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RELATIVE RESIDUAL BOUNDS FOR EIGENVALUES

IN GAPS OF THE ESSENTIAL SPECTRUM

ALBRECHT SEELMANN

(Communicated by I. M. Spitkovsky)

Abstract. The relative distance between eigenvalues of the compression of a not necessarily
semibounded self-adjoint operator to a closed subspace and some of the eigenvalues of the origi-
nal operator in a gap of the essential spectrum is considered. It is shown that this distance depends
on the maximal angles between pairs of associated subspaces. This generalises results by Drmač
in [Linear Algebra Appl. 244 (1996), 155–163] from matrices to not necessarily (semi)bounded
operators.

1. Introduction and main results

Let H be a not necessarily semibounded self-adjoint operator in a Hilbert space
H with bounded inverse. We denote by λ j ∈ (0,∞) the j -th positive eigenvalue of
H below infσ ess(H)∩ (0,∞) , in increasing order and counting multiplicities, provided
that this eigenvalue exists.

Let U be a finite dimensional subspace of Dom(H) , and write PU for the orthog-
onal projection onto U . In the Hilbert space U we then consider the compression M
of H to U , that is, the self-adjoint operator

M = PU H|U : U → U ,

with eigenvalues
μ1 � . . . � μm, m = dimU .

Under suitable additional assumptions on U , one expects at least some of the
eigenvalues of M to be close to certain eigenvalues of H in a relative sense; cf. [7]. In
order to make this precise, consider the finite dimensional subspaces

V = RanH|U and W = RanH−1|U ,

and denote by P the (in general non-orthogonal) projection in H onto V along the
orthogonal complement W ⊥ of W ; it will be established in Lemma 3.3 below that P
always exists and is given by P = HPU H−1 . The main result of this note now gener-
alises Theorem 3 in [7] from matrices to the current setting of (unbounded) operators
H .
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THEOREM 1.1. Let H , λ j , U , M , μk , and P be as above, and suppose that
η := ‖PU −P‖ < 1 . Then:

(a) M is invertible.

(b) If numbers m0,m1 ∈ N with m0 � m1 � dimU satisfy μm0 > 0 and μm1 < (1−
η)d , where d := inf(σ ess(H)∩(0,∞)) ∈ (0,∞] , then H has at least m1−m0 +1
positive eigenvalues below d , counting multiplicities, and there are indices jm0 <
.. . < jm1 with

|λ jk − μk|
λ jk

� η for all m0 � k � m1. (1.1)

Roughly speaking, Theorem 1.1 states that if η < 1, then small enough positive
eigenvalues of M can be matched to certain positive eigenvalues of H with a suitable
relative bound. Here, small enough refers to being well below a threshold close to the
bottom of the positive essential spectrum of H , cf. parts (1) and (2) of Remark 1.2
below. As in [7,8,9], the proof of Theorem 1.1 relies on perturbing H into its diagonal
part with respect to the decomposition RanPU ⊕Ran(I−PU ) , which is reduced by U
with corresponding part M , see Section 3 below. Note also that the subspace U is
invariant (and then, in fact, reducing) for H if and only if V ⊂ U . In this case, one
even has V = U = W and, therefore, P = PU , see Lemma 3.1 below. In this respect,
the norm of the difference PU −P can be regarded as an appropriate measure for how
far U is off from being an invariant subspace for H . Also, if H = H−1 , then we have
V = W and, thus, P = PV = PW .

REMARK 1.2. (1) If H has no positive essential spectrum at all, that is, if d = ∞ ,
then the condition μm1 < (1−η)d in part (b) of Theorem 1.1 is automatically satisfied
and all positive eigenvalues of M can be matched to some positive eigenvalues of H ,
provided that η < 1.

(2) It is worth to note that the bound (1.1) together with μk < (1−η)d indeed
entails λ jk < d . In this regard, it is a priori not possible to obtain in Theorem 1.1
analogous statements for eigenvalues μk � (1−η)d . In fact, H may not even have
correspondingly many positive eigenvalues below d .

