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PERTURBATION OF CONTINUOUS FRAMES
ON QUATERNIONIC HILBERT SPACES

M. KHOKULAN AND K. THIRULOGASANTHAR

(Communicated by D. Kimsey)

Abstract. In this note, we explore the theory of continuous frame perturbations in the quaternion
settings by inspiration of the well-developed theory of perturbing discrete frames in complex
Hilbert spaces. We examine the perturbation of continuous frames of rank n, including Bessel
and Riesz families, within right quaternionic Hilbert spaces. We also investigate some results on
the bounds of perturbing continuous frames under some conditions.

1. Introduction

Frame is a spanning set of vectors introduced by Duffin and Schaeffer in 1952 in
the study of non-harmonic Fourier series [12]. It has been widely studied since 1986,
following a landmark development by Daubechies [10]. The study of frames has at-
tracted interest in recent years due to their applications in various areas of Engineering,
Applied Mathematics, and Mathematical Physics. Many applications of frames have
emerged in recent years, including Internet coding [25], sampling [14], filter bank the-
ory [2], system modeling [13], digital signal processing [6, 16] and many more.

Perturbation theory plays a significant role in several areas of mathematics. Frame
perturbations were first explicitly introduced by Chris Heil in his Ph.D. thesis [17], and
then widely studied by other authors [3,5,7,9,15]. As far as we know, these perturbation
results have not been extended even to complex continuous frames. In this paper, we
investigate certain perturbations of rank n continuous frames in a right quaternionic
Hilbert space, which was introduced in [18], following the arguments given in [5, 8],
where frame perturbations were studied for complex discrete frames.

Hilbert spaces may be rigorously formulated over various mathematical fields,
including the field of real numbers (R), the field of complex numbers (C), and exclu-
sively over the field of quaternions (H) [1]. The fields R and C exhibit the properties
of associativity and commutativity. Consequently, the theory of functional analysis is
systematically developed and well-established when applied to both real and complex
Hilbert spaces. However, the quaternions constitute a non-commutative associative
algebra, thereby imposing significant limitations on mathematicians seeking to formu-
late a comprehensive theory of functional analysis within quaternionic Hilbert spaces.
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Moreover, the inherent non-commutativity gives rise to distinct categories of Hilbert
spaces on quaternions, denoted as right quaternion Hilbert space (Vﬁ ) and left quater-
nion Hilbert space (V).

The theory of quaternionic operators finds applications in diverse fields such as
quantum mechanics and quaternionic schur analysis [4]. Notably the difference be-
tween complex and quaternionic operator theory lies in the definition of S-spectrum. In
quaternionic operator theory, the conventional notions of resolvent operator and spec-
trum necessitate replacement with the two S -resolvent operators an the S-spectrum due
to the inherent non-commutatitivity of quaternionic setting.

This article is organized as follows. In Section 2, we provide some basic notations
and preliminary results about quaternions and frames necessary for the development of
the results presented in this article. In Section 3, we present the main results of this arti-
cle, namely, perturbations of rank n continuous frames, rank » continuous Bessel fam-
ilies, and rank n continuous Riesz families in right quaternionic Hilbert spaces. These
perturbations follow their discrete counterparts studied in complex Hilbert spaces.

2. Mathematical preliminaries

We recall few facts about quaternions, quaternionic Hilbert spaces and quater-
nionic functional calculus which may not be very familiar to the reader. For quaternions
and quaternionic Hilbert spaces we refer the reader to [1].

2.1. Quaternions

Let H denote the field of quaternions. Its elements are of the form g = xo +x1i+
X2 j+x3k, where xo,x1,x> and x3 are real numbers, and i, j, k are imaginary units such
that > = 2 =k>=—1, ij=—ji=k, jk=—kj=i and ki = —ik = j. The quaternionic
conjugate of ¢ is defined to be § = xp — x1i —x2j —x3k. Quaternions do not commute
in general. However ¢ and g commute, and quaternions commute with real numbers.
lq|> = qg = Gq and gp = P g. Quaternion can also be represented by 2 x 2 complex
matrices.
q=x000+ix.0O 2.1)

with xg € R, x = (x1,x2,%3) € R?, 09 = I, the 2 x 2 identity matrix, and o =
(01,—0»,03), where the oy, £ =1,2,3 are the usual Pauli matrices. The quaternionic
imaginary units are identified as, i =/ —107, j= —v/—102, k =+/—103. Thus

