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Abstract. One-dimensional Dirac-type operator

Dy = By′ +P(x)y, y = (y1,y2)
T ,

is considered in this work, where B =
(

0 b1
b2 0

)
, b2 < 0 < b1, P(x) = diag(p1(x), p2(x))

and pj(x), j = 1,2 are the complex-valued functions defined on the arbitrary finite interval
G = (a,b) of the real axis with pj(x) ∈ L1(G), j = 1,2 .

We establish antiapriori estimates for associated vector functions. We also prove criterion
of Bessel property and unconditional basis property for the systems of root vector functions of
the operator D in L2

2(G) .

1. Main results

In this work, we study the one-dimensional Dirac-type operator with summable
potential and establish antiapriori estimates for associated vector functions, criterion of
Bessel property and unconditional basis property for the systems of root vector func-
tions in L2

2(G) . By root vector functions we mean those in a generalized sense, i.e.
those with no regard to boundary conditions (see [8]). Note that for these generalized
root functions, the necessary and sufficient conditions for unconditional basis prop-
erty of the systems of root functions of the operator Lu = −u′′ + q(x)u in L2 , where
q(x) ∈ L1(G) , have been first found by V. A. Il’in [8]. Later in [2, 9, 11–13, 21, 32],
these and other problems have been considered for the higher order ordinary differen-
tial operator and the criteria of Bessel property, Riesz property and unconditional basis
property have been found. Criterion of Bessel property and unconditional basis prop-
erty for Dirac and Dirac-type operators with potential P(x)∈ L2(G) have been obtained
in [14, 20], while the same criteria for Dirac operator with potential P(x) ∈ L1(G) have
been found in [19]. Problems of componentwise uniform equiconvergence on a com-
pact, uniform convergence, Riesz property of the system of root vector functions of
Dirac operator have been treated in [3, 15–18].
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A lot of works [1, 4–7, 10, 22–31, 33] have been dedicated to basis property
and other spectral properties of root vector functions of Dirac operator (with boundary
conditions).

In [33], Riesz basis property has been established in case where the potential of
Dirac operator belongs to L2 and the boundary conditions are separated. In [4], a
criterion of Riesz basis property for 2× 2 Dirac operator with periodic (antiperiodic)
boundary conditions was established. In [5], the case where the boundary conditions are
regular and the potential belongs to the class L2 has been considered. In the same work,
Riesz basis property from subspaces and Riesz basis property in the case of strongly
regular boundary conditions have been proved. Dirac operator with the potential from
Lp , p � 1, has been considered in [30, 31], and Riesz basis property has been proved
in case of regular boundary conditions. Moreover, in case of regular (but not strongly
regular) boundary conditions, Riesz basis property of subspaces has been proved. In
[22, 23], Dirac-type 2× 2-system with the potentials from L1 and strongly regular
boundary conditions has been considered and Riesz basis property has been proved.
A criterion of Bari basis property for 2× 2 Dirac-type operators with strictly regular
boundary conditions was established.

Note, that the Dirac-type case has several interesting features and more difficult
for investigation when operators are considered with two-point boundary conditions.
For instance, antiperiodic boundary conditions can be strictly regular for some pairs of
b1, b2, while it is never the case for Dirac operator (see [23]). Another contrasting
feature is a description of strictly regular boundary conditions. It is trivial in the Dirac
case, but a criterion of strict regularity for a general Dirac-type operator is unknown
(several strong sufficient conditions are contained in [23]).

Let L2
p(G), p � 1, be a space of two-component vector functions

f (x) = ( f1(x), f2(x))
T

equipped with the norm

‖ f‖p,2 =
[∫

G

(
| f1(x)|2 + | f2(x)|2

)p/2
dx

]1/p
.

In case p =  , the norm is defined by the equality

‖ f‖,2 = sup
x∈G

vrai | f (x)| .

It is clear that for arbitrary functions f (x) ∈ L2
p(G), g(x)∈ L2

q(G), with p−1 +q−1 = 1,

1 � p � , the scalar product ( f ,g) =
∫
G

2
j=1 f j(x)g j(x)dx is defined.

Consider the one-dimensional Dirac-type operator

Dy = B
dy
dx

+P(x)y,y(x) = (y1(x),y2(x))
T ,

where B =
(

0 b1

b2 0

)
, b2 < 0 < b1 , P(x) = diag(p1(x), p2(x)) , and p1(x), p2(x) are

the complex-valued functions defined on the arbitrary finite interval G = (a,b) of the
real axis.
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Following [8], by the eigenfunction of the operator D corresponding to the com-

plex eigenvalue  , we will mean any complex-valued vector function
0
u (x) not identi-

cally zero, which is absolutely continuous on every closed subinterval of G and satisfies

the equation D
o
u = 

o
u almost everywhere in G .

Similarly, by the associated function of degree �, � � 1, corresponding to the same
 and the same eigenfunction

o
u(x), we will mean any complex-valued vector function

�
u(x), which is absolutely continuous on every closed subinterval of G and satisfies the

equation D
�
u = 

�
u+

�−1
u almost everywhere in G .

Let us denote by Lloc
1 (G) the class of summable functions on an arbitrary segment

belonging to G.

THEOREM 1. Let the functions p1(x), p2(x) belong to the class Lloc
1 (G). Then,

for every compact K ⊂G there exist the constants Ci(K, �,b1,b2), i = 1,2, � = 0,1,2, . . .,
independent of  , such that the estimates∥∥∥∥�−1

u

∥∥∥∥
L2
(K)

� C1 (K, �,b1,b2)(1+ |Im |)
∥∥∥ �
u
∥∥∥

L2
(K)

, (1)

∥∥∥ �
u
∥∥∥

L2
(K)

� C2 (K, �,b1,b2)(1+ |Im |)1/p
∥∥∥ �
u
∥∥∥

L2
p(K)

, 1 � p < , (2)

hold.

REMARK 1. If G is a finite interval, p1(x) and p2(x) belong to the class L1(G),
then the estimates (1) and (2) hold in case K = G , too. Note that for b1 = −b2 = 1 the
estimates (1) and (2) have been proved in [16].

