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GENERALIZED CORE INVERSE IN BANACH *–ALGEBRAS

HUANYIN CHEN AND MARJAN SHEIBANI ∗

(Communicated by F. Kittaneh)

Abstract. We introduce a new generalized inverse, called generalized core inverse in a Banach
*-algebra. This new inverse is an extension of weak core inverse defined for complex square
matrix and bounded linear operators over Hilbert spaces. We present various characterizations
of this new inverse. The relationship between the generalized core inverse and other generalized
inverses is investigated. Finally, we consider the necessary and sufficient conditions under which
generalized core inverse and generalized core-EP inverse coincide with each other in a Banach
*-algebra.

1. Introduction

Let Cn×n be the Banach algebra of all n× n complex matrices with conjugate
transpose ∗ . Let A ∈ Cn×n . A matrix X ∈ Cn×n is called the Drazin inverse of A if
there exists some k ∈ N such that

AX2 = X , XA = AX , Ak = Ak+1X .

Such X is unique, and we denote X by AD . A matrix X ∈ Cn×n is called the core-EP
inverse of A if there exists some k ∈ N such that

AX2 = X , AX = (AX)∗, Ak = XAk+1

(see [8, 15, 18, 23]. Such X is unique if it exists, and we denote X by A D© . A matrix
X ∈ C

n×n is called the weak group inverse of A if X satisfies

AX2 = X , AX = A D©A

(see [19, 20, 21]). Such X is unique if it exists, and we denote X by A W© . A matrix
X ∈ C

n×n is called the Moore-Penrose inverse of A if X satisfies

A = AXA, X = XAX , (AX)∗ = AX , (XA)∗ = XA.

Such X is unique, and we denote X by A† .
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A matrix X ∈ Cn×n is called the weak core inverse of A ∈ Cn×n if X satisfies

XAX = X , AX = AA W©AA†, XA = ADAA W©A.

Such X is unique if it exists. We denote it by A W©,† . Recently, many authors studied
weak core inverse of complex matrices from different views, e.g., [9, 11, 12, 15, 16, 22].
In [9], Ferreyra et al. considered the weak core inverse for complex square matrices.
In [22], Zhou and Chen studied the weak core inverse in a ring with proper involution.
In [16], Mosić and Marovt investigated the weak core inverse for the bounded linear
operator over a Hilbert space.

An involution of a Banach algebra A is an anti-automorphism whose square is the
identity map 1. A Banach algebra A with involution ∗ is called a Banach *-algebra.
Let A be a Banach *-algebra. The involution ∗ is proper if x∗x = 0 =⇒ x = 0 for any
x∈A . Throughout the paper, all Banach algebras are complex with a proper involution
∗ . Evidently, Cn×n is the Banach *-algebra with conjugate transpose as the proper
involution.

In [3, 4], the authors introduced and studied generalized core-EP inverse and gen-
eralized group inverse for an element in a Banach *-algebra. An element a ∈ A has
generalized core-EP inverse if there exists a x ∈A such that

x = ax2, (ax)∗ = ax, lim
n→∞

||an− xan+1|| 1
n = 0.

Such x is unique if it exists, and denote it by a d© (see [3]). An element a ∈ A has
generalized group inverse if there exists a x ∈ A such that

x = ax2, (a∗a2x)∗ = a∗a2x, lim
n→∞

||an− xan+1|| 1
n = 0.

Such x is unique if it exists, and denote it by a g© (see [4]). An element a ∈ A has
Moore-Penrose inverse provided that there exists some x ∈ A such that

a = axa, x = xax, (ax)∗ = ax, (xa)∗ = xa.

Such x is unique if it exists, and we denote it by a† .
Let A d©,A g© and A† denote the sets of all generalized core-EP invertible, gener-

alized group invertible and Moore-Penrose invertible elements in A , respectively. We
now introduce a new generalized inverse which is an extension of the weak core inverse
mentioned above.

DEFINITION 1.1. An element a ∈ A has generalized core inverse provided that
a ∈A g©⋂A† .

The purpose of this paper is to investigate various properties of generalized core
inverse in a Banach *-algebra. The content of this paper is organized as follows. In Sec-
tion 2, equivalent characterizations and fundamental properties of the generalized core
inverse are proved. In Section 3, we establish the relationship between the generalized
core inverse and other generalized inverses. Finally, in Section 4, we present necessary
and sufficient conditions under which generalized core inverse and generalized core-EP
inverse coincide with each other. Many properties of weak core inverse are thereby
extended to the general setting.



