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ON DISTANCE LAPLACIAN MATRICES OF WEIGHTED TREES

R. BALAJT* AND VINAYAK GUPTA

(Communicated by S. Fallat)

Abstract. Let T be a weighted tree on n vertices and D(T') := [[d;;]] be the distance matrix of
T . The distance Laplacian matrix of 7 is defined as

Lp(T) = Diag(i dyj,..., i dyj) = D(T).
Jj=1 J=1

We aim to show that all off-diagonal entries in the Moore-Penrose inverse of Lp(T) are non-
positive. Specifically, this result implies that the Moore-Penrose inverse of Lp(7) is an M-
matrix.

1. Introduction

A tree is a connected acyclic graph. Let T be a tree on n vertices with vertex set
V(T) and edge set E(T). Assume that V(T) := {1,...,n} and to each edge (p,q) of
T, a positive number w), is assigned. We say that w), is the weight of (p,q). The
distance between any two vertices i and j of T, denoted by f3;;, is the sum of all the
weights in the path that connects i and j. Define

g ) PBuiFd
v 0 else.
The distance matrix and the distance Laplacian matrix of 7" are now, respectively,

D(T) :=[[dij]] and Lp(T):= Diag(i dij,..., i dnj) —D(T).
s =1

As the graph/network is connected, the distance Laplacian matrix is the combinato-

rial/classical Laplacian of a complete network with weights given by the distances. If i

and j are any two vertices of T, define

L ..

yo | G EED
' 0 else.
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The Laplacian matrix of T, denoted by L(T), is the n x n matrix

L(T):= Diag(i Vijre-s i i) — [[%1)-
j=1 j=1

The values ¥;; are the conductances in the context of electrical network resistances.
Following the Kirchhoff laws on series resistances, the distance between any pair of
vertices in a weighted tree coincide with the effective resistance between them, and
hence the distance and Laplacian matrices L(T) and D(T) are connected by the rela-
tion

dij = 0Gi + 0tjj — 204, (D
where o; is the (i,/)™ entry in the Moore-Penrose inverse of L(T): see Klein and
Randié [12]. Matrices L(T) and Lp(T) have some common features.

(i) Both are positive semidefinite.

(i1) All row/column sums are equal to zero.
(iii) Rankis n—1.
(iv) All off-diagonal entries are non-positive.

Items (i) and (iv) imply that Lp(7T) and L(T) are M-matrices. The objective of this
paper is to deduce a new property of Lp(T): The Moore-Penrose inverse of Lp(T) is
an M-matrix. As usual, we use the notation A" to denote the Moore-Penrose inverse
of A. In general, L(T)" is not an M-matrix. A significant result from [10] states that
L(T)" is an M-matrix if and only if T is a star. A similar characterization of weighted
trees can be found in [11]. It can be noted that resistive electrical networks represented
by connected graphs exhibit desirable properties if the Moore-Penrose inverse of their
Laplacian matrices are M -matrices: see [13].

Based on the previous discussion, we investigate the existence of a matrix asso-
ciated with a given connected graph that possesses the fundamental characteristics of
a classical Laplacian matrix, while also having the property that its Moore-Penrose in-
verse is an M-matrix. Our result in this paper asserts that if 7' is any weighted tree,
then Lp(T) is such a special matrix. To provide a concise and precise statement, we
can approach it from a combinatorial perspective. Consider the complete graph K,, with
n vertices, where each edge is assigned a weight d;; representing the distance between
the vertex i and vertex j in a weighted tree with n vertices. In this context, our inves-
tigation reveals that the Moore-Penrose inverse of the classical Laplacian exhibits the
remarkable characteristic of being an M-matrix.

Consider the more general problem described as follows: Let G be a complete
graph with assigned weights on its edges. The question is under what conditions the
Moore-Penrose inverse of the Laplacian matrix of G is an M -matrix. In the case, where
all the weights are equal to one, it is proven in [60] that the Moore-Penrose inverse of
the Laplacian matrix is an M-matrix. The question extends for a general connected
graph. In [0], the authors present a remarkable result: For connected graphs that are
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distance regular, if the Moore-Penrose inverse of their combinatorial Laplacian matrices
are M-matrices, then the diameter of those graphs must be at most three.

