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JOINT SPECTRUM SHRINKING MAPS ON PROJECTIONS

WENHUA QIAN™, DANDAN XI1AO, TANGHONG TAO, WENMING WU AND XIN Y1

(Communicated by L. Molndr)

Abstract. Let 5 be a finite dimensional complex Hilbert space with dimension » > 3 and
P () the set of projections on . Let @ : P(H) — P(H) be a surjective map. We
show that ¢ shrinks the joint spectrum of any two projections if and only if it is induced by a
semilinear automorphism on # . In addition, ¢ shrinks the joint spectrum of 7, P,Q for any two
projections P,Q € () if and only if it is induced by a unitary or an anti-unitary. Assume that
¢ is a surjective map on the Grassmann space of rank one projections. We show that ¢ is joint
spectrum shrinking for any n rank one projections if and only if it is induced by a semilinear
automorphism on 7. Moreover, for any k > n, ¢ is joint spectrum shrinking for any k rank
one projections if and only if it is induced by a unitary or an anti-unitary.

1. Introduction

The well-known Gleason-Kahane-Zelazko theorem ([8, 12]) states that a nonzero
linear functional p : &/ — C on a unital complex Banach algebra </ is an algebra
homomorphism if and only if p maps every element inside its spectrum. It is easy to
verify that a nonzero linear functional p on .2 is an algebra homomorphism if and
only if p is a Jordan homomorphism, that is, p(I) = 1 where [ is the unit of < and
p preserves the squares. Motivated by this classical result, in [13] Kaplansky asked
whether a unital linear map ¢ : &/ — 2% between unital complex Banach algebras
which shrinks spectrum (i.e., o(@(A)) C 6(A), VA € &) is a Jordan homomorphism.
Notice that a unital linear map ¢ : .o/ — A is spectrum shrinking if and only if it is
invertibility preserving.

It is well-known that in general Kaplansky Problem has a negative answer. A
counterexample can be found in [2]. A lot of work has been done on Kaplansky Problem
by making additional assumptions (see [3, 10] for some survey). Aupetit conjectured
that Kaplansky Problem has a positive answer when both Banach algebras are semi-
simple and the map ¢ is surjective and he confirmed this conjecture for von Neumann
algebras [4]. This problem is still open, even for C*-algebras [5, 9]. It was proved in
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[6] that the conjecture is true for C* -algebras if in addition ¢ is positive. In particular,
some related maps on matrix algebras are also considered [7, 17].

Recall that [19] the joint spectrum of a tuple of operators Aj,A»,...,A; acting on
a Hilbert space .77 is the set

o([Ar,..., A1) ={(c1,...,a) € C!:c1A|+ ...+ A, is not invertible in B(A)}.

It is an interesting issue to discuss the mapping which shrinks or preserves the joint
spectrum of operators. It is easy to verify that a unital map ¢ : & — A is spectrum
shrinking if and only if it shrinks the joint spectrum of the 2-tuple [/, A] for any element
A € o/ . Therefore according to Aupetit’s results [4], we can obtain the form of the
mapping preserving the joint spectrum of any two operators in A ().

In this paper we will characterize the mappings which shrink or preserve the joint
spectrum of a tuple of projections.

Assume that 7 is a Hilbert space with dimension n < 4oo. We first consider
a surjective map ¢ on the set & () of projections on % which shrinks the joint
spectrum of any two projections. We first show that ¢ leaves every Grassmann space
invariant. By showing that the restriction of ¢ on each Grassmann space is bijective,
we get that ¢ is bijective. A mathematical induction gives that ¢ is determined by
its action on rank n — 1 projections and as a consequence we obtain that ¢ is a lattice
isomorphism. If n =2, it is easy to verify that a surjective map ¢ : L2 () — P (H)
is joint spectrum shrinking for any two projections if and only if ¢ is bijective with
o(I) =1,9(0) = 0. Recall that a semilinear automorphism on .7 is a bijective trans-
formation S : ## — J such that S(x+y) = S(x)+S(»),V x,y € € and there is an
automorphism f of C with S(ax) = f(a)S(x),Va € C,x € H. If n > 3, some further
calculations in Section 2 give the following result.

