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Abstract. Suppose B (H (Ω)) is the set of all bounded linear operators acting on a reproducing
kernel Hilbert space H (Ω) . Applying the positivity criteria of 2×2 block matrices, we develop
several new upper bounds for the Berezin number of operators in B (H (Ω)) involving Berezin
norm, which are better than the earlier ones. Among other results, we obtain that if T,S ∈
B (H (Ω)) and 0 < α < 1 , then

berp (T ±S) � 1
2

∥∥∥(|T ∗|2α + |S∗|2α
)p

+
(
|T |2(1−α) + |S|2(1−α)

)p∥∥∥
ber

, for all p � 1.

By letting S = 0 , it follows that berp (T ) � 1
2

∥∥∥|T ∗|2α p + |T |2(1−α)p
∥∥∥

ber
, for all p � 1.

1. Introduction

Let B(H ) be the C∗ - algebra of all bounded linear operators acting on a complex
Hilbert space H with inner product 〈., .〉 and associated norm ‖·‖ . An operator T ∈
B(H ) is called positive if 〈Tx,x〉 � 0 for all x ∈ H , and we then write T � 0. Let
Ω be a nonempty set. A functional Hilbert space H (Ω) is a Hilbert space of complex
valued functions on Ω , which has the property that point evaluations are continuous,
i.e., for each λ ∈ Ω the map f �−→ f (λ ) is a continuous linear functional on H (Ω) .
The Riesz representation theorem ensues that for each λ ∈ Ω there exists a unique
element kλ ∈ H such that f (λ ) = 〈 f ,kλ 〉 for all f ∈ H (Ω) . The set {kλ : λ ∈ Ω}
is called the reproducing kernel of the space H (Ω) . If {en}n�0 is an orthonormal
basis for a functional Hilbert space H (Ω) , then the reproducing kernel of H (Ω)

is given by kλ (z) =
∞
∑

n=0
en (λ )en (z) . For λ ∈ Ω , let k̂λ = kλ

‖kλ ‖ be the normalized

reproducing kernel of H (Ω) . Let T be a bounded linear operator on H (Ω) , i.e., let
T ∈ B (H (Ω)) . The Berezin symbol of T , is the function T̃ on Ω , defined by

T̃ (λ ) :=
〈
T k̂λ , k̂λ

〉
.
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The Berezin set and the Berezin number of the operator T are defined respectively
by

Ber(T ) :=
{〈

T k̂λ , k̂λ
〉

: λ ∈ Ω
}

and

ber(T ) := sup
{∣∣〈T k̂λ , k̂λ

〉∣∣ : λ ∈ Ω
}

.

It is clear that the Berezin symbol T̃ is the bounded function on Ω , whose value lies in
the numerical range of T . Therefore,

Ber(T ) ⊆W (T ) and ber(T ) � ω (T ) ,

where

W (T ) = {〈Tx,x〉 : x ∈ H (Ω), ‖x‖ = 1}
is the numerical range of T and

ω (T ) = sup{|〈Tx,x〉| : x ∈ H (Ω), ‖x‖ = 1}

is the numerical radius of T . For more on numerical range and numerical radius in-
equalities readers can see the recent books [7, 21]. The Berezin number of an operator
T ∈ B (H (Ω)) satisfies the following properties:

(i) ber(T ) � ‖T‖ .
(ii) ber(αT ) = |α|ber(T ) for all α ∈ C .
(iii) ber (T +S) � ber(T )+ber(S) for all T,S ∈ B(H (Ω)) .
The Berezin symbol of an operator provides important information about that op-

erator. This has been studied in detail for Toeplitz and Hankel operators on Hardy
and Bergman spaces. On the most familiar reproducing kernel Hilbert spaces (includ-
ing Hardy and Bergman spaces), the Berezin symbol uniquely determines the opera-
tor, i.e., if T̃ (λ ) = S̃ (λ ) for all λ ∈ Ω , then T = S . This property is known as the
“Ber” property. Therefore, the Berezin number, ber(·) defines a norm on B(H (Ω))
when H (Ω) has the Ber property. For example, the Hardy space H2(D) is a re-
producing kernel Hilbert space of analytic functions f (z) = ∑∞

n=0 anzn defined on the
unit disc D = {z ∈ C : |z| < 1} such that ∑∞

n=0 |an|2 < ∞, with reproducing kernel
kλ (z) = ∑∞

n=0 λ nzn = 1/(1−λz).
Due to importance of the concept of Berezin symbol, the Berezin symbol and

