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ON DISTANCE LAPLACIAN MATRICES OF WEIGHTED TREES

R. BALAJI ∗ AND VINAYAK GUPTA

(Communicated by S. Fallat)

Abstract. Let T be a weighted tree on n vertices and D(T ) := [[di j ]] be the distance matrix of
T . The distance Laplacian matrix of T is defined as

LD(T ) := Diag(
n

∑
j=1

d1 j , . . . ,
n

∑
j=1

dn j)−D(T ).

We aim to show that all off-diagonal entries in the Moore-Penrose inverse of LD(T ) are non-
positive. Specifically, this result implies that the Moore-Penrose inverse of LD(T ) is an M -
matrix.

1. Introduction

A tree is a connected acyclic graph. Let T be a tree on n vertices with vertex set
V (T ) and edge set E(T ) . Assume that V (T ) := {1, . . . ,n} and to each edge (p,q) of
T , a positive number wpq is assigned. We say that wpq is the weight of (p,q) . The
distance between any two vertices i and j of T , denoted by βi j , is the sum of all the
weights in the path that connects i and j . Define

di j :=

{
βi j i �= j

0 else.

The distance matrix and the distance Laplacian matrix of T are now, respectively,

D(T ) := [[di j]] and LD(T ) := Diag(
n

∑
j=1

d1 j, . . . ,
n

∑
j=1

dn j)−D(T ).

As the graph/network is connected, the distance Laplacian matrix is the combinato-
rial/classical Laplacian of a complete network with weights given by the distances. If i
and j are any two vertices of T , define

γi j :=

{
1

wi j
(i, j) ∈ E(T )

0 else.

Mathematics subject classification (2020): 05C50.
Keywords and phrases: Trees, distance matrices, Laplacian matrices, complete graphs.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-18-07

97

http://dx.doi.org/10.7153/oam-2024-18-07


98 R. BALAJI AND V. GUPTA

The Laplacian matrix of T, denoted by L(T ) , is the n×n matrix

L(T ) := Diag(
n

∑
j=1

γ1 j, . . . ,
n

∑
j=1

γn j)− [[γi j]].

The values γi j are the conductances in the context of electrical network resistances.
Following the Kirchhoff laws on series resistances, the distance between any pair of
vertices in a weighted tree coincide with the effective resistance between them, and
hence the distance and Laplacian matrices L(T ) and D(T ) are connected by the rela-
tion

di j = αii + α j j −2αi j, (1)

where αi j is the (i, j)th entry in the Moore-Penrose inverse of L(T ) : see Klein and
Randić [12]. Matrices L(T ) and LD(T ) have some common features.

(i) Both are positive semidefinite.

(ii) All row/column sums are equal to zero.

(iii) Rank is n−1.

(iv) All off-diagonal entries are non-positive.

Items (i) and (iv) imply that LD(T ) and L(T ) are M-matrices. The objective of this
paper is to deduce a new property of LD(T ) : The Moore-Penrose inverse of LD(T ) is
an M-matrix. As usual, we use the notation A† to denote the Moore-Penrose inverse
of A . In general, L(T )† is not an M-matrix. A significant result from [10] states that
L(T )† is an M-matrix if and only if T is a star. A similar characterization of weighted
trees can be found in [11]. It can be noted that resistive electrical networks represented
by connected graphs exhibit desirable properties if the Moore-Penrose inverse of their
Laplacian matrices are M-matrices: see [13].

Based on the previous discussion, we investigate the existence of a matrix asso-
ciated with a given connected graph that possesses the fundamental characteristics of
a classical Laplacian matrix, while also having the property that its Moore-Penrose in-
verse is an M-matrix. Our result in this paper asserts that if T is any weighted tree,
then LD(T ) is such a special matrix. To provide a concise and precise statement, we
can approach it from a combinatorial perspective. Consider the complete graph Kn with
n vertices, where each edge is assigned a weight di j representing the distance between
the vertex i and vertex j in a weighted tree with n vertices. In this context, our inves-
tigation reveals that the Moore-Penrose inverse of the classical Laplacian exhibits the
remarkable characteristic of being an M-matrix.

Consider the more general problem described as follows: Let G be a complete
graph with assigned weights on its edges. The question is under what conditions the
Moore-Penrose inverse of the Laplacian matrix of G is an M-matrix. In the case, where
all the weights are equal to one, it is proven in [6] that the Moore-Penrose inverse of
the Laplacian matrix is an M-matrix. The question extends for a general connected
graph. In [6], the authors present a remarkable result: For connected graphs that are



DISTANCE LAPLACIAN MATRICES 99

distance regular, if the Moore-Penrose inverse of their combinatorial Laplacian matrices
are M-matrices, then the diameter of those graphs must be at most three.