Let {uk(x)}k=1 be an arbitrary system consisting of eigenfunctions and associ-
ated vector functions of the operator D, and {k}k=1 be the corresponding system
of eigenvalues. Besides, let the function uk(x) belong to the system {uk(x)}k=1 to-
gether with all corresponding associated functions of a lesser degree. This means
Duk = kuk +kuk−1 , where k is equal to either 0 (in this case, uk(x) is an eigen vec-
tor function) or 1 (in this case, uk(x) is an associated vector function with k = k−1 ).

DEFINITION 1. We will say that the Bessel inequality is true for the given system
of functions k(x) ∈ L2

2(G) , if there exists a constant M , independent of f (x) , such
that the relation




k=1

|(k, f )|2 � M ‖ f‖2
2,2

holds for every vector function f (x) ∈ L2
2(G) .

THEOREM 2. (Criterion of Bessel property) Let P(x) ∈ L1(G), the lengths of the
chains of root vector functions be uniformly bounded and there exist a constant C0 such
that

|Imk| � C0, k = 1,2, . . . (3)
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Then, for the system
{

uk(x)‖uk‖−1
2,2

}
k=1

to satisfy the Bessel inequality in L2
2(G) , it is

necessary and sufficient that there exist a constant M1 such that


|Rek−|�1

1 � M1, (4)

where  is an arbitrary real number.

Denote by D∗ the formal adjoint of the operator D :

D∗ = −B∗ d
dx

+P∗(x),

where P∗(x) is a conjugate of the matrix P(x).
Let {k(x)} be a biorthogonal conjugate of {uk(x)} in L2

2(G) and consist of root
vector functions of the operator D∗ (i.e. D∗k = kk +k+1k+1 ).

THEOREM 3. (On unconditional basis property) Let P(x) ∈ L1(G) , the lengths of
the chains of root vector functions be uniformly bounded, one of the systems {uk(x)}k=1
and {k(x)}k=1 be complete in L2

2(G) and the condition (3) be satisfied. Then, for each
of these systems to form an unconditional basis for L2

2(G) , it is necessary and sufficient
that there exist the constants M1 and M2 such that the inequality (4) holds and

‖uk‖2,2‖k‖2,2 � M2, k = 1,2, . . . . (5)

REMARK 2. Note that under the conditions of Theorem 3 the validity of the in-
equalities (4) and (5) is a necessary and sufficient condition for the Riesz basis property

of each of the systems
{

uk(x)‖uk‖−1
2,2

}
k=1

and
{
k(x)‖k‖−1

2,2

}
k=1

for L2
2(G) .

Note that the system of root functions of the operator Dirac consideredwith regular
two-point boundary conditions is always complete. This result was first established by
V. A. Marchenko in [29] in the case of Dirac operators with continuous potential P(x),
and later generalized to arbitrary n× n Dirac-type operators with summable potential
by M. M. Malamud and L. L. Oridoroga in [26].

DEFINITION 2. The system {k(x)}k=1 ⊂ L2
2(G) is quadratically close to the sys-

tem {uk(x)}k=1 ⊂ L2
2(G) if




k=1

‖k −uk‖2
2,2 < .

THEOREM 4. (On equivalent basis property) Let P(x) ∈ L1(G), the lengths of the
chains of root vector functions be uniformly bounded, conditions (3)–(5) be satisfied

and the system
{

uk(x)‖uk‖−1
2,2

}
k=1

be quadratically close to some basis {k(x)}k=1

of the space L2
2(G) . Then the systems

{
uk(x)‖uk‖−1

2,2

}
and

{
k(x)‖uk‖2,2

}
k=1

form

bases for L2
2(G) , and they are equivalent to the basis {k(x)}k=1 and its biorthogonal

conjugate, respectively.
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2. Some auxiliary lemmas

To prove Theorem 1, we need some auxiliary lemmas.

LEMMA 1. (Shift formula) If the functions p1(x) and p2(x) belong to the class
Lloc

1 (G) and the points x− t, x, x+ t lie in the domain G, then the following formulas
hold:

�
u(x+ t) =

[
cos

√|b1b2|
t I− sin

√|b1b2|
t

B√|b1b2|

]
�
u(x)+

+B−1
∫ x+t

x

(
sin

√|b1b2|
(t−  + x)

B√|b1b2|
− cos

√|b1b2|
(t−  + x) I

)
× (6)

×
[
P( )

�
u( )− �−1

u ( )
]
d ,

�
u(x− t) =

[
cos

√|b1b2|
t I + sin

√|b1b2|
t

B√|b1b2|

]
�
u(x)+

+B−1
∫ x

x−t

(
sin

√|b1b2|
(t +  − x)

B√|b1b2|
+ cos

√|b1b2|
(t +  − x)I

)
× (7)

×
[
P( )

�
u( )− �−1

u ( )
]
d ,

�
u(x+ t)+

�
u(x− t) = 2

�
u(x)cos

√|b1b2|
t+

+B−1
∫ x+t

x−t

(
sin

√|b1b2|
(t −|x−  |) B√|b1b2|

−

−sign( − x)cos
√|b1b2|

(t−|x−  |)I
)
×
[
P( )

�
u( )− �−1

u ( )
]
d , (8)

where I is a unit operator in E2, and E2 is a two-dimensional Euclidean space.

Proof. To obtain formulas (6) and (7), it suffices to apply the operator

cos
√|b1b2|

(t−|x−  |)I− sign( − x)sin
√|b1b2|

(t−| − x|) B√|b1b2|

to the equation D
�
u( ) = 

�
u( )+

�−1
u ( ) , integrate with respect to the parameter 

from x to x+ t (from x− t to x ), and then, having combined similar terms, integrate
by parts in the expression of the form

∫ x+t

x

(
cos

√|b1b2|
(t−  + x)I− sin

√|b1b2|
(t−  + x)

B√|b1b2|

)
Bd

�
u( )
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(∫ x

x−t

(
cos

√|b1b2|
(t +  − x) I + sin

√|b1b2|
(t +  − x)

B√|b1b2|

)
Bd

�
u( )

)
.