Berezin number have been studied by many mathematicians over the years, see [1, 2, 3,
4, 6, 9, 10, 11, 12, 13, 15, 18, 19, 22]. Now, here for our purpose we recall the Berezin
norm of an operator T ∈ B(H (Ω)) . The Berezin norm of T , denoted as ‖T‖ber , is
defined by

‖T‖ber := sup
{∣∣〈T k̂λ , k̂μ

〉∣∣ : λ ,μ ∈ Ω
}

.

In this article, considering 2×2 positive block matrices, we obtain various inequalities
involving the Berezin norm and Berezin number of bounded linear operators defined on
H (Ω) . The inequalities involving sum and product of operators are also provided.
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2. Main results

In order to prove our results we state the following lemmas.

LEMMA 1. [14, p. 26] Let a,b � 0 and 0 � α � 1 . Then

aαb1−α � αa+(1−α)b � (αar +(1−α)br)
1
r ,

for all r � 1 .

LEMMA 2. [17] Let T be a positive operator in B(H ) . Then for any unit vector
x ∈ H ,

〈Tx,x〉p � 〈T px,x〉 , for all p � 1.

LEMMA 3. [16] Let T,S,R∈B (H ) with T and R are positive operators. Then(
T S

∗

S R

)
is positive in B (H ⊕H ) if and only if

|〈Sx,y〉|2 � 〈Tx,x〉 〈Ry,y〉 , for all x,y ∈ H .

LEMMA 4. [16] Let T ∈ B (H ) and let 0 < α < 1 . Then(
|T ∗|2α T ∗

T |T |2(1−α)

)
� 0,

where |T | = (T ∗T )1/2 and |T ∗| = (TT ∗)1/2.

First we prove the following known proposition (recently proved in [5]) by using
block matrix approach.

PROPOSITION 1. If T ∈ B (H (Ω)) is positive, then

ber(T ) = ‖T‖ber.

Proof. Since T is positive,

(
T T
T T

)
∈ B (H (Ω)⊕H (Ω)) is also positive. So,

from Lemma 3 we have ∣∣〈T k̂λ , k̂μ
〉∣∣2 �

〈
T k̂λ , k̂λ

〉〈
T k̂μ , k̂μ

〉
,

for all normalized reproducing kernels k̂λ , k̂μ ∈H (Ω) . This implies ber(T )� ‖T‖ber.
Also, ber (T ) � ‖T‖ber is trivial. �

Following Proposition 1 it is easy to observe that when T ∈ B (H (Ω)) is a self-
adjoint operator, then

ber1/2 (T 2)= ‖T 2‖1/2
ber = sup

λ∈Ω
‖T k̂λ‖. (1)

Now, we prove our first result.
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THEOREM 1. Let T,S,R ∈ B (H (Ω)) with T and R are positive operators. If(
T S∗
S R

)
is positive, then

berp (S) � 1
2
‖T p +Rp‖ber , for all p � 1.

Proof. Let k̂λ be the normalized reproducing kernel of H (Ω) . Then it follows
from Lemma 3 that

∣∣〈Sk̂λ , k̂λ
〉∣∣ �

〈
T k̂λ , k̂λ

〉 1
2
〈
Rk̂λ , k̂λ

〉 1
2

� 1
2

(〈
T k̂λ , k̂λ

〉
+
〈
Rk̂λ , k̂λ

〉)

�
(〈

T k̂λ , k̂λ
〉p

+
〈
Rk̂λ , k̂λ

〉p

2

) 1
p

(by Lemma 1)

�
(〈

T pk̂λ , k̂λ
〉
+
〈
Rpk̂λ , k̂λ

〉
2

) 1
p

(by Lemma 2).

Consequently, we infer that

∣∣〈Sk̂λ , k̂λ
〉∣∣p � 1

2

〈
(T p +Rp) k̂λ , k̂λ

〉
� 1

2
ber(T p +Rp)

=
1
2
‖T p +Rp‖ber (by Proposition 1).