[ xo+ixz —x2+ix;
- <x2—|—ix1 X0 — ix3 ) ‘ 2.2)
and g = ¢" (matrix adjoint). Introducing the polar coordinates,

Xo = rcos¥

x1 = rsin®sin@cos¥V

xp = rsin®sin@sin'?

x3 = rsint¥ cos @,
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where (r,¢,9,¥) € [0,) x [0,7] x [0,27)?, we may write

q=A(r)e?", (2.3)
where . v
A(r) = roy and o)) = (Si;;se‘p,w Slnc‘f)z(p ) . 2.4)
The matrices A(r) and o (i) satisfy the conditions,
A(r)=A(r)', o(ii)? = o, (2.5)
with
o(@)' = o(i), [A(r),o(i)] =0. (2.6)

Note that a real norm on H is defined by
o =g = Py = (F 4+ +5+D)op.
A typical measure on H may take the form

du(r,®,¢,¥) =dt(r)d9d(e,¥), (2.7)

1
with dQ(¢@,¥) = i sindpd¥ and du(r,9,¢,¥) = ée"z sin drd®dpd¥. For
details, we refer the reader to [20,22,26,27]. So that du(q) = du(r,®,,%¥) =

1
Zle—’2 sindrd9dpd¥ = Ee—’z sin d (r?)d®d@d¥. One may obtain the integral

T

1 o 2T 2T >
/du(q)z/du(r,ﬂ,cp,‘f’)z—// // e sin@d(r?)dddod¥ = 2.
H H 41 0 0 o Jo (28)

2.2. Right quaternionic Hilbert space

Let V]ﬁ be a linear vector space under right multiplication by quaternionic scalars
(again H standing for the field of quaternions). For ¢, v, w € V]ﬁ and g € H, the inner
product

(Y VEXVE —H

satisfies the following properties

@) (¢]y)=(w|9)

(i) [|¢]|> = (¢ | ¢) >0 unless ¢ = 0, a real norm
(i) (9 |w+w)=(¢|y)+(¢|w)

(iv) (¢ |va)=(9|v)q

V) (oq|v) =30 |w)
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where g stands for the quaternionic conjugate. We assume that the space Vﬁ is com-
plete under the norm given above. This, together with the inner product (- | -), defines
a right quaternionic Hilbert space.We shall assume this space to be separable. Quater-
nionic Hilbert spaces share most of the standard properties of complex Hilbert spaces.
In particular, the Cauchy-Schwarz inequality and the Riesz representation theorem for
their duals hold in quaternionic Hilbert spaces. Consequently, the Dirac bra-ket nota-
tion can be adapted to quaternionic Hilbert spaces:

| 0 q) =] 9)q, (pgql=7q(o |,

for a right quaternionic Hilbert space, with |¢) denoting the vector ¢ and (@] its dual
vector. Let A be an operator on a right quaternionic Hilbert space.The scalar multiple
of A should be written as gA and the action must take the form [23, 26].

(qA) [ 9) =(A]9))g. (2.9)

The adjoint AT of A is defined as

(w|Ag)=(ATy|¢); forall ¢,y eVE (2.10)

An operator A is said to be self-adjoint if A = AT. If ¢ € VR\ {0}, then |¢)(¢] is a
rank one projection operator. For operators A, B, by convention, we have

|A9)(B| = Al9)(9|B". (2.11)

Let D(A) denote the domain of A. A is said to be right linear if

A(og+yp)=(A9)q+ (Ay)p; Yo,y € D(A), q,p € H.

The set of all right linear operators will be denoted by £(VH’§). We call an operator
A € L(VE) bounded if
|All= sup [|AQ] < .
l¢ll=1

or equivalently, there exists K > 0 such that ||[A¢| < K||¢|| for ¢ € D(A). The set of
all bounded right linear operators will be denoted by B(VK).

PROPOSITION 2.1. [21] Let A € B(V{) and suppose that [|A[| < 1. Then (Ivﬁ -
A)~! exists.