Another related question in matrix theory is when the Moore-Penrose inverse of
an M-matrix is again an M-matrix. In [5], this question is addressed specifically for
singular Jacobi M -matrices that are tridiagonal. Under certain conditions, it is shown
that the Moore-Penrose inverse of these matrices are M-matrices. Additionally, [5]
demonstrates that for any integer n, there exists a singular, symmetric and tridiagonal
n x n M-matrix whose Moore-Penrose inverse is also an M-matrix. For any path
with arbitrary weights, its combinatorial Laplacian matrix is always a Jacobi M -matrix.
Using the results on Jacobi M -matrices in [5], we can observe that if P is a weighted
path with more than four vertices, then the Moore-Penrose inverse of the combinatorial
Laplacian of P is not an M -matrix, as noted in [11].

Now, we consider a weighted tree 7. The problem under consideration is to show
that the Moore-Penrose inverse of the distance Laplacian of 7 is an M-matrix. This
problem can also be posed for the combinatorial Laplacian of 7. The worksin [11] pro-
vide characterizations for all weighted trees whose Moore-Penrose inverse of the com-
binatorial Laplacian is an M-matrix. Furthermore, [3] presents a relevant result con-
cerning distance-biregular graphs. Specifically, it characterizes all distance-biregular
graphs whose group inverse of the combinatorial Laplacian is an M-matrix. We recall
that the group inverse of a symmetric matrix coincides with its Moore-Penrose inverse.

Distance matrices of connected graphs, particularly trees, have been extensively
studied due to their interesting properties and applications. For instance, there exists a
well-known formula to compute the determinant of the distance matrix of a tree, which
depends soley on the weights. Additionally, Graham and Lovasz [8] established a com-
binatorial interpretation for all the coefficients in the characteristic polynomial of the
distance matrix of a tree. The monograph [4] provides a compilation of well-known
results on distance matrices. Distance Laplacian matrices of connected graphs were
introduced in [1], where their relationship to algebraic connectivity was investigated.
The techniques employed in our paper are novel and rely on crucial observations de-
rived from numerical experiments.

2. Preliminaries

We consider only real matrices.

2.1. Notation

(N1) If A = [[a;;]] is an n x n matrix, then the submatrix obtained by deleting the i"
row and the j™ column will be denoted by A(i|j). Let

I<si<s<--<sg<nand 1<ty <tr--- <ty <n.

Define Q) := (s1,...,5) and Qp := (t1,...,t,). Then, A[Q;,Q,] will denote
the k x m matrix with (i, /) entry equal to ay; .
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(N2) The column vector of all ones in R" will be denoted by 1. If m < n, then 1,,
will denote the column vector of all ones in R”. The notation J will be the n x n
matrix with all entries equal to 1. Zero matrices with more than one row/column
will be denoted by O and a column vector with all entries equal to 0 by 0.

(N3) The transpose of a matrix A is denoted by A’. If B is a square matrix, then the
Moore-Penrose inverse of B is the unique n x n matrix B' satisfying

BB'B=B, B'BB" = BY, (B'B) =B'Band (BB') =BB'.

(N4) A Z-matrix is an n X n matrix where all the off diagonal entries are non-positive.
If all the principal minors of a Z-matrix are non-negative, then it is called a
M-matrix. Therefore, a symmetric Z-matrix is an M-matrix if and only if it is
positive semidefinite. M-matrices have several interesting properties. The topic
of Chapter 5 in Fiedler [7] is on M-matrices.

(N5) To denote the subgraph induced by a set of vertices W C V(T), we use the no-
tation (W). If u and v are any two vertices, then P,, will denote the path
connecting u and v in T. The set of all vertices of a subgraph H is denoted by
V(H).