GENERALIZED CORE INVERSE IN BANACH *-ALGEBRAS 175

2. Characterizations of generalized core inverse

In this section we introduce generalized core inverse and investigate its equivalent
characterizations. Our starting point is the following:

THEOREM 2.1. Let a ∈ A g©⋂A† . Then there exists a unique x ∈ A such that

xax = x, ax = aa g©aa†, xa = a g©a.

Proof. Take x = a g©aa† . Then

xax = a g©aa†aa g©aa† = a g©aa† = x,
ax = aa g©aa†,
xa = a g©aa†a = a g©a

Suppose that x′ satisfies the preceding equations. Then one checks that

x′ = x′ax′ = a g©ax′ = a g©aa g©aa† = a g©aa† = x,

as required. �

DEFINITION 2.2. Let a ∈ A g©⋂A† . Then a is called generalized core invert-
ible. The unique x satisfying the three equations in Theorem 2.1 is called the gener-
alized core inverse of a and denoted by a c© . The symbol A c© denotes the set of all
generalized core invertible elements in A .

Recall that a ∈ A has g-Drazin inverse (i.e., generalized Drazin inverse) if there
exists x ∈ A such that ax2 = x , ax = xa , a−a2x ∈ Aqnil. Such x is unique, if exists,
and denote x by ad . Here, Aqnil = {a ∈ A | 1+ λa ∈ A−1}. Evidently, a ∈ Aqnil ⇔
lim
n→∞

‖ an ‖ 1
n = 0. The g-Drazin inverse plays an important role in ring and matrix theory

(see [1]). We note that the weak core inverse in [22] is a special case of generalized
core inverse as the following shows.

PROPOSITION 2.3. Let a ∈ A . Then the following are equivalent:

(1) a ∈A c© .

(2) There exists a unique x ∈ A such that

xax = x, ax = aa g©aa†, xa = adaa g©a.

Proof. In view of [4, Theorem 3.4], adaa g© = a g© ; hence, xa = adaa g©a if and
only if xa = a g©a, the result follows. �

Let a ∈ A c© . In view of Theorem 2.1, a c© = a g©aa† . Set c = aa g©a . We now
find necessary and sufficient conditions on a and x so that the generalized core inverse
of a is x .
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THEOREM 2.4. The following are equivalent:

(1) a c© = x .

(2) ax = ca† and xA⊆ adA .

(3) ax = ca† and ax2 = x .

Proof. (1) ⇒ (2) We directly check that

ax = aa c©
= a(a g©aa†)
= (aa g©a)a†

= ca†.

In view of Theorem 2.1 and [4, Theorem 3.4], xA = (a g©aa†)A⊆ a g©A⊆ adA.
(2) ⇒ (1) Since ax = ca† , we have ax = aa g©aa† . It follows by xA ⊆ adA

that (1− aad)x = 0, and then aadx = x . This implies that x = ad(ax) = adca† =
adaa g©aa† = a g©aa† . Then

xax = (a g©aa†)a(a g©aa†)
= (a g©(aa†)a)(a g©aa†)
= (a g©aa g©)aa†)
= a g©aa†

= x.

Moreover, we have xa = a g©(aa†a) = a g©a. Therefore a c© = x , as desired.
(1) ⇒ (3) By the preceding discussion, we have ax = ca† . In view of Theorem

2.1, x = a g©aa† . Then we check that

ax2 = aa g©aa†a g©aa† = a(a g©)2aa† = a g©aa† = x,

as required.
(3) ⇒ (2) Since ax = ca† , we see that ax = aa g©aa† . As ax2 = x , by induction,

we have anxn+1 = x . We observe that

x = (an−adan+1)xn+1 +adan+1xn+1,

hence,
||x−ada(ax2)|| 1

n = ||x−ada(anxn+1)|| 1
n

� ||(an−adan+1)xn+1|| 1
n

= ||(a−ada2)n|| 1
n ||a||1− 1

n ||x||1+ 1
n .