(3) As already mentioned in [10, Remark 2.3], a bound of the form (1.1) also yields
the relative bound

|λ jk − μk|
μk

=

|λ jk
−μk|

λ jk

1− λ jk
−μk

λ jk

� η
1−η

for all m0 � k � m1.

(4) Upon replacing H and M by −H and −M , respectively, one gets the anal-
ogous statement of Theorem 1.1 for negative eigenvalues in the gap of the essential
spectrum.

(5) Similar statements regarding eigenvalues in gaps of the essential spectrum not
containing zero are also possible (while still keeping the requirement of bounded in-
vertibility of H ), but this then requires a stronger assumption on the norm ‖PU −P‖
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depending on the gap under consideration, see Remark 3.8 below. The latter can, of
course, formally be avoided with a suitable spectral shift of H (and M ), but this then
also affects the subspaces V and W and, thus, the projection P .

Let us now compare Theorem 1.1 to [7, Theorem 3] and comment on other related
results in the literature.

REMARK 1.3. (1) If J : K → H is an isometry from some Hilbert space K
with range U , then the operator M is unitarily equivalent to J∗HJ . In this sense, the
above setting is consistent with the framework of [7].

(2) It is easily seen that PU −P = (PU −P⊥
U )(PU (I−P)+P⊥

U P) , where PU −P⊥
U

is unitary; cf. the proof of Lemma 3.5 below. In particular, we have ‖PU − P‖ =
‖PU (I−P)+P⊥

U P‖ . Taking into account parts (1) of this remark and of Remark 1.2,
Theorem 1.1 therefore indeed contains [7, Theorem 3] as a special case and, thus, gen-
eralises it from matrices to (possibly unbounded) operators H .

(3) To the best of the author’s knowledge, Theorem 1.1 is the first result of this kind
applicable for gaps in the essential spectrum of not necessarily semibounded operators
H . By contrast, for nonnegative operators H stronger results have been obtained in
[10, 11] for eigenvalues below the essential spectrum. In particular, [10, Theorem 2.2]
allows to consider subspaces U in the form domain of H and provides a stronger rela-
tive bound already in the case of matrices considered earlier in [7], cf. [7, Example 10].

The following result gives a geometric bound on the norm of the difference PU −P
in terms of the maximal angles between the pairs of subspaces (U ,V ) , (U ,W ) , and
(V ,W ) . In this regard, it recovers Proposition 5 in [7] in the current setting. Recall
that the maximal angle θ (M ,N ) between two closed subspaces M and N of H
can be defined as

θ (M ,N ) = arcsin(‖PM −PN ‖),
see, e.g., [2, Definition 2.1].

THEOREM 1.4. Let U , V , W , and P be as in Theorem 1.1. Then

‖PU −P‖ � min
{
sinθ (U ,V ),sinθ (U ,W )

}
+ tanθ (V ,W ).

The rest of this note is organised as follows: Section 2 presents a general per-
turbation result that addresses relative bounds for eigenvalues in gaps of the essential
spectrum. In essence, it reproduces a result from [20] in an operator framework, but
is proved here in an alternative way using the variational principle from [4, 5]. Sec-
tion 3 then adds a geometric component in terms of the projections PU , PV , PW ,
and P that allows to infer from the general result in Section 2 the core result of this
note, Theorem 3.6. The latter includes Theorem 1.1 as a particular case, while allow-
ing the subspace U to have infinite dimension. A likewise more general version of
Theorem 1.4, Theorem 3.11, is also proved in that section utilizing known results on
maximal angles between closed subspaces.
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2. Relative bounds for eigenvalues

In this section we prove a general residual bound for eigenvalues in gaps of the
essential spectrum of self-adjoint operators, which lays the foundation for the proof of
Theorem 1.1. The corresponding result essentially reproduces [20, Theorem 4.13] in
the particular case of an operator framework; see also [16, Theorem 3.16] for the matrix
case.