THEOREM 1.1. Assume that 3 < n(=dim(J7)) < +oo and ¢ : P (H) — P ()
is a surjective map. Then the followings are equivalent.

(1) @ shrinks the joint spectrum of any two projections;
(2) @ preserves the joint spectrum of any two projections;
(3) there exists a semilinear automorphism S on 7 such that (P)() = S(P(5¢)).

Moreover, we consider a surjective map ¢ on the set &?(°) which shrinks
the joint spectrum of I,P,Q for any two projections P,Q € Z(.). We will fur-
ther prove that ¢ preserves the orthogonality of projections (i.e., PO = 0 implies that
o(P)®(Q) = 0) and obtain the following equivalent characterizations.

THEOREM 1.2. Assume that 3 < n(=dim(J7)) < +oo and ¢ : P () — P ()
is a surjective map. Then the followings are equivalent.

(1) @ shrinks the joint spectrum of 1,P,Q for any two projections P,Q € P () ;

(2) @ preserves the joint spectrum of I, P,Q for any two projections P,Q € P () ;
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(3) there exists a unitary or anti-unitary U such that ¢(P) =U*PU, Y P € P ().
We also investigate a surjective map ¢ on the set &2 () of rank one projec-
tions which shrinks the joint spectrum of any n rank one projections. It is shown that
PiVPV...VP, =1 implies that ¢(P)V ¢(P) V...V ¢(P,) =1 forany Py,...,P, €

P (). It follows from the Fundamental Theorem of Projective Geometry that ¢ is
induced by a semilinear automorphism on .7 and we obtain the following result.

THEOREM 1.3. Assume that 3 < n(=dim(37)) < +o0 and ¢ : P\ () — P ()
is a surjective map. Then the followings are equivalent.

(1) @ shrinks the joint spectrum of any n rank one projections;

(2) ¢ preserves the joint spectrum of any n rank one projections;

(3) there exists a semilinear automorphism S on 7 such that (P)() = S(P(J¢)).
Moreover, if ¢ : P\ (H#) — P\ (F) is surjective and shrinks the joint spectrum

of any n+ 1 projections, we can show that ¢ preserves the orthogonality of projections
and obtain the following theorem.

THEOREM 1.4. Assume that 3 < n(=dim(37)) < +oo and ¢ : P\ (H) — P ()
is a surjective map. Then the followings are equivalent.

(1) there exists kg > n+ 1 such that ¢ shrinks the joint spectrum of any ko projec-
tions;

(2) there exists ko > n+ 1 such that ¢ preserves the joint spectrum of any ko pro-
Jections;

(3) forany k> n+1, ¢ shrinks the joint spectrum of any k projections;
(4) forany k> n+1, ¢ preserves the joint spectrum of any k projections;

(5) there exist a unitary or anti-unitary U such that §(P) =U*PU, ¥ P € P\ ().

2. Maps shrinking the joint spectrum of any two projections

Let .7 be a Hilbert space with dimension n < +eo. Denote by &?(7¢) and
P (A) (i.e., the order r Grassmann space) the set of projections and the set of rank r
projections on # . In this section we assume that ¢ : P () — P () is a surjective
map which shrinks the joint spectrum of any two projections, i.e., o([@(P),¢(Q)]) C
o([P.Q]), VPQE P ().
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LEMMA 2.1. o(I)=1,¢(0) =0.

Proof. Forany Q € Z(A), (1,0) ¢ o([1,0]). Hence (1,0) ¢ a([o(1), p(Q)])
and by the surjection of ¢ we have ¢(I) = 1. Since (1,—1) ¢ o([1,0]), we have

(1,=1) ¢ o([e(1), 9(0)]) = o([I,¢(0)]). Hence ¢(0) =0. [

For any P,Q € &(%), let PV Q be the projection whose range is the sum of the
ranges of P,Q and P A Q the projection whose range is the intersection of the ranges
of P,Q. Notice that these operations correspond to the operations on the lattice of
subspaces of H. It is easy to verify that PV Q =1 if and only if (1,1) ¢ o([P,Q)).
Thus the following lemma is obvious.