Since a−ada2 ∈ Aqnil , we have lim
n→∞

||(a−ada2)n|| 1
n = 0. Hence, we get

lim
n→∞

||x−ada(ax2)|| 1
n = 0,

and so x = adax . Therefore xA⊆ adA , as desired. �
Let X ∈ C

n×n . The symbol R(X) denote the range space of X . We now derive
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COROLLARY 2.5. Let A ∈ Cn×n . The following are equivalent:

(1) A W©,† = X .

(2) AX = AA W©AA† and R(X) ⊆ R(AD) .

(3) AX = AA W©AA† and AX2 = X .

Proof. Since A ∈ C
n×n , it follows from Proposition 2.3 that A c© = A W©,† . There-

fore we complete the proof by Theorem 2.4. �

We are now ready to prove the following.

THEOREM 2.6. The following are equivalent:

(1) a c© = x .

(2) xcx = x , cx = ca† and xc = adc.

Proof. (1) ⇒ (2) In view of Theorem 2.1, x = a g©aa† . We check that

xcx = a g©aa†aa g©aa g©aa†

= a g©aa g©aa g©aa†

= a g©aa†

= x,
cx = aa g©aa g©aa†

= aa g©aa†

= ca†,
xc = a g©aa†aa g©a

= a g©aa g©a
= a g©a
= adaa g©a
= adc,

as desired.
(2)⇒ (1) One directly verifies that x = xcx= x(cx)= x(ca†)= (xc)a† = (adc)a† =

adaa g©aa† = a g©aa† . This completes the proof by Theorem 2.1. �

Recall that a∈A has group inverse x if x satisfies the equations: ax2 = x , xa2 = a
and ax = xa , and denote x by a# . We now derive

COROLLARY 2.7. The following are equivalent:

(1) a c© = x .

(2) xax = x , xa = a g©a and cx = ca† .

(3) xax = x , xa = a g©a and cdx = cda† .
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Proof. (1) ⇒ (2) In view of Theorem 2.1, xax = x and xa = a g©a . By virtue of
Theorem 2.4, cx = ca† , as desired.

(2) ⇒ (3) In view of [4, Corollary 6.2], a2a g© = (a g©)g . Hence, a2a g© ∈Ad . By
using Cline’s formula (see [13, Theorem 2.1]), c = aa g©a ∈ Ad . Since cx = ca† , we
see that cdx = (cd)2(cx) = (cd)2(ca†) = cda† .

(3) ⇒ (1) By the argument above, a2a g© = (a g©)# , and so (a2a g©)# = a g© . By
Cline’s formula again, we have

cd = (aa g©a)d = aa g©[(a2a g©)#]2a = aa g©(a g©)2a = (a g©)2a.

Since cdx = cda† , we have

(a g©)2ax = (a g©)2aa†.

Accordingly,
a2(a g©)2ax = a2(a g©)2aa†;

hence,
cx = aa g©ax = aa g©aa† = ca†.

The corollary is therefore established by Theorem 2.6. �

3. Relations with other generalized inverses

In this section we establish relations among generalized core-EP inverse, Moore-
Penrose inverse and {2} -inverse, etc. We come now to the demonstration for which
this section has been developed.

THEOREM 3.1. Let a ∈ A . Then the following are equivalent:

(1) a ∈A c© .

(2) a ∈A d©⋂A† .

In this case, a d© = aa g©a†.

Proof. (1) ⇒ (2) Let x = a g© and y = a† . Then

||axy− (ada2x)y|| = ||(an−adan+1)(a c©)ny||
� ||an−adan+1||||(a c©)ny||.

Since a ∈ Ad , we have

lim
n→∞

||an−adan+1|| 1
n = 0.

Accordingly,

lim
n→∞

||axy− (ada2x)y|| 1
n = 0.
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Hence, axy = (ada2x)y . Therefore we have

axy = (ada2x)y
= ad(ay)a2xy
= ad(y∗a∗)a2xy
= ady∗(a∗a2x)y
= ady∗(a∗a2x)∗y
= ady∗x∗(a2)∗ay.

