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JOINT SPECTRUM SHRINKING MAPS ON PROJECTIONS

WENHUA QIAN ∗ , DANDAN XIAO, TANGHONG TAO, WENMING WU AND XIN YI

(Communicated by L. Molnár)

Abstract. Let H be a finite dimensional complex Hilbert space with dimension n � 3 and
P(H ) the set of projections on H . Let ϕ : P(H ) → P(H ) be a surjective map. We
show that ϕ shrinks the joint spectrum of any two projections if and only if it is induced by a
semilinear automorphism on H . In addition, ϕ shrinks the joint spectrum of I,P,Q for any two
projections P,Q∈P(H ) if and only if it is induced by a unitary or an anti-unitary. Assume that
φ is a surjective map on the Grassmann space of rank one projections. We show that φ is joint
spectrum shrinking for any n rank one projections if and only if it is induced by a semilinear
automorphism on H . Moreover, for any k > n , φ is joint spectrum shrinking for any k rank
one projections if and only if it is induced by a unitary or an anti-unitary.

1. Introduction

The well-known Gleason-Kahane-Żelazko theorem ([8, 12]) states that a nonzero
linear functional ρ : A → C on a unital complex Banach algebra A is an algebra
homomorphism if and only if ρ maps every element inside its spectrum. It is easy to
verify that a nonzero linear functional ρ on A is an algebra homomorphism if and
only if ρ is a Jordan homomorphism, that is, ρ(I) = 1 where I is the unit of A and
ρ preserves the squares. Motivated by this classical result, in [13] Kaplansky asked
whether a unital linear map ϕ : A → B between unital complex Banach algebras
which shrinks spectrum (i.e., σ(ϕ(A)) ⊆ σ(A), ∀ A ∈ A ) is a Jordan homomorphism.
Notice that a unital linear map ϕ : A → B is spectrum shrinking if and only if it is
invertibility preserving.

It is well-known that in general Kaplansky Problem has a negative answer. A
counterexample can be found in [2]. A lot of work has been done on Kaplansky Problem
by making additional assumptions (see [3, 10] for some survey). Aupetit conjectured
that Kaplansky Problem has a positive answer when both Banach algebras are semi-
simple and the map ϕ is surjective and he confirmed this conjecture for von Neumann
algebras [4]. This problem is still open, even for C∗ -algebras [5, 9]. It was proved in
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[6] that the conjecture is true for C∗ -algebras if in addition ϕ is positive. In particular,
some related maps on matrix algebras are also considered [7, 17].

Recall that [19] the joint spectrum of a tuple of operators A1,A2, . . . ,Al acting on
a Hilbert space H is the set

σ([A1, . . . ,Al]) = {(c1, . . . ,cl) ∈ C
l : c1A1 + . . .+ clAl is not invertible in B(H )}.

It is an interesting issue to discuss the mapping which shrinks or preserves the joint
spectrum of operators. It is easy to verify that a unital map ϕ : A → B is spectrum
shrinking if and only if it shrinks the joint spectrum of the 2-tuple [I,A] for any element
A ∈ A . Therefore according to Aupetit’s results [4], we can obtain the form of the
mapping preserving the joint spectrum of any two operators in B(H ) .

In this paper we will characterize the mappings which shrink or preserve the joint
spectrum of a tuple of projections.

Assume that H is a Hilbert space with dimension n < +∞ . We first consider
a surjective map ϕ on the set P(H ) of projections on H which shrinks the joint
spectrum of any two projections. We first show that ϕ leaves every Grassmann space
invariant. By showing that the restriction of ϕ on each Grassmann space is bijective,
we get that ϕ is bijective. A mathematical induction gives that ϕ is determined by
its action on rank n−1 projections and as a consequence we obtain that ϕ is a lattice
isomorphism. If n = 2, it is easy to verify that a surjective map ϕ : P(H ) → P(H )
is joint spectrum shrinking for any two projections if and only if ϕ is bijective with
ϕ(I) = I,ϕ(0) = 0. Recall that a semilinear automorphism on H is a bijective trans-
formation S : H → H such that S(x + y) = S(x)+ S(y),∀ x,y ∈ H and there is an
automorphism f of C with S(ax) = f (a)S(x),∀ a ∈ C,x ∈ H . If n � 3, some further
calculations in Section 2 give the following result.