DEFINITION 2.2. [19] (Discrete Frames) A countable family of elements {fi };_,
in V¥ is a frame for V¥ if there exist constants A, B > 0 such that

m

AP < S ISP < BIFIP, (2.12)

k=1

forall f € VK.
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Let {fi}/_, beaframe in V¥ and define a linear mapping 7 : H” — VR, by

T{abie) = Y, fick, cx € H. (2.13)
k=1

T is usually called the pre-frame operator, or the synthesis operator. The adjoint oper-
ator T7: V& — H™, given by

TTf = {{fIf) iy (2.14)

is called the analysis operator. By composing T with its adjoint we obtain the frame
operator S : Vﬁ — Vﬁ, by

SF=TT =Y fi{flfi)- (2.15)
k=1

THEOREM 2.3. [18] Foreach g € H, let the set {n,’i 1i=1,2,---,n} be linearly
independent in Vﬁ . We define an operator A by using Dirac bra-ket notation,

;/H Inyy(nildu(q) =A (2.16)

and we always assume that A € GL(VR), where
GL(VE) = {A: Vf — Vi : A bounded and A™" bounded} .
Then the operator A is positive and self adjoint.
DEFINITION 2.4. [18] (Continuous frame) A set of vectors {n. € Vf | i =
1,2,---,n, g€ H} constitute a rank n right quaternionic continuous frame, denoted by
F(ng,A,n),if

(i) for each g € H, the set of vectors {n; € V{f | i =1,2,---,n} is a linearly inde-
pendent set.

(ii) there exists a positive operator A € GL(V{) such that
> [ In)nildu(q) = 4.
i=1/H

THEOREM 2.5. [18] For ¢ € VHIf, we have

m(@)[0] < Y. [ 1tnifo) Pua) < M(a) o], @17
i=1

where M(A) = sup (¢|A9) and m(A) = Hqi)rH1f1<(])|A(])>.
lofl=1 =
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The inequality (2.17) presents the frame condition for the set of vectors
(nieV|i=12,---,n, gH}
with frame bounds m(A) and M(A).
THEOREM 2.6. [18] (Frame decomposition) Ler {n; € Vi |i=1,2,---,n, g €

H} be a rank n continuous frame with bounds m(A) and M(A). Then for any ¢ € V&,
we have

o= 2/ n,(olA"n}) du(q)
—z/A (0l du(q)..

where A is the frame operator of the frame {n,’i eVRli=1,2,---,n, g H}.

THEOREM 2.7. [18] Let {n[’j eVR|i=1,2,---,n, g € H} be a rank n contin-
uous frame with bounds m(A) and M(A). Then {A~'n; e VE |i=1,2,---,n, g € H}
1
is a rank n continuous frame with bounds W and M

DEFINITION 2.8. We call a family {5,; € V]ﬁ |i=1,2,---,n, q € H} of elements
in V¥ arank n continuous Bessel family if there exists D > 0 such that

3 [ €0} anta) <DlolP, 2.18)

forall ¢ € VR.

A rank n continuous Bessel family {5,; € Vﬁ |i=1,2,---,n, g € H} will be called
arank n continuous frame if there exists C > 0 such that

ClolP < 3 [ (20 duto) 2.19)

for all ¢ € V]ﬁ . The following result is an adaptation of the discrete case considered
in [24].

THEOREM 2.9. Let {5; eVRi=1,2,---,n, g € H} be a rank n continuous
Bessel family of Vﬁ with bound D. Then the mapping T from H" to Vﬁ defined by

T({ci}izn) 2 / Cheidu(q (2.20)

is a right linear and bounded operator with ||T || < v/D.
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Proof. 1t is not difficult to see that T is right linear. Now for ¢ & VH{E,

IT{ci}l| = sup [(T{ci}|@)]
l¢]=1

<§ L c;cidu(q>¢>'

)

i=1

= sup
l[oll=1

= sup
lloll=1

< sw 3 [ [@(Eilo)|duto

loll=1i=1

- n . 2d 2 n Ci2
< s (1 /IHI (Li10))| u<q>> (21' )
< Bllo|? 1 (3 cil? ’
\\37\151( loI) (1 |>
:\/§<§"}|c,-2>2.
i=1

Hence ||T|| <vB. O

[ e (Gilo) anta)

L
2

By composing the operator T in (2.20) with its adjoint operator 77 we get the
frame operator.

