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Abstract. In this paper, we mainly study the smallest singular value of submatrices consisting of
row vectors bounded by 1, and we establish that the minimal smallest singular value of subma-
trices of matrices of size n+1 times n consisting of row vectors bounded by 1 is equal to 1√

n if

and only if the rows of diag (ε1,ε2, · · · ,εn+1)A are the coordinates of the n+1 vertices of a reg-
ular n -simplex on the unit (n−1) -sphere Sn−1 in Rn for some (ε1,ε2, · · · ,εn+1)∈ {−1,1}n+1 .
Moreover, we establish that the minimal smallest singular value of submatrices of matrices of
size n times 2 consisting of row vectors bounded by 1 is sharply bounded above by

√
2sin π

2n ,
and furthermore, this bound is achieved if and only if the rows of diag(ε1,ε2, · · · ,εn)A are the
coordinates of n adjacent vertices of a regular 2n -gon on the unit circle S1 in R2 for some
(ε1,ε2, · · · ,εn) ∈ {−1,1}n . Additionally, we show that the equiangular frames in the projective
spaces do not form the matrices in the general dimensions with the optimal smallest singular
value of the submatrices, contrary to the case of matrices of dimension n+ 1 by n or negative
to the conjectures based on the phenomena in the low dimensions.

1. Introduction

In signal processing, measurements, frames, transformations, and dictionaries (see,
for example, [3], [33], [11], [14] and [8]), all of which are essentially matrices, have
been studied. As the main features or characteristics of a matrix or linear transforma-
tion, the singular values and their generalized forms have been studied, for example, in
[26], [23], [15], [42], and [27]. It is well known that the singular values of a matrix are
determined by both the magnitudes and the angles of the row vectors of the matrix in
Euclidean space, as the singular values of a matrix are the square roots of the eigenval-
ues of the matrix multiplied by its transpose, and the eigenvalues of a matrix measure
how much the matrix stretches or shrinks the vectors along different directions (see, for
example, [9], [16] and [34]).

Recent research has focused on the study of rectangular matrices, as seen in works
such as [42], [23], [37], [28], and [43]. In [30], we showed that the matrix problem can
be reduced to a problem of combinatorial geometry by considering the columns of a
“portrait” matrix (number of rows greater than that of columns) as points in a bounded
region in a plane. When the magnitudes of all rows of a rectangular matrix are bounded,
we can estimate the smallest singular values of submatrices with respect to the size of
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the matrix, since there are configurations of matrices whose minimal smallest singular
values are of the order of a power of the size with a negative exponent. In [30], we
also established some estimates of the distances between points in a set or the distances
from points to lines connecting two other points in a set of points in a bounded region,
and the decay rate of these distances determines in some sense the decay rate of the
smallest singular values of submatrices with bounded row vectors. It is worth noting
that the combinatorial geometry problem we considered is related to the Heilbronn
triangle problem (see, for example, [19], [49], and [6]). There have been efforts to
develop algorithms for finding counterexamples to the original Heilbronn conjecture
(see, for example [24] and [19]). However, to the best of our knowledge, there does not
appear to be an implementable algorithm that finds explicit or concrete point sets. It
would be interesting to determine the optimal arrangements of n points in a square or
unit disk for the Heilbronn triangle problem or for our problem of interest.

In [5], Lipschitz bounds were obtained for the nonlinear analysis map and theoret-
ical performance bounds were established for each reconstruction algorithm. Addition-
ally, [30]discovered a relationship between the smallest singular value of submatrices
and the minimum distance of points to connecting lines in a bounded set. Through the
use of integral geometry and combinatorial geometry, the decay rate of the minimal dis-
tance for sets of points was established when the number of points on the boundary of
the convex hull of any subset is not too large relative to the set’s cardinality. Numerical
experiments were conducted in [30]to analyze the minimum distance for various point
sets, including extreme configurations. However, the sharpness of the bound for the
minimal smallest singular value frames of low dimensions for signal processing was
not demonstrated in[30].

As for the applications of the theoretical work on the smallest singular value of
submatrices, it is related to numerical erasure robustness of frames and robustness in
signal reconstruction, and recently, there have been works on this, on which one can
see for example [13], [12], and [29]. The stability of frames of low dimensions for
signal recovery, as well as their applicability to signal processing, relies to some extent
on the smallest singular values. These values play a crucial role in compressed sensing,
matrix recovery (as discussed in [47]), phase retrieval (as explored in [2] and [18]), and
various other fields. Consequently, this paper’s findings can be utilized to construct
robust frames that are resilient to errors in signal processing, as demonstrated in works
such as [39] and [21].

The minimal smallest singular value of submatrices provides a useful measure for
assessing the stability of frames for signal processing (see, for example, [17] and [48]).
By considering this value, we can construct stable frames that provide robust repre-
sentations of signals against noise and errors (see, for example, [36] and [32]). Stable
frames with large minimal smallest singular values have many applications in signal
processing (see, for example, [41] and [25]). By using these frames in tasks such as sig-
nal reconstruction and denoising, we can improve the performance of signal processing
algorithms and provide more accurate and robust representations of signals (see, for
example, [46] and [10]). Overall, the minimal smallest singular value of submatrices
is an important measure for assessing the stability of frames for signal processing (see,
for example, [1]). By using various techniques to construct stable frames with large
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minimal smallest singular values, we can improve the performance of signal process-
ing algorithms and provide more accurate and robust representations of signals (see, for
example, [20]).