2.2. Basic results and techniques

(P1) Matrix determinant lemma (page 66, [9]): Let A be a m X m matrix and x,y be
m x 1 vectors. Then

det(A +xy') = det(A) +y' adj(A)x.
If A is invertible, then

det(A +xy') = det(A)(1 +yA 'x).

(P2) Triangle inequality (page 95, [4]): If i, j,k € {1,...,n}, then
dix < djj+dj,
and equality happens if and only if j € Pj.

(P3) The following observation will be useful in the proof. Let v be a positive integer
and the sets Ly,...,Ly partition {I,...,v}. Let A = [ay] be a v X v matrix
such that A[L;,L;] = O for all i < j. Then there exists a permutation matrix P
such that

A[Ly, L] 0 o
) ALy, Ly] ALy, L] ... o
PAP = _ _

AlLy,L1] AlLy,La) ... AlLy,Ly]

As a consequence, we note the following.
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(a) If ayy=0forall x€ L;, y€ L; and i < j, then A is similar to a block lower
triangular matrix with i diagonal block equal to A[L;,L;].

(b) If ayy=0forall x€ L;, y€ L;j and i > j, then A is similar to a block upper
triangular matrix with /" diagonal block equal to A[L;,Li].

(c) If ayy =0 forall xe L;, yc L; and i # j, then A is similar to a block
diagonal matrix with i diagonal block equal to A[L;,L;].

3. Main result
We now prove our result.

THEOREM 1. Let T be a weighted tree on n vertices. Let D = [[d;j]] be the
distance matrix of T. Then, the Moore-Penrose inverse of

n n
Diag(EdU,..., Y dnj)—D
j=1 j=1

is an M-matrix.

Proof. We define

n

S:= Diag(2d1j7~~-»zdnj)_D~
j=1 J=1

In view of Gershgorin circle theorem, we conclude that S is positive semidefinite and
so is ST. Hence, we need to show only that all off-diagonal entries in ST are non-
positive. Let slTj be the (i, /)" entry of ST. By a permutation similarity argument, it
suffices to show that s'lr2 is non-positive. Let C := S(1]2). Since S1= 0, all cofactors
of S will be equal. Let ¥ be the common cofactor of S. In particular, ¥ = —det(C).
As S(1|1) is strictly diagonally dominant, S(1|1) is non-singular and therefore, y > 0.
Thus, rank(S) =n — 1. We now have the following claim.
1 _.c 1,

CLAIM 1. s, = 2=t

Proof of the claim. Let & bethe (1,2)™-entry of (S+J)~!. Then, & = —%.
As det(S) = 0 and adj(S) = yJ, by the matrix determinant lemma (P1),

det(S+J) =n’y and det(C+J(1]2)) = det(C)(1+1,_,C~'1,y).

Since det(C) = —v,

141, ,c7'1,,

&= S E— (2)
As the null-space of § is spanned by 1, SS" =1 —2, and hence (S+J) ' =87+ 4.

Therefore, sJ{z =& — L. The claim now follows by substituting for & obtained in
n
equation (2). U
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Forany i,j € {3,...,n}, define

—dy1 +din +dpj—dij

Rii = n
/ —doy +dijt +doi+ Y dix
=1

Let R denote the (n—2) x (n—2) matrix
R33 R34 ... R3y
Ry3 Rug - Ry
CLAIM 2. s}, <0 if and only if det(R) > 0.

Proof of the claim. Define
|11
o [12]

_ 1/
1 lnz} . By a direct computation,

Then, Q! = [0 /
n—2

521 —S§21+523 ...

0-'co ! =

i#]
i= .

— 821+ S2n

—821 531 S21 — 831 — 523+ 533 ... §21 — 8§31 — 24+ S3p

—821 + Sn1 $21 —Spl — 523+ Sp3 -+ S21 — Snl — S2u + Snn

The entries of S can be written as

—dij  i#]
Sij = n ..
Ddy i=].
k=1
Hence,
(@ 'co (1) =R.
As
det(C) = —y <0 and det(Q) =
we get

det(Q'"'co™) = —y<o.