PROPOSITION 2.10. Let A = 2/ Iniy(Cildu(g). Then
i=1/H

A= 16 milduta)

Proof; For . € V&, Av =Y, [ [n{)(E{lw)du(a). we have
=1
i) =X, [ o) (Elv)dua). @21)
i=1/H
e ke 7= 3 [ 1€ (nildu(q) then To = ¥ 116 (nil¢)du(q). Hence,

wiro) =3 [ (wlg) niloran(a)
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Now

(Toly) = (yIT9)
:;Aw@%mMmy

zgéhwwwwww.

=3 [ omEiv)duta)
= ($lAw).

Therefore, (p|Ay) = (To|y). Thatis, T=AT. O

3. Frame perturbation

In this section, we present perturbations of rank n continuous frames in V]ﬁ fol-
lowing the frame perturbation theory presented for complex discrete frames in [5, 8].

THEOREM 3.1. Let {n; eVR|i=1,2,---,n, g € H} be a rank n right quater-
nionic continuous frame with bounds m(A) and M(A) and frame operator A. Then
any family {; € VR1i=1,2,---,n, q € H} satisfying

n
k= Y [ Iy = gl dui) < m(a) G1)
i=1
2
is a rank n continuous frame for Vﬁ with bounds m(A) (1 — m('(A)> and

M(A) <1+ ﬁ)z.

Proof. Suppose that {n;, € VR |i=1,2,---,n, g€ H} is a rank n right quater-
nionic continuous frame with bounds m(A) and M(A). Then

ol < 3 [ Inilo) Pau(a) < ) ol
i=1

From3.1, {} € Vif |i=1,2,---,n, g € H} is a continuous Bessel family in V§. Thus,
we can define an operator £l : V& — V& by

o = ;/H Ly{ola™ ng) du(q). (3.2)
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The operator il is bounded. To see it, let ¢ € V]ﬁ ,

40)
[ Gi{ola"ni) duq \2/:] 014~} du(p >

It = {

=
<

I
~/\
e

=33 [ L TOW T G (o~ (i)
<|$3 [ LR (o npaniaranty
<33 [ Lo ol antans
<35 [ LIl 10101 g atarautr)

VA

M=
M=
S—

i /H (ola—Tn)| | (91a""n2) | du(g)du(p),

I
_

~

I
—_

where o0 = (maxZUP |\§i|\)(m}’?lxiup HCM)
=a% 3 [ [ [6Am
%;FI/H/H()@AIW
=5 52 [ L[
+%ii// [(91A~"02)[* du(g)du(p)
22";//|¢|A )| du(q)du(p)
+7§;1/H{/H} ola~"n)) [ du(g)du(p)
=
- 2”2”0‘12"‘1/HK¢|A177;>}2du(q)

2 < ;
+ ”"0‘2/| ¢\A"n;§>|2du(p), by 2.8

[(olA~ 0} )| du(g)du(p)

<

T |<¢A—1n,f;>;2) dp(g)du(p)

du Ydu(p

< tnoi—-— || ¢|* + mna |¢]|*, by theorem 2.7

T T
-y ) 1
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It follows that there exists K > 0 such that ||¢] < K||¢]|, where

K:\/nna<@+m>.

Hence U is bounded. Now, from Theorem 2.6,

2
(0la~ ) dua) = Y, [ € (ola~"ni)duq)
i=1

2

H¢—HMF=|
i=1

) (91A""ng) dp(q)
;/wm ) g = & aut@
<3 [ i~ Gl auta) 3 [ (o ni) anto)

< K@WH :
That is,
5 2
0~ 617 = |Zys0 o] = | Zs ~ o] <
Therefore, (IVR —L[)q)H <y ﬁ o] . It follows that HIVﬁ —L[H <4/ ﬁ Thus
HIVR LlH Z‘) <1 and Y is invertible. Also we have
= |zl < ||ze — o] </ —
=g < 2] < | o
K 1 1
Hence, ||U|| <1+ ,/—— and H)J. H <—.
m(A) 1— /K
m(A)
For ¢ € VR,

o=uu o= [ G(u oA n))du(g)
i=1
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Therefore
2
o] = <;Aﬁ€;<u‘l¢lA‘ln5>du(Q)¢>
2
= |3 [, oA} (lo) duta)
<i=zl/)7< dp(q ;/;C|¢|du
< g 10l X [ (o) P anta)
< oy 1 P01, [ 1(go) Pata
o -
< 3 [ [(&ilo)] dua).
m(4) (1- ﬁ)z f=1/H !
Hence,