The main contribution of this paper is to establish that the minimal smallest sin-
gular value of submatrices of matrices of size n+1 times n consisting of row vectors
bounded by 1 is equal to 1√

n if and only if the rows of diag(ε1,ε2, · · · ,εn+1)A are the

coordinates of the n+1 vertices of a regular n -simplex on the unit (n−1)-sphere Sn−1

in Rn for some (ε1,ε2, · · · ,εn+1) ∈ {−1,1}n+1 . Moreover, we establish that the min-
imal smallest singular value of submatrices of matrices of size n times 2 consisting
of row vectors bounded by 1 is sharply bounded above by

√
2sin π

2n , and furthermore,
this bound is achieved if and only if the rows of diag(ε1,ε2, · · · ,εn)A are the coordi-
nates of n adjacent vertices of a regular 2n -gon on the unit circle S1 in R2 for some
(ε1,ε2, · · · ,εn) ∈ {−1,1}n . Additionally, we show that the equiangular frames in the
projective spaces do not form the matrices in the general dimensions with the optimal
smallest singular value of the submatrices, contrary to the case of matrices of dimen-
sion n + 1 by n or negative to the conjectures based on the phenomena in the low
dimensions. we show that the equiangular frames in the projective spaces do not form
the matrices in the general dimensions with the optimal smallest singular value of the
submatrices, contrary to the case of matrices of dimension n + 1 by n or negative to
the conjectures based on the phenomena in the low dimensions. The applications of
this work may include, but are not limited to, improving the numerical stability of com-
pressed sensing, constructing error-free frames in noisy settings, constructing frames
needed for a given level of stability, and proving further or more general results about
numerically erasure-robust frame (NERF) bounds or frame erasure robustness.

This paper is structured as follows: In Section 2, we prove the theorem on the
minimal smallest singular value of slim matrices, and, in particular, we show the op-
timal decay rate for the base case; in Section 3, we show that the equiangular frames
in projective spaces do not form the matrices in general dimensions with the optimal
smallest singular value of submatrices, contrary to the case of matrices of dimension
n+1 by n , that is, negative to conjectures based on low dimensions.

2. On the minimal smallest singular value

First, the following basic lemma about submatrices can be easily established, and
in this paper, we denote the k -singular value of a matrix A by σk (A) and the submatrix
of A consisting of rows with indices in the set S⊆{1, . . . ,N} by AS . There are probably
many ways to prove it (see, for example, [45] and [44]), but we provide here a direct
proof from the perspective of vector extension.

LEMMA 2.1. For any real matrix A of size N by n with N � n, one has

σn (A) � σn (AS) (2.1)

for all S ⊆ {1, . . . ,N} with |S| = n, and

σ1 (A) � σ1 (AS) (2.2)
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for all S ⊆ {1, . . . ,N} with |S|= n.

Proof. For any S ⊆ {1, . . . ,N} with |S| = n ,

σn (AS) = inf
v∈Rn,‖v‖=1

‖ASv‖ ; (2.3)

and on the other hand,

σn (A) = inf
V⊆Rn,dim(V )=1

‖A|V‖ = inf
v∈Rn,‖v‖=1

‖Av‖ . (2.4)

Since Av is basically a vector extension of ASv for every v ∈ R
n,‖v‖ = 1, we have

‖ASv‖ � ‖Av‖ (2.5)

for every v ∈ Rn,‖v‖ = 1. Thus, it follows from (2.3) and (2.4) that

σn (AS) � σn (A) (2.6)

for any S ⊆ {1, . . . ,n+1} with |S| = n . Therefore, we obtain (2.1), and similarly, we
also obtain (2.2). �

More generally, the following lemma can also be easily established. There are
probably many ways to prove it (see, for example, [45] and [44]), but we provide here
a direct proof from the perspective of vector extension.

LEMMA 2.2. For any real matrix A of size N by n with N � n, one has

σk (A) � σk (AS) (2.7)

for k = 1,2, · · ·n for all S ⊆ {1, . . . ,N} with |S|= n.

Proof. For any S ⊆ {1, . . . ,N} with |S| = n ,

σk (AS) = inf
V⊆Rn,dim(V )=n−k+1

‖AS|V‖ ; (2.8)

and on the other hand,

σk (A) = inf
V⊆Rn,dim(V )=n−k+1

‖A|V‖ . (2.9)

Since Av is basically a vector extension of ASv for every v ∈ Rn,‖v‖ = 1, we have

‖ASv‖ � ‖Av‖ (2.10)

for every v ∈ Rn,‖v‖ = 1 and therefore

‖AS|V‖ � ‖A|V ‖ (2.11)
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for every V ⊆ Rn with dim(V ) = n− k+1. Thus, it follows from (2.8) and (2.9) that

σk (A) � σk (AS) (2.12)

for k = 1,2, · · · ,n for all S ⊆ {1, . . . ,N} with |S| = n . �
From the growth rate of the smallest singular value of random matrices established

in [4], one can obtain that

σn (A) →
(
2−

√
2
)√

n (2.13)

for N = 2n . On the other hand,

σn (AS) � O

(
1√
n

)
. (2.14)