By a simple computation,

(eCc'Qn =1,_,C"1,;.

3)

1,

“)
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Using (3),
o 1 1 -1
(0C™ 0 _—det(Q’*lCQ*I)det((Q CO 7 )(1]1)) s
:—Jl/det(R).
By (4) and (5),

1
1 ,c'1, = —7—/det(R).

By claim 1, it follows that 512 < 0 if and only if det(R) > 0. Claim 2 is now com-
plete. 0

Our aim is now to demonstrate that det(R) > 0. We first observe that the diagonal
entries of R are non-negative.

CLAIM 3. R;>0 i=3,...,n.
Proof of the claim. By the triangle inequality,
—dry+dy+dri >0 i=3,...,n.

Hence
n

Ri=—doy +dj+dy+ Y, dg>0 i=3,....n. O
k=1

CLAIM 4. Let o € V(P2). Suppose there exists a connected component X of
T ~ (o) not containing 1 and 2. Let u € V(X) be the vertex adjacent to o. Consider a
connected subgraph X of X containing u. Put E := V(X). Then, R[E,E] is a positive
semidefinite matrix.

Proof of the claim. If E = {u}, then R[E,E] = [[R,,]]. By claim 3, Ry, > 0 and
hence the lemma is true in this case. Suppose E has at least two elements. We now
show that R[E, E] is symmetric. Let r,s € E. Recall that

Ry = _d21 + drl + d2.\' - drs~ (6)

Since r and s belong to a component of 7 . o¢ which does not contain 1 and 2, we
have
dy =drg+dy and dyp = dso + deo- (N

By (6) and (7),
Ry = _d21 + droc + dal + dsoc + da2 - drs~ (8)

Again by a similar reasoning in (7),

dy2 = drg +dop and dy1 = dyg + do- ®)
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By (8) and (9),
Ry = _d21 +d.\'l +dr2 - dr57

which is Ry-. Thus, R[E,E] is symmetric. We know that u € E and also adjacent to
a. Let Q be the set of all non-pendant vertices in 7. Since X is connected, and has at
least two vertices, u is adjacent to a vertex in E. Hence u €¢ ENQ,s0 ENQ # 0. Let
6 € E be such that

dgo = max{dyy : x € ENQ}.

Since X is a tree, there exists a pendant vertex adjacent to 6 . Without loss of generality,
let E = {xi,...,x—_1,%}, where x; = u, x,_; = 0 and x; is a pendant vertex adjacent
to x;—1 . By the definition of R,

Riy, | —Rix, = —doi +dit +doy, | —dix, | — (—da1 +dj1 +doy, — diy,)

(10)
= (day,_, — day,) — (dix,_, — di,)-
Since x; is a pendant vertex and is adjacent to x,_;, we have
dzxt—l - de, = _dxtxt—l'
If i € {x1,...,x_2} then,
dixr—l - dixt = _dX/Xt—l'
From (10), we now get
Rix,,l :Rix, forall i e {xl,xz,...,xt_g}. (11)
By the definition of R;;,
Rx,,lx, = _d21 + dxt,ll + d2x, - dx,,lxt . (12)

Vertices 2 and x, belong to different components of T\ (). Also, x; and x,_; are
adjacent and x, is pendantin X . Hence,

d2x, - d20£ + docx, - d20£ + docx,,l + dx,,lx, . (13)

By (12) and (13),
Rx,,lx, =—dy + dx,,ll +d20¢ + docx,,y

As a € V(Plz), dy) = dro +dgy - Hence

Ry x, = —doi +dx_ 1 Tdax,_,- (14)
As 12V (X), dy, ;1 =dy,_,a+da . Hence by (14),
Ry, \x, = 2dgy, - (15)
Since x,_1 =0,
Ry, x, =2dys. (16)