Taking z = axy . Then we verify that

az2 = a(ady∗x∗(a2)∗ay)axy = aady∗x∗(a2)∗axy
= aady∗[x∗(a2)∗a]xy = aady∗[x∗(a2)∗a]∗xy
= aadaya2x2y = aada2x2y = a3x3y
= axy = z,

az = a2xy = (aya)(axy) = (ay)a2xy = (y∗a∗)a2xy
= y∗(a∗a2x)y = y∗(a∗a2x)∗y = (a∗a2xy)∗y
= (y∗a∗a2xy)∗ = (aya2xy)∗ = (a2xy)∗ = (az)∗.

Moreover, we check that

zan+1 = ady∗x∗(a2)∗(aya)an+1ad

= ady∗[x∗(a2)∗a]an+1ad

= ady∗[a∗(a2)x]∗an+1ad

= ady∗[a∗(a2)x]an+1ad

= ad(ay)∗a2(xan+1)ad

Then we derive

||an− zan+1||
= ||an−adan+1 +ada2anad −ady∗x∗(a2)∗ayan+1||
= ||an−adan+1||+ ||ady∗x∗(a2)∗ayan+1aad −ady∗x∗(a2)∗ayan+1||

+||ad(ay)a2an)ad −ady∗x∗(a2)∗ayan+1aad||
� ||an−adan+1||+ ||ady∗x∗(a2)∗aya||||an−adan+1||

+||ad(ay)a2an)ad −ady∗[x∗(a2)∗a]an+1ad ||
� ||an−adan+1||+ ||ady∗x∗(a2)∗aya||||an−adan+1||

+||ad(ay)∗a2anad −ady∗[a∗(a2)x]∗an+1ad ||
� [1+ ||ady∗x∗(a2)∗aya||]||an−adan+1||

+||ad(ay)∗a2||||an− xan+1||||ad ||,
and so

lim
n→∞

||an− zan+1|| 1
n = 0.

Therefore a ∈ A d© and a d© = z , as required.
(2) ⇒ (1) Since a ∈ A d© , it follows by [4, Theorem 6.1] that a ∈ A g© . This

completes the proof by Theorem 2.1. �
By the preceding discussion, we have a c© = a g©aa† , a d© = aa g©a†. Recall that x

is called the core inverse of a ∈ A if ax2 = x , xa2 = a and (ax)∗ = ax , and we denote
x by x = a #© (see [14]). Moreover, we can derive
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COROLLARY 3.2. Let a ∈ A c© . Then a c© is a reflexive inverse of aa g©a and

a c© = (a d©)2a2a†

= (aa d©a)#aa†

= ad(a2ad) #©a2a†.

Proof. One easily checks that

a c©(aa g©a)a c© = a c©aa c© = a g©aa†aa c© = a g©aa c© = a c©,
(aa g©a)a c©(aa g©a) = aa g©aa†aa g©a = aa g©aa g©a = aa g©a.

Then a c© is a reflexive inverse of aa g©a .
By virtue of Theorem 3.1, a ∈ A d© . It follows by [4, Theorem 6.1] that a g© =

(a d©)2a . Hence
a c© = a g©aa† = (a d©)2a2a†.

We directly verify that

(aa d©a)(a d©)2a = a(a d©)2a = a d©a = (a d©)2a(aa d©a),
(aa d©a)[(a d©)2a]2 = a d©a(a d©)2a = (a d©)2a,
(aa d©a)2(a d©)2a = (aa d©a)a d©a = aa d©a.

Thus, (aa d©a)# = (a d©)2a , and so a c© = (aa d©a)#aa†. By virtue of [4, Theorem 3.4],
we obtain (a2ad)(a d©)2 = a d©,

(
(a2ad)(a d©)

)∗ = (aa d©)∗ = aa d© = (a2ad)(a d©). More-
over, we have

||a d©a3ad −a2ad|| = |a d©an+1a(ad)n −a2ad ||
= ||(an−a d©an+1)a(ad)n||
= ||an−a d©an+1||||a(ad)n||.

Since lim
n→∞

||an−a d©an+1|| 1
n = 0, we derive

lim
n→∞

||a d©a3ad −a2ad || 1
n = 0.

This implies that a d©a3ad = a2ad . Hence, a d©(a2ad)2 = a d©a3ad = a2ad , and then
(a2ad) #© = a d©. In view of [4, Theorem 3.4], we have

||(a d©)2 −ad(a2ad) #©|| = ||a d©(aada d©)−ada d©||
= ||a d©an+1(ad)n+1a d©−an(ad)n+1a d©||
= ||(an−a d©an+1)(ad)n+1a d©||
� ||an−a d©an+1||||(ad)n+1a d©||.