In [30], it was proved that

min
S⊆{1,...,n+1},|S|=n

σn (AS) � 1√
n

(2.15)

for any n + 1 by n matrix A =

⎡
⎢⎣

a1
...

an+1

⎤
⎥⎦ with ‖ai‖ � 1, i = 1, . . . ,n + 1. Here we

further establish the following theorem:

THEOREM 2.3. For any n + 1 by n matrix A =

⎡
⎢⎣

a1
...

an+1

⎤
⎥⎦ with ‖ai‖ � 1 , i =

1, . . . ,n+1 , the inequality

min
S⊆{1,...,n+1},|S|=n

σn (AS) � 1√
n

(2.16)

is sharp, and the equality holds if and only if the rows of

diag(ε1,ε2, · · · ,εn+1)A (2.17)

are the coordinates of the n + 1 vertices of a regular n-simplex on the unit (n−1)-
sphere Sn−1 in Rn for some (ε1,ε2, · · · ,εn+1) ∈ {−1,1}n+1 .

Proof. Since a1 , . . . , an+1 are linear dependent, there are c1 , . . . , cn+1 , such that

n+1

∑
i=1

ciai = 0 (2.18)

with
n+1

∑
i=1

c2
i = 1. (2.19)
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Without loss of generality, assume |cn+1| � min(|c1| , . . . , |cn|) . If cn+1 = 0, (2.16) is
trivial, because there exists an S such that AS is singular. It suffices to consider the case
of cn+1 �= 0. Therefore,

cn+1an+1 = −
n

∑
i=1

ciai. (2.20)

By (2.19),

(n+1)c2
n+1 �

n+1

∑
i=1

c2
i = 1. (2.21)

It follows that

|cn+1| � 1√
n+1

(2.22)

and furthermore
‖cn+1an+1‖√

1− c2
n+1

� 1√
n+1

·
√

n+1√
n

=
1√
n
. (2.23)

Since

min
S⊆{1,...,n+1},|S|=n

σn (AS) � ‖∑n
i=1 ciai‖√
∑n

i=1 c2
i

=
‖cn+1an+1‖√

1− c2
n+1

, (2.24)

therefore (2.16) follows from (2.23).
Obviously, when the rows of A are the coordinates of the n+1 vertices of a regular

n -simplex on the unit (n−1)-sphere Sn−1 in Rn , we have

min
S⊆{1,...,n+1},|S|=n

σn (AS) =
1√
n
. (2.25)

Thus it also shows the sharpness of the inequality (2.16).

Coversely, if any n+1 by n matrix A =

⎡
⎢⎣

a1
...

an+1

⎤
⎥⎦ with ‖ai‖� 1, i = 1, . . . ,n+1,

has

min
S⊆{1,...,n+1},|S|=n

σn (AS) =
1√
n
, (2.26)

then A has full rank and therefore there are c1 , . . . , cn+1 , none of which is zero, with

n+1

∑
i=1

c2
i = 1, (2.27)

such that
n+1

∑
i=1

ciai = 0. (2.28)

For every
i0 ∈ I := {1 � i � n+1 : |ci| � min(|c1| , . . . , |cn+1|)} , (2.29)
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it follows from (2.25) and (2.28) that

1√
n

= min
S⊆{1,...,n+1},|S|=n

σn (AS) �
∥∥∑1�i�n+1,i�=i0 ciai

∥∥√
∑1�i�n+1,i�=i0 c2

i

=

∣∣ci0

∣∣∥∥ai0

∥∥√
1− c2

i0

, (2.30)

and furthermore, it follows from (2.27) and (2.29) that∣∣ci0

∣∣∥∥ai0

∥∥√
1− c2

i0

�
∥∥ai0

∥∥
√

n
. (2.31)

Combining (2.30) and (2.31) yields that
∥∥ai0

∥∥ � 1. Furthermore, since ‖ai‖ � 1, i =
1, . . . ,n+ 1, hence we obtain that

∥∥ai0

∥∥ = 1 for all i0 ∈ I and therefore
∣∣ci0

∣∣ = 1√
n

for all i0 ∈ I . Moreover, it follows from (2.23) and (2.31) that |ci| = 1√
n for all

i = 1, . . . ,n+1. Therefore, we obtain that

1√
n

= min
S⊆{1,...,n+1},|S|=n

σn (AS) �
∥∥∑1� j�n+1, j �=i c ja j

∥∥√
∑1� j�n+1, j �=i c

2
j

=
|ci|‖ai‖√

1−c2
i

=
‖ai‖√

n
, (2.32)

which yields that ‖ai‖ � 1 for all i = 1, . . . ,n+ 1. Furthermore, since ‖ai‖ � 1, i =
1, . . . ,n + 1, hence we obtain that ‖ai‖ = 1 for all i = 1, . . . ,n+ 1. Therefore, there
exists some (ε1,ε2, · · · ,εn+1) ∈ {−1,1}n+1 , such that

n+1

∑
i=1

εiai = 0 (2.33)

and
‖εiai‖ = 1. (2.34)

