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INNER PRODUCT INEQUALITIES THROUGH

CARTESIAN DECOMPOSITION WITH APPLICATIONS

TO NUMERICAL RADIUS INEQUALITIES

SAEEDATOSSADAT NOURBAKHSH, MAHMOUD HASSANI ∗ ,
MOHSEN ERFANIAN OMIDVAR AND HAMID REZA MORADI

(Communicated by F. Kittaneh)

Abstract. This paper intends to show several inner product inequalities using the Cartesian de-
composition of the operator. We utilize the obtained results to get norm and numerical radius
inequalities. Our results extend and improve some earlier inequalities. Among other inequalities,
it is revealed that if T is a n×n complex matrix with the imaginary part ℑT = T−T ∗

2i , then

1
2

max

(∥∥TT ∗ − iℑT 2
∥∥ 1

2 ,
∥∥T ∗T + iℑT 2

∥∥ 1
2

)
� ω (T )

which is a significant improvement of the classical inequality 1
2 ‖T‖ � ω (T ) .

1. Introduction

In a complex Hilbert space H with the inner product 〈·, ·〉 , we denote the C∗ -
algebra of all bounded linear operators on H as B(H ) . In the case when dimH = n ,
we identify B (H ) with the matrix algebra Mn of all n×n matrices with entries in the
complex field C . For any T ∈ B (H ) , we can write T = A+ iB in which A = ℜT =
T+T∗

2 and B = ℑT = T−T ∗
2i are self-adjoint operators. This is the so-called Cartesian

decomposition of T . For any T ∈ B(H ) , we can define its numerical radius and
the operator norm, respectively represented by ω(T ) = sup‖x‖=1 |〈Tx,x〉| and ‖T‖ =
sup‖x‖=1 ‖Tx‖ . Two important inequalities for the usual operator norm and numerical
radius are that

‖Tn‖ � ‖T‖n and ω (Tn) � ωn (T ) ; n = 1,2, . . . .

If T is normal, meaning T ∗T = TT ∗ , it is widely known that ω(T ) = ‖T‖ . However,
this equality fails for non-normal operators. Instead, we can establish the following
inequality for any T ∈ B(H ) :

1
2
‖T‖ � ω(T ) � ‖T‖. (1.1)
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This inequality is significant because it approximates the numerical radius ω(T ) in
terms of the more computationally manageable quantity ‖T‖ .

As a result, researchers have been focusing on sharpening this and other inequal-
ities for the numerical radius, as found in [5, 10, 12, 13, 14, 17]. Below, we list some
results regarding the inequality (1.1).

Kittaneh [16, Theorem 1] proposed an improvement of (1.1) in the following man-
ner:

1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥ � ω2 (T ) � 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥ .

In [14, Corollary 3.4], the previouse inequality was improved as follows:

ω (T ) � 1
2

√∥∥∥|T |2 + |T ∗|2
∥∥∥+2ω (|T | |T ∗|). (1.2)

After that, in [20, Corollary 2.8], inequality (1.2) was refined:

ω (T ) � 1
2

√∥∥∥|T |2 + |T ∗|2
∥∥∥+‖ |T | |T ∗|+ |T ∗| |T | ‖. (1.3)

Inequality (1.3) can be written in the following arrangement:

ω (T ) � 1
2

√∥∥∥|T |2 + |T ∗|2
∥∥∥+2‖ℜ(|T | |T ∗|)‖.

Here, we point out that inequalities (1.2) and (1.3) have been proved and generalized
separately in [2] and [3].

This paper aims to demonstrate considerable inequalities for inner products through
the operator’s Cartesian decomposition. The results are then applied to obtain inequali-
ties for norm and numerical radius. Furthermore, our research improves and generalizes
earlier established inequalities.