Since lim
n→∞

||an−a d©an+1|| 1
n = 0, we prove that

lim
n→∞

||(a d©)2−ad(a2ad) #©|| 1
n = 0,

whence, (a d©)2 = ad(a2ad) #© . Accordingly, a c© = (a d©)2a2a† = ad(a2ad) #©a2a† , as
asserted. �
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LEMMA 3.3. Let a ∈ A . Then the following are equivalent:

(1) a ∈A c© .

(2) The system of equations aπx = 0 and ax = a d©a2a† is consistent.

Here, aπ = 1−aad . In this case, the solution x is unique and a c© = x.

Proof. (1) ⇒ (2) Let x = a c© . Then x = a g©aa† . In view of [4, Theorem 6.1],
a g© = (a d©)2a = adq for an idempotent q ∈ A . One easily checks that

aπx = aπadq = 0,
ax = a(a d©)2aaa† = a d©a2a†.

(2)⇒ (1) By hypothesis, there exists x∈A such that aπx = 0 and ax = a d©a2a† .
Obviously, a d© = a(a d©)2 . By virtue of [4, Theorem 6.1], a g© = (a d©)2a . In light of
[4, Theorem 3.4], aada g© = a g© . Then

x = ad(ax) = ad(a d©a2a†) = aad(a d©)2a)aa†

= aada g©aa† = a g©aa† = a c©.

Therefore a ∈ A c© .
Suppose that there exist x,y ∈ A such that

aπx = 0, ax = a d©a2a†;
aπy = 0, ay = a d©a2a†.

Then ax = ay , and so adx = (ad)2(ax) = (ad)2(ay) = ady . Accordingly, x = a(adx) =
a(ady) = aady = y , as asserted. �

THEOREM 3.4. Let a ∈ A c© . Then the following are equivalent:

(1) a c© = x .

(2) xax = x , ax = a d©a2a† and xa = a g©a.

(3) xaa† = x and xa = a g©a.

(4) xa d©a2x = x , a d©a2x = a d©a2a† and xa d©a2 = a g©a.

Proof. (1) ⇒ (2) By virtue of Theorem 2.1, xax = x and xa = a g©a . In view of
Lemma 3.3, ax = a d©a2a† .

(2) ⇒ (1) Obviously, a d© = a(a d©)2 . By virtue of [4, Theorem 6.1], a g© =
(a d©)2a . Therefore ax = a d©a2a† = a[(a d©)2a](aa†) = aa g©aa† . According to The-
orem 2.1, a c© = x .

(1) ⇒ (3) By virtue of Theorem 2.1, x = a g©aa† . Then xa = a g©a . Moreover,
xaa† = a g©aa†aa† = a g©aa† = x , as desired.

(3) ⇒ (1) By hypothesis, we have x = (xa)a† = (a g©a)a† = a g©aa† . According
to Theorem 2.1, a c© = x .
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(1) ⇒ (4) Set x = a g©aa† . In view of Lemma 3.3, ax = a d©a2a† , and then
a d©a2x = a d©aa d©a2a† = a d©a2a† . By virtue of [4, Theorem 6.1], we have

x(a d©a2) = a g©aa†(a d©a2)
= a g©(aa†a)(a d©)2a2

= a g©a[(a d©)2a]a
= (a g©aa g©)a
= a g©a.

Moreover, we derive
xa d©a2x = x(a d©a2x)

= x(a d©a2a†)
= (xa d©a2)a†

= a g©aa†.

(4) ⇒ (1) By hypothesis, we have x = x(a d©a2x) = (xa d©a2)a† = a g©aa† , thus
yielding the result. �

Let a ∈ A . We say that a has {2} -inverse x provided that x = xax . We denote

a(2)
T,S = {x ∈A | xax = x, im(a) = T,ker(a) = S} . Here, im(a) = {ar | r ∈A},ker(a) =

{r ∈ A | ar = 0} . We now derive

THEOREM 3.5. Let a ∈ A c© . Then

a c© = a(2)
im(ad),ker((ad)∗a2a†).

Proof. Let x = a c© . In view of Theorem 2.1, we have x = xax .
Step 1. im(x) = im(ad) . Since x = a g©aa† = aada g©aa† , we see that xA⊆ im(ad) .