LEMMA 2.2. Let P,Q € P (). If PV Q =1, then (P)V @(Q) =

By Theorem 2.1 in [18], if P,Q € () are nontrivial projections with PV Q =
I,PAQ =0, then either o([P,Q]) = C? or 6([P,Q]) = {(c1,¢2) € C*: c1c; =0}.

LEMMA 2.3. Let P,Q € P(). If PVQ=1,PNQ =0, then ¢(P)V @(Q) =
Lo(P)A@(Q) =0

Proof. f P=1,0=0or P=0,0 =1, then Lemma 2.1 gives the result. Assume
that P,Q € Z()\{0,1}. By PV Q =1 we have (1,1) ¢ o([P,Q]). Then it follows
from Theorem 2.1 in [18] that (1,—1) ¢ o([P,Q]). Thus ¢(P)+ ¢(Q) and ¢(P) —
¢©(Q) are both invertible. Hence @(P)V ¢(Q)=1,0(P)A@(Q)=0. O

In the following, we denote by r(P) the rank of P forany P € & ().

LEMMA 2.4. Let P,Q € (). If r(P) = r(Q), then r(@(P)) = r(¢(Q)).
Moreover, 9( P () = Pp(H),¥ k€ {0,1,2,...,n}.

Proof. Notice ¢(I) =1, ¢(0) =0. We may assume that P,Q € & (), where
ke{l,2,....n—1}.

We first assume that r(P A Q) = k— 1. It follows that #(PV Q) = k+ 1. Then
there exist linearly independent vectors xj,x2,...,x_1,0,3 € J such that P is the
projection onto the subspace generated by x1,x2,...,x;_1, and Q is the projection
onto the subspace generated by xj,x2,...,x_1,8. Take R=P, + (I— PV Q), where
Py is the rank one projection onto C(o+ f3). It follows that PVR=1, PAR =0 and
OVR=I, QAR=0.ByLemma?2.3 we obtain that ¢(P)V¢(R) =1, ¢(P)A@(R) =
and @(Q)Vo(R) =1, ¢(Q) AN@(R)=0. Hence

r(@(P)) =n—r(p(R)) =r(p(Q)).

Now assume that 7(P A Q) =k —r, where 1 < r < k. Then there exist linearly
independent vectors x1,X2,. .. ,Xk_r, 01,00, ...,0, B1,B2,..., B such that P is the pro-
jection onto the subspace generated by x1,x2,...,Xt,, 1,00, ...,0 and Q is the pro-
jection onto the subspace generated by x1,x,...,X_, B1,B2,...,8-. Take Qp = P



JOINT SPECTRUM SHRINKING MAPS ON PROJECTIONS 167

Or=0.Foreach i€ {1,2,...,r—1},let Q; be the projection onto the subspace gener-
ated by x1,x2,... ,xk_,,ﬁh o 7ﬁi7 Qii,...,0. It follows that Qg,Qq,...,0, € @k(H)
and r(Qi A Q1) =k—1 forevery i € {0,1,...,r—1}. Then the result of the previous
paragraph implies that

r(o(P)) = r(¢(Q))-

Hence there exists amap g: {0,1,2,...,n} —{0,1,2,...,n} suchthat ¢ (2 (7))
C Py (H),¥ k€{0,1,2,...,n}. By the fact that ¢ is surjective, we obtain that g
is a bijection and @(F(H)) = Py (H),¥Y k € {0,1,2,...,n}. In particular, by
Lemma 2.3 we have g(n—k) =n—g(k),Yk€{0,1,2,...,n}.

Clearly, ¢g(0) =0 and g(n) =n. Assume that s = g(1) > 1. Then g(n—1) =
n—s <n—1. By the fact that g is a bijection, there exists / > 1 such that g(I) = 1.
Take two projections P, € P, (), P, € Z)(H) with PLV P, =I. It follows
that @(Py) € Z,_s(H), @(Py) € Z(H). Then r(¢@(P;))+r(@(Py)) < n. Therefore
o(P)V @(Py) #1 and we obtain a contradiction according to Lemma 2.2. Hence
g(1)=1, g(n—1)=n— 1. Continuing in this way, we have @( (7)) = Pi(FH),
Vke{0,1,2,....n}. O

In the following we will show that the restriction of ¢ on each Grassmann space
P (H) is a bijection and thus ¢ is a bijection. We first present a necessary lemma.