Another related question in matrix theory is when the Moore-Penrose inverse of
an M-matrix is again an M-matrix. In [5], this question is addressed specifically for
singular Jacobi M-matrices that are tridiagonal. Under certain conditions, it is shown
that the Moore-Penrose inverse of these matrices are M-matrices. Additionally, [5]
demonstrates that for any integer n , there exists a singular, symmetric and tridiagonal
n× n M-matrix whose Moore-Penrose inverse is also an M-matrix. For any path
with arbitrary weights, its combinatorial Laplacian matrix is always a Jacobi M-matrix.
Using the results on Jacobi M-matrices in [5], we can observe that if P is a weighted
path with more than four vertices, then the Moore-Penrose inverse of the combinatorial
Laplacian of P is not an M-matrix, as noted in [11].

Now, we consider a weighted tree T . The problem under consideration is to show
that the Moore-Penrose inverse of the distance Laplacian of T is an M-matrix. This
problem can also be posed for the combinatorial Laplacian of T . The works in [11] pro-
vide characterizations for all weighted trees whose Moore-Penrose inverse of the com-
binatorial Laplacian is an M-matrix. Furthermore, [3] presents a relevant result con-
cerning distance-biregular graphs. Specifically, it characterizes all distance-biregular
graphs whose group inverse of the combinatorial Laplacian is an M-matrix. We recall
that the group inverse of a symmetric matrix coincides with its Moore-Penrose inverse.

Distance matrices of connected graphs, particularly trees, have been extensively
studied due to their interesting properties and applications. For instance, there exists a
well-known formula to compute the determinant of the distance matrix of a tree, which
depends soley on the weights. Additionally, Graham and Lovász [8] established a com-
binatorial interpretation for all the coefficients in the characteristic polynomial of the
distance matrix of a tree. The monograph [4] provides a compilation of well-known
results on distance matrices. Distance Laplacian matrices of connected graphs were
introduced in [1], where their relationship to algebraic connectivity was investigated.
The techniques employed in our paper are novel and rely on crucial observations de-
rived from numerical experiments.

2. Preliminaries

We consider only real matrices.

2.1. Notation

(N1) If A = [[ai j]] is an n×n matrix, then the submatrix obtained by deleting the ith

row and the jth column will be denoted by A(i| j) . Let

1 � s1 < s2 < · · · < sk � n and 1 � t1 < t2 · · · < tm � n.

Define Ω1 := (s1, . . . ,sk) and Ω2 := (t1, . . . ,tm). Then, A[Ω1,Ω2] will denote
the k×m matrix with (i, j)th entry equal to asit j .
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(N2) The column vector of all ones in R
n will be denoted by 1 . If m < n , then 1m

will denote the column vector of all ones in R
m . The notation J will be the n×n

matrix with all entries equal to 1. Zero matrices with more than one row/column
will be denoted by O and a column vector with all entries equal to 0 by 0 .

(N3) The transpose of a matrix A is denoted by A′ . If B is a square matrix, then the
Moore-Penrose inverse of B is the unique n×n matrix B† satisfying

BB†B = B, B†BB† = B†, (B†B)′ = B†B and (BB†)′ = BB†.

(N4) A Z-matrix is an n×n matrix where all the off diagonal entries are non-positive.
If all the principal minors of a Z-matrix are non-negative, then it is called a
M-matrix. Therefore, a symmetric Z-matrix is an M-matrix if and only if it is
positive semidefinite. M-matrices have several interesting properties. The topic
of Chapter 5 in Fiedler [7] is on M-matrices.

(N5) To denote the subgraph induced by a set of vertices W ⊆ V (T ) , we use the no-
tation 〈W 〉 . If u and v are any two vertices, then Puv will denote the path
connecting u and v in T . The set of all vertices of a subgraph H is denoted by
V (H) .

2.2. Basic results and techniques

(P1) Matrix determinant lemma (page 66, [9]): Let A be a m×m matrix and x,y be
m×1 vectors. Then

det(A+ xy′) = det(A)+ y′ adj(A)x.

If A is invertible, then

det(A+ xy′) = det(A)(1+ y′A−1x).

(P2) Triangle inequality (page 95, [4]): If i, j,k ∈ {1, . . . ,n} , then

dik � di j +d jk,

and equality happens if and only if j ∈ Pik .