In order to accomplish these aims, we will require the following facts:

(I) (Mixed Schwarz inequality [11, pp. 75–76]) For any T ∈ B(H ) and x,y ∈ H ,

|〈Tx,y〉|2 �
〈
|T |2νx,x

〉〈
|T ∗|2(1−ν)y,y

〉
; (ν ∈ [0,1]) . (1.4)

(II) [7, (2.26)] For any x,y,z ∈ H ,

|〈z,x〉|2 + |〈z,y〉|2 � ‖z‖2 max
(
‖x‖2,‖y‖2

)
+ |〈x,y〉| . (1.5)

(III) (Buzano inequality [4]) For any x,y,z ∈ H ,

|〈z,x〉| |〈z,y〉| � ‖z‖2

2
(|〈x,y〉|+‖x‖‖y‖) . (1.6)

(IV) (Arithmetic-geometric mean inequality for the usual operator norm [1]) For any
S,T ∈ B(H ) ,

‖ST‖ � 1
2

∥∥∥|S|2 + |T ∗|2
∥∥∥ . (1.7)
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2. Inner product inequalities

We start this section with an uncomplicated comment regarding inequality (1.5).
More precisely, the following remark shows the inequality (1.5) holds for any orthogo-
nal projection.

REMARK 2.1. Assume that P : H → H is a contraction operator; namely, it
satisfies the condition ‖P‖ � 1. If we replace z by Pz , in (1.5), we obtain

|〈Pz,x〉|2 + |〈Pz,y〉|2 � ‖Pz‖2 max
(
‖x‖2,‖y‖2

)
+ |〈x,y〉|

� ‖P‖2‖z‖2 max
(
‖x‖2,‖y‖2

)
+ |〈x,y〉|

� ‖z‖2 max
(
‖x‖2,‖y‖2

)
+ |〈x,y〉| .

The following theorem suggests an upper bound for |〈Tx,y〉| using polar decom-
position.

THEOREM 2.1. Let S,T ∈ B (H ) . Then

|〈(S+ iT)x,y〉|2 � max
(
‖S∗y‖2,‖T ∗y‖2

)
+ |〈TS∗y,y〉|+2 |〈Sx,y〉| |〈Tx,y〉| ,

for any unit vectors x,y ∈ H . If T ∈ B (H ) with the Cartesian decomposition T =
A+ iB, then

|〈Tx,y〉|2 � max
(
‖Ay‖2,‖By‖2

)
+ |〈BAy,y〉|+2 |〈Ax,y〉| |〈Bx,y〉| . (2.1)

Proof. Taking x = S∗y , y = T ∗y and z = x with ‖x‖ = ‖y‖ = 1, in (1.5), we get

|〈Sx,y〉|2 + |〈Tx,y〉|2 = |〈x,S∗y〉|2 + |〈x,T ∗y〉|2

� max
(
‖S∗y‖2,‖T ∗y‖2

)
+ |〈S∗y,T ∗y〉| .

Therefore,

|〈(S+T )x,y〉|2 = |〈Sx,y〉+ 〈Tx,y〉|2

� (|〈Sx,y〉|+ |〈Tx,y〉|)2 (by the triangle inequality)

= |〈Sx,y〉|2 + |〈Tx,y〉|2 +2 |〈Sx,y〉| |〈Tx,y〉|
� max

(
‖S∗y‖2,‖T ∗y‖2

)
+ |〈TS∗y,y〉|+2 |〈Sx,y〉| |〈Tx,y〉| ,

i.e.,

|〈(S+T)x,y〉|2 � max
(
‖S∗y‖2,‖T ∗y‖2

)
+ |〈TS∗y,y〉|+2 |〈Sx,y〉| |〈Tx,y〉| . (2.2)

We get the desired inequality by replacing T by iT in the inequality (2.2). �
Inequality (2.1) can be stated in the following form:
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COROLLARY 2.1. Let T ∈B (H ) with the Cartesian decomposition T = A+ iB.
Then

|〈Tx,y〉|2 � 1
2

(〈(
|A|2 + |B|2

)
y,y

〉
+

∣∣∣〈(
|A|2−|B|2

)
y,y

〉∣∣∣)
+ |〈BAy,y〉|+2 |〈Ax,y〉| |〈Bx,y〉| ,

for any unit vectors x,y ∈ H .