LEMMA 2.5. Let Q € P, (), P € P(H). If o(P) < ¢(Q), then P < Q.
Moreover, (P‘gznil(,%ﬂ) is a bijection.

Proof. By Lemma 2.4, ¢(Q) € #,_1('). Since (P) < 9(Q). ¢(P)V ¢(Q) #
I. By Lemma 2.2 and the fact that Q € &2,_1(H), we have P < Q. Itis easy to verify

that @[5, () is a bijection. [

For convenience, we denote by ® = @[, () in the following proposition.

PROPOSITION 2.6. Let k € {1,2,...,n} and P € P, (). Assume that P’ €
Py (H) with (P') = P. Then for any k projections Q1,Q2,...,0r € P 1(H)
with P=Q1 AQa A...AQk, P' = A<ick® 1(Q;). Moreover, ¢ is a bijection.

Proof. We prove the result by a mathematical induction on k. From Lemma 2.5,
the result is true when k£ = 1. Assume that the result is true when £ = s. Now let
k=s+1 and assume that Q1,07,...,05,05+1 € Pp_1(J) With P=Q1 ANOQ2 A ... A
Qs A Qs+1 .

Take P =01 NO2A...NQs and P, =01 AQ2 A...NQs_1 ANQs41. Clearly P;, P,
are two different projections in %2,_4(¢). By the assumption that the result is true
when k= s, we have ¢|z, () is a bijection and

(@2, ) (P) =D Q) AD Q) A...ADTH(Qy),

(@], () (B) =@ H Q) A®TH Q) AL APTHQ) AP ( Qo). (21)
By Lemma 2.5, P'<®!(Q;) foreach i€{1,2,...,s+1}. Hence P'<(9| 5, () ' (P1)
ANl 2, e)  (P).
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Since |, , is a bijection, (@], ()" (P1) # (@], ) (P2) and thus
(@l 2, ) " (PON (@2, yr) (P2) Sn—s—1=r(P').

Therefore P = (9|, ()~ (PN (@2, (r) " (P2) = NM<ics 1@~ (Q;) from
(2.1). Hence ¢| 4, . () is also a bijection. Moreover, ¢ is a bijection. [J

According to Proposition 2.6, we have the following corollary.

COROLLARY 2.7. If P,Q € Z(H), then we have the following results.

(1) If P#1 and {Q) : A € Q} C P, () with NycpQ) =P, then ¢~ 1(P) =
MNea® (01):

(2) If P<Q, then ¢~ (P) < 9~ 1(Q);

Proof. (1) Notice that P < Q; for every A € Q. It follows from Lemma 2.5
that @~ '(P) < ¢71(04),V A € Q and hence ¢~ '(P) < Ajecq@ '(Q4). Assume that
P& P, (). Thenthere exist A1, A2, ..., A € Q such that P = A <;<;Qy, . Itfollows
from Proposition 2.6 that ¢! (P) = Aj<;<x¢~'(0Q;,) . Hence

@~ (P) = Mea® ™' (Q1)-
(2) This is clear from (1). [

Proof of Theorem 1.1. It is clear that (2) = (1) and we can easily verify that
(3) = (2). Now we only need to show that (1) = (3). By Proposition 2.6, the re-
striction of @ on &7 (H) is a bijection. Hence by a modification of the Fundamental
Theorem of Projective Geometry(see Corollary 1.3 in [14]), the restriction of ¢! on
P () is induced by a semilinear automorphism T on .. By Corollary 2.7, ¢!
is order preserving, we obtain that ¢! (P)(#) = T(P()), ¥V P € 2 (). Now the
result follows by taking S =7"1. O

3. Maps shrinking the joint spectrum of 7, P,Q

Assume 7 is a finite dimensional Hilbert space with dimension n > 3. In this
section we assume that ¢ : P () — () is a surjective map which shrinks the
joint spectrum of the identity I and any two projections, i.e., c([@(I), o(P), (Q)]) C
o([[,P,Q)), VP,Q € P(I). 1tis easy to verify that ¢ also shrinks the joint spectrum
of any two projections and thus ¢ is also induced by a semilinear automorphism S on
A as in Theorem 1.1. In particular, ¢(I) =1,¢(0) =0.