Formula (8) follows from (6) and (7). Lemma 1 is proved. �

LEMMA 2. If p1(x) and p2(x) are the functions from the class Lloc
1 (G) and the

points x− t, x, x+ t lie in the domain G, then the following formula is true:

2t√|b1b2|
sin

 t√|b1b2|
�−1
u (x) = 2cos

 t√|b1b2|
�
u(x)− �

u(x+ t)− �
u(x− t)+

+
1√|b1b2|

∫ x+t

x−t

[
sin

√|b1b2|
(t−|x−  |)I+

+sign( − x)cos
√|b1b2|

(t−|x−  |) B√|b1b2|

]
P( )

�
u( )d+

+
1√|b1b2|

∫ x+t

x−t
(t −|x−  |)

[
sin

√|b1b2|
(t−|x−  |)I−

−sign( − x)sin
√|b1b2|

(t−|x−  |) B√|b1b2|

]
×

×
(

P( )
�−1
u ( )− �−2

u ( )
)

d . (9)

Proof. Subtracting the equality (7) from the equality (6), we obtain

�
u(x+ t)− �

u(x− t) = −2sin
 t√|b1b2|

B√|b1b2|
�
u(x)+

+B−1
∫ x+t

x−t

(
sign( − x)sin

√|b1b2|
(t−|x−  |) B√|b1b2|

−

−cos
√|b1b2|

(t−|x−  |)I
)
×
[
P( )

�
u( )− �−1

u ( )
]
d . (10)

Rewrite the formula (8) in the following form:

�
u(x+ t)+

�
u(x− t) = 2cos

 t√|b1b2|
�
u(x)+

+B−1
x+t∫

x−t

[
sin

√|b1b2|
(t−|x− |) B√|b1b2|

− sign( −x)cos
√|b1b2|

(t−|x− |) I

]
×
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×P( )
�
u( )d −B−1

∫ t

0
sin

√|b1b2|
(t− r)

B√|b1b2|

{
�−1
u (x+ r)+

�−1
u (x− r)

}
dr+

+B−1
∫ t

0
cos

√|b1b2|
(t − r)I

{
�−1
u (x+ r)− �−1

u (x− r)
}

dr.

Substituting the formulas (8) and (10) for (�−1) into the last equality, changing the
order of integration in double integrals and taking into account the relations B−1 =
− 1

|b1b2|B and
(
B−1
)2 = − 1

|b1b2| I, we obtain

�
u(x+ t)+

�
u(x− t) = 2cos

 t√|b1b2|
�
u(x)+

+
1√|b1b2|

x+t∫
x−t

[
sin

√|b1b2|
(t−|x− |) I + sign( −x)cos

√|b1b2|
(t−|x− |) B√|b1b2|

]
×

×P( )
�
u( )d − 2√|b1b2|

∫ t

0

[
cos

√|b1b2|
r sin

√|b1b2|
(t− r)+

+sin
√|b1b2|

rcos
√|b1b2|

(t − r)

]
dr×

× �−1
u (x)−

∫ x+t

x−t
d
∫ t

|x− |

[
sin

√|b1b2|
(t− r)sin

√|b1b2|
(r−|x−  |) I

|b1b2|+

+sign( − x)sin
√|b1b2|

(t− r)cos
√|b1b2|

(r−|x−  |) B

|b1b2|3/2 +

+sign( − x)cos
√|b1b2|

(t − r)sin
√|b1b2|

(r−|x−  |) B

|b1b2|3/2−

−cos
√|b1b2|

(t− r)cos
√|b1b2|

(r−|x−  |) I
|b1b2|

](
P( )

�−1
u ( )− �−2

u ( )
)

dr.

Hence, in turn, we get the formula

�
u(x+ t)+

�
u(x− t) = 2cos

 t√|b1b2|
�
u(x)− 2t√|b1b2|

sin
 t√|b1b2|

�−1
u (x)+

+
1√|b1b2|

x+t∫
x−t

[
sin

√|b1b2|
(t−|x− |) I + sign( −x)cos

√|b1b2|
(t−|x− |) B√|b1b2|

]
×

×P( )
�−1
u ( )d +

∫ x+t

x−t
(t−|x−  |)

[
cos

√|b1b2|
(t −|x−  |) I

|b1b2|−
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−sign( − x)sin
√|b1b2|

(t−|x−  |) B

|b1b2|3/2
](

P( )
�−1
u ( )− �−2

u ( )
)

d .

Formula (9) follows from the last equality. Lemma 2 is proved. �

LEMMA 3. The following formulas are true under the conditions of Lemma 2:

�
u(x+ t) =

�
u(x)+

B
|b1b2|

∫ x+t

x
(P( )− I)

�
u( )d − B

|b1b2|
∫ x+t

x

�−1
u ( )d , (11)

�
u(x− t) =

�
u(x)− B

|b1b2|
∫ x

x−t
(P( )− I)

�
u( )d +

B
|b1b2|

∫ x

x−t

�−1
u ( )d , (12)

2t
�−1
u (x) = B

{
�
u(x+ t)− �

u(x− t)
}

+
∫ x+t

x−t
(P( )− I)

�
u( )d−

− B
|b1b2|

∫ t

0
dr
∫ x+r

x−r
sign( − x)

{
(P( )− I)

�−1
u ( )− �−2

u ( )
}

d . (13)

Proof. Integrate the equation D
�
u( ) = 

�
u( )+

�−1
u ( ) with respect to  from x

to x+ t :

B
∫ x+t

x
d

�
u( )+

∫ x+t

x
P( )

�
u( )d = 

∫ x+t

x

�
u( )d +

∫ x+t

x

�−1
u ( )d .

Integrating by parts in the first integral on the left-hand side, we have

B

[
�
u(x+ t)− �

u(x)
]

= −
∫ x+t

x
(P( )− I)

�
u( )d +

∫ x+t

x

�−1
u ( )d .

Hence, in turn, we get the equality

�
u(x+ t)− �

u(x) = −B−1
∫ x+t

x
(P( )− I)

�
u( )d +B−1

∫ x+t

x

�−1
u ( )d .