Thus, ∣∣〈Sk̂λ , k̂λ
〉∣∣p � 1

2
‖T p +Rp‖ber .

By taking supremum over λ ∈ Ω , we get the desired inequality. �

Considering p = 1 in Theorem 1, we have the following corollary.

COROLLARY 1. Let T,S,R ∈ B (H (Ω)) with T and R are positive operators.

If

(
T S

∗

S R

)
is positive, then

ber(S) � 1
2
‖T +R‖ber .

An application of Theorem 1 leads to the following result.
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THEOREM 2. Let T,S,R,X ,Y ∈ B (H (Ω)) with T and R are positive opera-

tors. If

(
T S

∗

S R

)
is positive, then

berp (YSX) � 1
2

∥∥∥(X ∗
TX
)p

+
(
YRY

∗)p∥∥∥
ber

, for all p � 1.

Proof. Since

(
T S

∗

S R

)
� 0,

(
X 0
0 Y

∗

)∗(
T S

∗

S R

)(
X 0
0 Y

∗

)
=
(

X
∗
TX (YSX)

∗

YSX YRY
∗

)
� 0.

Applying Theorem 1, we obtain

berp (YSX) � 1
2

∥∥∥(X ∗
TX
)p

+
(
YRY

∗)p∥∥∥
ber

,

as desired. �
As another application of Theorem 1 we get the following theorem.

THEOREM 3. Let T,S ∈ B (H (Ω)) and let 0 < α < 1 . Then

berp (T ±S) � 1
2

∥∥∥(|T ∗|2α + |S∗|2α
)p

+
(
|T |2(1−α) + |S|2(1−α)

)p∥∥∥
ber

,

for all p � 1 .

Proof. Since the sum of two positive operator matrices is also positive, by using
Lemma 4, we have (

|T ∗|2α + |S∗|2α T ∗ +S∗

T +S |T |2(1−α) + |S|2(1−α)

)
� 0.

Now, by applying Theorem 1, we obtain

berp (T +S) � 1
2

∥∥∥(|T ∗|2α + |S∗|2α
)p

+
(
|T |2(1−α) + |S|2(1−α)

)p∥∥∥
ber

. (2)

By replacing S by −S in (2), we have

berp (T −S) � 1
2

∥∥∥(|T ∗|2α + |S∗|2α
)p

+
(
|T |2(1−α) + |S|2(1−α)

)p∥∥∥
ber

. (3)

From the inequalities (2) and (3), we obtain

berp (T ±S) � 1
2

∥∥∥(|T ∗|2α + |S∗|2α
)p

+
(
|T |2(1−α) + |S|2(1−α)

)p∥∥∥
ber

,

as desired. �
By letting α = 1

2 in Theorem 3, we get the following inequality.
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COROLLARY 2. Let T,S ∈ B (H (Ω)) . Then

berp (T ±S) � 1
2
‖(|T ∗|+ |S∗|)p +(|T |+ |S|)p‖ber , for all p � 1.

Taking S = 0 in Theorem 3, we get the following corollary.

COROLLARY 3. Let T ∈ B (H (Ω)) and let 0 < α < 1 . Then

berp (T ) � 1
2

∥∥∥|T ∗|2α p + |T |2(1−α)p
∥∥∥

ber
, for all p � 1.

In particular, by taking α = 1
2 in Corollary 3, we get

berp (T ) � 1
2
‖|T ∗|p + |T |p‖ber ,

see also in [20].
Again, as an application of Theorem 1 we get the following theorem.

THEOREM 4. Let T,S,R,Q ∈ B (H (Ω)) . Then

berp
(
TR

∗ ±SQ
∗)� 1

2

∥∥∥(TT ∗ +SS
∗)p

+
(
RR

∗
+QQ

∗)p∥∥∥
ber

, for all p � 1.

Proof. Let

(
T S
R Q

)
∈ B (H (Ω)⊕H (Ω)) , then

(
T S
R Q

)(
T S
R Q

)∗
is positive.