Proof. We have

|〈Tx,y〉|2

� max
(
‖Ay‖2,‖By‖2

)
+ |〈BAy,y〉|+2 |〈Ax,y〉| |〈Bx,y〉|

=
1
2

(
‖Ay‖2 +‖By‖2 +

∣∣∣‖Ay‖2 −‖By‖2
∣∣∣)+ |〈BAy,y〉|+2 |〈Ax,y〉| |〈Bx,y〉|

=
1
2

(〈
|A|2y,y

〉
+

〈
|B|2y,y

〉
+

∣∣∣〈|A|2y,y〉−
〈
|B|2y,y

〉∣∣∣)+ |〈BAy,y〉|
+2 |〈Ax,y〉| |〈Bx,y〉|

=
1
2

(〈(
|A|2 + |B|2

)
y,y

〉
+

∣∣∣〈(
|A|2−|B|2

)
y,y

〉∣∣∣)+ |〈BAy,y〉|+2 |〈Ax,y〉| |〈Bx,y〉| ,

as wished. �
The next theorem provides an upper bound for the product of two operators.

THEOREM 2.2. Let A,B ∈ B(H ) . Then

|〈B∗Ax,x〉|2 � 1
2

(
max

(∥∥∥|A|2x
∥∥∥2

,
∥∥∥|B|2x

∥∥∥2
)

+
∣∣∣〈|B|2|A|2x,x〉

∣∣∣
)

,

for any unit vector x ∈ H .

Proof. Taking x = |A|2x , y = |B|2x , and z = x , in (1.5), we get

∣∣∣〈x, |A|2x
〉∣∣∣2 +

∣∣∣〈x, |B|2x
〉∣∣∣2 � max

(∥∥∥|A|2x∥∥∥2
,
∥∥∥|B|2x∥∥∥2

)
+

∣∣∣〈|A|2x, |B|2x〉∣∣∣ . (2.3)

So,

2 |〈B∗Ax,x〉|2 = 2 |〈Ax,Bx〉|2

� 2‖Ax‖2‖Bx‖2 (by the Cauchy-Schwarz inequality)

= 2〈Ax,Ax〉〈Bx,Bx〉
= 2〈A∗Ax,x〉〈B∗Bx,x〉
= 2

〈
|A|2x,x

〉〈
|B|2x,x

〉
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�
〈
|A|2x,x

〉2
+

〈
|B|2x,x

〉2

(by the arithmetic-geometric mean inequality)

=
∣∣∣〈x, |A|2x

〉∣∣∣2 +
∣∣∣〈x, |B|2x

〉∣∣∣2

� max

(∥∥∥|A|2x
∥∥∥2

,
∥∥∥|B|2x

∥∥∥2
)

+
∣∣∣〈|A|2x, |B|2x〉

∣∣∣ (by (2.3))

= max

(∥∥∥|A|2x
∥∥∥2

,
∥∥∥|B|2x

∥∥∥2
)

+
∣∣∣〈|B|2|A|2x,x〉

∣∣∣ .
Consequently,

|〈B∗Ax,x〉|2 � 1
2

(
max

(∥∥∥|A|2x
∥∥∥2

,
∥∥∥|B|2x

∥∥∥2
)

+
∣∣∣〈|B|2|A|2x,x〉

∣∣∣
)

,

as desired. �
As a consequence of Theorem 2.2, we have:

COROLLARY 2.2. Let T ∈ B(H ) and let 0 � ν � 1 . Then

|〈Tx,x〉|2 � 1
2

(
max

(∥∥∥|T |2νx
∥∥∥2

,
∥∥∥|T ∗|2(1−ν)x

∥∥∥2
)

+
∣∣∣〈|T ∗|2(1−ν)|T |2νx,x

〉∣∣∣
)

,

for any unit vector x ∈ H .