n . 5 - ) i
;/HKQIM du(q) = m(A) (1— m(A)) 19]%, (3.3)

forall ¢ € VR.
On the other hand define a right linear operator 7' : H" — Vﬁ by

T{e}:=Y, [ Ciedulo) (3.4)
i=1
The frame operator for {Cé € Vﬁ |i=1,2,---,n, g€ H} is TTT, so the optimal upper

frame bound for {{) € Vi | i=1,2,---,n, g € H} is IT|1%.
For {c¢;} e H",

1T{cit = qcidi(q)
i=1

<2 /H (¢ —niyedu(a)| +
< (VM) + Vo) e}
Hence ||T{c}|| < (v/M@A) + V&) [ {e:}]| and [|T[]? < (/M) + /&),

2
K
Therefore || T||* < M(A) <l—|— m) .

Y /H n,cidu(q)
i=1
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Since ||T||? is the optimal upper frame bound for {Cie VR|i=1,2,---,n, g H},
we have
K

2/ (&ilo)[ d (><M<A>(1+ —>2|| I” (35
A a0 A S vy ) 1ol |

forall ¢ € VR.
From 3.3 and 3.5, we get

) (1-\[o55) 1017 < 3 [ o) autar <mr (175 ) 1ol

(3.6)
forall ¢ € VR.

Hence {{, € Vi |i=1,2,---,n, g € H} is arank n continuous frame with bounds

m(a) (1- ﬁ)zandM(A)O—i- ﬁ)z.

THEOREM 3.2. Let {n,; eVR|i=1,2,---,n, g € H} be a rank n right quater-
nionic continuous frame with bounds m(A) and M(A). Let {Ct; eVRli=1,2,---,n,q€
H} be any family defined in (3.1). Then {né + C,} eVR|i=12,---,n,qeH} isa
rank n continuous frame in Vﬁ .

Proof. For ¢ € V{f, we have
3 [ lni+ €io) Panto
=3 [ o+ &) auta
=3 [ o)+ (012 Panta
< 3 [ o)+ (015 auta)
= 3 [ o) P2 oIl (012 + (0120 Phnto)
< g/H{wné>!2+|<¢|né>|2+!<¢c;>;2+|<¢|cé>!2}du<q>

=23 [ (o anta)+23 [ [(&lo) duta)

Since {néEVHIf |i=1,2,---,n, g€ H} and {C;EVHIE |i=1,2,---,n, g € H} arerank
n continuous frames in V¥, for ¢ € VR,

@0l <3, [ Inilo) Pata) < Ma) o1
i=1
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and

K\’ S [ 1 i a2 K\’
i) (1= [ ) 1012 < 3 [ 1(6i0) Panta) <) (14555 ) ol

Therefore

2
3 [ 1ni+ €l P anta) < 2ma Il

1+ (14

i)

Similarly one can obtain

2 n
an) |1+ (1= o ) | NelE < 3 [ i+ o) Panta)
Hence
2 n
an) |1+ (1= [ ) | NelE < 3 [ 1ni+ o) Pt

< 2M(A) 1912,

1+<1+ Aﬁ)z

forall ¢ € V{f. Therefore, {n;+¢, € V{f |i=1,2,---,n, g € H} is arank n continuous
frame in VHIE with bounds

2
K
1 11—/ ——=
“(1-5t)
PROPOSITION 3.3. Let {n)+ i € V[ i=1,2,---,n, g € H} be a rank n con-
tinuous frame in VHIE with frame operator

2
K

and 2M(A) |1+ (1 +

= > [ Inj+ Eimi+ Eildua). 67
=1
Then A’ is self adjoint and positive.

Proof. For ¢ € Vi, A'[9) =3, iz |ni+ Cy(ni + Cllo)du(q).
Since (A'¢|y) = (A']9))T|w),

T
@oly) = (z/nﬁx m+mww<0qw>

=3 [ toimi+ Cni + Cwiduta)
= (o).
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Hence (A'¢p|y) = (¢|A"y). Tt follows that A’ is self adjoint.
Now

Wolo) = 3 [ (olnj + & ni+ &lo)du(a)
i=1
=3 [ o+ &) Panta
> 0.