Now, it can be verified that(
T S
R Q

)(
T S
R Q

)∗
=
(

TT
∗
+SS

∗
TR

∗
+SQ

∗

RT
∗
+QS

∗
RR

∗
+QQ∗

)

=

(
TT

∗
+SS∗

(
RT

∗
+QS

∗)∗
RT

∗
+QS

∗
RR

∗
+QQ

∗

)
.

Since TT
∗
+ SS∗ and RR

∗
+QQ

∗
are positive operators, applying Theorem 1, we get

for all p � 1,

berp
(
RT

∗
+QS

∗)� 1
2

∥∥∥(TT
∗
+SS

∗)p
+
(
RR

∗
+QQ∗

)p∥∥∥
ber

.

Moreover, we have

ber
(
RT

∗
+QS

∗)
= ber

(
(TR∗ +SQ∗)∗

)
= ber(TR∗ +SQ∗) .

Consequently, we get

berp
(
TR

∗
+SQ

∗)� 1
2

∥∥∥(TT ∗ +SS
∗)p

+
(
RR

∗
+QQ

∗)p∥∥∥
ber

, for all p � 1.
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Replacing S by −S in the above inequality, we have

berp
(
TR

∗ −SQ
∗)� 1

2

∥∥∥(TT ∗ +SS
∗)p

+
(
RR

∗
+QQ

∗)p∥∥∥
ber

, for all p � 1.

Therefore, we infer that

berp
(
TR

∗ ±SQ
∗)� 1

2

∥∥∥(TT ∗ +SS
∗)p

+
(
RR

∗
+QQ

∗)p∥∥∥
ber

, for all p � 1.

This completes the proof. �

REMARK 1. Let T,S ∈ B (H (Ω)) .
(i) By letting p = 1,R = S and Q = ±T in Theorem 4, we get the following

inequality:

ber
(
TS

∗ ±ST
∗)� ‖TT ∗ +SS∗‖ber .

(ii) Considering the case p = 1,R∗ = S and Q∗ = T in Theorem 4, we obtain the
following inequality:

ber(TS±ST) � 1
2
‖T ∗T +TT ∗ +S∗S+SS∗‖ber.

We next obtain the following corollary.

COROLLARY 4. Let T,R ∈ B (H (Ω)) . Then for all p � 1,

berp (RT ) � 1
2
‖(T ∗T )p +(RR∗)p‖ber .

Proof. Putting S = Q = 0 in the Theorem 4, we obtain

berp
(
TR

∗)� 1
2

∥∥∥(TT
∗)p

+
(
RR

∗)p∥∥∥
ber

, for all p � 1.

Replacing T by T
∗

in the above inequality, we get

berp (T ∗R∗) � 1
2
‖(T ∗T )p +(RR∗)p‖ber .

Since, ber(T ∗R∗) = ber
(
(RT )∗

)
= ber (RT ) ,

berp (RT ) � 1
2
‖(T ∗T )p +(RR∗)p‖ber , for all p � 1,

as desired. �
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REMARK 2. (i) Let T ∈ B (H (Ω)) . Then it follows from Corollaries 3 and 4
that

max
{
ber2 (T ) ,ber

(
T 2)} � 1

2
‖T ∗T +TT ∗‖ber . (4)

(ii) Let R,T ∈ B (H (Ω)) . By letting p = 1 in Corollary 4, we get

ber(RT ) � 1
2
‖T ∗T +RR∗‖ber ,

see also in [20].

Next inequalities read as follows.

COROLLARY 5. Let T,S,R,Q,X ,Y ∈ B (H (Ω)) . Then, for all p � 1 ,

(i) berp (Y (RT ∗ +QS∗)X)

� 1
2
‖(X∗ (TT ∗ +SS∗)X)p +(Y (RR∗ +QQ∗)Y ∗)p‖ber ,

(ii) berp (Y (TT ∗ ±SS∗)X)

� 1
2
‖(X∗ (TT ∗ +SS∗)X)p +(Y (TT ∗ +SS∗)Y ∗)p‖ber .

Proof. (i) The proof follows from Theorem 2 by using the fact(
TT

∗
+SS∗

(
RT ∗ +QS

∗)∗
RT

∗
+QS

∗
RR

∗
+QQ

∗

)

is positive (see Theorem 4).
(ii) Taking R = T and Q = ±S in (i) we get the desired inequality. �

In order to prove our next results we need the following lemma.