THEOREM 1.1. Assume that 3 � n(= dim(H ))< +∞ and ϕ : P(H )→P(H )
is a surjective map. Then the followings are equivalent.

(1) ϕ shrinks the joint spectrum of any two projections;

(2) ϕ preserves the joint spectrum of any two projections;

(3) there exists a semilinear automorphism S on H such that ϕ(P)(H )= S(P(H )) .

Moreover, we consider a surjective map ϕ on the set P(H ) which shrinks
the joint spectrum of I,P,Q for any two projections P,Q ∈ P(H ) . We will fur-
ther prove that ϕ preserves the orthogonality of projections (i.e., PQ = 0 implies that
ϕ(P)ϕ(Q) = 0) and obtain the following equivalent characterizations.

THEOREM 1.2. Assume that 3 � n(= dim(H ))< +∞ and ϕ : P(H )→P(H )
is a surjective map. Then the followings are equivalent.

(1) ϕ shrinks the joint spectrum of I,P,Q for any two projections P,Q ∈ P(H );

(2) ϕ preserves the joint spectrum of I,P,Q for any two projections P,Q ∈ P(H );
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(3) there exists a unitary or anti-unitary U such that ϕ(P) =U∗PU, ∀ P ∈P(H ) .

We also investigate a surjective map φ on the set P1(H ) of rank one projec-
tions which shrinks the joint spectrum of any n rank one projections. It is shown that
P1 ∨P2∨ . . .∨Pn = I implies that φ(P1)∨φ(P2)∨ . . .∨φ(Pn) = I for any P1, . . . ,Pn ∈
P1(H ) . It follows from the Fundamental Theorem of Projective Geometry that φ is
induced by a semilinear automorphism on H and we obtain the following result.

THEOREM 1.3. Assume that 3 � n(= dim(H ))< +∞ and φ : P1(H )→P1(H )
is a surjective map. Then the followings are equivalent.

(1) φ shrinks the joint spectrum of any n rank one projections;

(2) φ preserves the joint spectrum of any n rank one projections;

(3) there exists a semilinear automorphism S on H such that ϕ(P)(H )= S(P(H )) .

Moreover, if φ : P1(H ) → P1(H ) is surjective and shrinks the joint spectrum
of any n+1 projections, we can show that φ preserves the orthogonality of projections
and obtain the following theorem.

THEOREM 1.4. Assume that 3 � n(= dim(H ))< +∞ and φ : P1(H )→P1(H )
is a surjective map. Then the followings are equivalent.

(1) there exists k0 � n+1 such that φ shrinks the joint spectrum of any k0 projec-
tions;

(2) there exists k0 � n+ 1 such that φ preserves the joint spectrum of any k0 pro-
jections;

(3) for any k � n+1 , φ shrinks the joint spectrum of any k projections;

(4) for any k � n+1 , φ preserves the joint spectrum of any k projections;

(5) there exist a unitary or anti-unitary U such that φ(P) =U∗PU, ∀ P ∈ P1(H ) .

2. Maps shrinking the joint spectrum of any two projections

Let H be a Hilbert space with dimension n < +∞ . Denote by P(H ) and
Pr(H ) (i.e., the order r Grassmann space) the set of projections and the set of rank r
projections on H . In this section we assume that ϕ : P(H )→P(H ) is a surjective
map which shrinks the joint spectrum of any two projections, i.e., σ([ϕ(P),ϕ(Q)]) ⊆
σ([P,Q]), ∀ P,Q ∈ P(H ) .
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LEMMA 2.1. ϕ(I) = I,ϕ(0) = 0 .