As B−1 = − 1
|b1b2|B , from the last equality we obtain (11).

Formula (12) can be proved similarly.
Now let’s prove the formula (13). To do so, we rewrite this formula in the follow-

ing form:

�
u(x+ t) =

�
u(x)+

B
|b1b2|

∫ x+t

x
(P( )− I)

�
u( )d − B

|b1b2|
∫ t

0

�−1
u (x+ r)dr.

Considering the value of
�−1
u (x+ r) from (10) in the last integral, we obtain

�
u(x+ t) =

�
u(x)+

B
|b1b2|

∫ x+t

x
(P( )− I)

�
u( )d − B

|b1b2|
�−1
u (x)t−
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− B2

|b1b2|2
∫ t

0
dr
∫ x+r

x
(P( )− I)

�−1
u ( )d +

B2

|b1b2|2
∫ t

0
dr
∫ x+r

x

�−2
u ( )d .

Taking into account that B2 = −|b1b2| I, from the last equality we get

�
u(x+ t) =

�
u(x)+

B
|b1b2|

∫ x+t

x
(P( )− I)

�
u( )d − B

|b1b2|
�−1
u (x)t+

+
1

|b1b2|
∫ t

0
dr
∫ x+r

x
(P( )− I)

�−1
u ( )d − 1

|b1b2|
∫ t

0
dr
∫ x+r

x

�−2
u ( )d . (14)

Similarly,

�
u(x− t) =

�
u(x)− B

|b1b2|
∫ x

x−t
(P( )− I)

�
u( )d +

B
|b1b2|

�−1
u (x)t+

+
1

|b1b2|
∫ t

0
dr
∫ x

x−r
(P( )− I)

�−1
u ( )d − 1

|b1b2|
∫ t

0
dr
∫ x

x−r

�−2
u ( )d . (15)

Subtracting (15) from (14), we find

�
u(x+ t)− �

u(x− t) =
B

|b1b2|
∫ x+t

x−t
(P( )− I)

�
u( )d − 2B

|b1b2|
�−1
u (x)t+

+
1

|b1b2|
∫ t

0
dr
∫ x+r

x−r
sign( − x)

{
(P( )− I)

�−1
u ( )− �−2

u ( )
}

d .

The last relation implies (13). �

3. Proof of the Theorem 1

Let K = [a′,b′] ⊂ G . We are going to prove the estimate (1) by the method of
mathematical induction.

As
−1
u ≡ 0, the estimate (1) will be true for � = 0 with the constant C1(K,0,b1,b2)=

1. Assume that the estimate (1) holds for � = k. As p1(x), p2(x) ∈ L1(K), we can

choose the number R1 such that for every set E ⊂ K, mesE � 2max
{

1,
√|b1b2|

}
R1,

the inequality

max

⎧⎨
⎩ 1√|b1b2|

∫
E

(|p1( )|+ |p2( )|)d ,
1

|b1b2|
∫
E

(|b1p2( )|+ |b2 p1( )|)d

⎫⎬
⎭ � 1

240
(16)

is valid. Let’s choose the numbers h and hk+1 as follows:

0 < h � 1

max
{

1,
√|b1b2|

} min

{
b′ −a′

4
,R1,

1
|Im |

}
,

0 < hk+1 =
1

max
{

1,
√|b1b2|

}×
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×min

⎧⎪⎪⎨
⎪⎪⎩

1

120C1 (K,k,b1,b2)
(

1√
|b1b2|

+ |b1|+|b2|
|b1b2|

)
(1+ |Im |)

,
b′ −a′

4
,R1,

1
|Im |

⎫⎪⎪⎬
⎪⎪⎭

and denote h
√|b1b2| =  , hk+1

√|b1b2| = k+1.
Considering the formula (8) for l = k at the points x, x+ t, x+ 2t , where t =  ,

x ∈
[
a′, a′+b′

2

]
, by the inequalities

|sinz| , |cosz| � 2 for |Imz| � 1 (17)

we get∣∣∣∣ku(x)
∣∣∣∣� 5 max

x∈[a′+ ,b′− ]

∣∣∣∣ku(x)
∣∣∣∣+2

{
1√
b1b2

∫ x+2

x
{|p1( )|+ |p2( )|}d+

+
1

|b1b2|
∫ x+2

x
{|b1p2( )|+ |b2p1( )|}d

}∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+4

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

.

Hence, due to (16), for every x ∈
[
a′, a′+b′

2

]
we have

∣∣∣∣ku(x)
∣∣∣∣� 5 max

x∈[a′+ ,b′− ]

∣∣∣∣ku(x)
∣∣∣∣+ 1

2

∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+4

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

(18)

From (8) we similarly obtain the inequality (18) for x ∈
[

a′+b′
2 ,b′

]
. So, for x ∈ K we

have

1
2

∥∥∥∥k
u

∥∥∥∥
L2
(K)

−4

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

� 5 max
x∈[a′+ ,b′− ]

∣∣∣∣ku(x)
∣∣∣∣ .

Hence,
1
10

[∥∥∥∥k
u

∥∥∥∥
L2
(K)

−8

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

]
�

� max
x∈[a′+ ,b′− ]

∣∣∣∣ku(x)
∣∣∣∣ . (19)

Due to (17), from (9) for t =  , x ∈ [a′ +  ,b′ −  ] , � = k+1 we have

2 |sin |
∣∣∣∣ku(x)

∣∣∣∣� 6

∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

+2

{
1√
b1b2

∫ x+

x−
{|p1( )|+ |p2( )|}d+
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+
1

|b1b2|
∫ x+

x−
{|b1p2( )|+ |b2p1( )|}d

}∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+2

{
1√|b1b2|

∫ x+

x−
{|p1( )|+ |p2( )|}d +

+
1

|b1b2|
∫ x+

x−
{|b1p2( )|+ |b2p1( )|}d

}∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+4 2

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

.