LEMMA 5. [8] Let x,y,z ∈ H with ‖z‖ = 1 . Then

|〈x,z〉| |〈z,y〉| � 1
2

(‖x‖‖y‖+ |〈x,y〉|) .

Now we prove the following theorem.

THEOREM 5. Let T,S,R ∈ B (H (Ω)) with T and R are positive. If

(
T S

∗

S R

)
is positive, then

ber2p (S) � 1
4

∥∥T 2p +R2p
∥∥

ber +
1
2
berp(RT ), for all p � 1.
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Proof. Let k̂λ be the normalized reproducing kernel of H (Ω) . From Lemma 3,
we have ∣∣〈Sk̂λ , k̂λ

〉∣∣2
�
〈
T k̂λ , k̂λ

〉〈
Rk̂λ , k̂λ

〉
� 1

2
‖T k̂λ‖‖Rk̂λ‖+

1
2
|〈T k̂λ ,Rk̂λ 〉| (by Lemma 5 )

�
(
‖T k̂λ‖p‖Rk̂λ‖p + |〈T k̂λ ,Rk̂λ 〉|p

2

) 1
p

(by Lemma 1 )

�
(

1
4
(‖T k̂λ‖2p +‖Rk̂λ‖2p)+

1
2
|〈T k̂λ ,Rk̂λ 〉|p

) 1
p

=
(

1
4
(〈T 2k̂λ , k̂λ 〉p + 〈R2k̂λ , k̂λ 〉p)+

1
2
|〈RT k̂λ , k̂λ 〉|p

) 1
p

�
(

1
4
(〈T 2pk̂λ , k̂λ 〉+ 〈R2pk̂λ , k̂λ 〉)+

1
2
|〈RT k̂λ , k̂λ 〉|p

) 1
p

(by Lemma 2)

�
(

1
4
ber
(
T 2p +R2p)+ 1

2
berp(RT )

) 1
p

=
(

1
4

∥∥T 2p +R2p
∥∥

ber +
1
2
berp(RT )

) 1
p

.

Consequently, we infer that

∣∣〈Sk̂λ , k̂λ
〉∣∣2p � 1

4

∥∥T 2p +R2p
∥∥

ber +
1
2
berp(RT ).

Taking supremum over λ ∈ Ω , we get the desired inequality. �

Considering p = 1 in Theorem 5 we obtain the following corollary.

COROLLARY 6. Let T,S,R∈B (H (Ω)) with T and R are positive. If

(
T S

∗

S R

)
is positive, then

ber2 (S) � 1
4

∥∥T 2 +R2
∥∥

ber +
1
2
ber(RT ).

REMARK 3. Let T ∈B (H (Ω)) . Then using Lemma 4 in Corollary 6 we obtain

ber2 (T ) � 1
4

∥∥|T |2 + |T∗|2∥∥ber +
1
2
ber(|T ||T ∗|). (5)

It is easy to verify that ber(|T ||T ∗|) � 1
2

∥∥|T |2 + |T ∗|2∥∥ber . Therefore, the bound (5) is
stronger than the bound obtained in Corollary 3 (for p = 2).
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Next theorem is as follows.

THEOREM 6. Let T,S,R ∈ B (H (Ω)) with T and R are positive. If

(
T S

∗

S R

)
is positive, then

ber2 (S) � 1
2

∥∥T 2
∥∥1/2

ber

∥∥R2
∥∥1/2

ber +
1
2
ber(RT ).

Proof. Let k̂λ be the normalized reproducing kernel of H (Ω) . Then, it follows
from Lemma 3 that∣∣〈Sk̂λ , k̂λ

〉∣∣2 �
〈
T k̂λ , k̂λ

〉〈
Rk̂λ , k̂λ

〉
� 1

2
‖T k̂λ‖‖Rk̂λ‖+

1
2
|〈T k̂λ ,Rk̂λ 〉| (by Lemma 5)

=
1
2
‖T k̂λ‖‖Rk̂λ‖+

1
2
|〈RT k̂λ , k̂λ 〉A|

� 1
2

∥∥T 2
∥∥1/2

ber

∥∥R2
∥∥1/2

ber +
1
2
ber(RT ) (by (1)).