(P3) The following observation will be useful in the proof. Let ν be a positive integer
and the sets L1, . . . ,LN partition {1, . . . ,ν} . Let A = [auv] be a ν × ν matrix
such that A[Li,Lj] = O for all i < j . Then there exists a permutation matrix P
such that

P′AP =

⎡⎢⎢⎢⎣
A[L1,L1] O . . . O
A[L2,L1] A[L2,L2] . . . O

. . . . . .
. . .

...
A[LN ,L1] A[LN ,L2] . . . A[LN ,LN ]

⎤⎥⎥⎥⎦ .

As a consequence, we note the following.
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(a) If axy = 0 for all x∈ Li , y∈ Lj and i < j , then A is similar to a block lower
triangular matrix with ith diagonal block equal to A[Li,Li] .

(b) If axy = 0 for all x∈ Li , y∈ Lj and i > j , then A is similar to a block upper
triangular matrix with ith diagonal block equal to A[Li,Li] .

(c) If axy = 0 for all x ∈ Li , y ∈ Lj and i �= j , then A is similar to a block
diagonal matrix with ith diagonal block equal to A[Li,Li] .

3. Main result

We now prove our result.

THEOREM 1. Let T be a weighted tree on n vertices. Let D = [[di j]] be the
distance matrix of T . Then, the Moore-Penrose inverse of

Diag(
n

∑
j=1

d1 j, . . . ,
n

∑
j=1

dn j)−D

is an M-matrix.

Proof. We define

S := Diag(
n

∑
j=1

d1 j, . . . ,
n

∑
j=1

dn j)−D.

In view of Gershgorin circle theorem, we conclude that S is positive semidefinite and
so is S† . Hence, we need to show only that all off-diagonal entries in S† are non-
positive. Let s†

i j be the (i, j)th entry of S† . By a permutation similarity argument, it

suffices to show that s†
12 is non-positive. Let C := S(1|2) . Since S1 = 0, all cofactors

of S will be equal. Let γ be the common cofactor of S . In particular, γ = −det(C) .
As S(1|1) is strictly diagonally dominant, S(1|1) is non-singular and therefore, γ > 0.
Thus, rank(S) = n−1. We now have the following claim.

CLAIM 1. s†
12 = 1′n−1C

−11n−1

n2 .

Proof of the claim. Let ξ be the (1,2)th -entry of (S+J)−1 . Then, ξ =− det(C+J(1|2))
det(S+J) .

As det(S) = 0 and adj(S) = γJ , by the matrix determinant lemma (P1),

det(S+ J) = n2γ and det(C+ J(1|2)) = det(C)(1+1′n−1C
−11n−1).

Since det(C) = −γ ,

ξ =
1+1′n−1C

−11n−1

n2 . (2)

As the null-space of S is spanned by 1 , SS† = I− J
n , and hence (S+ J)−1 = S† + J

n2 .

Therefore, s†
12 = ξ − 1

n2 . The claim now follows by substituting for ξ obtained in
equation (2). �
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For any i, j ∈ {3, . . . ,n} , define

Ri j :=

⎧⎨⎩−d21 +di1 +d2 j −di j i �= j

−d21 +di1 +d2i +
n
∑

k=1
dik i = j.

Let R denote the (n−2)× (n−2) matrix⎡⎢⎣R33 R34 . . . R3n
...

. . .
...

...
Rn3 Rn4 . . . Rnn

⎤⎥⎦ .

CLAIM 2. s†
12 � 0 if and only if det(R) � 0.

Proof of the claim. Define

Q :=
[

1 1′n−2
0 In−2

]
.

Then, Q−1 =
[

1 −1′n−2
0 In−2

]
. By a direct computation,

Q′−1CQ−1 =

⎡⎢⎢⎢⎣
s21 −s21 + s23 . . . − s21 + s2n

−s21 + s31 s21 − s31− s23 + s33 . . . s21 − s31− s2n + s3n
...

...
. . .

...
−s21 + sn1 s21 − sn1− s23 + sn3 . . . s21 − sn1− s2n + snn

⎤⎥⎥⎥⎦ .

The entries of S can be written as

si j =

⎧⎨⎩−di j i �= j
n
∑

k=1
dik i = j.

Hence,
(Q′−1CQ−1)(1|1) = R. (3)

As
det(C) = −γ < 0 and det(Q) = 1,

we get
det(Q′−1CQ−1) = −γ < 0.

By a simple computation,

(QC−1Q′)11 = 1′n−1C
−11n−1. (4)
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Using (3),

(QC−1Q′)11 =
1

det(Q′−1CQ−1)
det((Q′−1CQ−1)(1|1))

= −1
γ

det(R).
(5)

By (4) and (5),

1′n−1C
−11n−1 = −1

γ
det(R).