Proof. For any Q ∈ P(H ) , (1,0) /∈ σ([I,Q]) . Hence (1,0) /∈ σ([ϕ(I),ϕ(Q)])
and by the surjection of ϕ we have ϕ(I) = I . Since (1,−1) /∈ σ([I,0]) , we have
(1,−1) /∈ σ([ϕ(I),ϕ(0)]) = σ([I,ϕ(0)]) . Hence ϕ(0) = 0. �

For any P,Q ∈ P(H ) , let P∨Q be the projection whose range is the sum of the
ranges of P,Q and P∧Q the projection whose range is the intersection of the ranges
of P,Q . Notice that these operations correspond to the operations on the lattice of
subspaces of H . It is easy to verify that P∨Q = I if and only if (1,1) /∈ σ([P,Q]) .
Thus the following lemma is obvious.

LEMMA 2.2. Let P,Q ∈ P(H ) . If P∨Q = I , then ϕ(P)∨ϕ(Q) = I .

By Theorem 2.1 in [18], if P,Q ∈ P(H ) are nontrivial projections with P∨Q =
I,P∧Q = 0, then either σ([P,Q]) = C2 or σ([P,Q]) = {(c1,c2) ∈ C2 : c1c2 = 0} .

LEMMA 2.3. Let P,Q ∈ P(H ) . If P∨Q = I,P∧Q = 0 , then ϕ(P)∨ϕ(Q) =
I,ϕ(P)∧ϕ(Q) = 0 .

Proof. If P = I,Q = 0 or P = 0,Q = I , then Lemma 2.1 gives the result. Assume
that P,Q ∈ P(H )\ {0, I} . By P∨Q = I we have (1,1) /∈ σ([P,Q]) . Then it follows
from Theorem 2.1 in [18] that (1,−1) /∈ σ([P,Q]) . Thus ϕ(P) + ϕ(Q) and ϕ(P)−
ϕ(Q) are both invertible. Hence ϕ(P)∨ϕ(Q) = I,ϕ(P)∧ϕ(Q) = 0. �

In the following, we denote by r(P) the rank of P for any P ∈ P(H ) .

LEMMA 2.4. Let P,Q ∈ P(H ) . If r(P) = r(Q) , then r(ϕ(P)) = r(ϕ(Q)) .
Moreover, ϕ(Pk(H )) = Pk(H ),∀ k ∈ {0,1,2, . . . ,n} .

Proof. Notice ϕ(I) = I , ϕ(0) = 0. We may assume that P,Q ∈ Pk(H ) , where
k ∈ {1,2, . . . ,n−1} .

We first assume that r(P∧Q) = k− 1. It follows that r(P∨Q) = k + 1. Then
there exist linearly independent vectors x1,x2, . . . ,xk−1,α,β ∈ H such that P is the
projection onto the subspace generated by x1,x2, . . . ,xk−1,α and Q is the projection
onto the subspace generated by x1,x2, . . . ,xk−1,β . Take R = P1 +(I−P∨Q) , where
P1 is the rank one projection onto C(α + β ) . It follows that P∨R = I , P∧R = 0 and
Q∨R = I , Q∧R = 0. By Lemma 2.3 we obtain that ϕ(P)∨ϕ(R) = I , ϕ(P)∧ϕ(R) = 0
and ϕ(Q)∨ϕ(R) = I , ϕ(Q)∧ϕ(R) = 0. Hence

r(ϕ(P)) = n− r(ϕ(R)) = r(ϕ(Q)).

Now assume that r(P∧Q) = k− r , where 1 � r � k . Then there exist linearly
independent vectors x1,x2, . . . ,xk−r,α1,α2, . . . ,αr,β1,β2, . . . ,βr such that P is the pro-
jection onto the subspace generated by x1,x2, . . . ,xk−r,α1,α2, . . . ,αr and Q is the pro-
jection onto the subspace generated by x1,x2, . . . ,xk−r,β1,β2, . . . ,βr . Take Q0 = P ,
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Qr = Q . For each i∈ {1,2, . . . ,r−1} , let Qi be the projection onto the subspace gener-
ated by x1,x2, . . . ,xk−r,β1, . . . ,βi,αi+1, . . . ,αr . It follows that Q0,Q1, . . . ,Qr ∈ Pk(H)
and r(Qi∧Qi+1) = k−1 for every i ∈ {0,1, . . . ,r−1} . Then the result of the previous
paragraph implies that

r(ϕ(P)) = r(ϕ(Q)).