By taking supremum over λ ∈ Ω , we get the desired result. �

As an application of Theorem 6 we obtain the following corollary.

COROLLARY 7. Let T,S ∈ B(H (Ω)) . Then

ber2(ST ) � 1
2

∥∥∥(T ∗
T )2
∥∥∥1/2

ber

∥∥∥(SS
∗
)2
∥∥∥1/2

ber
+

1
2
ber(S(TS)∗T ) .

Proof. In view of Lemma 3 it is not difficult to verify that

(
T

∗
T (ST )∗

ST SS
∗

)
is

positive. By applying Theorem 6 we obtain that

ber2(ST ) � 1
2

∥∥∥(T ∗
T )2
∥∥∥1/2

ber

∥∥∥(SS
∗
)2
∥∥∥1/2

ber
+

1
2
ber(SS∗T ∗T )

=
1
2

∥∥∥(T ∗
T )2
∥∥∥1/2

ber

∥∥∥(SS
∗
)2
∥∥∥1/2

ber
+

1
2
ber(S(TS)∗T ) ,

as desired. �

Also, by applying Corollary 6 we obtain the following.

COROLLARY 8. Let T,S ∈ B(H (Ω)) . Then

ber2(ST ) � 1
4

∥∥∥(T ∗T )2 +(SS∗)2
∥∥∥

ber
+

1
2
ber(S(TS)∗T ) .
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Proof. Since

(
T

∗
T (ST )∗

ST SS
∗

)
is positive, it follows from Corollary 6 that

ber2(ST ) � 1
4

∥∥∥(T ∗T )2 +(SS∗)2
∥∥∥

ber
+

1
2
ber(S(TS)∗T ) ,

as required. �

REMARK 4. By Remark 2 (ii), we have

ber(S(TS)∗T ) � 1
2

∥∥∥(T ∗T )2 +(SS∗)2
∥∥∥

ber
.

Therefore, Corollary 8 refines the following existing inequality (see [20, Theorem 3.6])

ber2(ST ) � 1
2

∥∥∥(T ∗T )2 +(SS∗)2
∥∥∥

ber
.

Another application of Theorem 6 leads to the following corollary.

COROLLARY 9. Let T,S,R,X ,Y ∈ B (H (Ω)) with T and R are positive. If(
T S

∗

S R

)
is positive, then

ber2 (YSX) � 1
2
‖(X∗TX)2 ‖1/2

ber

∥∥(YRY ∗)2
∥∥1/2

ber +
1
2
ber(YR(XY )∗TX) .

Proof. Since

(
T S∗
S R

)
is positive,

(
X∗TX (YSX)

∗

YSX YRY
∗

)
is also positive (see Theo-

rem 2), and so by applying Theorem 6, we have

ber2 (YSX) � 1
2

∥∥∥(X ∗
TX)2

∥∥∥1/2

ber

∥∥∥(YRY
∗
)2
∥∥∥1/2

ber
+

1
2
ber
(
YRY

∗
X

∗
TX
)

=
1
2

∥∥∥(X ∗
TX)2

∥∥∥1/2

ber

∥∥∥(YRY
∗
)2
∥∥∥1/2

ber
+

1
2
ber(YR(XY )∗TX) . �

Also, another application of Theorem 6 gives the following.

COROLLARY 10. Let T,S,R,Q ∈ B (H (Ω)) . Then

ber2 (TR∗ ±SQ∗)

� 1
2

∥∥(TT ∗ +SS∗)2
∥∥1/2

ber

∥∥(RR∗ +QQ∗)2
∥∥1/2

ber +
1
2
ber
(
(RR∗ +QQ∗)(TT

∗
+SS

∗
)
)

.

Proof. The proof follows from Theorem 6 and by using the fact(
TT

∗
+SS

∗ (
RT ∗ +QS

∗)∗
RT

∗
+QS

∗
RR

∗
+QQ

∗

)

is positive (see Theorem 4). �
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Finally, as an immediate consequence of Corollary 10 we get the following result.

COROLLARY 11. Let T,S ∈ B(H (Ω)) , then

ber2(T ±S) � 2‖TT ∗ +SS∗‖ber .

Proof. The proof follows from Corollary 10 by putting R = Q = I . �
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