Proof. Letting B∗ = U |T |1−ν and A = |T |ν , in Theorem 2.2, we reach

|〈Tx,x〉|2 � 1
2

(
max

(∥∥∥|T |2νx
∥∥∥2

,
∥∥∥U |T |2(1−ν)U∗x

∥∥∥2
)

+
∣∣∣〈|T |2ν ,U |T |2(1−ν)U∗x

〉∣∣∣)

=
1
2

(
max

(∥∥∥|T |2νx
∥∥∥2

,
∥∥∥|T ∗|2(1−ν)x

∥∥∥2
)

+
∣∣∣〈|T |2νx, |T ∗|2(1−ν)x

〉∣∣∣
)

(by [9, Theorem 4 (ii), p. 58])

=
1
2

(
max

(∥∥∥|T |2νx
∥∥∥2

,
∥∥∥|T ∗|2(1−ν)x

∥∥∥2
)

+
∣∣∣〈|T ∗|2(1−ν)|T |2νx,x

〉∣∣∣
)

,

as required. �
Next, we obtain another upper bound for |〈Tx,y〉| using polar decompostion.

THEOREM 2.3. Let S,T ∈ B (H ) . Then for any 0 � ν � 1 ,

|〈(S+ iT)x,y〉| �
√〈(

|S|2ν + |T |2ν
)

x,x
〉√〈(

|S∗|2(1−ν) + |T ∗|2(1−ν)
)

y,y
〉
,
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for any unit vectors x,y ∈ H . If T ∈ B (H ) with the Cartesian decomposition
T = A+ iB, then

|〈Tx,y〉| �
√〈(

|A|2ν + |B|2ν
)

x,x
〉〈(

|A|2(1−ν) + |B|2(1−ν)
)

y,y
〉
.

Proof. Let x,y ∈ H be unit vectors. Then

|〈(S+ iT )x,y〉| = |〈Sx,y〉+ i〈Tx,y〉|
� |〈Sx,y〉|+ |〈Tx,y〉| (by the triangle inequality)

�
√〈

|S|2νx,x
〉〈

|S∗|2(1−ν)y,y
〉

+
√〈

|T |2νx,x
〉〈

|T ∗|2(1−ν)y,y
〉

(by (1.4))

�
√〈

|S|2νx,x
〉

+
〈
|T |2νx,x

〉√〈
|S∗|2(1−ν)y,y

〉
+

〈
|T ∗|2(1−ν)y,y

〉

(by the Cauchy-Schwarz inequality)

=
√〈(

|S|2ν + |T |2ν
)

x,x
〉√〈(

|S∗|2(1−ν) + |T ∗|2(1−ν)
)

y,y
〉
,

i.e.,

|〈(S+ iT)x,y〉| �
√〈(

|S|2ν + |T |2ν
)

x,x
〉√〈(

|S∗|2(1−ν) + |T ∗|2(1−ν)
)

y,y
〉
,

as expected. �

3. Norm and numerical radii inequalities

This section derives several inequalities for the usual operator norm and numerical
radii. The first result is the improvement of [21, Theorem 2.1].

PROPOSITION 3.1. Let S,T ∈ B(H ) . Then

‖S+T‖2 � 1
2

min
(∥∥∥|S|2 + |T |2

∥∥∥+
∥∥∥|S|2 −|T |2

∥∥∥ ,
∥∥∥|S∗|2 + |T ∗|2

∥∥∥+
∥∥∥|S∗|2−|T ∗|2

∥∥∥)

+min(ω (T ∗S) ,ω (TS∗))+2‖S‖‖T‖ .