Then, by the inequality (16) and the arbitrariness of the point x ∈ [a′ +  ,b′ −  ] , we
find

2 |sin | max
x∈[a′+ ,b′− ]

∣∣∣∣ku(x)
∣∣∣∣� 7

∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

+

60

∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+4 2

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

,

or

|sin | max
x∈[a′+ ,b′− ]

∣∣∣∣ku(x)
∣∣∣∣� 4



∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

+
1

120

∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+2

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

.

Combining the last inequality with (19), we obtain

|sin |
10

[∥∥∥∥k
u

∥∥∥∥
L2
(K)

−8

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

]
−

− 1
120

∥∥∥∥k
u

∥∥∥∥
L2
(K)

−2

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

� 4


∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

.

By the assumption of validity of the estimate (1) for � = k , we have{
|sin |

10

[
1−8

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}
C1 (K,k,b1,b2) (1+ |Im |)

]
−

− 1
120

−2

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}
C1 (K,k,b1,b2) (1+ |Im |)

}∥∥∥∥k
u

∥∥∥∥
L2
(K)

�

� 4


∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

(20)
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Consider the case

 � 2max
{

1,
√
|b1b2|

}
max

{
4

b′ −a′
,

1
R1

,120C1 (K,k,b1,b2)×

×
(

1√|b1b2|
+

|b1|+ |b2|
|b1b2|

)}
(1+ |Im |) .

Then, by the definition of the number k+1 , we have |k+1 | � 2, |k+1Im | � 1.
We need the following elementary inequality: sup

∈( 1
2 ,1)

|sinz| > 1
3 for |Imz| � 1 and

|z| � 2. Let’s choose the number  ∈ ( 1
2 ,1
)

such that |sink+1| � 1
3 . Then from

(20) for  = k+1 we obtain{
1
30

[
1− 8

120

]
− 1

120
− 1

60

}∥∥∥∥k
u

∥∥∥∥
L2
(K)

� 4


∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

.

Consequently, ∥∥∥∥k
u

∥∥∥∥
L2
(K)

� 1400
k+1

∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

.

By the definition of the number k+1 , we have

∥∥∥∥k
u

∥∥∥∥
L2
(K)

� 1400max

{
4

b′ −a′
,

1
R1

,120C1 (K,k,b1,b2)

(
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

)}
×

× (1+ |Im |)
∥∥∥∥k+1

u

∥∥∥∥
L2
(K)

. (21)

Consider the case

| | < 2max
{

1,
√
|b1b2|

}
max

{
4

b′ −a′
,

1
R1

,120C1 (K,k,b1,b2) ×

×
(

1√|b1b2|
+

|b1|+ |b2|
|b1b2|

)}
(1+ |Im |) .

Choose the number

Sk � 2max
{

1,
√

|b1b2|
}

max

{
4

b′ −a′
,

1
R1

,120C1 (K,k,b1,b2)

(
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

)}

such that

1
|b1b2|

∫
E
{|b1 p2( )|+ |b2 p1( )|+ | |(|b1|+ |b2|)}d <

1
8
,∀E ⊂ K, mesE � 1

Sk (1+ |Im |) .
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This is possible due to the summability of the functions p1( ) and p2( ) on K. Define

the number  k+1 =
√

|b1b2|
2Sk(1+|Im |) . Then, from the formulas (11) and (12) for � = k we

find∥∥∥∥k
u

∥∥∥∥
L2
(K)

� 2 max
x∈[a′+ k+1,b′− k+1]

∣∣∣∣ku(x)
∣∣∣∣+ 1

8

∥∥∥∥k
u

∥∥∥∥
L2
(K)

+2
|b1|+ |b2|
|b1b2|  k+1

∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

.

Consequently,

7
16

∥∥∥∥k
u

∥∥∥∥
L2
(K)

− |b1|+ |b2|
|b1b2|  k+1

∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

� max
x∈[a′+ k+1,b′− k+1]

∣∣∣∣ku(x)
∣∣∣∣ . (22)

From (13) for t =  k+1 and � = k+1 it follows

2 k+1 max
x∈[a′+ k+1,b′− k+1]

∣∣∣∣ku(x)
∣∣∣∣� 2(|b1|+ |b2|)

∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

+

+
1
8

∥∥∥∥k+1
u

∥∥∥∥
L2(K)

+
1
8
 k+1

∥∥∥∥k
u

∥∥∥∥
L2(K)

+
|b1|+ |b2|
|b1b2|

(
 k+1

)2
∥∥∥∥k−1

u

∥∥∥∥
L2(K)

.

Hence,

max
x∈[a′+ k+1,b′− k+1]

∣∣∣∣ku(x)
∣∣∣∣� |b1|+ |b2|+ 1

16

 k+1

∥∥∥∥k+1
u

∥∥∥∥
L2
(K)

+
1
16

∥∥∥∥k
u

∥∥∥∥
L2
(K)

+

+
|b1|+ |b2|
2 |b1b2|  k+1

∥∥∥∥k−1
u

∥∥∥∥
L2
(K)

.

Taking into account the inequality (22), from the last relation we have

3
8

∥∥∥∥k
u

∥∥∥∥
L2(K)

� 3
2
|b1|+ |b2|
|b1b2|  k+1

∥∥∥∥k−1
u

∥∥∥∥
L2(K)

+
(
|b1|+ |b2|+ 1

16

)
1

 k+1

∥∥∥∥k+1
u

∥∥∥∥
L2(K)

.

Due to the definitions of the numbers  k+1 and Sk , we obtain the estimate

∥∥∥∥k
u

∥∥∥∥
L2
(K)

�
16Sk

(|b1|+ |b2|+ 1
16

)
3
√|b1b2|−6(|b1|+ |b2|) 1

Sk
C1 (K,k,b1,b2)

(1+ |Im |)
∥∥∥∥k+1

u

∥∥∥∥
L2
(K)

.

(23)
The estimates (21) and (23) imply (1) for � = k+1.

Now let’s prove the estimate (2). Rewrite the formula (7) at the points x, x + t,

x ∈
[
a′, a′+b′

2

]
, 0 � t � �+1 , as follows:

�
u(x) =

[
cos

√|b1b2|
tI + sin

√|b1b2|
t

B√|b1b2|

]
�
u(x+ t)+
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+B−1
∫ x+t

x

(
sin

√|b1b2|
( − x)

B√|b1b2|
+

+cos
√|b1b2|

( − x)I

)(
P( )

�
u( )− �−1

u ( )
)

d .