For a self-adjoint operator T , we denote by ET the projection-valued spectral
measure for T , and for γ ∈ R we write λγ, j(T ) = λ j(T |RanET ((γ,∞))) � γ , j ∈ N , j �
dimRanET ((γ,∞)) , for the j -th standard variational value of the lower semibounded
part T |RanE((γ,∞)) of T . It agrees with the j -th eigenvalue of T |RanE((γ,∞)) below its es-
sential spectrum, in nondecreasing order and counting multiplicities, if this eigenvalue
exists, and otherwise equals the bottom of the essential spectrum of T |RanE((γ,∞)) . In
fact, if RanE((γ,∞)) is infinite dimensional, then λγ, j(T ) → inf(σ ess(T )∩ (γ,∞)) ∈
[γ,∞] as j → ∞ .

Let A be self-adjoint, and let V be symmetric with Dom(V ) ⊃Dom(A) . Suppose
that for some constants a∈R , b∈ [0,1) the operator A1 := a+b|A| is nonnegative and
that ‖Vx‖� ‖A1x‖ for all x∈Dom(A) . In particular, this gives ‖Vx‖� |a|‖x‖+b‖Ax‖
for all x ∈ Dom(A) , so that B := A+V is self-adjoint on Dom(B) = Dom(A) by the
well-known Kato-Rellich theorem. The following result is used in Section 3 below only
in the particular case where a = 0. However, the more general case of a ∈ R does not
require much more efforts and is more in line with the mentioned guiding statement
from [20].

PROPOSITION 2.1. Let the interval (α,β ) with β −α > 2a+b(|α|+ |β |) be in
the resolvent set of A. Then:

(a) The interval (α + b|α|+ a,β − b|β | − a) belongs to the resolvent set of B =
A+V .

(b) The subspace RanEA((α,∞)) has finite dimension if and only if RanEB((α +
b|α| + a,∞)) has finite dimension, and in this case dimRanEA((α,∞)) =
dimRanEB((α +b|α|+a,∞)) holds.

(c) We have
|λα , j(A)−λα+b|α |+a, j(B)| � a+b|λα , j(A)|

for all j ∈ N with j � dimRanEA((α,∞)) .

(d) With d := inf(σ ess(A)∩ (α,∞)) ∈ [β ,∞] we have

d−b|d|−a � inf
(
σ ess(B)∩ (α +b|α|+a,∞)

)
� d +b|d|+a,

where the lower and upper bounds are interpreted as ∞ if d = ∞ . In particular,
the spectral part σ(B)∩ (α +b|α|+a,∞) is purely discrete if σ(A)∩ (α,∞) is
purely discrete.
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For the convenience of the reader, a proof of Proposition 2.1 is presented below.
Other than the approach in [20], which was based on analyticity properties, this proof
alternatively relies on the minimax principle from [4, 5] for eigenvalues in gaps of the
essential spectrum. The following proposition formulates a variant of this result tailored
to the current situation; cf. also [6, 18].

PROPOSITION 2.2. ([5, Theorem 1]) Let T be self-adjoint, and let Λ be an or-
thogonal projection in the same Hilbert space such that Dom(T ) is invariant for Λ .
With D+ := Dom(T )∩RanΛ and D− := Dom(T )∩Ran(I−Λ) , suppose that

ν := sup
x−∈D−
‖x−‖=1

〈x−,Tx−〉 < inf
x+∈D+
‖x+‖=1

〈x+,Tx+〉. (2.1)

Then,
λν, j(T ) = inf

M⊂D+
dimM= j

sup
x∈M⊕D−
‖x‖=1

〈x,Tx〉 (2.2)

for j ∈ N with j � dimRanΛ , and these describe all variational values of the lower
semibounded part T |RanET ((ν,∞)) of T .