By claim 1, it follows that s†
12 � 0 if and only if det(R) � 0. Claim 2 is now com-

plete. �

Our aim is now to demonstrate that det(R) � 0. We first observe that the diagonal
entries of R are non-negative.

CLAIM 3. Rii > 0 i = 3, . . . ,n .

Proof of the claim. By the triangle inequality,

−d21 +di1 +d2i � 0 i = 3, . . . ,n.

Hence

Rii = −d21 +di1 +d2i +
n

∑
k=1

dik > 0 i = 3, . . . ,n. �

CLAIM 4. Let α ∈ V (P12) . Suppose there exists a connected component X̃ of
T � (α) not containing 1 and 2. Let u∈V (X̃) be the vertex adjacent to α . Consider a
connected subgraph X of X̃ containing u . Put E := V (X) . Then, R[E,E] is a positive
semidefinite matrix.

Proof of the claim. If E = {u} , then R[E,E] = [[Ruu]] . By claim 3, Ruu > 0 and
hence the lemma is true in this case. Suppose E has at least two elements. We now
show that R[E,E] is symmetric. Let r,s ∈ E . Recall that

Rrs = −d21 +dr1 +d2s−drs. (6)

Since r and s belong to a component of T � α which does not contain 1 and 2, we
have

dr1 = drα +dα1 and ds2 = dsα +dα2. (7)

By (6) and (7),
Rrs = −d21 +drα +dα1 +dsα +dα2−drs. (8)

Again by a similar reasoning in (7),

dr2 = drα +dα2 and ds1 = dsα +dα1. (9)
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By (8) and (9),
Rrs = −d21 +ds1 +dr2−drs,

which is Rsr . Thus, R[E,E] is symmetric. We know that u ∈ E and also adjacent to
α . Let Ω be the set of all non-pendant vertices in T . Since X is connected, and has at
least two vertices, u is adjacent to a vertex in E . Hence u ∈ E ∩Ω , so E ∩Ω �= /0 . Let
δ ∈ E be such that

dδα = max{dxα : x ∈ E ∩Ω}.
Since X is a tree, there exists a pendant vertex adjacent to δ . Without loss of generality,
let E = {x1, . . . ,xt−1,xt} , where x1 = u , xt−1 = δ and xt is a pendant vertex adjacent
to xt−1 . By the definition of R ,

Rixt−1 −Rixt = −d21 +di1 +d2xt−1 −dixt−1 − (−d21 +di1 +d2xt −dixt )
= (d2xt−1 −d2xt )− (dixt−1 −dixt ).

(10)

Since xt is a pendant vertex and is adjacent to xt−1 , we have

d2xt−1 −d2xt = −dxtxt−1 .

If i ∈ {x1, . . . ,xt−2} then,
dixt−1 −dixt = −dxtxt−1 .

From (10), we now get

Rixt−1 = Rixt for all i ∈ {x1,x2, . . . ,xt−2}. (11)

By the definition of Ri j ,

Rxt−1xt = −d21 +dxt−11 +d2xt −dxt−1xt . (12)

Vertices 2 and xt belong to different components of T � (α) . Also, xt and xt−1 are
adjacent and xt is pendant in X . Hence,

d2xt = d2α +dαxt = d2α +dαxt−1 +dxt−1xt . (13)

By (12) and (13),
Rxt−1xt = −d21 +dxt−11 +d2α +dαxt−1 .

As α ∈V (P12) , d21 = d2α +dα1 . Hence

Rxt−1xt = −dα1 +dxt−11 +dαxt−1 . (14)

As 1 �∈V (X̃) , dxt−11 = dxt−1α +dα1 . Hence by (14),

Rxt−1xt = 2dαxt−1 . (15)

Since xt−1 = δ ,
Rxt−1xt = 2dαδ . (16)
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We now show that all diagonal entries of R[E,E] are at least 2dδα . Let r ∈ E . By
definition,

Rrr = −d21 +dr1 +d2r +
n

∑
k=1

drk. (17)

Since r ∈ E , 1 �∈ E and 2 �∈ E ,

dr1 = drα +d1α and dr2 = drα +d2α . (18)

By (17) and (18),

Rrr = −d21 +drα +d1α +drα +d2α +
n

∑
k=1

drk. (19)

As d21 = d2α +dα1 , (19) simplifies to

Rrr = 2drα +
n

∑
k=1

drk. (20)

Case 1: Suppose r /∈ {δ ,xt} .
Then

Rrr = 2drα +
n

∑
k=1

drk � 2drα +drδ +drxt . (21)

By the triangle inequality,

drα +drδ � dδα and drα +drxt � dxtα .