Proof. It follows from (2.2) that

|〈(S+T)x,y〉|2 � 1
2

(〈(
|S∗|2 + |T ∗|2

)
y,y

〉
+

∣∣∣〈(
|S∗|2 −|T ∗|2

)
y,y

〉∣∣∣)

+ |〈TS∗y,y〉|+2 |〈Sx,y〉| |〈Tx,y〉|
� 1

2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥+

∥∥∥|S∗|2−|T ∗|2
∥∥∥)

+ ω (TS∗)+2‖S‖‖T‖ .
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Now, by taking supremum over all unit vectors x ∈ H , we obtain

‖S+T‖2 � 1
2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥+

∥∥∥|S∗|2−|T ∗|2
∥∥∥)

+ ω (TS∗)+2‖S‖‖T‖ . (3.1)

If we substitute S and T by S∗ and T ∗ , in (3.1), we deduce

‖S+T‖2 = ‖S∗+T ∗‖2

� 1
2

(∥∥∥|S|2 + |T |2
∥∥∥+

∥∥∥|S|2−|T |2
∥∥∥)

+ ω (T ∗S)+2‖S∗‖‖T ∗‖

=
1
2

(∥∥∥|S|2 + |T |2
∥∥∥+

∥∥∥|S|2−|T |2
∥∥∥)

+ ω (T ∗S)+2‖S‖‖T‖ .

(3.2)

We conclude the desired result by combining two inequalities (3.1) and (3.2). �

A refinement of [21, Corollary 2.1] is given in the following.

PROPOSITION 3.2. Let S,T ∈ B(H ) . Then

ω2 (S+T ) � 1
2

min
(∥∥∥|S|2 + |T |2

∥∥∥+
∥∥∥|S|2−|T |2

∥∥∥ ,
∥∥∥|S∗|2 + |T ∗|2

∥∥∥+
∥∥∥|S∗|2 −|T ∗|2

∥∥∥)

+min(ω (T ∗S) ,ω (TS∗))+2ω (S)ω (T ) .

Proof. Letting y = x , in (2.2), we observe that

|〈(S+T)x,x〉|2 � 1
2

(〈(
|S∗|2 + |T ∗|2

)
x,x

〉
+

∣∣∣〈(
|S∗|2−|T ∗|2

)
x,x

〉∣∣∣)+ |〈TS∗x,x〉|
+2 |〈Sx,x〉| |〈Tx,x〉|

� 1
2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥+

∥∥∥|S∗|2−|T ∗|2
∥∥∥)

+ ω (TS∗)+2ω (S)ω (T ) ,

which implies

ω2 (S+T) � 1
2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥+

∥∥∥|S∗|2−|T ∗|2
∥∥∥)

+ ω (TS∗)+2ω (S)ω (T ) .

If we substitute S and T by S∗ and T ∗ , in the above inequality, we infer

ω2 (S+T ) � 1
2

(∥∥∥|S|2 + |T |2
∥∥∥+

∥∥∥|S|2−|T |2
∥∥∥)

+ ω (T ∗S)+2ω (S)ω (T ) .

Now, the result follows by incorporating these two inequalities. �

REMARK 3.1. The case S = T , in Proposition 3.2, recovers the second inequality
in (1.1).

The following result is a consequence of Theorem 2.2.
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COROLLARY 3.1. Let A,B ∈ B(H ) . Then

ω2 (B∗A) � 1
2

(
max

(
‖A‖4,‖B‖4

)
+ ω

(
|B|2|A|2

))
.

The following theorem proposes an upper bound for the numerical radii of the
product of two operators.

THEOREM 3.1. Let A,B ∈ B(H ) . Then for any r,s � 1 ,

ω (B∗A) �

√√√√∥∥∥∥∥
|A|2r + |B|2r

2

∥∥∥∥∥
1
r
∥∥∥∥∥
|A|2s + |B|2s

2

∥∥∥∥∥
1
s

.

Proof. It has been shown in [6, Corollary 4] that

∥∥∥∥B∗A+A∗B
2

∥∥∥∥ �

√√√√
∥∥∥∥∥
|A|2r + |B|2r

2

∥∥∥∥∥
1
r
∥∥∥∥∥
|A|2s + |B|2s

2

∥∥∥∥∥
1
s

,

which can be written as

‖R(B∗A)‖ �

√√√√
∥∥∥∥∥
|A|2r + |B|2r

2

∥∥∥∥∥
1
r
∥∥∥∥∥
|A|2s + |B|2s

2

∥∥∥∥∥
1
s

.