REMARK 2.3. The inequality (2.1) is usually called a gap condition for T . In
[4, 5], the right-hand side of (2.1) is replaced by the possibly larger term

inf
x+∈D+\{0}

sup
x−∈D−

〈x+ + x−,T (x+ + x−)〉
‖x+ + x−‖2 ,

which agrees with the right-hand side of (2.2) for j = 1. In particular, the condition
formulated by (2.1) is stricter than the corresponding one in [4,5]. However, it is exactly
(2.1) that is verified in the proof of Proposition 2.1 below.

An implicit part of Proposition 2.2 is that under the hypotheses the subspace
RanET ((ν,∞)) has finite dimension if and only if RanΛ has, and, in this case, the
two subspaces have the same dimension. Moreover, the interval (ν,λν,1(T )) belongs
to the resolvent set of T and, in particular, so does the interval (ν,ν ′) , where ν ′ de-
notes the right-hind side of (2.1), cf. Remark 2.3. With this is mind, we are ready to
prove Proposition 2.1.

Proof of Proposition 2.1. We follow the general strategy of the proof of [16, The-
orem 3.16]. Since by hypothesis A1 is self-adjoint and nonnegative and V is symmetric
with Dom(V ) ⊃ Dom(A1) = Dom(A) and ‖Vx‖ � ‖A1x‖ for all x ∈ Dom(A) , it fol-
lows from Löwner’s theorem, see, e.g., [12, Theorem V.4.12], that

|〈x,Vx〉| � 〈x,A1x〉 for all x ∈ Dom(A).

As a consequence, we have
A−A1 � B � A+A1 (2.3)

in the sense of quadratic forms, where Dom(A±A1) = Dom(A) = Dom(B) .
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In the notation of Proposition 2.2, we take Λ = EA((α,∞)) = EA([β ,∞)) and

D+ = Dom(A)∩RanEA([β ,∞)), D− = Dom(A)∩RanEA((−∞,α]).

Define f± : R → R by f±(t) = t± (a+b|t|) , which both are continuous, bijective, and
strictly increasing. Taking into account that A±A1 = f±(A) by functional calculus, we
then have

〈x,(A−A1)x〉 � f−(β )‖x‖2 for x ∈ D+

and
〈x,(A+A1)x〉 � f+(α)‖x‖2 for x ∈ D−.

Moreover, the hypothesis on α and β guarantees that f−(β ) > f+(α) . In light of (2.3),
for each of the choices T ∈ {A±A1,B} the gap condition (2.1) is therefore satisfied
with

sup
x−∈D−
‖x−‖=1

〈x−,Tx−〉 � f+(α) < f−(β ) � inf
x+∈D+
‖x+‖=1

〈x+,Tx+〉,

so that Proposition 2.2 can be applied for all three choices. In particular, the interval
( f+(α), f−(β )) belongs to the resolvent set of all three operators A±A1 and B . With
T = B , this proves parts (a) and (b) of the claim. Furthermore, with γ = f+(α) we
obtain from (2.3) and the representation of the variational values in (2.2) that

λγ, j(A−A1) � λγ, j(B) � λγ, j(A+A1) (2.4)

for all j ∈ N , j � dimRanEA((α,∞)) . Here, we also have the representation λγ, j(A−
A1) = λ f−(α), j( f−(A)) since also the interval ( f−(α), f−(β )) belongs to the resolvent
set of f−(A) by the spectral mapping theorem, as well as trivially λγ, j(A + A1) =
λ f+(α), j( f+(A)) . In turn, again by the spectral mapping theorem, we have
λ f±(α), j( f±(A)) = f±(λα , j(A)) , so that we arrive at the representations λγ, j(A±A1) =
f±(λα , j(A)) . Plugging the latter into (2.4) gives