In view of (21),
Rrr � dxtα +dδα .

As δ is the only vertex adjacent to the pendant vertex xt ,

Rrr � dxtα +dδα = dδα +dδxt +dδα � 2dδα .

Case 2: If r = δ , then it is immediate from (20).

Case 3: Suppose r = xt . Since xt is pendant and adjacent only to δ , by (20),

Rxtxt � 2dxtα = 2(dδα +dxtδ ) � 2dδα .

Thus, all the diagonal entries in R[E,E] are at least 2dδα .
Define a t× t matrix

P :=

⎡⎢⎢⎢⎣
2dδα Rx1x2 . . . Rx1xt

Rx2x1 2dδα . . . Rx2xt

. . . . . .
. . . . . .

Rxtx1 Rxtx2 . . . 2dδα

⎤⎥⎥⎥⎦ .
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As R[E,E] is a symmetric matrix, P is symmetric.
We now show that P is positive semidefinite. We will prove this by using induction

on |E| . Suppose |E| = 2. Write E = {x1,x2} , where u = x1 . Now,

P =
[

2dαu 2dαu

2dαu 2dαu

]
.

Clearly, P is positive semidefinite. Suppose the result is true if |E| < t . Define a t × t
matrix by

Q1 :=

⎡⎣ It−2 0 0
0′ 1 −1
0′ 0 1

⎤⎦ .

We show that Q′
1PQ1 is positive semidefinite. Equations (11) and (16) imply that the

last two columns of P are equal. Hence, by a direct computation,

Q′
1PQ1 =

[
P(xt |xt) 0

0′ 0

]
. (22)

Define
X ′ := X � (xt).

Because xt is pendant, it follows that X ′ is a connected subgraph of X and u ∈V (X ′) .
Set

E ′ := V (X ′) = {x1, . . . ,xt−1}, where x1 = u.

Define
dμα := max{dxα : x ∈ Ω∩E ′}.

By the induction hypothesis,

P1 :=

⎡⎢⎢⎢⎣
2dμα Rx1x2 . . . Rx1xt−1

Rx2x1 2dμα . . . Rx2xt−1

. . . . . .
. . . . . .

Rxt−1x1 Rxt−1x2 . . . 2dμα

⎤⎥⎥⎥⎦
is positive semidefinite. Put

P2 :=

⎡⎢⎢⎢⎣
2dδα −2dμα 0 . . . 0

0 2dδα −2dμα . . . 0
... . . .

. . .
...

0 0 . . . 2dδα −2dμα

⎤⎥⎥⎥⎦ .

Then,
P(xt |xt) = P1 +P2.

Since dδα −dμα � 0, P(xt |xt) is positive semidefinite and so is P . Define

Λ := Diag(Rx1x1 −2dδα , . . . ,Rxtxt −2dδα).
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Then,
R[E,E] = P+ Λ.

Since, all diagonal entries are at least 2dδα and P is positive semidefinite, R[E,E] is
positive semidefinite. The proof of the claim is complete.

Let the degree of vertex 1 be m . Then T � (1) has m components. We denote the
vertex sets of these components by by V ′

1,V2, . . . ,Vm. Additionally, let us assume that
2 ∈V ′

1 . Define
V1 := V ′

1 �{2}.
We now have the following claim. �

CLAIM 5. R is similar to a block lower triangular matrix with diagonal blocks
equal to R[V1,V1],R[V2,V2], . . . ,R[Vm,Vm] .

Proof of the claim. We know that V1∪·· ·∪Vm = {3, . . . ,n} and Vi∩Vj = /0. We
recall that

R = [Rαβ ] 3 � α,β � n.

By item (a) in (P3), it suffices to show that if i < j , x ∈ Vi and y ∈ Vj , then Rxy = 0.
By definition,

Rxy = −d21 +dx1 +d2y−dxy. (23)

Since x and y belong to different components of T � (1) ,

dxy = dx1 +dy1. (24)

Using (24) in (23),
Rxy = −d21 +d2y−dy1. (25)

We recall that 2 ∈V ′
1 and y ∈Vj . Since 1 � i < j , we see that 1 < j . Hence, 2 and y

belong to different components of T � (1). Thus, d2y = d21 + dy1 . By (25), Rxy = 0.
The proof of the claim is complete. Thus, it follows that

det(R) =
m

∏
i=1

det(R[Vi,Vi]). (26)

Let j ∈ {2, . . . ,m} . Substituting X̃ = X = 〈Vj〉 , E = Vj and α = 1 in claim 4, we see
that R[Vj,Vj] is positive semidefinite for all j = 2, . . . ,m . In particular, we have

det(R[Vj,Vj]) � 0 j = 2, . . . ,m. (27)

We now partition V1 . Define

VA := {y ∈V1 : 2 /∈V (P1y)} and VB := {y ∈V1 : 2 ∈V (P1y)}.
Then,

V1 = VA ∪VB and VA∩VB = /0. �
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CLAIM 6. If x ∈VB and y ∈VA , then 2 ∈V (Pxy) .