Replacing A by eiθ A , we receive

∥∥∥Reiθ (B∗A)
∥∥∥ �

√√√√
∥∥∥∥∥
|A|2r + |B|2r

2

∥∥∥∥∥
1
r
∥∥∥∥∥
|A|2s + |B|2s

2

∥∥∥∥∥
1
s

.

Now taking supremum over θ ∈ R , we infer that

ω (B∗A) �

√√√√∥∥∥∥∥
|A|2r + |B|2r

2

∥∥∥∥∥
1
r
∥∥∥∥∥
|A|2s + |B|2s

2

∥∥∥∥∥
1
s

,

due to sup
θ∈R

∥∥Reiθ T
∥∥ = ω (T ) [22]. �

REMARK 3.2. The case s = r , in Theorem 3.1, reduces to (see [6, Theorem 1])

ωr (B∗A) � 1
2

∥∥∥|A|2r + |B|2r
∥∥∥ .

By applying the same approach as in the proof of Corollary 2.2, we can write from
Theorem 3.1 that:
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COROLLARY 3.2. Let T ∈ B(H ) . Then

ω (T ) �

√√√√
∥∥∥∥∥
|T |2rν + |T ∗|2r(1−ν)

2

∥∥∥∥∥
1
r
∥∥∥∥∥
|T |2sν + |T ∗|2s(1−ν)

2

∥∥∥∥∥
1
s

; (r,s � 1,0 � ν � 1) .

REMARK 3.3. The case s = r , in Corollary 3.2, reduces to (see [8, Theorem 1])

ωr (T ) � 1
2

∥∥∥|T |2rν + |T ∗|2r(1−ν)
∥∥∥ .

It is easy to see that if T = A+ iB is the Cartesian decomposition of T ∈B (H ) ,
then

‖T‖ � ‖A‖+‖B‖ .

Closely related to the above inequality, one may state the following result, which is a
direct consequence of Theorem 2.3.

COROLLARY 3.3. Let S,T ∈B (H ) be two self-adjoint operators. Then for any
0 � ν � 1 ,

‖S+ iT‖ �
√∥∥∥|S|2ν + |T |2ν

∥∥∥∥∥∥|S|2(1−ν) + |T |2(1−ν)
∥∥∥.

If T ∈ B (H ) with the Cartesian decomposition T = A+ iB, then

‖T‖ �
√∥∥∥|A|2ν + |B|2ν

∥∥∥∥∥∥|A|2(1−ν) + |B|2(1−ν)
∥∥∥.

REMARK 3.4. Corollary 3.3 says that if S,T ∈B (H ) are self-adjoint operators,
then

‖S+ iT‖ � ‖ |S|+ |T | ‖ .

This can be compared with the following inequality for positive operators S,T and
unitarily invariant norm ‖·‖u (see [18, (3.8)])

‖S+ iT‖u � ‖S+T‖u.

REMARK 3.5. Letting ν = 1
2 in Corollary 3.3 to get

‖S+ iT‖ � ‖ |S|+ |T | ‖ � ‖S‖+‖T‖

where the second inequality is obvious by the triangle inequality. By substituting S =
ℜT and T = ℑT , we deduce

‖T‖ � 1
2

∥∥∥√
TT ∗ +T∗T +2ℜT2 +

√
TT ∗ +T ∗T −2ℜT2

∥∥∥
� ‖ℜT‖+‖ℑT‖ .
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COROLLARY 3.4. Let T ∈B (H ) with the Cartesian decomposition T = A+ iB.
Then for any 0 � ν � 1 ,

ω (T ) � 1
2

∥∥∥|A|2ν + |A|2(1−ν) + |B|2ν + |B|2(1−ν)
∥∥∥ .