Integrating the last equality with respect to t from 0 to �+1 and using the inequality
(17), we find

�+1

∣∣∣∣ �u(x)
∣∣∣∣� 2

(
1+

|b1|+ |b2|√|b1b2|

)∫ �+1

0

∣∣∣∣ �u(x+ t)
∣∣∣∣dt+

+2�+1

{
1√|b1b2|

∫ x+�+1

x
(|p1 ( )|+ |p2 ( )|)d+

+
1

|b1b2|
∫ x+�+1

x
(|b1p2 ( )|+ |b2p1 ( )|)d

}∥∥∥∥ �
u

∥∥∥∥
L2
(K)

+
2√|b1b2|

 2
�+1

∥∥∥∥�−1
u

∥∥∥∥
L2
(K)

+

+2
|b1|+ |b2|√|b1b2|

 2
�+1

∥∥∥∥�−1
u

∥∥∥∥
L2
(K)

.

Applying Hölder’s inequality and the estimate (1), from the last relation, by (16), we
obtain

�+1

∣∣∣∣ �u(x)
∣∣∣∣� 2

(
1+

|b1|+ |b2|√|b1b2|

)


1− 1
p

�+1

∥∥∥∥ �
u

∥∥∥∥
L2

p(K)
+

1
60

�+1

∥∥∥∥ �
u

∥∥∥∥
L2

p(K)
+

+2 2
�+1

{
1√|b1b2|

+
|b1|+ |b2|√|b1b2|

}
C1 (K, �,b1,b2)(1+ |Im |)

∥∥∥∥ �
u

∥∥∥∥
L2

p(K)
.

Hence, in turn, it follows∣∣∣∣�u(x)
∣∣∣∣� 2

(
1+

|b1|+ |b2|√|b1b2|

)

− 1

p
�+1

∥∥∥∥ �
u

∥∥∥∥
L2

p(K)
+

[
1
60

+2�+1

{
1√|b1b2|

+
|b1|+ |b2|
|b1b2|

}
×

×C1 (K, �,b1,b2) (1+ |Im |)] ∥∥∥∥ �
u

∥∥∥∥
L2
(K)

�

� 2

(
1+

|b1|+ |b2|√|b1b2|

)

− 1

p
�+1

∥∥∥∥ �
u

∥∥∥∥
L2

p(K)
+

1
30

∥∥∥∥ �
u

∥∥∥∥
L2
(K)

.

Using formula (6), we obtain the similar formula for x∈
[

a′+b′
2 ,b′

]
, too. Consequently,

∥∥∥∥ �
u

∥∥∥∥
L2
(K)

� 3

(
1+

|b1|+ |b2|√|b1b2|

)[
max

{
4

b′ −a′
,

1
R1

,120C1 (K,k,b1,b2)×
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×
(

1√|b1b2|
+

|b1|+ |b2|
|b1b2|

)}] 1
p

(1+ |Im |) 1
p

∥∥∥∥ �
u

∥∥∥∥
L2
(K)

.

The validity of the estimate (2) is proved. Theorem 1 is proved.

4. Proof of the Bessel property criterion

Necessity. Let G = (0,2) and  be an arbitrary real number. Introduce an index
set

I = {k : |Rek − | � 1, |Imk| � C0} ,

where C0 is a constant defined in the condition (3). Let’s choose the positive number

R such that the inequality (R) = sup
E⊂G

{
‖P‖1,E

}
� L−1 holds for every set E ⊂ G,

mesE � 2R, where L is a positive number to be defined later and

‖P‖1,E =
∫

E
{|p1(x)|+ |p2(x)|}dx.

Let k ∈ I and x ∈ [0, ] . Consider the formula of average value (8) at the points
x, x+ t, x+2t for t ∈ [0,R]:

uk(x) = 2uk(x+ t)cos
k√|b1b2|

t −uk(x+2t)+

+B−1
∫ x+2t

x

{
sin

k√|b1b2|
(t−|x+ t−  |) B√|b1b2|

−

−sign( − x− t)cos
k√|b1b2|

(t −|x+ t−  |)I
}

[P( )uk ( )−kuk−1 ( )]d .

Adding and subtracting 2uk(x + t)cos √
|b1b2|

t on the right-hand side of this equality

and integrating the obtained relation with respect to t from 0 to R , we get

uk(x) = 2R−1
∫ R

0
uk(x+ t)cos

√|b1b2|
tdt−R−1

∫ R

0
uk(x+2t)dt+

+4R−1
∫ R

0
uk(x+ t)sin

k + 
2
√|b1b2|

t×

×sin
−k

2
√|b1b2|

tdt +R−1B−1
∫ R

0

∫ x+2t

x

{
sin

(
k√|b1b2|

(t−|x+ t−  |)
)

B√|b1b2|
−

−sign( − x− t)cos

(
k√|b1b2|

(t−|x+ t−  |)
)

I

}
[P( )uk( )−kuk−1 ( )]ddt.
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Applying formula (6) to the third term, we obtain

uk(x) = R−1
∫ 2

0
uk(t)w(t)dt +4R−1

∫ R

0

(
cos

k√|b1b2|
tI− sin

√|b1b2|
t

B√|b1b2|

)
×

×sin
k + 

2
√|b1b2|

t sin
−k

2
√|b1b2|

tdt uk(x)+

+4R−1B−1
∫ R

0

∫ x+t

x

{(
sin

k√|b1b2|
(t −| − x|)

)
B√|b1b2|

−

−
(

cos
k√|b1b2|

(t−| −x|)
)

I

}
[P( )uk( )−kuk−1( )]d sin

 +k

2
√|b1b2|

t sin
−k

2
√|b1b2|

tdt+

+R−1B−1
∫ R

0

∫ x+2t

x

{(
sin

k√|b1b2|
(t−|x+ t−  |)

)
B√|b1b2|

−

−
(

cos
k√|b1b2|

(t−|x+ t−  |)
)

I

}
[P( )uk( )−kuk−1( )]ddt =

= R−1
∫ 2

0
uk(t)w(t)dt + J1 + J2 + J3, (24)

where w(t) = 2cos √
|b1b2|

(x− t)− 1
2 for x � t � x+R, w(t) = − 1

2 for x+R < t �
x+2R and w(t) = 0 for t /∈ [x,x+2R].