DISTANCE LAPLACIAN MATRICES

105

We now show that all diagonal entries of R[E, E| are at least 2dg,,. Let r € E. By

definition,

Rrr = _d21 + drl + d2r + 2 drk~
k=1

Since r€e E, 1¢E and 2¢€¢ E,
dr) = dyg +dio and dyp = dyo + dag-

By (17) and (18),

n
Ry = —do1 +dro +dio + dra +dog + Z d.-

k=1

As dy| = dyo +dy1 , (19) simplifies to

Ry = 2dyo + Z drk~
k=1

Case 1: Suppose r ¢ {0,x}.
Then

n
Ryy =2dro + Z dpy 2 2dr + dr6 + drx, .
k=1

By the triangle inequality,
droc + dr6 = daa and droc +drx, = dx,oc~

In view of (21),
Rrr = dx,oc + d5a~

As & is the only vertex adjacent to the pendant vertex x;,

Ry 2 dyo+dsq = dsq +dsy, +dso = 2d5sq-

Case 2: If r = 0, then it is immediate from (20).

Case 3: Suppose r = x;. Since x; is pendant and adjacent only to &, by (20),

RXtX/ > 2dxt05 = 2(d506 +dxt5) 2 2d50('

Thus, all the diagonal entries in R[E, E] are at least 2d,, .
Define a ¢ x ¢ matrix

25y Reyxy - Ry
o | Roon 2o R

Ryx, Ry, - 2dsq

a7)

(18)

19)

(20)

21
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As R[E,E] is a symmetric matrix, P is symmetric.
‘We now show that P is positive semidefinite. We will prove this by using induction
on |E|. Suppose |E| =2. Write E = {x,x2}, where u = x; . Now,

p_ [ 2da 2da
= | 2dou 2dou |

Clearly, P is positive semidefinite. Suppose the result is true if |E| <7. Define a ¢ x ¢
matrix by

1172 0 0
Or:=| 01-1
00 1

We show that Q| PQ; is positive semidefinite. Equations (11) and (16) imply that the
last two columns of P are equal. Hence, by a direct computation,

P |x;) 0} .

Q1PQ1 = [ o0 (22)

Define
X' =X\ (x).

Because x; is pendant, it follows that X’ is a connected subgraph of X and u € V(X').
Set
E' :=V(X')={x1,...,x,_1}, where x; =u.

Define
dye :=max{dy, :x € QNE'}.

By the induction hypothesis,

=

zdﬂa RXIXZ
R, 2dye ... Ry,

X1 Xr—1
P1 =
Ry 1xy Ry 1y -+ 2dpua
is positive semidefinite. Put
2d56 —2dyq 0 . 0
0 2d56 —2dyg - - 0
Py = ) ) .
0 0 o 2d56 —2dy g

Then,
P()Ct|xt) :Pl +P2

Since dgq — due = 0, P(x/|x;) is positive semidefinite and so is P. Define

A :=Diag(Ry,x, —2ds¢, - - - Ryx, — 2dsq,).
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Then,
RIE,E]=P+A.

Since, all diagonal entries are at least 2dg,, and P is positive semidefinite, R[E,E] is
positive semidefinite. The proof of the claim is complete.

Let the degree of vertex 1 be m. Then 7'~ (1) has m components. We denote the
vertex sets of these components by by V/,V3,...,V,,. Additionally, let us assume that
2 € V. Define

V=V~ {2}

We now have the following claim. [

CLAIM 5. R is similar to a block lower triangular matrix with diagonal blocks
equal to R[V|,Vi],R[V2,Val,...,R[Vin, V] .

Proof of the claim. We know that ViU---UV,, = {3,...,n} and V;NV; =0. We
recall that

R=[Rop] 3<a,B<n

By item (a) in (P3), it suffices to show thatif i < j, x € V; and y € V;, then Ry, = 0.
By definition,
ny = —dy +dy + d2y - dxy~ (23)

Since x and y belong to different components of 7'~ (1),
dxy =dg -|-dy1. 24)

Using (24) in (23),
Ry = —do1 +doy—d,. (25)

We recall that 2 € V| and y € V;. Since 1 <i < j, we see that 1 < j. Hence, 2 and y
belong to different components of 7 ~ (1). Thus, day = da; +dy1. By (25), Ry =0.
The proof of the claim is complete. Thus, it follows that

det(R Hdet Vi, Vi]). (26)
Let j € {2,...,m}. Substituting X = X = (V;), E =V; and o = 1 in claim 4, we see
that R[V;,V;] is positive semidefinite for all j =2,...,m. In particular, we have
det(R[V;,V;]) =20 j=2,....,m. 27)
We now partition V). Define
Var={yeVi:2¢V(Py)} and Vpg:={yeV;:2e€V(Py)}.