Proof. Letting y = x , in Theorem 2.3, we can write

|〈Tx,x〉| �
√〈(

|A|2ν + |B|2ν
)

x,x
〉〈(

|A|2(1−ν) + |B|2(1−ν)
)

x,x
〉

� 1
2

〈(
|A|2ν + |A|2(1−ν) + |B|2ν + |B|2(1−ν)

)
x,x

〉

� 1
2

∥∥∥|A|2ν + |A|2(1−ν) + |B|2ν + |B|2(1−ν)
∥∥∥ ,

where the second inequality follows from the arithmetic-geometric mean inequality.
Taking supremum over all unit vectors x ∈ H produces the desired result. �

REMARK 3.6. From [15, Corollary 2.4], we know that

ω (T ) � ‖ |A|+ |B| ‖ . (3.3)

Thus, Corollary 3.4 is an extension of (3.3).

Another corresponding result can be stated as follows.

PROPOSITION 3.3. Let T ∈ Mn . Then

‖T‖2 �
∥∥TT ∗ − iℑT2

∥∥ �
∥∥TT ∗ −2iℑT2

∥∥ .

Proof. We know that [19, Corollary 2.5] for any A,B ∈ Mn

∥∥(A+B)(A+B)∗
∥∥ � ‖AA∗ +BB∗+2AB∗‖

�
∥∥(A−B)(A−B)∗ +4AB∗∥∥ .

Thus,

‖A+B‖2 � ‖AA∗ +BB∗+2AB∗‖
�

∥∥(A−B)(A−B)∗ +4AB∗∥∥ .

If we replace B by iB , we get

‖A+ iB‖2 � ‖AA∗ +BB∗−2iAB∗‖
�

∥∥(A− iB)(A− iB)∗ −4iAB∗∥∥ .
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Now, if T = A+ iB is the Cartesian decomposition of T ∈ Mn , then

‖T‖2 = ‖A+ iB‖2

�
∥∥A2 +B2−2iAB

∥∥
=

1
2

∥∥∥2TT ∗ +(T ∗)2 −T2
∥∥∥

=
∥∥TT ∗ − iℑT 2

∥∥
�

∥∥(A− iB)(A− iB)∗ −4iAB
∥∥

=
∥∥∥TT ∗ +(T ∗)2−T 2

∥∥∥
=

∥∥TT ∗ −2iℑT2
∥∥ ,

i.e.,
‖T‖2 �

∥∥TT ∗ − iℑT2
∥∥ �

∥∥TT ∗ −2iℑT2
∥∥ . �

REMARK 3.7. Notice that∥∥TT ∗ − iℑT 2
∥∥ =

∥∥A2 +B2−2iAB
∥∥

=
∥∥A(A+ iB)∗ +(A+ iB)(−iB)

∥∥
�

∥∥A(A+ iB)∗
∥∥+‖(A+ iB)(−iB)‖

� ‖A‖‖A+ iB‖+‖A+ iB‖‖−iB‖
= ‖ℜT‖‖T‖+‖T‖‖ℑT‖
= ‖T‖(‖ℜT‖+‖ℑT‖) .

Thus, by Proposition 3.3, we infer that

‖T‖ �
∥∥TT ∗ − iℑT 2

∥∥ 1
2 � ‖ℜT‖+‖ℑT‖ .

REMARK 3.8. It is easy to follow that

‖ℜT‖ ,‖ℑT‖ � ω (T ) ,

which implies
1
4

∥∥TT ∗ − iℑT 2
∥∥ � ω2 (T ) . (3.4)

If we replace T by T ∗ in (3.4), and use the fact that ω (T ) = ω (T ∗) , we obtain

1
4

∥∥T ∗T + iℑT 2
∥∥ � ω2 (T ) . (3.5)

Therefore, by (3.4) and (3.5), we deduce

1
4

max
(∥∥TT ∗ − iℑT2

∥∥ ,
∥∥T ∗T + iℑT2

∥∥)
� ω2 (T ) . (3.6)

Of course (3.6), is better than 1
2 ‖T‖ � ω (T ) .
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