λα , j(A)− (a+b|λα , j(A)|) � λγ, j(B) � λα , j(A)+ (a+b|λα , j(A)|) (2.5)

for all j ∈ N with j � dimRanEA((α,∞)) , which proves part (c) of the claim.
It remains to show part (d). If RanEA((α,∞)) has finite dimension, then also

RanEB(( f+(α),∞)) has finite dimension by part (b) and there is nothing to prove. So,
suppose that RanEA((α,∞)) , and hence also RanEB((γ,∞)) , is infinite dimensional.
The claim of part (d) then follows by taking in (2.5) the limit as j → ∞ . This completes
the proof. �

3. Geometric residual bounds and proof of main results

A large part of the considerations in this section also works under more general
assumptions than the ones from Section 1. With this in mind, let H and λ j be as in
Section 1, and let U be a (not necessarily finite dimensional) closed subspace such that
Dom(H) is invariant for the orthogonal projection PU onto U ; this obviously includes
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the case where U is just a finite dimensional subspace of Dom(H) as in Section 1. Let
M be the compression of H to U , that is,

M = PU H|U with Dom(M) = Dom(H)∩U ⊂ U , (3.1)

as an operator in the Hilbert space U . Finally, denote by V and W the closed sub-
spaces

V = RanH|U and W = RanH−1|U .

We begin with the following elementary, essentially well-known lemma.

LEMMA 3.1. (a) Dom(H) is invariant also for P⊥
U = I−PU .

(b) Dom(H) splits as

Dom(H) = (Dom(H)∩U )⊕ (Dom(H)∩U ⊥).

(c) M is densely defined in U .

(d) If U is invariant for H , then V = W = U .

Proof. (a) is clear, and (b) follows immediately from (a) and the identity I =
PU +P⊥

U .
For part (c), let u ∈ U . Since H is densely defined, we may choose a sequence

(xk) in Dom(H) that converges to u . Taking into account that PU is bounded, the
sequence (uk) with uk = PU xk ∈ Dom(M) then converges to PU u = u in U , which
proves the claim.

Finally, for part (d), suppose that U is invariant for H , that is, V ⊂ U . In view
of part (c), a standard argument then shows that also U ⊥ is invariant for H . Now,
let y ∈ U . By part (b), we may decompose x := H−1y ∈ Dom(H) as x = u+ v with
u ∈ Dom(H)∩U and v ∈ Dom(H)∩U ⊥ . Then, we have Hu+Hv = Hx = y ∈ U ,
which by Hu ∈ U and Hv ∈ U ⊥ implies that Hv = 0, so that v = 0 because H is
invertible. We conclude that H−1y = u ∈ U and y = Hu ∈ V . Since y ∈ U was
arbitrary and taking into account that U is closed, the former yields W ⊂ U , and the
latter implies U ⊂ V , that is, U = V .

In order to show the remaining inclusion U ⊂ W , we observe that the invariance
of U for H implies that Dom(H)∩U ⊂ RanH−1|U ⊂W . In view of part (c) and the
closedness of W , this shows that indeed U ⊂ W , which completes the proof. �

REMARK 3.2. The above reasoning for part (d) of Lemma 3.1 is essentially con-
tained, at least in part, in the proof of Lemma 2.1 in [17]; cf. also Remark 2.3 and
Lemma 2.4 in [19].

The next lemma proves the existence of the (not necessarily orthogonal) projection
onto V along W ⊥ by providing an explicit representation in terms of H and PU .

LEMMA 3.3. The operator P = HPU H−1 is the projection onto V along W ⊥ ,
that is, P is bounded with P2 = P and satisfies RanP = V and KerP = W ⊥ .
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Proof. Observe that P = HPU H−1 is closed and everywhere defined, hence boun-
ded by the closed graph theorem. It is then obvious that also P2 = P . Finally, we
have the identities RanP = Ran(HPU |Dom(H)) = V as well as KerP = Ker(PU H−1) =
(Ran(H−1PU ))⊥ = W ⊥ . �

REMARK 3.4. More generally, if L is a closed densely defined operator with
bounded inverse such that Dom(L) is invariant for PU , then LPU L−1 is the projec-
tion onto RanL|U along Ker(PU L−1) = (Ran(L−∗|U ))⊥ .