Proof of the claim. Suppose 2 /∈ V (Pxy). Since y ∈ VA , we see that 2 /∈ V (P1y) .
Therefore, 2 /∈V (P1x) . This contradicts x ∈VB . Hence the claim is true. �

CLAIM 7. R[V1,V1] is similar to a block upper triangular matrix with diagonal
blocks equal to R[VA,VA] and R[VB,VB] .

Proof of the claim. Let x ∈VB and y ∈VA . In view of item (b) in (P3), it suffices
to show that Rxy = 0. In view of the previous claim,

d2y +d2x = dxy. (28)

By definition,
Rxy = −d21 +dx1 +d2y−dxy. (29)

As x ∈VB ,
d1x−d21 = d2x. (30)

By (29) and (30),
Rxy = d2x +d2y−dxy.

Equation (28) now gives Rxy = 0. The proof of the claim is complete. �

The following is now immediate:

det(R[V1,V1]) = det(R[VA,VA])det(R[VB,VB]). (31)

We now partition VA . Let the path P12 have the vertex set {1,u1, . . . ,uq,2} and edge
set {(1,u1),(u1,u2), . . . ,(uq,2)} . For i = 1, . . . ,q , define

Ui := {y ∈VA : duiy � dujy for all i �= j}.

Clearly ui ∈Ui . We shall prove the following claim now.

CLAIM 8. The following items hold.

(i) If y ∈Ui , then ui ∈V (Py2)∩V(Py1) .

(ii) If y ∈Ui , then ui ∈V (Pyu j) for j �= i .

(iii) U1, . . . ,Uq partition VA .

(iv) Let y ∈Ui and z ∈Uj . If i �= j , then

Pyz = Pyui ∪Puiu j ∪Pu jz.

(v) Each 〈Ui〉 is a tree.
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Proof of the claim. Assume that ui /∈ V (P1y) . Because u1 is the only vertex in
V1 adjacent to 1, we deduce that i �= 1 and hence ui /∈ V (Pu1y) implying Pu1y ∪Pu1ui

contains Pyui . Now, ui−1 ∈V (Pyui) . This implies dui−1y < duiy. But this cannot happen
as y ∈Ui , so ui ∈V (P1y) and by a similar argument, ui ∈V (P2y). This proves (i).

Let j > i . By (i) and from the definition of ui and u j ,

ui ∈V (P2y) and u j ∈V (P2ui).

Thus,
P2y = P2u j ∪Pu jui ∪Puiy.

The above equation implies

ui ∈V (Pyu j ) for all j > i.

A similar argument leads to

ui ∈V (Pyu j ) for all j < i.

This proves (ii).
If possible, let y ∈Ui∩Uj , where j �= i . By (ii), it follows that

ui ∈V (Pu jy) and u j ∈V (Puiy).

But these two cannot happen simultaneously. Hence, y /∈Ui ∩Uj . Thus, Ui ∩Uj = /0 .
From the definition of U1, . . . ,Uq , we have

U1∪·· ·∪Uq ⊆VA.

Let x ∈VA . Choose k ∈ {1, . . . ,q} such that

dxuk := min(dxu1 , . . . ,dxuq).

Then, x ∈Uk . Hence VA ⊆U1∪·· ·∪Uq . This proves (iii).
(iv) follows from (ii).
We now claim that 〈Ui〉 is a tree. Let y ∈Ui . Since y,ui ∈ V ′

1 and 〈V ′
1〉 is a tree,

we have
V (Pyui) ⊆V ′

1. (32)

To show that 〈Ui〉 is a tree, it now suffices to show that V (Pyui) ⊆Ui . Let x ∈V (Pyui) .
Assuming x /∈Ui , we shall get a contradiction. By (32), we now have only three cases:

(a) x ∈Uj when j �= i (b) x = 2 (c) x ∈VB.