We obverse that

||ad −a c©aad|| 1
n = ||an(ad)n+1−a c©an+1(ad)n+1|| 1

n

� ||an−a c©an+1)|| 1
n ||ad||1+ 1

n .

As in the proof of Theorem 3.1, lim
n→∞

||an−a c©an+1)|| 1
n = 0. Then we have lim

n→∞
||ad −

a c©aad|| 1
n = 0, and so ad = a c©aad . Therefore adA ⊆ xA . This completes that

im(a c©) = im(ad) .
Step 2. ker(x) = ker((ad)∗a2a†) . We observe that

ker(x) = ker(ax)
= ker(aa c©aa†)
= ker(aa d©a2a†),

Then r ∈ ker(x) if and only if a2a†r ∈ ker(a d©) = ker(ad)∗ . Accordingly, ker(x) =
ker((ad)∗a2a†) . �

We now provide a new property of the weak core inverse for a complex matrix.
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COROLLARY 3.6. Let A ∈ Cn×n . Then

A W©,† = A(2)
R(AD),N(AD)∗A2A† .

Proof. This is an immediate consequence of Theorem 3.5. �
Let a,b,c ∈ A . The element a has (b,c)-inverse provide that there exists x ∈ A

such that
xab = b, cax = c and x ∈ bAx

⋂
xAc.

If such x exists, it is unique and denote it by a(b,c) (see [6]). We now derive the
following.

THEOREM 3.7. Let a ∈ A c© . Then a ∈ Ad ∩A† and a has (ad ,(ad)∗a2a†)-
inverse. In this case, a c© = a(ad ,(ad)∗a2a†).

Proof. Since a ∈A c© , a ∈Ad ∩A† . Let x = a c© . Then we verify that

x = x(ax) = (a g©aa†)ax = aada g©aa†ax ∈ adAx,
x = (xa)x = (xa)(a g©aa†) = xa(a d©)2a2a† = xa d©a2a†

= xad(aa d©)a2a† = xad(aa d©)∗a2a† = xad(ada2a d©)∗a2a†

= xad(a2a d©)∗(ad)∗a2a† ∈ xA(ad)∗a2a†,
xaad = (a g©aa†)aad = a g©aad = ad ,

(ad)∗a2a†ax = (ad)∗a2a†a(a g©aa† = (ad)∗a2(a g©aa†)
= (ad)∗a2(a d©)2a2a†) = (ad)∗aa d©a2a†

= (ad)∗aa d©a2a† = (ad)∗(aa d©)∗a2a†

= [a(ad)2]∗a2a† = (ad)∗a2a†.

Therefore a has (ad ,(ad)∗a2a†)-inverse, as desired. �

COROLLARY 3.8. Let A ∈ Cn×n . Then

A W©,† = A(AD,(AD)∗A2A†).

Proof. This is obvious by Theorem 3.7. �

COROLLARY 3.9. Let a,x∈A , ax = xa and a∗x = xa∗ . If a∈A c© , then a c©x =
xa c©.

Proof. Since a∗x = xa∗ , it follows by [7, Theorem 2.3] that a(a∗,a∗)x = xa(a∗,a∗) .
Similarly, we have a†x = xa† . As in the proof of [2, Corollary 4.6], adx = xad . This
implies that (ad)∗a2a†x = x(ad)∗a2a†. In light of Theorem 3.7 and [7, Theorem 2.3],
we have

a c©x = a(ad ,(ad)∗a2a†)x

= xa(ad ,(ad)∗a2a†)

= xa c©.
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This completes the proof. �

We now establish the reverse order law for generalized core inverse in a Banach
*-algebra.

COROLLARY 3.10. Let a,b ∈ A c© . If ab = ba, a∗b = ba∗ , then ab ∈ A c© . In
this case,

(ab) c© = a c©b c© = b c©a c©.

Proof. By hypothesis, we have a∗b = ba∗ , a∗b∗ = (ba)∗ = (ab)∗ = b∗a∗ . In light
of Corollary 3.9, a∗b c© = b c©a∗ . Likewise, we prove that ab c© = b c©a . By using
Corollary 3.9 again, a c©b c© = b c©a c© .