Hence there exists a map g : {0,1,2, . . . ,n}→{0,1,2, . . . ,n} such that ϕ(Pk(H ))
⊆ Pg(k)(H ),∀ k ∈ {0,1,2, . . . ,n} . By the fact that ϕ is surjective, we obtain that g
is a bijection and ϕ(Pk(H )) = Pg(k)(H ),∀ k ∈ {0,1,2, . . . ,n} . In particular, by
Lemma 2.3 we have g(n− k) = n−g(k),∀ k ∈ {0,1,2, . . . ,n} .

Clearly, g(0) = 0 and g(n) = n . Assume that s = g(1) > 1. Then g(n− 1) =
n− s < n− 1. By the fact that g is a bijection, there exists l > 1 such that g(l) = 1.
Take two projections P1 ∈ Pn−1(H ) , P2 ∈ Pl(H ) with P1 ∨ P2 = I . It follows
that ϕ(P1) ∈ Pn−s(H) , ϕ(P2) ∈ P1(H) . Then r(ϕ(P1))+ r(ϕ(P2)) < n . Therefore
ϕ(P1)∨ ϕ(P2) 	= I and we obtain a contradiction according to Lemma 2.2. Hence
g(1) = 1, g(n−1) = n−1. Continuing in this way, we have ϕ(Pk(H )) = Pk(H ) ,
∀ k ∈ {0,1,2, . . . ,n} . �

In the following we will show that the restriction of ϕ on each Grassmann space
Pk(H ) is a bijection and thus ϕ is a bijection. We first present a necessary lemma.

LEMMA 2.5. Let Q ∈ Pn−1(H ),P ∈ P(H ) . If ϕ(P) � ϕ(Q) , then P � Q.
Moreover, ϕ |Pn−1(H ) is a bijection.

Proof. By Lemma 2.4, ϕ(Q) ∈ Pn−1(H ) . Since ϕ(P) � ϕ(Q) , ϕ(P)∨ϕ(Q) 	=
I . By Lemma 2.2 and the fact that Q ∈ Pn−1(H) , we have P � Q . It is easy to verify
that ϕ |Pn−1(H ) is a bijection. �

For convenience, we denote by Φ = ϕ |Pn−1(H ) in the following proposition.

PROPOSITION 2.6. Let k ∈ {1,2, . . . ,n} and P ∈ Pn−k(H ) . Assume that P′ ∈
Pn−k(H ) with ϕ(P′) = P. Then for any k projections Q1,Q2, . . . ,Qk ∈ Pn−1(H )
with P = Q1∧Q2 ∧ . . .∧Qk , P′ = ∧1�i�kΦ−1(Qi) . Moreover, ϕ is a bijection.

Proof. We prove the result by a mathematical induction on k . From Lemma 2.5,
the result is true when k = 1. Assume that the result is true when k = s . Now let
k = s+1 and assume that Q1,Q2, . . . ,Qs,Qs+1 ∈ Pn−1(H ) with P = Q1 ∧Q2∧ . . .∧
Qs∧Qs+1 .

Take P1 = Q1∧Q2∧ . . .∧Qs and P2 = Q1∧Q2∧ . . .∧Qs−1∧Qs+1 . Clearly P1,P2

are two different projections in Pn−s(H ) . By the assumption that the result is true
when k = s , we have ϕ |Pn−s(H ) is a bijection and

(ϕ |Pn−s(H ))
−1(P1) = Φ−1(Q1)∧Φ−1(Q2)∧ . . .∧Φ−1(Qs),

(ϕ |Pn−s(H ))
−1(P2) = Φ−1(Q1)∧Φ−1(Q2)∧ . . .∧Φ−1(Qs−1)∧Φ−1(Qs+1). (2.1)

By Lemma 2.5, P′�Φ−1(Qi) for each i∈{1,2, . . . ,s+1} . Hence P′�(ϕ |Pn−s(H ))−1(P1)
∧ (ϕ |Pn−s(H ))−1(P2) .
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Since ϕ |Pn−s is a bijection, (ϕ |Pn−s(H ))−1(P1) 	= (ϕ |Pn−s(H ))−1(P2) and thus
r((ϕ |Pn−s(H ))−1(P1)∧ (ϕ |Pn−s(H ))−1(P2)) � n− s−1 = r(P′) .