Assume (a). In view of item (iv) above, we see that ui ∈V (Pxy) . But, we know that
x ∈V (Pyui) . This is a contradiction. So, (a) is not true. If (b) is true, then 2 ∈V (Pyui) .
However, (i) implies ui ∈V (Py2) . This is a contradiction. Hence, x �= 2. If we assume
(c), then x ∈V (Pyui) . By claim 6, 2 ∈V (Pyx) and therefore 2 ∈V (Pyui) implying case
(b) is true which is a contradiction. Hence, V (Pyui) ⊆Ui and thus 〈Ui〉 is a tree. This
proves (v). The proof of the claim is complete. �

We now consider R[VA,VA] .



110 R. BALAJI AND V. GUPTA

CLAIM 9. R[VA,VA] is similar to a block upper triangular matrix with the diagonal
block in the (i, i)th -position equal to R[Ui,Ui] .

Proof of the claim. Let i > j . Pick any two elements r ∈Ui and s ∈Uj . By item
(c) in (P3), it suffices to show that

Rrs = 0.

We recall that
Rrs = −d21 +dr1 +d2s−drs. (33)

By item (i) and (iv) of claim 8,

dr1 = drui +dui1, d2s = d2u j +dujs and drs = drui +dujui +dsu j . (34)

Thus (33) and (34) give

Rrs = −d21 +drui +dui1 +d2u j +dujs − (drui +dujui +dsu j)

= −d21 +dui1 +d2u j −dujui .

Since i > j and P12 has edges {(1,u1),(u1,u2), . . . ,(uq−1,uq),(uq,2)} , we get

−d21 +dui1 = −dui2 and d2u j −dujui = d2ui .

Thus, Rrs = 0. This completes the proof of the claim. �

Thus, we have

det(R[VA,VA]) =
q

∏
i=1

det(R[Ui,Ui]). (35)

We further partition Ui into disjoint sets. Fix i ∈ {1, . . . ,q} . Let ui be adjacent to
pi vertices in 〈Ui〉 . Then, 〈Ui〉� (ui) has pi components. Let these components be
denoted by Gi1, . . . ,Gipi . Define Qik := V (Gik) .

CLAIM 10. The following items hold.

(i) det(R[Ui,Ui]) = Ruiui(
pi

∏
k=1

det(R[Qik,Qik])) .

(ii) Gi1, . . . ,Gipi are the connected components of T � (ui) .

(iii) det(R[Ui,Ui]) � 0.

Proof of the claim. Let a ∈ Qir , b ∈ Qis and r �= s . By definition,

Rab = −d21 +da1 +d2b−dab.

Since ui ∈V (P12) ,
Rab = −d2ui −dui1 +da1 +d2b−dab. (36)



DISTANCE LAPLACIAN MATRICES 111

As a ∈Ui , it follows from item (i) of claim 8 that

daui = da1−d1ui . (37)

Substituting (37) in (36),

Rab = −d2ui +duia +d2b−dab. (38)

As b ∈Ui , it follows from item (i) of claim 8 that

dbui = d2b−d2ui. (39)

Using (39) in (38),
Rab = dbui +duia −dab. (40)

Finally, since a and b belong to different components of 〈Ui〉� (ui) ,

dbui +duia = dab. (41)

Using (41) in (40)
Rab = 0.

We now show that Ruix = 0 for any x ∈ Qis . By definition,

Ruix = −d21 +dui1 +d2x−duix.

Since ui lies on P12 ,
Ruix = −dui2 +d2x−duix. (42)

As x ∈ Qis ⊂Ui , by item (i) of claim 8,

dxui +d2ui = d2x. (43)

By (42) and (43), Ruix = 0. Similarly, Rxui = 0.
By item (c) in (P3), we now conclude that R[Ui,Ui] is similar to a block diagonal

matrix with diagonal blocks

Ruiui , R[Qik,Qik] k = 1, . . . , pi.

Hence

det(R[Ui,Ui]) = Ruiui(
pi

∏
k=1

det(R[Qik,Qik])).

This completes the proof of (i).
By definition Gi1, . . . ,Gipi are the connected components of 〈Ui〉� (ui) . So, each

Gik is connected. Suppose Gik is not a connected component of T � (ui) . Then, there
exists v ∈ V (T ) � {ui} but not in Qik such that v is adjacent to a vertex g ∈ Qik .
Suppose v ∈ Qi j for some j �= k . But Qik and Qi j are components of 〈Ui〉� (ui) and
hence ui ∈ V (Pgv) . This is not possible. Suppose v ∈ Uj where j �= i . Then, item
(iv) in claim 8 implies ui ∈ V (Pgv) . This is not possible. Suppose v ∈ VB . Then, in
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view of claim 6, we get 2 ∈ V (Pvg) . Again, this is not possible. Let v ∈V2 ∪·· · ∪Vm .
Since g ∈V1 , 1 ∈ Pgv . This is a contradiction. Thus, Gik is a connected component of
T � (ui) . The proof of (ii) is complete.