Now, let Mi be symmetric matrices of size n+1 by n+1 with diagonal entries

(Mi) j, j =

{
1
n for j �= i

0 for j = i
(2.35)

and non-diagonal entries

(Mi)k,l =

{ (AAT )k,l
n−1 for k �= i and l �= i

0 for k = i or l = i
(2.36)

for k �= l , then we decompose AAT as

AAT =
n+1

∑
i=1

Mi, (2.37)

because

min
S⊆{1,...,n+1},|S|=n

σn (AS) =
1√
n
. (2.38)
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Let
[
AAT

]
i and [Mi]i be the submatrices of AAT and Mi respectively obtained by

removing the i-the row and the i-th column of AAT and Mi respectively, then it is
obvious that

n
[
AAT ]

i − In×n = n(n−1)[Mi]i (2.39)

and it follows that the n -th eigenvalue

λn ([Mi]i) =
λn

(
n
[
AAT

]
i− In×n

)
n(n−1)

� 0 (2.40)

since

min
S⊆{1,...,n+1},|S|=n

σn (AS) =
1√
n
. (2.41)

Therefore, Mi is positive semi-definite for every i from 1 through n+1. Since AAT is
positive semi-definite and singular, then there exists a non-zero vector v ∈ R

n+1 such
that AT vT = 0. Therefore, by (2.37), it follows that

n+1

∑
i=1

vMiv
T = 0. (2.42)

and since Mi for i = 1, · · · ,n+1 are all positive semi-definite, hence

vMiv
T = 0 (2.43)

for every i from 1 through n+1. Furthermore, we obtain that

vMi = 0 (2.44)

for i = 1, · · · ,n+1. Now by grouping the equations in the system (2.44), for each fixed
j between 1 and n+1, we have

v(Mi) j = 0 (2.45)

for 1 � i � n+1 and i �= j , in which (Mi) j denotes the j -th column of Mi . Without
loss of generality, we assume

v = (x1, · · · ,xn,1) . (2.46)

In particular, it follows from (2.45) that

n
(
AAT )

k,n+1 xk −n
n

∑
i=1

(
AAT )

i,n+1 xi = n−1 (2.47)

for k = 1, · · · ,n , and by solving this simple linear system, one obtains that

n
(
AAT )

i,n+1 xi = −1 (2.48)

for i = 1, · · · ,n . Moreover, in particular, for any fixed i between 1 and n , it follows
from (2.45) that

n
(
AAT)

i,k xk −n
n

∑
j=1

(
AAT )

i, j x j −n
(
AAT )

i,n+1 = (n−1)xi (2.49)
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for k = 1, · · · ,n , and by solving this simple linear system, one obtains that

n
(
AAT)

i, j x j = n
(
AAT)

i,n+1 = −xi (2.50)

for j = 1, · · · ,n . Combining (2.48) and (2.50), we have

n
∣∣∣(AAT)

i,n+1

∣∣∣ = |xi| = 1 (2.51)

for i = 1, · · · ,n , and furthermore, it follows from (2.50) that

n
∣∣∣(AAT )

i, j

∣∣∣ = 1 (2.52)

for 1 � i < j � n . Thus, the diagonal entries of AAT are all 1 and the absolute value of
its off-diagonal entries of AAT are all 1

n . Therefore, each row vector of A lies on one of
n+1 equiangular lines in Rn that intersect at the origin and have an angle of arccos 1

n
between every pair. Hence, the rows of diag(ε1,ε2, · · · ,εn+1)A are the coordinates of
the n + 1 vertices of a regular n -simplex on the unit (n−1)-sphere Sn−1 in Rn for
some (ε1,ε2, · · · ,εn+1) ∈ {−1,1}n+1 . �

REMARK 2.4. For an example of regular n -simplex on the unit (n−1)-sphere
Sn−1 in Rn for n = 3, see Figure 2.1 on page 281.

Figure 2.1: An example of regular n-simplex on the unit (n−1) -sphere Sn−1 for n = 3

For matrices of size n+2 by n , one can have the following lemma for the case of
n = 2.
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LEMMA 2.5. For any 4 by 2 matrix A =

⎡
⎢⎢⎣

a1

a2

a3

a4

⎤
⎥⎥⎦ with ‖ai‖ � 1 , i = 1,2,3,4 , one

has
min

S⊆{1,...,n+2},|S|=2
σn (AS) �

√
2sin

π
8

(2.53)

for n = 2 and the inequality is sharp.

Proof. Without loss of generality, we let

A =

⎡
⎢⎢⎣

1 0
cosx sinx
cosy siny
cosz sinz

⎤
⎥⎥⎦ (2.54)

and consider the Grammian matrix ASAT
S and its eigenvalues. Suppose that

min
S⊆{1,...,n+2},|S|=2

σn (AS) >
√

2sin
π
8

(2.55)

for n = 2. Since the square of the minimum of the smallest singular values of the
submatrices ofA , minS⊆{1,...,n+2},|S|=2 σn (AS) , for n = 2 is equal to

min(1− cosx,cosx+1,1− cos(x− y),cos(x− y)+1,
1− cosy,cosy+1,1− cosz,cosz+1,

1− cos(x− z),cos(x− z)+1,1− cos(z− y),cos(z− y)+1),
(2.56)

then because of the periodicity of the absolute value of sine and cosine functions, there
exist x1 , y1 and z1 such that

x1−2x0
π , y1−2y0

π , z1−2z0
π ∈ Z (2.57)

which implies that

x1− y1−2x0 +2y0

π
,

y1− z1−2y0 +2z0

π
∈ Z, (2.58)

for some
π
8 < x0,y0,z0,y0− x0,z0 − y0 < 3π

8 , (2.59)

as a consequence of (2.55).
Without loss of generality, we can assume that

π
8

< x0 � y0 � z0 <
3π
8

. (2.60)