Taking into account k ∈ Jk and using the inequalities |sinz| � 2, |cosz| � 2,
|sinz| � 2 |z| for |Imz| � 1, we obtain the following estimates for J1, J2, J3 :

|J1| � 8R

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
|−k| |uk(x)| �

� 8R

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
(1+ |Imk|) |uk(x)| �

� 8R

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
(1+C0)‖uk(x)‖,2 ;

|J2| � 32

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)(
(R)‖uk‖,2 +

R
2
‖kuk−1‖,2

)
;

|J3| � 2

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)(
(R)‖uk‖,2 +R‖kuk−1‖,2

)
.
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Considering these estimates in (24), we arrive at the inequality

|uk(x)| � R−1

∣∣∣∣
∫ 2

0
uk(t)w(t)dt

∣∣∣∣+8

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
×

× (R(1+C0)+5(R))‖uk‖,2 +18R

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
‖kuk−1‖,2 . (25)

In case x∈ [ ,2 ] , the inequality (25) can be proved similarly. In this case the function
w(t) is defined as follows: w(t) =− 1

2 for x−2R � t < x−R, w(t) = 2cos √
|b1b2|

(x−
−t)− 1

2 for x−R� t � x, and w(t) = 0 for t /∈ [x−2R,x] . Consequently, the inequality
(25) is true for every x ∈ [0,2 ] .

Applying the estimates (1), (2) and taking into account the relation 1+ |Imk| �
1+C0 , from (25) we obtain

|uk(x)| � R−1

∣∣∣∣
∫ 2

0
uk(t)w(t)dt

∣∣∣∣+
+

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

){
40(R)C2(G,nk,b1,b2)(1+C0)

1
2 +

+8RC2(G,nk,b1,b2)(1+C0)
3
2 +

+18RC1(G,nk,b1,b2)C2(nk,G,b1,b2)k (1+C0)
3
2

}
‖uk‖2,2 .

Due to the uniform boundedness of the lengths of chains,(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
C2(G,nk,b1,b2) � 1 = const,

(
2√|b1b2|

+
|b1|+ |b2|
|b1b2|

)
C1(G,nk,b1,b2)C2(G,nk,b1,b2) � 2 = const.

Consequently,

|uk(x)| � R−1

∣∣∣∣
∫ 2

0
uk(t)w(t)dt

∣∣∣∣+
+
{

40(R)1 (1+C0)
1
2 + 8R1 (1+C0)

3
2 + 18R2k (1+C0)

3
2

}
‖uk‖2,2 .

By multiplying both sides of this inequality by ‖uk‖−1
2,2 , squaring, and applying the

inequality

∣∣∣∣ m

i=1

ai

∣∣∣∣
2

� m
m

i=1

|ai|2 , we find

|uk(x)|2 ‖uk‖−2
2,2 � 3R−2

{∣∣∣∣
∫ 2

0
u1

k(t)w(t)dt

∣∣∣∣
2

‖uk‖−2
2,2 +

∣∣∣∣
∫ 2

0
u2

k(t)w(t)dt

∣∣∣∣
2

‖uk‖−2
2,2

}
+
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+3
{

40L−11 (1+C0)
1
2 + 8R1 (1+C0)

3
2 + 18R2k (1+C0)

3
2

}2
,

where uk(t) =
(
u1

k(t),u
2
k(t)
)T

.
By Bessel’s inequality, we get the validity of the inequality


k∈J

|uk(x)|‖uk‖−2
2,2 � 6MR−2 ‖w‖2

2 +

+3
{
40L−1 1 (1+C0)

1
2 +8R1 (1+C0)

3
2 + 18R2k (1+C0)

3
2

}2


k∈J

1 (26)

for every finite set J ⊂ I . Taking into account the equality ‖w‖2
2 = O(R) , choosing R

(consequently, the number L−1 too) small enough to have an estimate that

3
{
40L−1 1 (1+C0)

1
2 +8R1 (1+C0)

3
2 + 18R2k (1+C0)

3
2

}2
� 1

4
.

Integrating (26), we obtain


k∈J

1 � const R−1 = const.

Due to the arbitrariness of the set J ⊂ I , we get the validity of (4). The necessity of
the inequality (4) is proved.

Sufficiency. For definiteness, we consider G = (0,2) . Rewriting the formula (6)
for uk(x + t) with x = 0 and multiplying it scalarly by the vector function
f (t) = ( f1(t), f2(t))

T ∈ L2
2 (0,2) , we arrive at the conclusion that to prove the validity

of Bessel’s inequality for the system k(t) = uk(t)‖uk‖−1
2,2 , k = 1,2, . . . , it suffices to

prove the validity of the following inequalities:




k=1

∣∣∣∣∣
∫ 2

0
fi(t)cos

k√|b1b2|
tdt

∣∣∣∣∣
2 ∣∣ i

k(0)
∣∣2 � C‖ f‖2

2,2 , i = 1,2; (27)




k=1

∣∣∣∣∣
∫ 2

0
fi(t)sin

k√|b1b2|
tdt

∣∣∣∣∣
2 ∣∣3−i

k (0)
∣∣2 � C‖ f‖2,2 , i = 1,2; (28)




k=1

∣∣∣∣∣
∫ 2

0
f1(t)

∫ t

0
p1( )1

k ( )sin
k√|b1b2|

(t−  )ddt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , (29)




k=1

∣∣∣∣∣
∫ 2

0
f1(t)

∫ t

0
p2( )2

k ( )cos
k√|b1b2|

(t−  )ddt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , (30)




k=1

∣∣∣∣∣
∫ 2

0
f2(t)

∫ t

0
p1( )1

k ( )cos
k√|b1b2|

(t−  )ddt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , (31)
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k=1

∣∣∣∣∣
∫ 2

0
f2(t)

∫ t

0
p2( )2

k ( )sin
k√|b1b2|

(t−  )ddt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , (32)




k=1

∣∣∣∣∣k

∫ 2

0
fi(t)

∫ t

0

ui
k−1( )
‖uk‖2,2

sin
k√|b1b2|

(t −  )ddt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , i = 1,2; (33)




k=1

∣∣∣∣∣k

∫ 2

0
fi(t)

∫ t

0

u3−i
k−1( )
‖uk‖2,2

cos
k√|b1b2|

(t −  )ddt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , i = 1,2; (34)

where  i
k( ) = ui

k ( )‖uk‖−1
2,2 .