Fix k ∈ {1, . . . , pi} . Set X̃ = X = Gik , E = Qik and α = ui . By (ii), 〈X〉 is a
connected component of T � (ui) . Hence, by claim 4, det(R[Qik,Qik]) � 0. In view of
item (i), we conclude that det(R[Ui,Ui]) � 0. The proof of (iii) is complete. �

From equation (35) and claim 10, we have

det(R[VA,VA]) � 0. (44)

Let 〈VB〉 have s components and let the vertex sets of these components be W1, . . . ,Ws .

CLAIM 11. If i �= j , zi ∈Wi and z j ∈Wj , then 2 ∈V (Pziz j ) .

Proof of the claim. Since zi and z j belong to different components of 〈VB〉 , there
exists a vertex x such that

x ∈V ′
1, x /∈VB, and x ∈V (Pziz j ).

If x = 2, then we are done. Now, assume x �= 2. Then, x ∈ VA . Since zi ∈ VB ,
claim 6 implies that 2 ∈ V (Pzix) and hence 2 ∈ V (Pziz j ) . The proof of the claim is
complete. �

CLAIM 12. 〈W1〉, . . . ,〈Ws〉 are connected components of T � (2) .

Proof of the claim. Each 〈Wj〉 is connected. Suppose 〈Wj〉 is not a component in
T �(2) . Then there exists a vertex g∈Wj adjacent to v∈V (T �(2))�Wj . Let v∈Wk ,
where k �= j . Then, by claim 11, 2 ∈ V (Pvg) . This is not possible. Suppose v ∈ VA .
Then, by claim 6, 2 ∈V (Pvg) . This is a contradiction. If v /∈V ′

1 , then v ∈V2∪·· ·∪Vm

implying that 1 ∈ V (Pvg) . This is a contradiction. Thus, 〈Wj〉 is a component in
T � (2) . This completes the proof of the claim. �

Finally, we now show that det(R[VB,VB]) � 0.

CLAIM 13. The following items hold.

(i) det(R[VB,VB]) =
s

∏
ν=1

det(R[Wν ,Wν ]) .

(ii) det(R[Wi,Wi]) � 0 i = 1, . . . ,s .

(iii) det(R[VB,VB]) � 0.

Proof of the claim. The sets W1, . . . ,Ws partition VB . Let a ∈Wi and b ∈Wj . We
claim that if i �= j , then Rab = 0. By definition

Rab = −d21 +da1 +d2b−dab. (45)
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By claim 11, 2 ∈V (Pab) . Hence

dab = da2 +d2b. (46)

By (45) and (46),

Rab = −d21 +da1 +d2b−da2−d2b = −d21 +da1−da2. (47)

Since a ∈VB , 2 ∈V (Pa1) ,
da1 = da2 +d21. (48)

By (47) and (48),

Rab = 0.

By (P3), R[VB,VB] is similar to a block diagonal matrix with diagonal blocks

R[W1,W1], . . . ,R[Ws,Ws].

Therefore,

det(R[VB,VB]) =
s

∏
i=1

det(R[Wi,Wi]).

This completes the proof of (i).
The proof of (ii) follows by substituting X̃ = X = 〈Wi〉 , E = Wi and α = 2 in

Claim 4.
(iii) is immediate from (i) and (ii). �

We now proceed to finalize the proof. By utilizing (26), (31), (44), and item (iii)
in claim 13, we conclude that det(R) � 0. Consequently, by claim 2, we deduce that
s†
12 � 0. The proof is complete. �

3.1. Illustration

The following example illustrates our result for a tree T with 5 vertices.

1

23 4

5

Figure 1: T
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The distance Laplacian matrix of T is⎡⎢⎢⎢⎢⎣
8 −1 −3 −2 −2

−1 5 −2 −1 −1
−3 −2 9 −1 −3
−2 −1 −1 6 −2
−2 −1 −3 −2 8

⎤⎥⎥⎥⎥⎦
and its Moore-Penrose inverse is

1
570

⎡⎢⎢⎢⎢⎣
47 −20 −6 −11 −10

−20 74 −12 −22 −20
−6 −12 42 −18 −6

−11 −22 −18 62 −11
−10 −20 −6 −11 47

⎤⎥⎥⎥⎥⎦ .
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