‖p = (n+1)σ and

‖w− y‖p =
∥∥∥∥(x− y)

[
1− (n+1)

1
p

(σ
b

) 1
p
]∥∥∥∥

p
=
[
(n+1)

1
p σ

1
p −b

1
p

]p
. (4.20)

Since ‖Tw−Ty‖q � ‖w− y‖r
p , from (4.20) it follows that

(n+1)rσ r = ‖w− x‖r
p = ‖Tw−Tx‖q � ‖Tw−Ty‖q +‖Ty−Tx‖q

< ‖w− y‖r
p +‖x− y‖r

p =
[
(n+1)

1
p σ

1
p −b

1
p

]pr
+br

� (n+1)rσ r −br +br = (n+1)rσ r,

which is a contradiction. Hence we have ‖Tx− Ty‖q = ‖x− y‖r
p if ‖x− y‖p > σ .

Combining it with (4.19), we conclude that T is an r -isometry. This completes the
proof. �

COROLLARY 4.6. Let X and Y be two normed spaces. Let T : X → Y be a
locally nonexpansive and surjective operator. If T satisfies the distance σ preserving
property and

‖x− y‖> σ ⇒ ‖Tx−Ty‖> σ , for x,y ∈ X , (4.21)

then T is an isometry.

Proof. Since T is locally nonexpansive and surjective, by Lemma 2.4 (r = p =
q = 1) we see that T is nonexpansive and bijective. For each n ∈ N (n � 2) and
x,y ∈ X with ‖x− y‖ = nσ , we will prove that ‖Tx− Ty‖ = nσ . By Lemma 2.5
(r = p = q = 1) we have

‖Tx−Ty‖= ‖x− y‖ if ‖x− y‖� σ . (4.22)

If ‖Tx−Ty‖< nσ , then by taking ui = Tx+ i
n (Ty−Tx) , i = 0,1, · · · ,n , we get ‖ui−

ui−1‖ = 1
n‖Tx− Ty‖ < σ . Since T is a bijection, there is zi ∈ X such that Tzi = ui
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(i = 0,1, · · · ,n) , z0 = x and zn = y . From ‖Tzi −Tzi−1‖ < σ and (4.21) we infer that
‖zi− zi−1‖ � σ . It follows from (4.22) that ‖zi − zi−1‖ = ‖Tzi −Tzi−1‖ < σ , and so

‖y− x‖=

∥∥∥∥∥
n

∑
i=1

(zi − zi−1)

∥∥∥∥∥�
n

∑
i=1

‖zi − zi−1‖ < nσ ,

which is a contradiction. Hence T satisfies the distance σ power preserving property
for each n ∈ N . By Theorem 4.5 (r = p = q = 1) , T is an isometry. �
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