Therefore, it follows from (2.59) that

3π
8

> z0 > y0 +
π
8

> x0 +
π
4

>
3π
8

(2.61)
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which is a contradiction.
Regarding the sharpness of the inequality (2.53), the equality in (2.53) can be

achieved by taking

A =

⎡
⎢⎢⎢⎢⎣

1 0
1√
2

1√
2

0 1

− 1√
2

1√
2

⎤
⎥⎥⎥⎥⎦ . (2.62)

Thus, we have completed the proof. �
Regarding the possible 4 by 2 matrice for which the equality in (2.53) holds, we

have the following lemma.

LEMMA 2.6. Let A =

⎡
⎢⎢⎣

a1

a2

a3

a4

⎤
⎥⎥⎦ be a 4 by 2 matrix with ‖ai‖ � 1 , i = 1,2,3,4 .

Then
min

S⊆{1,...,n+2},|S|=2
σn (AS) =

√
2sin

π
8

(2.63)

for n= 2 if and only if the rows of diag(ε1,ε2,ε3,ε4)A are the coordinates of 4 adjacent
vertices of a regular octagon on the unit circle S1 in R2 for some (ε1,ε2,ε3,ε4) ∈
{−1,1}4 .

Proof. Because of the last part of the proof for Lemma 2.5, we only need to prove
that the row vectors of matrix A or their negative vectors must be the coordinates of the
4 adjacent vertices of a regular octagon, given that matrix A has the equality (2.63).

If matrix A has the equality (2.63), then

σ2 (AS) �
√

2sin
π
8

(2.64)

for all subsets S of indices with |S| = 2 and there exists a subset S0 of indices with
|S0| = 2 such that

σ2
(
AS0

)
=
√

2sin
π
8

. (2.65)

Now, consider the row vectors of A and their negative vectors, and reorder them
counterclockwise as v1,v2, . . . ,v8 . The sum of the angles between adjacent vectors of
these 8 vectors v1,v2, . . . ,v8 is 2π .

Suppose that there exists an angle between adjacent vectors of the 8 vectors
v1,v2, . . . ,v8 that is strictly less than π

4 . Then, there exists a subset S0 of indices
{1,2,3,4}with |S0| = 2, such that σ2(AS0) <

√
2sin π

8 , which contradicts equation
(2.64). Therefore, the angles between adjacent vectors of the 8 vectors v1,v2, . . . ,v8

are all no less than π
4 .

Furthermore, suppose that there exists an angle between adjacent vectors of the 8
vectors v1,v2, . . . ,v8 that is strictly greater than π

4 . Then, their sum would be greater
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than 2π , which is a contradiction. Therefore, the angles between adjacent vectors of
the 8 vectors {vi}8

i=1 are all equal to π
4 . It follows that the rows of diag(ε1,ε2,ε3,ε4)A

are the coordinates of 4 adjacent vertices of an octagon in R2 for some (ε1,ε2,ε3,ε4) ∈
{−1,1}4 .

Suppose that there exists one of the 8 vectors v1,v2, . . . ,v8 whose length is strictly
less than 1. Then, there would exist, there exists a subset S0 of indices {1,2,3,4}with
|S0| = 2, such that σ2(AS0) <

√
2sin π

8 , which contradicts equation (2.64). Therefore,
‖vi‖ = 1 for i = 1,2, . . . ,8, which implies ‖ai‖ = 1 for i = 1,2, . . . ,8.

Hence, the rows of diag(ε1,ε2,ε3,ε4)A are the coordinates of 4 adjacent vertices
of a regular octagon on the unit circle S1 in R2 for some (ε1,ε2,ε3,ε4)∈{−1,1}4 . �

More generally, we have the following theorem.

THEOREM 2.7. For any n by 2 matrix A with n � 4 and ‖ai‖ � 1 , i = 1,2, · · · ,
n , one has

min
S⊆{1,...,n},|S|=2

σ2 (AS) �
√

2sin
π
2n

(2.66)

and the inequality is sharp. Furthermore, the equality in (2.66) holds if and only if the
rows of diag(ε1,ε2, · · · ,εn)A are the coordinates of n adjacent vertices of a regular
2n-gon on the unit circle S1 in R2 for some (ε1,ε2, · · · ,εn) ∈ {−1,1}n .

Proof. Let

A =

⎡
⎢⎢⎢⎣

cosx1 cosx1

cosx2 sinx2
...