Therefore P′ = (ϕ |Pn−s(H ))−1(P1)∧(ϕ |Pn−s(H ))−1(P2)=∧1�i�s+1Φ−1(Qi) from
(2.1). Hence ϕ |Pn−s−1(H ) is also a bijection. Moreover, ϕ is a bijection. �

According to Proposition 2.6, we have the following corollary.

COROLLARY 2.7. If P,Q ∈ P(H) , then we have the following results.

(1) If P 	= I and {Qλ : λ ∈ Ω} ⊆ Pn−1(H ) with ∧λ∈ΛQλ = P, then ϕ−1(P) =
∧λ∈Ωϕ−1(Qλ );

(2) If P � Q, then ϕ−1(P) � ϕ−1(Q);

Proof. (1) Notice that P � Qλ for every λ ∈ Ω . It follows from Lemma 2.5
that ϕ−1(P) � ϕ−1(Qλ ),∀ λ ∈ Ω and hence ϕ−1(P) � ∧λ∈Ωϕ−1(Qλ ) . Assume that
P∈Pn−k(H ) . Then there exist λ1,λ2, . . . ,λk ∈Ω such that P =∧1�i�kQλi

. It follows
from Proposition 2.6 that ϕ−1(P) = ∧1�i�kϕ−1(Qλi

) . Hence

ϕ−1(P) = ∧λ∈Ωϕ−1(Qλ ).

(2) This is clear from (1). �

Proof of Theorem 1.1. It is clear that (2) ⇒ (1) and we can easily verify that
(3) ⇒ (2) . Now we only need to show that (1) ⇒ (3) . By Proposition 2.6, the re-
striction of ϕ on P1(H) is a bijection. Hence by a modification of the Fundamental
Theorem of Projective Geometry(see Corollary 1.3 in [14]), the restriction of ϕ−1 on
P1(H ) is induced by a semilinear automorphism T on H . By Corollary 2.7, ϕ−1

is order preserving, we obtain that ϕ−1(P)(H ) = T (P(H )), ∀ P ∈ P(H ) . Now the
result follows by taking S = T−1 . �

3. Maps shrinking the joint spectrum of I,P,Q

Assume H is a finite dimensional Hilbert space with dimension n � 3. In this
section we assume that ϕ : P(H ) → P(H ) is a surjective map which shrinks the
joint spectrum of the identity I and any two projections, i.e., σ([ϕ(I),ϕ(P),ϕ(Q)]) ⊆
σ([I,P,Q]), ∀ P,Q ∈ P(H ) . It is easy to verify that ϕ also shrinks the joint spectrum
of any two projections and thus ϕ is also induced by a semilinear automorphism S on
H as in Theorem 1.1. In particular, ϕ(I) = I,ϕ(0) = 0.

Assume that P,Q ∈ P(H ) with PQ 	= QP . Let H = PQP−P∧Q and σ(H)
the spectrum of H when it is viewed as a positive contraction on (P−P∧Q)(H ) .
By Corollary 3.1 in [18], {λ : (λ −1)2 ∈ σ(H)} ⊆ σ(P+Q) . Since PQ 	= QP , there
exists r ∈ σ(H)∩ (0,1) , which implies that (1,− 1√

1+r
,− 1√

1+r
) ∈ σ(P+Q) . Then we

have the following lemma.
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LEMMA 3.1. If P,Q∈P(H ) such that PQ = QP, then ϕ(P)ϕ(Q)= ϕ(Q)ϕ(P) .

Proof. Since PQ = QP , we have (1,−t,−t) /∈ σ([I,P,Q]) for any t ∈ (0, 1
2 )∪

( 1
2 ,1) . It follows that (1,−t,−t) /∈ σ([I,ϕ(P),ϕ(Q)]) for any t ∈ (0, 1

2)∪ ( 1
2 ,1) . It

follows from Corollary 3.1 in [18] that ϕ(P)ϕ(Q) = ϕ(Q)ϕ(P) . �

LEMMA 3.2. If P,Q ∈ P(H ) such that PQ = 0 , then ϕ(P)ϕ(Q) = 0 .