Then,
Vi=V4uUVg and VyNVp=0. [0
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CLAIM 6. If x € Vg and y € V4, then 2 € V(Py,).

Proof of the claim. Suppose 2 ¢ V(P,,). Since y € V4, we see that 2 ¢ V(Py,).

Therefore, 2 ¢ V(Py,). This contradicts x € V. Hence the claim is true.

CLAIM 7. R[V},Vy] is similar to a block upper triangular matrix with diagonal

blocks equal to R[V4,V4] and R[Vp,V3].

Proof of the claim. Let x € Vg and y € V4. In view of item (b) in (P3), it suffices

to show that R,, = 0. In view of the previous claim,

dzy +do, = dxy.

By definition,
ny = —dy1 +dy +d2y - dxy~
As x € Vg,
dlx - d2l = d2x~
By (29) and (30),

ny =dy + d2y - dxy~

Equation (28) now gives R,, = 0. The proof of the claim is complete.

The following is now immediate:

det(R[V1 R V]D = det(R[Vm VA]) det(R[VB, VB])

O

(28)

(29)

(30)

€1V

We now partition V. Let the path P> have the vertex set {1,u1,...,u,,2} and edge

set {(L,u1), (ur,u2),...,(ug,2)}. Fori=1,...,q, define
Ui:={y € Va:dyy <dy, forall i# j}.
Clearly u; € U;. We shall prove the following claim now.
CLAIM 8. The following items hold.
(i) If y e Uj, then u; € V(Pyo) NV (Pyy).

(ii) If y € U;, then u; € V(Pyuj) for j #1i.

(iii) Uy,...,U, partition V4.

(iv) Let ye U; and z € U;. If i # j, then

P,. =Py, UP,, UP,..

(v) Each (U;) is a tree.
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Proof of the claim. Assume that u; ¢ V(Py,). Because u; is the only vertex in
Vi adjacent to 1, we deduce that i # 1 and hence u; ¢ V(Py,,) implying P,,, UP,
contains Py,;. Now, u;_; € V(P,y,,). This implies d,, ,, < dy;y. But this cannot happen
as y € U;, so u; € V(Py,) and by a similar argument, u; € V(Py,). This proves (i).
Let j > i. By (i) and from the definition of #; and u;,
U € V(sz) and u; € V(qui).
Thus,
sz = P2uj @] Puju,- @] Pu,—y~
The above equation implies
uj € V(Py,;) forall j>i.
A similar argument leads to
u; € V(Pyuj) for all j < i.
This proves (ii).
If possible, let y € U;NU;, where j # i. By (ii), it follows that
u; € V(Pujy) and ujc V(Pu,-y)~

But these two cannot happen simultaneously. Hence, y ¢ U;NU;. Thus, U;NU; = 0.
From the definition of Uy, ...,U,, we have

UyU---UU, C V4.
Let x € V4. Choose k € {1,...,q} such that
Ay, = min(dxul,...,dxuq).

Then, x € Uy. Hence V4 C U U---UU,. This proves (iii).
(iv) follows from (ii).
We now claim that (U;) is a tree. Let y € U;. Since y,u; € V| and (V]) is a tree,
we have
V(Py,) SV (32)

To show that (U;) is a tree, it now suffices to show that V(Py,;) CU;. Let x € V(Py,,).
Assuming x ¢ U;, we shall get a contradiction. By (32), we now have only three cases:

(a) xeU; when j#i (b)x=2 (c)x€ Vp.