Let’s prove the estimate (27). By the estimate (2) and the conditions (3), (4), we
have ∣∣ i

k(0)
∣∣= ∣∣ui

k (0)
∣∣‖uk‖−1

2,2 � ‖uk‖,2
‖uk‖−1

2,2 �

� C2 (G,nk,b1,b2)(1+C0)
1
2 ‖uk‖2,2

‖uk‖−1
2,2 � C2 (G,nk,b1,b2)(1+C0)

1
2 = const,

because the sequence C2 (G,nk,b1,b2) is bounded due to the condition (4). Therefore,
for (27) to hold, it is sufficient that




k=1

∣∣∣∣∣
∫ 2

0
fi(t)cos

k√|b1b2|
tdt

∣∣∣∣∣
2

� C‖ f‖2
2,2 , i = 1,2. (35)

Under the conditions (3) and (4), the validity of the inequality (35) for  � 1 has
been proved in [8], which implies the validity of (35) for Rek ∈ (−,+), |Imk|�
C0, because, by the conditions of Theorem 1.2, the condition (4) is satisfied for every
 ∈ (−,+). The inequality (28) can be proved in a similar way.

Let’s make sure that the inequalities (29)–(32) are true. They all are proved in the
same way. Therefore, we restrict ourselves to proving only the inequality (29). Denote

gi(t, ) =
{

fi(t +  ), 0 � t � 2−  ,
0, 2−  < t � 2 ,

where  ∈ [0,2 ] , i = 1,2. Then, by the estimate (2) and the conditions (3), (4), we
obtain

Jk =

∣∣∣∣∣
∫ 2

0
f1(t)

∫ t

0
p1( )1

k ( )sin
k√|b1b2|

(t−  )ddt

∣∣∣∣∣
2

=

=
∫ 2

0
f1(t)

∫ t

0
p1( )1

k ( )sin
k√|b1b2|

(t−  )ddt×

×
∫ 2

0
f1(t)

∫ t

0
p1( )1

k ( )sin
k√|b1b2|

(t−  )ddt =

=
∫ 2

0
p1( )1

k ( )
∫ 2

0
g1(t, )sin

k√|b1b2|
tdtd×
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×
∫ 2

0
p()1

k ()
∫ 2

0
g1(r,)sin

k√|b1b2|
rdrd =

=
∫ 2

0

∫ 2

0
p1( )p1()1

k ( )1
k ()

∫ 2

0
g1(t, )sin

k√|b1b2|
tdt×

×
∫ 2

0
g1(r,)sin

k√|b1b2|
rdrdd �

�
[
C2 (G,nk,b1,b2)

]2
(1+C0)

∫ 2

0

∫ 2

0
|p1( )| |p1()|

∣∣∣∣∣
∫ 2

0
g1(t, )sin

k√|b1b2|
tdt

∣∣∣∣∣×

×
∣∣∣∣∣
∫ 2

0
g1(r,t)sin

k√|b1b2|
rdr

∣∣∣∣∣dd �

� const
∫ 2

0

∫ 2

0
|p1( )| |p1()|

∣∣∣∣∣
∫ 2

0
g1(t, )sin

k√|b1b2|
tdt

∣∣∣∣∣×

×
∣∣∣∣∣
∫ 2

0
g1(r,) sin

k√|b1b2|
rdr

∣∣∣∣∣dd.

Hence, for an arbitrary positive integer N we find

N


k=1

Jk � const
∫ 2

0

∫ 2

0
|p1( )| |p1()|

(
N


k=1

∣∣∣∣∣
∫ 2

0
g1(t, )sin

k√|b1b2|
tdt

∣∣∣∣∣×

×
∣∣∣∣∣
∫ 2

0
g1(r,) sin

k√|b1b2|
rdr

∣∣∣∣∣
)

dd �

� const
∫ 2

0

∫ 2

0
|p1( )| |p1()| ‖g1(·, )‖2 ‖g1(·,)‖2 dd.

Taking into account that for every fixed  ∈ [0,2 ] the inequality ‖g1 (·, )‖2 � ‖ f1‖2
holds, we obtain

N


k=1

Jk � const ‖p1‖2
1 ‖ f1‖2

2 � const ‖ f‖2
2,2 .

Hence, as the number N is arbitrary, we get the validity of the inequality (28).
Now let’s prove the validity of (33). By the estimates (1), (2) and the conditions

(3), (4), we have

k
∣∣ui

k−1( )
∣∣‖uk‖−1

2,2 � kC
1 (G,nk,,b1,b2

)
C2 (G,nk,,b1,b2

)
(1+C0)

3
2 ×

×‖uk‖2,2 ‖uk‖−1
2,2 = kC

1 (G,nk,,b1,b2
)
C2 (G,nk,b1,b2

)
(1+C0)

3
2 � C = const.
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After changing the order of integration, the left-hand side of the inequality (33) gets
majorized from above by the series

C



k=1

∫ 2

0

∣∣∣∣∣
∫ 2

0
gi(t, )sin

k√|b1b2|
tdt

∣∣∣∣∣
2

d .

This series converges and its some does not exceed the value C‖ f‖2
2,2 . The inequality

(33) is proved. The inequality (34) can be proved similarly. Theorem 2 is proved.
The proofs of Theorems 3 and 4 are similar to the proofs of Theorems 1.6 and 1.7,

respectively, in [19, pp. 951–953].
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