Assume that P,Q € () with PQ # QP. Let H=PQP—PAQ and o(H)
the spectrum of H when it is viewed as a positive contraction on (P —P A Q)(5).
By Corollary 3.11in [18], {1 : (A —1)> € 6(H)} C 6(P+ Q). Since PQ # QP, there
exists r € o(H) N (0,1), which implies that (1,—\/%“7— \/11Tr) € o(P+ Q). Then we
have the following lemma.
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LEMMA 3.1. If P,Q € P () suchthat PQ = QP, then ¢(P)p(Q) = @(Q)o(P).

Proof. Since PQ = QP, we have (1,—t,—t) ¢ o([I,P,Q]) for any ¢ € (0,3) U
(%,1). It follows that (1,—¢,—¢) ¢ o([I,(P),@(Q)]) for any r € (0,%)U(%,1).
follows from Corollary 3.1 in [18] that @(P)p(Q) = ¢(Q)p(P). O

LEMMA 3.2. If P,.Q € P () such that PQ =0, then ¢(P)p(Q) =0.

Proof. By Lemma 3.1, ¢(P)o(Q) = ¢(Q)¢(P). Notice that PQ = 0. It follows
that 27 — (P4 Q) is invertible and therefore 2 — (¢(P)+ ¢(Q)) is invertible. Therefore

¢(P)e(Q)=0. O

Proof of Theorem 1.2. Tt is clear that (3) = (2) = (1). We only need to show
that (1) = (3). It follows from (1) that ¢ shrinks the joint spectrum of I, P,Q for any
P,Q € Z(H). Then it also shrinks the joint spectrum of any two projections on 77 .
By Theorem 1.1, ¢ is induced by a semilinear automorphism S on .7#. By Lemma
3.2, S preserves the orthogonality of vectors in 7. It follows from Proposition 4.2 in
[15] that S is a nonzero multiple of a unitary or an anti-unitary and the desired result
follows. [

4. Joint spectrum shrinking maps on rank one projections

Assume that n > 3. In this section we assume that ¢ : 22\ (H#) — P(H) is a
surjective map. It is easy to verify that for any positive integer m < n, the joint spectrum
of any m rank one projections Py, P,,...,PB, is C™. Therefore every map on 2 ()
preserves the joint spectrum of any m rank one projections if m < n.

4.1. Maps shrinking the joint spectrum of any » rank one projections

We start with a description of the joint spectrum of n rank one projections.

LEMMA 4.1. Let P, P,,...,P, € P\(H). Then
(1) if PLNVPN ...V P, 41, then 6([Py,Ps,...,P)]) =C";

(2) if ANVPN ... NP, =1, then G([Pl,PQ,...,Pn])Z{(Cl,CQ,...,Cn) eC:cicr...cp

=0}.

Proof. If PpV P,V ...V P, # I, then the range of any linear combination of
P, P,... P, is contained in the range of PV P,V ...V P, and thus any linear com-
bination of Py, P, ..., P, is not invertible. Therefore o ([P}, Ps,...,P,]) = C".

On the other hand, assume that P,V P,V ...VP, =1 and c;Pi+cPo+ ...+
cn P, is not invertible. Then there exists a nonzero vector 3 € 5# such that ¢ P8 +
P +...+c, P, =0.Hence ¢;P,f=—cPf—...—ci P \B—cipPiB—...—
cpPyf = 0. By the fact that ALV P V...V P, =1 wehave PA(PV...VP_1VPi1V
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...V P,) =0 foreach i € {1,2,...,n}. If cjcz...c, #0, then P =Pf =... =
P, = 0, which is a contradiction to that P,V P, V...VP, =1 and B # 0. There-
fore o([P,P,...,Py]) C {(c1,c2,...,¢cn) € C" i cica...cp = 0}. Tt is obvious that
{(c1,¢24--.,en) €C" i c1cp. . =0} C o ([P1,Pay.. ., By]). O