Proof. By Lemma 3.1, ϕ(P)ϕ(Q) = ϕ(Q)ϕ(P). Notice that PQ = 0. It follows
that 2I−(P+Q) is invertible and therefore 2I−(ϕ(P)+ϕ(Q)) is invertible. Therefore
ϕ(P)ϕ(Q) = 0. �

Proof of Theorem 1.2. It is clear that (3) ⇒ (2) ⇒ (1) . We only need to show
that (1) ⇒ (3) . It follows from (1) that ϕ shrinks the joint spectrum of I,P,Q for any
P,Q ∈ P(H ) . Then it also shrinks the joint spectrum of any two projections on H .
By Theorem 1.1, ϕ is induced by a semilinear automorphism S on H . By Lemma
3.2, S preserves the orthogonality of vectors in H . It follows from Proposition 4.2 in
[15] that S is a nonzero multiple of a unitary or an anti-unitary and the desired result
follows. �

4. Joint spectrum shrinking maps on rank one projections

Assume that n � 3. In this section we assume that φ : P1(H ) → P1(H ) is a
surjective map. It is easy to verify that for any positive integer m < n , the joint spectrum
of any m rank one projections P1,P2, . . . ,Pm is Cm . Therefore every map on P1(H )
preserves the joint spectrum of any m rank one projections if m < n .

4.1. Maps shrinking the joint spectrum of any n rank one projections

We start with a description of the joint spectrum of n rank one projections.

LEMMA 4.1. Let P1,P2, . . . ,Pn ∈ P1(H ) . Then

(1) if P1∨P2∨ . . .∨Pn 	= I , then σ([P1,P2, . . . ,Pn]) = Cn ;

(2) if P1∨P2∨. . .∨Pn = I , then σ([P1,P2, . . . ,Pn])= {(c1,c2, . . . ,cn)∈Cn : c1c2 . . .cn

= 0} .

Proof. If P1 ∨ P2 ∨ . . . ∨ Pn 	= I , then the range of any linear combination of
P1,P2, . . . ,Pn is contained in the range of P1 ∨P2 ∨ . . .∨Pn and thus any linear com-
bination of P1,P2, . . . ,Pn is not invertible. Therefore σ([P1,P2, . . . ,Pn]) = Cn .

On the other hand, assume that P1 ∨ P2 ∨ . . . ∨ Pn = I and c1P1 + c2P2 + . . . +
cnPn is not invertible. Then there exists a nonzero vector β ∈ H such that c1P1β +
c2P2β + . . .+cnPnβ = 0. Hence ciPiβ =−c1P1β − . . .−ci−1Pi−1β −ci+1Pi+1β − . . .−
cnPnβ = 0. By the fact that P1∨P2∨ . . .∨Pn = I we have Pi∧ (P1 ∨ . . .∨Pi−1∨Pi+1∨
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. . .∨ Pn) = 0 for each i ∈ {1,2, . . . ,n} . If c1c2 . . .cn 	= 0, then P1β = P2β = . . . =
Pnβ = 0, which is a contradiction to that P1 ∨ P2 ∨ . . .∨Pn = I and β 	= 0. There-
fore σ([P1,P2, . . . ,Pn]) ⊆ {(c1,c2, . . . ,cn) ∈ Cn : c1c2 . . .cn = 0} . It is obvious that
{(c1,c2, . . . ,cn) ∈ Cn : c1c2 . . .cn = 0} ⊆ σ([P1,P2, . . . ,Pn]) . �

Proof of Theorem 1.3. (3) ⇒ (2) ⇒ (1) is clear and we only need to verify
that(1) ⇒ (3) . By Lemma 4.1, P1 ∨ P2 ∨ . . .∨ Pn = I implies that φ(P1)∨ φ(P2)∨
. . .∨φ(Pn) = I and φ is also a bijection. It follows from a modification of the Funda-
mental Theorem of Projective Geometry (see the arguments at Page 89 in [14]) that φ
is induced by a semilinear automorphism on H and the desired result follows. �

REMARK 4.2. We refer to Example 3.5 in [14] for showing that the surjectivity
of φ can not be omitted in the previous theorem.