...
cosxn sinxn

⎤
⎥⎥⎥⎦ (2.67)

and consider the Grammian matrix ASAT
S and its eigenvalues. Suppose that

min
S⊆{1,...,n},|S|=2

σ2 (AS) >
√

2sin
π
2n

. (2.68)

Since the square of the minimum of the smallest singular values of the submatrices of
A ,

minS⊆{1,...,n},|S|=2 σn (AS) = min1�i< j�n (1− cos(xi − x j) ,cos(xi− x j)+1) , (2.69)

then because of the periodicity of the absolute value of sine and cosine functions, there
exist x̃i , i = 1,2, · · · ,n , such that

x̃i−2x̂i
π ∈ Z (2.70)

for i = 1,2, · · · ,n , which implies that

x̃ j − x̃i−2x̂ j +2x̂i

π
∈ Z (2.71)
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for 1 � i < j � n for some
π
2n < x̂i <

(n−1)π
2n

(2.72)

and
π
2n < x̂ j − x̂i <

(n−1)π
2n

(2.73)

for 1 � i < j � n as a consequence of (2.68).
Without loss of generality, we can assume that

π
2n

< x̂1 � x̂2 · · · � x̂n <
(n−1)π

2n
. (2.74)

Therefore, it follows from (2.72) and (2.73) that

(n−1)π
2n > x̂n > x̂n−1 + π

2n > x̂n−2 + π
n > · · ·

· · · > x̂1 + (n−2)π
2n > (n−1)π

2n

(2.75)

which is a contradiction.
Regarding the sharpness of the inequality (2.66), the equality in (2.66) can be

achieved by taking

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

cos π
n sin π

n

cos 2π
n cos 2π

n
...

...

cos (n−1)π
n sin (n−1)π

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.76)

If the equality in (2.66) holds, namely,

min
S⊆{1,...,n},|S|=2

σ2 (AS) =
√

2sin
π
2n

, (2.77)

let us consider the row vectors of A and their negative vectors, and reorder them coun-
terclockwise as v1,v2, . . . ,v2n . The sum of the angles between adjacent vectors of these
2n vectors v1,v2, . . . ,v2n is 2π .

Suppose that there exists an angle between adjacent vectors of the 2n vectors
v1,v2, . . . ,v2n that is strictly less than π

n . Then, there exists a subset S0 of indices
{1,2, · · · ,n} with |S0|= 2 such that σ2(AS0)<

√
2sin π

2n , which contradicts with (2.77).
Therefore, the angles between adjacent vectors of the 2n vectors v1,v2, . . . ,v2n are all
no less than π

n .
Furthermore, suppose that there exists an angle between adjacent vectors of the

2n vectors v1,v2, . . . ,v2n that is strictly greater than π
n . Then, their sum would be

greater than 2π , which is a contradiction. Therefore, the angles between adjacent vec-
tors of the 2n vectors v1,v2, . . . ,v2n are all equal to π

n . It follows that the rows of
diag(ε1,ε2, · · · ,εn)A are the coordinates of n adjacent vertices of an 2n -gon in R2 for
some (ε1,ε2, · · · ,εn) ∈ {−1,1}n .

Suppose that there exists one of the 2n vectors v1,v2, . . . ,v2n whose length is
strictly less than 1. Then, there would exist subset S0 of indices {1,2, · · · ,n} with
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|S0| = 2 such that σ2(AS0) <
√

2sin π
2n , which contradicts with (2.77). Therefore,

‖vi‖ = 1 for i = 1,2, . . . ,2n , which implies ‖ai‖ = 1 for i = 1,2, . . . ,n .
Hence, the rows of diag(ε1,ε2, · · · ,εn)A are the coordinates of n adjacent vertices

of a regular 2n -gon on the unit circle S1 in R2 for some (ε1,ε2, · · · ,εn) ∈ {−1,1}n .
Thus, we have completed the proof. �

REMARK 2.8. For an example of row vectors of n by 2 matrix A with diag(ε1,ε2,
· · · ,εn)A being the coordinates of the n adjacent vertices of a regular 2n -gon on the unit
circle S1 in R2 for some (ε1,ε2, · · · ,εn) ∈ {−1,1}n for n = 4, see Figure 2.2 on page
286.

-1.0 -0.5 0.0 0.5 1.0

-1.0
-0.5
0.0

0.5

1.0

Figure 2.2: An example of row vectors in a regular 2n-gon on the unit circle for n = 4

3. Equiangular frames in the projective spaces

In the previous section, we have shown that equiangular frames form matrices in
some dimensions with the optimal smallest singular value of submatrices. In this sec-
tion, however, we show that equiangular frames in projective spaces do not form matri-
ces in general dimensions with the optimal smallest singular value of the submatrices,
contrary to the case of matrices of dimension n+ 1 times n and dimension n times 2
for n � 4, in other words, negative to the conjectures based on the low dimensions.

In [7], optimal frames in projective spheres were found for some sequences of
dimensions. In particular, the optimal frames of 6 vectors in projective spheres in R4

can be found as follows.
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LEMMA 3.1. An optimal equiangular frame of 6 vectors in projective spheres in
R4 is

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
3

0 0 −
√

2
3

1√
3

0 0
√

2
3

1√
3

0 −
√

2
3 0

1√
3

0
√

2
3 0

1√
3
−

√
2
3 0 0

1√
3

√
2
3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.1)

whose Grammian matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
3

1
3

1
3

1
3

1
3

− 1
3 1 1

3
1
3

1
3

1
3

1
3

1
3 1 − 1

3
1
3

1
3

1
3

1
3 − 1

3 1 1
3

1
3

1
3

1
3

1
3

1
3 1 − 1

3
1
3

1
3

1
3

1
3 − 1

3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

However, the smallest minimal singular value of the submatrix of F is 0 .