Assume (a). In view of item (iv) above, we see that u; € V(ny) . But, we know that
x € V(Py,,). This is a contradiction. So, (a) is not true. If (b) is true, then 2 € V(Py,,).
However, (i) implies u; € V(Pyz). This is a contradiction. Hence, x # 2. If we assume
(c), then x € V(Py,;). By claim 6, 2 € V(P,,) and therefore 2 € V(Py,,) implying case
(b) is true which is a contradiction. Hence, V (Py,,) C U; and thus (U;) is a tree. This
proves (v). The proof of the claim is complete. [J

We now consider R[Vy, V4].



110 R. BALAJIAND V. GUPTA
CLAIM 9. R[Vy,V,] is similar to a block upper triangular matrix with the diagonal
block in the (i,)™ -position equal to R[U;,U;].

Proof of the claim. Let i > j. Pick any two elements r € U; and s € U;. By item
(c) in (P3), it suffices to show that
R, =0.

We recall that
Rys = —dy) +dy1 +dog — dps. (33)

By item (i) and (iv) of claim 8,

drl = dru,- + du,-la d2s - d2u_,- + duj.\' and dr.\' = dru,- + duju,- + d\'uj~ (34)
Thus (33) and (34) give
Rys = —do + dru,- + du,-l + d2u_,- + dujs - (dru,- + duju,- + dsuj)

= _d2l +du,~1 +d2uj _duju,--
Since i > j and Py has edges {(1,u1), (u1,u2),. .., (ug—1,uq), (ug,2)}, we get
—dy +du,-l = _du,-Z and d2u_,- - duju,' = d2u,--

Thus, R,; = 0. This completes the proof of the claim. [

Thus, we have

det(R[V4,Va]) Hdet [U;, Ul)). (35)

We further partition U; into disjoint sets. Fix i € {1,...,q}. Let u; be adjacent to
pi vertices in (U;). Then, (U;) \ (u;) has p; components. Let these components be
denoted by Gij1,...,Gip,. Define Qi :=V(Gy).

CLAIM 10. The following items hold.
(i) det(R[U;,Ui]) = u,u,( H det(R[Qi, Qit])) -
(i) Gii,...,Gip, are the connected components of 7'~ (u;).
(iii) det(R[U;,U;]) > 0.
Proof of the claim. Let a € Q;r, b € Qjs and r # s. By definition,
Rap = —doy +da1 +dop — dgp.

Since u; € V(Py2),
Ry = —doy; — dyj1 +dg1 + dop, — dgp. (36)
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As a € U, it follows from item (i) of claim 8 that
dau; = dar — d1y;- (37
Substituting (37) in (36),
Rap = —doy; + duja + dop — dgp. (38)
As b € U, it follows from item (i) of claim 8 that
dpy; = dop — dpy;. (39)

Using (39) in (38),
Rab = dbu,- + du,-a - dab- (40)

Finally, since a and b belong to different components of (U;) \ (u;),
dpy; + dua = dap- (41)

Using (41) in (40)
Ru, =0.

We now show that R, = 0 for any x € Q;,. By definition,
Ru,-x = _d21 + duil + d2x - du,-x~
Since u; lies on Py5,
Ruix = _du,-2 + d2x - du,-x~ (42)
As x € Qis C U;, by item (i) of claim 8,

dyy; + doy; = dox. (43)

By (42) and (43), R,y = 0. Similarly, Ry, = 0.
By item (c) in (P3), we now conclude that R[U;,U;] is similar to a block diagonal
matrix with diagonal blocks

uu,7 [thank] kzl,...,pl
Hence

det( [Ul,Ul uu, Hdet Qlkank ))

This completes the proof of (i).