Proof of Theorem 1.3. (3) = (2) = (1) is clear and we only need to verify
that(1) = (3). By Lemma 4.1, P,V P,V ...V B, = I implies that ¢(P;)V ¢(P2) V
...V@(P,) =1 and ¢ is also a bijection. It follows from a modification of the Funda-
mental Theorem of Projective Geometry (see the arguments at Page 89 in [14]) that ¢
is induced by a semilinear automorphism on 7 and the desired result follows. [

REMARK 4.2. We refer to Example 3.5 in [14] for showing that the surjectivity
of ¢ can not be omitted in the previous theorem.

4.2. Maps shrinking the joint spectrum of more than » rank one projections

Now we assume that ¢ : P () — P () is a surjective map which shrinks
the joint spectrum of n 4 1 projections. Notice that ¢ also shrinks the joint spectrum
of any n rank one projections. Then the previous subsection gives that ¢ is induced
by a semilinear automorphism on .7#. We follow a similar line as in Section 3 to show
that ¢ preserves the orthogonality.

LEMMA 4.3. Assume that ¢ : P(H) — P\(H) is a surjective map which
shrinks the joint spectrum of any n+ 1 projections. Then ¢ preserves the orthogo-
nality.

Proof. By way of contradiction, assume that P,Q € 22| (#) such that PQ =0
and ¢(P)p(Q) # 0. Take a unit vector & € ¢(P)S# such that ¢(Q)E # 0. Take a rank
one projection R with & + ¢(Q)& in its range. Let ¢ = ||¢(Q)&]| > 0. It follows that

(€, +¢(0)¢) 1+c?

R = Ero0E e+od ¢ P8 = 132

(E+¢(0)¢)

and hence

1+3c2

(0(P)+¢(Q)— Tra

R)E =0. 4.1)

Notice that R < ¢(P) V ¢(Q). We have that Ran(¢(P)+ ¢(Q) — 1Jr3"2R) < o(P)V

142

¢(Q), where Ran(¢(P)+ ¢(Q) — 1113;22 R) denotes the range projection of ¢(P) +

0(0Q)— ﬁ—i‘;R It follows from (4.1) that (¢ (P)+ ¢(Q) — ﬁ—i_@zR)q)(P) =0 and there-

fore Ran(¢(P)+¢(Q)— llt—iczzR) < o(P)V¢(Q)—0o(P), which implies that r(Ran(¢ (P)

+¢(0) — M3 R)) < 1. On the other hand, since ¢(P),$(Q) are two distinguished

14¢2
rank one projections, we have that ¢ (P)+ ¢ (Q) has rank 2 and therefore r(Ran(¢(P)+
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$(0) — LB RY) > 1. Hence we obtain that r(Ran(¢(P)+ ¢(Q) — 23S R)) = 1. Take

1+c2 1+c2
P3,Py,...,P, € P(H) such that P+ Q+Ps+...+ P, =1. Since 1113;22 >1, P+
0~ L3S (R)+ Py +...+ Py =1~ L3591 (R) is invertible. Since r(Ran(¢(P) +

9(0) — 13SR)) = 1. r(Ran(9(P) +9(Q) — L2SR) + 9(Py) +...+ ¢(P))) <n—1
and thus ¢(P) + ¢(Q) — IIJ;—%QZR + ¢(P3)+ ...+ ¢(P,) is not invertible. We obtain a
contradiction. [

Now we can get the main result of this subsection.

Proof of Theorem 1.4. Ttisclearthat (5)=(4)= (3)= (1) and (4)= (2)=(1).
In the following we only need to verify (1) = (5).

Notice that ¢ also shrinks the joint spectrum of any n rank one projections, it
follows from the previous subsection that ¢ is induced by a semilinear automorphism
S on 7. By Lemma 4.3, S preserves the orthogonality of vectors in .7Z. It follows
from Proposition 4.2 in [15] that S is a nonzero multiple of a unitary or an anti-unitary
and the desired result follows. [J
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