In light of the domain splitting in part (b) of Lemma 3.1, we may define the diag-
onal and off-diagonal parts of H with respect to U ⊕U ⊥ as

Hdiag = PU HPU +P⊥
U HP⊥

U , Hoff = PU HP⊥
U +P⊥

U HPU

with Dom(Hdiag) = Dom(H) = Dom(Hoff) ; cf. also [8, 9]. In particular, we have the
operator identity

H = Hdiag +Hoff.

Clearly, the subspace U reduces Hdiag in the sense that Hdiag is the direct sum of
operators defined in U and U ⊥ , respectively, and M is the part of Hdiag associated
to U . We now aim to apply Proposition 2.1 from the previous section with A = H
and V = −Hoff , so that A+V = Hdiag . To this end, we make the following elementary
observation.

LEMMA 3.5. We have

HoffH
−1 = (PU −P⊥

U )(PU −P) (3.2)

with P as in Lemma 3.3.

Proof. We calculate

HoffH
−1 = PU HP⊥

U H−1 +P⊥
U HPU H−1 = PU (I−P)+P⊥

U P

= (PU −P⊥
U )(PU −P). �

Note that the factor PU −P⊥
U on the right-hand side of (3.2) is self-adjoint and

unitary and can therefore be ignored when it comes to estimating HoffH−1 in norm.
With this in mind, we are now able to formulate and prove the core result of this note.
Here, the particular case where U has finite dimension agrees with Theorem 1.1.

THEOREM 3.6. Suppose that η := ‖PU − P‖ < 1 with P = HPU H−1 as in
Lemma 3.3.

(a) The operator M in (3.1) is self-adjoint and has a bounded inverse.

(b) With d := inf(σ ess(H)∩ (0,∞)) ∈ (0,∞] we have

inf
(
σ ess(M)∩ (0,∞)

)
� (1−η)d.
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(c) Denote by (μk)k∈J with J ⊂ N the (finite or infinite) collection of eigenvalues of
M in the interval (0,(1−η)d) , in increasing order and counting multiplicities.
Then, there is a family of indices jk ∈ N , k ∈ J , strictly increasing in k , such that
for each k ∈ J we have

|λ jk − μk|
λ jk

� η .

Proof. In view of Lemma 3.5, we have ‖HoffH−1‖ = ‖PU − P‖ = η < 1. In
particular, this gives

‖Hoffx‖ � η‖Hx‖ = η‖|H|x‖
for all x ∈ Dom(H) . In the notation of Section 2, we may therefore take A = H and
V = −Hoff with a = 0 and b = η ∈ [0,1) . Moreover, since H has a bounded inverse,
there are numbers α,β ∈ R with α < 0 < β such that the interval (α,β ) belongs to
the resolvent set of H ; in particular, we have

d = inf(σ ess(H)∩ (0,∞)) = inf(σ ess(H)∩ (α,∞)) � β .

We observe that 2a + b(|α|+ |β |) = η(β −α) < β −α , so that the hypotheses of
Proposition 2.1 are satisfied. We conclude that Hdiag = H−Hoff is self-adjoint and that
the interval ((1−η)α,(1−η)β ) belongs to its resolvent set; in particular, Hdiag has a
bounded inverse. Moreover, part (d) of Proposition 2.1 gives

inf(σ ess(Hdiag)∩ ((1−η)α,∞)) � (1−η)d.

Since U reduces Hdiag and M is the part of Hdiag associated to U , this proves (a) and
(b).