4.2. Maps shrinking the joint spectrum of more than n rank one projections

Now we assume that φ : P1(H ) → P1(H ) is a surjective map which shrinks
the joint spectrum of n+ 1 projections. Notice that φ also shrinks the joint spectrum
of any n rank one projections. Then the previous subsection gives that φ is induced
by a semilinear automorphism on H . We follow a similar line as in Section 3 to show
that φ preserves the orthogonality.

LEMMA 4.3. Assume that φ : P1(H ) → P1(H ) is a surjective map which
shrinks the joint spectrum of any n + 1 projections. Then φ preserves the orthogo-
nality.

Proof. By way of contradiction, assume that P,Q ∈ P1(H ) such that PQ = 0
and φ(P)φ(Q) 	= 0. Take a unit vector ξ ∈ φ(P)H such that φ(Q)ξ 	= 0. Take a rank
one projection R with ξ + φ(Q)ξ in its range. Let c = ‖φ(Q)ξ‖ > 0. It follows that

Rξ =
〈ξ ,ξ + φ(Q)ξ 〉

〈ξ + φ(Q)ξ ,ξ + φ(Q)ξ 〉 (ξ + φ(Q)ξ ) =
1+ c2

1+3c2 (ξ + φ(Q)ξ )

and hence

(φ(P)+ φ(Q)− 1+3c2

1+ c2 R)ξ = 0. (4.1)

Notice that R � φ(P)∨ φ(Q) . We have that Ran(φ(P)+ φ(Q)− 1+3c2

1+c2 R) � φ(P)∨
φ(Q) , where Ran(φ(P) + φ(Q)− 1+3c2

1+c2 R) denotes the range projection of φ(P) +

φ(Q)− 1+3c2

1+c2 R . It follows from (4.1) that (φ(P)+φ(Q)− 1+3c2

1+c2 R)φ(P) = 0 and there-

fore Ran(φ(P)+φ(Q)− 1+3c2

1+c2 R)� φ(P)∨φ(Q)−φ(P) , which implies that r(Ran(φ(P)

+ φ(Q)− 1+3c2

1+c2 R)) � 1. On the other hand, since φ(P),φ(Q) are two distinguished
rank one projections, we have that φ(P)+φ(Q) has rank 2 and therefore r(Ran(φ(P)+
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φ(Q)− 1+3c2

1+c2 R)) � 1. Hence we obtain that r(Ran(φ(P)+φ(Q)− 1+3c2

1+c2 R)) = 1. Take

P3,P4, . . . ,Pn ∈ P1(H ) such that P + Q + P3 + . . . +Pn = I . Since 1+3c2

1+c2 > 1, P +

Q− 1+3c2

1+c2 φ−1(R)+P3 + . . .+Pn = I− 1+3c2

1+c2 φ−1(R) is invertible. Since r(Ran(φ(P)+

φ(Q)− 1+3c2

1+c2 R)) = 1, r(Ran(φ(P)+ φ(Q)− 1+3c2

1+c2 R)+ φ(P3)+ . . .+ φ(Pn))) � n−1

and thus φ(P) + φ(Q)− 1+3c2

1+c2 R+ φ(P3)+ . . . + φ(Pn) is not invertible. We obtain a
contradiction. �

Now we can get the main result of this subsection.

Proof of Theorem 1.4. It is clear that (5)⇒ (4)⇒ (3)⇒ (1) and (4)⇒ (2)⇒ (1) .
In the following we only need to verify (1) ⇒ (5) .

Notice that φ also shrinks the joint spectrum of any n rank one projections, it
follows from the previous subsection that φ is induced by a semilinear automorphism
S on H . By Lemma 4.3, S preserves the orthogonality of vectors in H . It follows
from Proposition 4.2 in [15] that S is a nonzero multiple of a unitary or an anti-unitary
and the desired result follows. �
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