Since ab = ba and a∗b = ba∗ , it follows by [5, Theorem 2.3] that ab ∈ A g©
and (ab) g© = a g©b g© . Since a∗b = ba∗ , by using [7, Theorem 2.3], we prove that
a†b = a(a∗,a∗)b = ba(a∗,a∗) = ba† . One directly verifies that ab∈A† and (ab)† = a†b† .
By virtue of Theorem 2.1, ab ∈ A c© .

Since ab = ba and ab∗ = b∗a , it follows by [5, Lemma 2.2] that ab g© = b g©a .
Moreover, we have a†b = ba† . Likewise, a†b∗ = b∗a† . By using [5, Lemma 2.2] again,
a†b g© = b g©a† . Then

a c©b c© = a g©aa†b g©bb†

= a g©b g©bb†aa†

= a g©b g©aba†b†

= (ab) g©ab(ab)†

= (ab) c©.

This completes the proof. �

4. Generalized core elements

An element a ∈ A is called a generalized core element provided that a c© = a d© .
Evidently, generalized core and weak core matrices coincide with each other for a com-
plex matrix (see [11]). We are focusing our attention on the investigation of generalized
core elements in a Banach *-algebra. An element a∈A is an EP element provided that
there exists x ∈A such that xa2 = a , ax2 = x , (xa)∗ = xa. As is well known, a ∈A is
EP if and only if there exists x ∈A such that a2x = a , ax = xa , (ax)∗ = ax if and only
if a ∈A# and (aa#)∗ = aa# .

THEOREM 4.1. Let a ∈ A c© . Then the following are equivalent:

(1) a ∈A is a generalized core element.

(2) a g© = ad .

(3) a c© is EP.
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Proof. (1)⇒ (2) In view of [4, Theorem6.1], a g©a = (a g©aa†)a = a c©a = a d©a =
a(a d©)2a = aa g© . Therefore a g© = ad , as required.

(2) ⇒ (3) In view of Theorem 3.1, we have

a d© = aa g©a† = aada† = adaa†

= a g©aa† = a c©.

In view of [3, Theorem 1.2], a d© ∈ A #© and (a d©) #© = a2a d© . Furthermore, we check
tat

a d©a2a d©− (a2a d©)a d©
= a d©an+1(a d©)n −aa d©
= a d©an+1(a d©)n −an(a d©)n

= −(an−a d©an+1)(a d©)n.

Thus
||a d©a2a d©− (a2a d©)a d©|| 1

n � ||an−a d©an+1|| 1
n ||a d©||,

and then
lim
n→∞

||a d©a2a d©− (a2a d©)a d©|| 1
n = 0.

Therefore a d©(a2a d©) = (a2a d©)a d© , Thus, a c© is EP.
(3) ⇒ (1) One directly verifies that

a2a c©(a c©)2 = a2(a g©)3aa† = a g©aa† = a c©,
a c©(a2a c©)2 = aa g©a2a g©aa† = a2a g©aa† = a2a c©,
a c©(a2a c©) = aa g©aa† = a2(a g©)2aa† = (a2a c©)a c©.

Then a c© ∈ A# and (a c©)# = a2a c© . Since a c© is EP, we have

a c©(a2a c©) = [a c©(a2a c©)]∗.

It is easy to verify that

a c©(a2a c©) = a g©aa†(a2a g©aa†)
= (a g©a2)a g©aa†

= a(a g©aa†)
= aa c©,

and so aa c© = (aa c©)∗. Obviously, a(a c©)2 = aa g©aa†a(a g©)2aa† = a(a g©)2aa† =
a g©aa† = a c©. Also we have

lim
n→∞

||an−a c©an+1|| 1
n = lim

n→∞
||an−a g©aa†an+1|| 1

n

= lim
n→∞

||an−a g©an+1|| 1
n

= 0.

Therefore a c© = a d© , as asserted. �
We need the following lemma concerning some properties of the generalized core-

EP decomposition of an element in A c© .
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LEMMA 4.2. Let a∈A c© and a = a1 +a2 be the generalized core-EP decompo-
sition of a, and let p = a1a

#©
1 . Then

a1 =
(

t s
0 0

)
p
, a2 =

(
0 0
0 n

)
p
,

where t ∈ (pAp)−1 , n ∈ (
pπApπ)qnil.