Taking into account that each λα , j(H) is positive, it follows from part (c) of Propo-
sition 2.1 that

|λα , j(H)−λ(1−η)α , j(Hdiag)|
λα , j(H)

� η (3.3)

for all j ∈ N with j � dimRanEH((α,∞)) . In particular, this implies that λα , j(H) < d
if λ(1−η)α , j(Hdiag) < (1−η)d . Now, by definition of the μk there are indices jk with
λ(1−η)α , jk(Hdiag) = μk ∈ (0,(1−η)d) for all k ∈ J . Thus, λα , jk(H) < d is the jk -th
positive eigenvalue of H below d , that is, λα , jk(H) = λ jk . Together with (3.3), this
shows part (c) and, hence, completes the proof of the theorem. �

Let us collect some useful observations regarding part (b) of Theorem 3.6.

REMARK 3.7. (1) The proof of Theorem 3.6 gives

(1−η)d � inf(σ ess(Hdiag)∩ ((1−η)α,∞)) � inf(σ ess(M)∩ ((1−η)α,∞)),

and either inequality may a priori be strict. Thus, eigenvalues of M that are larger
than (or equal to) (1− η)d are not necessarily accessible via the variational values
λ(1−η)α , j(Hdiag) , and even for those that are accessible, we can no longer guarantee
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that the corresponding variational values λα , j(H) for H are smaller than d . The latter
may therefore not correspond to eigenvalues of H .

(2) If U has finite dimension, then

inf(σ ess(Hdiag)∩ ((1−η)α,∞)) = inf(σ ess(H)∩ (α,∞)) = d.

Indeed, in this case Ran(PU −P) has finite dimension and, consequently, in view of
Lemma 3.5, H−1

diag −H−1 = H−1
diagHoffH−1 is compact. Hence, σ ess(Hdiag) = σ ess(H) ,

see, e.g., [12, Theorem IV.5.35].
(3) Although inf(σ ess(Hdiag)∩ ((1−η)α,∞)) � (1 + η)d by part (d) of Propo-

sition 2.1, the term inf(σ ess(M)∩ ((1− η)α,∞)) might a priori be a lot larger, for
instance if Hdiag has positive essential spectrum but M does not. In view of part (2) of
this remark, this is the case, in particular, if H has positive essential spectrum and U
has finite dimension.

The following remark addresses an extension of Theorem 3.6 to gaps of the essen-
tial spectrum of H that do not contain zero.

REMARK 3.8. The general form of Proposition 2.1 allows to obtain also similar
statements as in Theorem 3.6 for eigenvalues in gaps of the essential spectrum not con-
taining zero. More precisely, instead of the interval (α,β ) in the proof of Theorem 3.6,
we may consider any interval (α̃ , β̃ ) belonging to the resolvent set of H such that
η = ‖PU −P‖ satisfies the (stronger) condition

η <
β̃ − α̃

|α̃ |+ |β̃ | .

The terms (1−η)α , (1− η)β , and (1−η)d in the proof then just have to be re-
placed by α̃ + η |α̃| , β̃ −η |β̃ | , and d̃ −η |d̃| , respectively, where d̃ is given by d̃ =
inf(σ ess(H)∩ (α̃,∞)) � β̃ .

Theorem 3.6 relies on the crucial condition ‖PU −P‖ < 1, so let us now address
how the norm of PU −P can be estimated. To this end, we may choose one of the
alternative decompositions

PU −P = (PU −PV )+ (PV −P) = (PU −PW )+ (PW −P). (3.4)

Here, the terms PU − PV and PU − PW correspond to sines of the operator angles
associated to the pairs of subspaces (U ,V ) and (U ,W ) , respectively. More precisely,

|PU −PV | = sinΘ(U ,V ) and |PU −PW | = sinΘ(U ,W ), (3.5)

where Θ(·, ·) denotes the operator angle associated with the respective subspaces, see,
e.g., [14, Section 2] and the references cited therein for a discussion. In particular, the
maximal angle introduced in Section 1 satisfies θ (·, ·) = ‖Θ(·, ·)‖ .