Proof. Since
G = FtF, (3.3)

the angle between every two row-vectors of F is arccos 1
3 . Therefore, the row vectors

of F form an equiangular frame of 6 vectors in projective spheres in R4 . On the other
hand, one can quickly check that the smallest minimal singular value of the submatrix
of F is indeed 0. �

REMARK 3.2. In matrix theory and operator theory, the image of an operator can
be viewed as the dual of its kernel or null space. This duality essentially creates corre-
sponding relations between the restricted isometry property, the Johnson-Lindenstrauss
embedding, and the null space property in signal processing, including compressed
sensing, phase retrieval, and others (see, for example, [40], [22], and [38]). Therefore,
the stability of frames can be directly applied to these signal processing techniques.

4. On applications

4.1. On stability of frames

Frames are sets of vectors in a Hilbert space that provide stable and redundant
representations of signals. In signal processing, the stability of a frame is an important
property that ensures the robustness of the signal representation against noise and errors.
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One way to measure the stability of a frame is by considering the minimal smallest
singular value of its submatrices.

The minimal smallest singular value of a matrix is the smallest singular value
among all its submatrices. For a frame, this value provides a measure of how well-
conditioned the frame is with respect to perturbations. A frame with a large minimal
smallest singular value is considered to be stable, as small perturbations in the signal
representation will not result in large errors in the reconstructed signal.

First, let us consider a frame

F = { f1, f2, . . . , fn} (4.1)

for a finite-dimensional Hilbert space H with dimension d . The analysis operator A
associated with this frame is defined as A : H→ Cn such that

A f = (〈 f , f1〉,〈 f , f2〉, . . . ,〈 f , fn〉)T (4.2)

for any f ∈ H . The frame operator S is defined as S = A∗A , where A∗ denotes the
adjoint of A .

The singular values of a matrix M are the square roots of the eigenvalues of M∗M .

The minimal smallest singular value σ (d)
min(F) of a frame F is defined as

σ (d)
min(F) = min

J⊆[n],|J|=d
σmin(AJ), (4.3)

where AJ denotes the submatrix of A consisting of columns indexed by J and σmin(AJ)
denotes the smallest singular value of AJ . This value provides a measure of how well-
conditioned the frame is with respect to perturbations.

A frame with a large minimal smallest singular value is considered to be stable,
as small perturbations in the signal representation will not result in large errors in the
reconstructed signal. In contrast, a frame with a small minimal smallest singular value
is considered to be unstable, as small perturbations can result in large errors.

In conclusion, the minimal smallest singular value of submatrices provides a useful
measure for assessing the stability of frames for signal processing. By considering this
value, we can construct stable frames that provide robust representations of signals
against noise and errors.

4.2. On robustness of frames in signal processing

Stable frames with large minimal smallest singular values have many applications
in signal processing.

One application of stable frames is in signal reconstruction. In many signal pro-
cessing tasks, we need to reconstruct a signal from a set of measurements. By using a
stable frame as a measurement matrix, we can improve the accuracy and robustness of
the reconstruction process. For example, in compressed sensing, stable frames can be
used to recover sparse signals from a small number of measurements.

Another application of stable frames is in denoising. In many signal processing
tasks, we need to remove noise from a signal to improve its quality. By using a stable
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frame as a basis for representing the signal, we can improve the performance of denois-
ing algorithms. For example, in wavelet denoising, stable frames can be used to provide
a sparse representation of the signal that is robust against noise.

In addition to signal reconstruction and denoising, there are many other applica-
tions of stable frames in signal processing. For example, stable frames can be used in
image processing, speech processing, and data compression. By using stable frames
with large minimal smallest singular values, we can improve the performance of these
algorithms and provide more accurate and robust representations of signals.

In conclusion, stable frames with large minimal smallest singular values have
many applications in signal processing. By using these frames in tasks such as sig-
nal reconstruction and denoising, we can improve the performance of signal processing
algorithms and provide more accurate and robust representations of signals.

4.3. Applications of minimal smallest singular value

The minimal smallest singular value of submatrices of a matrix or frame has nu-
merous applications in various fields. This section provides a comprehensive list of
these applications, along with relevant references to support the information.

4.3.1. Condition number

One of the applications of the minimal smallest singular value of submatrices is to
compute the condition number of a matrix. The condition number provides information
about the sensitivity of the matrix to changes in the input and is widely used in numeri-
cal analysis and scientific computing. The condition number of a matrix is the quotient
of the largest singular values of the matrix over the smallest singular values of the ma-
trix, and likewise for each of its submatrices. A high condition number indicates that
the matrix is sensitive to changes in the input, while a low condition number indicates
that the matrix is relatively insensitive to changes in the input.

4.3.2. Robustness analysis

Another application of the minimal smallest singular value of submatrices is to
assess the robustness of a system. In fields such as control theory and optimization, it
is important to be able to assess how a system will behave under uncertainties or per-
turbations. The minimal smallest singular value of submatrices can be used to quantify
the robustness of a system by measuring its sensitivity to changes in the input.