Proof. Obviously, p2 = p = p∗ . It is easy to verify that pπa1 = (1−a1a
#©

1 )a1 =

0, and so a1 =
(

t s
0 0

)
p
. Here, t = pap and s = pa(1− p) . Moreover, we have

pa2 = a1a
#©

1 a2 = (a #©
1 )∗(a1)∗a2 = 0 and pπa2p = (1− a1a

#©
1 )a2a1a

#©
1 = 0. Hence,

a2 =
(

0 0
0 n

)
p
, where n = pπa2pπ ∈ Aqnil . �

THEOREM 4.3. Let a ∈ A c© . Then the following are equivalent:

(1) a ∈A is a generalized core element.

(2) aa c© = aa d© .

(3) ada c© = ada d© .

Proof. (1) ⇒ (2) By hypothesis, a c© = a d© , and so aa c© = aa d© .
(2) ⇒ (3) Since ad = (ad)2a , it follows by aa c© = aa d© that ada c© = ada d© , as

required.
(3) ⇒ (1) In view of Lemma 4.2, we have

a1 =
(

t s
0 0

)
p
, a2 =

(
0 0
0 n

)
p
,

where p, t,s,n constructed as in Lemma 4.2. Then a =
(

t s
0 n

)
p

and a d© =
(

t−1 0
0 0

)
p
.

By virtue of [4, Theorem 6.1], we have

a g© = (a d©)2a =
(

t−1 t−2s
0 0

)
p
.

Set x = a c© . In view of Theorem 3.4, xax = x and xa = a g©a . Write x =
(

x11 x12

x21 x22

)
p
.

Then (
x11 x12

x21 x22

)
p

(
t s
0 n

)
p
= xa = a g©a =

(
t−1 t−2s
0 0

)
p

(
t s
0 n

)
p
,

and so x11 = t−1 , x21 = 0 and x22n = 0.
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Since xax = x , we have(
t−1 x12

0 x22

)
p

(
t s
0 n

)
p

(
t−1 x12

0 x22

)
p
=

(
t−1 x12

0 x22

)
p
.

This implies that x22 = (x22n)x22 = 0. Therefore x =
(

t−1 y
0 0

)
p

for some z∈A. More-

over, we have

ad =
(

t−1 z
0 0

)
p

for some z ∈A, a d© =
(

t−1 0
0 0

)
p
.

Accordingly, we have

ada c© =
(

t−1 z
0 0

)
p

(
t−1 y
0 0

)
p

=
(

t−2 t−1y
0 0

)
p
,

ada d© =
(

t−1 z
0 0

)
p

(
t−1 0
0 0

)
p

=
(

t−2 0
0 0

)
p
.

Since ada c© = ada d© , we have t−1y = 0 = 0, and so y = 0. This implies that a c© = a d© ,
as asserted. �

COROLLARY 4.4. Let a ∈ A c© . Then the following are equivalent:

(1) a ∈A is a generalized core element.

(2) aa d© = a d©a.

(3) ada d© = a d©ad .

Proof. (1)⇒ (2) Since a c© = a d© , it follows by Theorem 4.3 that aa d© = aa c© =
a d©a, as desired.

(2) ⇒ (3) Since aa d© = a d©a , as in the proof of [2, Corollary 4.6] that ada d© =
a d©ad .

(3) ⇒ (1) By hypothesis, ada d© = a d©ad . In light of [4, Theorem 6.1], we have

ada c© = ada g©aa† = ad(a d©)2a2a† = (ad)2[a(a d©)2]a2a†

= (ad)2a d©a2a† = a d©(ad)2a2a† = a d©adaa†

= (ad)2(aa d©)(aa†) = (ad)2(aa d©)∗(aa†)∗
= (ad)2((aa†)(aa d©))∗ = (ad)2(aa d©)∗ = (ad)2aa d© = ada d©.

This completes the proof by Theorem 4.3. �
A matrix A ∈ Cn×n is weak core matrix if A W©,† = A D© (see [11]). We provide a

new characterization of such complex matrix.
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COROLLARY 4.5. Let A ∈ Cn×n . Then the following are equivalent:

(1) A is a weak core matrix.

(2) AA D© = A D©A.

(3) ADA D© = A D©AD .

Proof. This is immediate from Corollary 4.4. �
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