In order to address the other two terms, PV −P and PW −P , we make the follow-
ing considerations:
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Since Ran(IH −P) = KerP = W ⊥ , we obtain from P+(I−P) = I that PW P =
PW . Hence, the projection P can be represented with respect to the orthogonal decom-
position W ⊕W ⊥ as the 2×2 block operator matrix

P =
(

IW 0
X 0

)
(3.6)

with X := P⊥
W P|W , interpreted as an operator from W to W ⊥ . In particular, V =

RanP admits the graph subspace representation

V = { f ⊕X f : f ∈ W }. (3.7)

Recall from [13, Corollary 3.4 and Remark 3.6] that consequently we have ‖PW −
PV ‖ < 1 and that X corresponds to the tangent of the operator angle associated to the
subspaces W and V , more precisely

(|X | 0
0 |X∗|

)
= tanΘ(W ,V ). (3.8)

Moreover, we have
PV = UPW U∗, (3.9)

where U is the unitary operator given by the 2×2 block operator matrix

U =
(

(IW +X∗X)−1/2 −X∗(IW ⊥ +XX∗)−1/2

X(IW +X∗X)−1/2 (IW ⊥ +XX∗)−1/2

)
. (3.10)

A broader discussion on the operator angle and graph subspace representations can be
found, for instance, in [15, Sections 1.3 and 1.5] and the references cited therein.

REMARK 3.9. The inequality ‖PW −PV ‖ < 1 can alternatively also be verified
as follows: Since the projection P onto V along W ⊥ exists by Lemma 3.3, Propo-
sition 1.6 in [3] yields that ‖PV P⊥

W ‖ < 1. Taking into account that P∗ is the projec-
tion onto W along V ⊥ , we obtain in the same way that ‖P⊥

V PW ‖ = ‖PW P⊥
V ‖ < 1.

Using ‖PW − PV ‖ = max{‖PV P⊥
W ‖,‖P⊥

V PW ‖} , see, e.g., [1, Section 34], this gives
‖PW −PV ‖ < 1.

LEMMA 3.10. With X = P⊥
W P|W : W → W ⊥ and U as in (3.10) we have

PW −P =
(

0 0
−X 0

)

and

PV −P =U

(
0 X∗
0 0

)
U∗.
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Proof. The representation for PW − P follows directly from (3.6). Moreover,
using the identity X∗(IW ⊥ + XX∗)−1/2 = (IW + X∗X)−1/2X∗ , the representation for
PV −P is verified from (3.6), (3.9), and (3.10) by plain multiplication of 2× 2 block
operator matrices. �

We now arrive at the following result, the particular case of which where U has
finite dimension agrees with Theorem 1.4.

THEOREM 3.11. We have

‖PU −P‖ � min
{
sinθ (U ,V ),sinθ (U ,W )

}
+ tanθ (V ,W ).

Proof. From Lemma 3.10 and (3.8) we obtain that

‖PW −P‖= ‖PV −P‖ = ‖X‖ = tanθ (V ,W ),

where for the last equality we used that ‖tanΘ(W ,V )‖ = tanθ (V ,W ) . Combining
the latter with (3.4) and (3.5) gives

‖PU −P‖ � min
{‖PU −PV ‖,‖PU −PW ‖}+‖X‖

= min
{
sinθ (U ,V ),sinθ (U ,W )

}
+ tanθ (V ,W ),

which proves the claim. �
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suggesting this research direction. He also thanks Krešimir Veselić for a helpful com-
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[5] J. DOLBEAULT, M. J. ESTEBAN, E. SÉRÉ, Corrigendum to “On the eigenvalues of operators with
gaps. Application to Dirac Operators” [J. Funct. Anal. 174 (1) (2000) 208–226], J. Funct. Anal. 284
(2023), Paper No. 109651, 6 pp.
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[7] Z. DRMAČ, On relative residual bounds for the eigenvalues of a Hermitian matix, Linear Algebra
Appl. 244 (1996), 155–163.
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