4.3.3. Signal and image processing

Submatrices of a matrix or frame can also be used to represent signals or images.
The minimal smallest singular value is utilized to analyze the quality of the represen-
tation. It helps in quantifying the accuracy of signal reconstruction and identifying the
presence of noise or artifacts.

For example, in signal processing, the minimal smallest singular value of subma-
trices can be used to estimate the SNR (signal-to-noise ratio) of a signal. The SNR is
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a measure of the quality of a signal and is inversely proportional to the noise power. A
high SNR indicates that the signal is of high quality, while a low SNR indicates that the
signal is noisy.

In image processing, the minimal smallest singular value of submatrices can be
used to estimate the quality of an image. The quality of an image is affected by a
number of factors, including the amount of noise, the amount of compression, and the
quality of the camera. The minimal smallest singular value can be used to quantify the
impact of these factors on the quality of an image.

4.3.4. Data compression

The minimal smallest singular value of submatrices plays a crucial role in data
compression techniques such as Singular Value Decomposition (SVD) and Principal
Component Analysis (PCA) (see, for example, [50]). SVD and PCA are both linear
dimensionality reduction techniques that can be used to reduce the size of a data set
while preserving its essential features.

SVD decomposes a matrix into three matrices: a left singular matrix, a diagonal
matrix of singular values, and a right singular matrix. The singular values of a matrix
are arranged in descending order, with the largest singular value being the most impor-
tant. PCA is a special case of SVD where the left and right singular matrices are the
same.

In both SVD and PCA, the minimal smallest singular value is used to determine the
number of principal components to retain. The principal components with the small-
est singular values are the least important and can be discarded without significantly
affecting the quality of the representation.

4.3.5. Image denoising

By analyzing the minimal smallest singular value of submatrices, one can also
estimate the level of noise present in an image. This information is used in denoising
algorithms to enhance the visual quality of images by reducing unwanted noise while
preserving important details.

For example, in image denoising, the minimal smallest singular value of subma-
trices can be used to estimate the noise power. The noise power is a measure of the
strength of the noise in an image. A high noise power indicates that the image is noisy,
while a low noise power indicates that the image is relatively noise-free.

The minimal smallest singular value of submatrices can also be used to identify
the type of noise present in an image. Different types of noise have different statistical
properties, and the minimal smallest singular value can be used to identify the statistical
properties of the noise in an image.

4.3.6. Optimization algorithms

The minimal smallest singular value of submatrices is employed in optimization
algorithms to assess the convergence properties and efficiency. In optimization, the goal
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is to find the minimum or maximum of a function. Optimization algorithms are used to
find the optimal solution to an optimization problem.

The minimal smallest singular value of submatrices can be used to assess the con-
vergence properties of an optimization algorithm.

4.3.7. Machine learning

In machine learning tasks, such as feature selection, clustering, and classification,
the minimal smallest singular value of submatrices can be used to evaluate the separa-
bility and discriminative power of features (see, for example, [35]). It aids in identifying
informative and relevant features for accurate model training and prediction.

4.3.8. Network analysis

The minimal smallest singular value of submatrices is utilized in network analy-
sis to analyze the connectivity and robustness of complex networks (see, for example,
[31]). It helps identify critical nodes or components that are crucial for maintaining
network functionality and resilience against failures or attacks.
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[24] HANNO LEFMANN,On heilbronnâs problem in higher dimension, Combinatorica, 23: 669–680, 2003.
[25] JONG MIN LIM AND CHRISTOPHER L. DEMARCO, Svd-based voltage stability assessment from

phasor measurement unit data, IEEE Transactions on Power Systems, 31 (4): 2557–2565, 2015.
[26] ALEXANDER E. LITVAK, ALAIN PAJOR, MARK RUDELSON, AND NICOLE TOMCZAK-

JAEGERMANN, Smallest singular value of random matrices and geometry of random polytopes, Ad-
vances in Mathematics, 195 (2): 491–523, 2005.

[27] YANG LIU, The probabilistic estimates of the largest strictly convex p-singular value of pregaussian
random matrices, Journal of Mathematics and Statistics, doi:10.3844/jmssp.2015 , 2015.

[28] YANG LIU, Probabilistic estimates of the largest strictly convex singular values of pregaussian random
matrices, Journal of Mathematics and Statistics, 11 (1): 7–15, 2015.

[29] YANG LIU, Comparison on the robustness against erasure rates of numerically erasure-robust frames,
International Journal of Applied Mathematics, 33 (4): 585–590, 2020.

[30] YANG LIU AND YANG WANG, On the decay of the smallest singular value of submatrices of rectan-
gular matrices, Asian-European Journal of Mathematics, 9 (04): 1650075, 2016.

[31] P.-A. LOF, T. SMED, G. ANDERSSON, AND D. J. HILL, Fast calculation of a voltage stability index,
IEEE Transactions on Power Systems, 7 (1): 54–64, 1992.

[32] ROBERT MAHONY, TAREK HAMEL, AND JEAN-MICHEL PFLIMLIN, Nonlinear complementary fil-
ters on the special orthogonal group, IEEE Transactions on automatic control, 53 (5): 1203–1218,
2008.
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