By definition Gjy,...,Gjp,, are the connected components of (U;) ~ (u;). So, each
Gy is connected. Suppose Gy is not a connected component of T\ (u;). Then, there
exists v € V(T) ~ {u;} but not in Qy such that v is adjacent to a vertex g € Qy.
Suppose v € Q;; for some j # k. But Qy and Q;; are components of (U;) ~ (u;) and
hence u; € V(P,,). This is not possible. Suppose v € U; where j # i. Then, item
(iv) in claim 8 implies u; € V(ng). This is not possible. Suppose v € Vp. Then, in
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view of claim 6, we get 2 € V(P,,). Again, this is not possible. Let v € Vo U---UV,.
Since g € V1, 1 € Py, This is a contradiction. Thus, Gy is a connected component of
T ~ (u;). The proof of (ii) is complete.

Fix k€ {1,...,pi}. Set X =X = Gy, E = Qy and & = u;. By (ii), (X) isa
connected component of T ~ (u;). Hence, by claim 4, det(R[Qj, Qi]) = 0. In view of
item (i), we conclude that det(R[U;,U;]) > 0. The proof of (iii) is complete. [

From equation (35) and claim 10, we have
det(R[Va,Va]) > 0. (44)
Let (Vp) have s components and let the vertex sets of these components be Wy, ..., W;.

CLAM 11. If i# j, z € W; and z; € W, then 2 € V(P;).

Proof of the claim. Since z; and z; belong to different components of (V) , there
exists a vertex x such that

xeV{, x¢ Vg, and xeV(P,;,).

If x =2, then we are done. Now, assume x # 2. Then, x € V4. Since z € V3,
claim 6 implies that 2 € V(P;,) and hence 2 € V(P,;;). The proof of the claim is
complete. [l

CLAIM 12. (Wy),...,(W;) are connected components of T~ (2).

Proof of the claim. Each (W;) is connected. Suppose (W;) is not a component in
T~ (2). Then there exists a vertex g € W; adjacentto v e V(T \ (2))\W;. Let v e W,
where k # j. Then, by claim 11, 2 € V(P,,). This is not possible. Suppose v € V4.
Then, by claim 6, 2 € V(P,;). This is a contradiction. If v ¢ V|, then v € V,U---UV,,
implying that 1 € V(P,,). This is a contradiction. Thus, (W;) is a component in
T~ (2). This completes the proof of the claim. [J

Finally, we now show that det(R[Vz,V3]) = 0.
CLAIM 13. The following items hold.

(i) det(R[Vs,Vs]) =

=R

det(R[Wy, Wy)).
1

(i) det(RIW;,W}]) >0 i=1,....s.
(iii) det(R[Vg,Vs]) = 0.

Proof of the claim. The sets Wy, ..., W, partition Vg. Let a € W; and b € W;. We
claim that if i # j, then R, = 0. By definition

Rup = —do1 +dy1 +dpp — dgp. (45)
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By claim 11, 2 € V(P,;). Hence

dap = dgp + dop. (46)
By (45) and (46),
Rup = —doy +dg1 +dop — dap — dop = —da1 +da1 — dp- (47)
Since a € Vg, 2 € V(P,),
dq1 = dgp + day. (48)
By (47) and (48),
Rup = 0.

By (P3), R[Vp,Vp] is similar to a block diagonal matrix with diagonal blocks
R[Wy,Wi],...,RIW, W].
Therefore,

det(R[Vz,Vs)) Hdet (Wi, Wi]).

This completes the proof of (i).

The proof of (ii) follows by substituting X=X= (W), E=W; and o =2 in
Claim 4.

(iii) is immediate from (i) and (ii). [

We now proceed to finalize the proof. By utilizing (26), (31), (44), and item (iii)
in claim 13, we conclude that det(R) > 0. Consequently, by claim 2, we deduce that
s12 < 0. The proof is complete. [l

3.1. Illustration

The following example illustrates our result for a tree 7 with 5 vertices.

Figure 1: T
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The distance Laplacian matrix of T is

8§ —-1-3-2-2
-1 5-2-1-1
-3-2 9-1-3
—2-1-1 6-2
—-2-1-3-2 8

and its Moore-Penrose inverse is

[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

47 =20 -6 —11 —10
—-20 74 —12 =22 -20
—6—12 42 —-18 —6
—11-22 —-18 62 —11
—10-20 —6 —11 47

L
570
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