Thereby A’ is positive. [

The following results are the quaternionic continuous counterparts of certain per-
turbations considered for complex discrete frames in [5].

THEOREM 3.4. Let {TL; eVRi=1,2,---,n, g€ H} be a rank n right quater-
nionic continuous frame with bounds m(A),M(A) and {ﬁ; eVRli=1,2,---.n,q€
H} be the dual frame of {né eVR|i=1,2,---,n, q € H} with bounds C,D. Assume
that the family {‘Pﬁl eVRi=1,2,---,n, g€ H} satisfies the following two conditions:

L A ;:;/Hung_\yguzdu@ < o

n . . .
2 y:= 3 [ Img =¥l 7 du() < 1.
i=1

Then {‘{’; € Vﬁ | i=1,2,---,n, g € H} is a rank n continuous frame for Vﬁ with

2
(17 A

bounds

Proof. Let T : H" — V& defined by
T({ebn) = X, [ miei du(q), where {e;}i, € B
i=1

be the pre-frame operator of the frame {n; € Vi | i=1,2,---,n, g € H}. From Theo-
rem 2.9, ||T| < \/M(A). Now define U : H" — V¥ by

U({c:})) = Z/H‘{’f]ci du(q), where {c;}i—, € H".
i=1
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‘We have

IVl = sup [[UQ]]
lof=1

= sup Z/H‘I’flc,-du(q)

loll=1i=1

, where ¢ = {¢;}iL, € H"

= sup Z/ —n;+n))cidu(q)
ol=1|li=1

+ sup
lof=1

Z / n,cidpi(q)

< sup Z/ L= Nl)cidu(q
i=1 i=1

llofl=1

N

sup 3 |1~ njl duta)-+ 7]

lol=1i=
< \/_+HT||, by (1)
< VA+VM(A).
Hence U is well defined and ||U|| < VA + /M(A). Now the adjoint U of U can be
defined by
UMV — H" by UT(9) = {(9[W] )}y, Vo € Vi§.

We have
3 [ o1 Pauta) = o
AR
= {lUllel}?
< {VA+v/M( }2H¢H2
A
= M(A) <1+ ()> 91>
Therefore

2

n 2 0
;/H|<¢‘l{lq>| du(q) <M(A) <l—|— m) H¢”2 (3.8)

Now define L: V¥ — V¥ by

()= [, ¥ (0l an(a). vo < V£
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For ¢ € VR,

Thatis ||¢ —L(¢)|| < v| @], forall ¢ € VE. It follows that ’

1
< 1. Sothat |[L]| < 1+yand ||L7!]| < T Each ¢ € V& can be written as

Now

o —L(9)]

21/ n}—¥) (0[7T}) diu(q)
< 3 [ lons - i) (o) auta)
=3 [l il |Gormpl o)

< z [ i =] o 1175 | dua(a)
=rlol-

¢=LL "¢
=3 [ ¥ (el duo).
i=1

= (9l0)
¢|i L ‘P;<L1¢ﬁ;>du<q>>
- 2 R AT

=
)

S [l ania) (016 of")

1

~ Dl ol (3 [ o Panta )

<Zl/ oo >% @/H|<L‘1¢|ﬁi;>!2du<q>>é
[

1

< VD= Il (l_:ZI/HI<¢‘FZ>I2du(4>> ~

j . i<¢|ﬁ;>du(q)—ii/ﬂﬂ‘{';<¢ﬁ;>du(q)

Ivﬁ —LH <y and ’

’vﬁ—LH
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It follows that

n ) 1— 2
3 [ lore) Pauta) > L5 )P (3.9)
i=1

From 3.8 and 3.9, we get

2
—v)2 n )
U Dy> ||¢2<i21/H|<¢‘P2>}2dH(Q)<M(A)<1+ Aﬁ) lo]*,  (3.10)

forall ¢ € VK. Hence {¥} € Vf |i=1,2,---,n, g € H} is arank n continuous frame
2

R i (177 A
for Vi with bounds D and M(A) | 1+ M@ )

DEFINITION 3.5. Let K and L be subspaces of VX. When K # {0}, the gap
from K to L is given by

§(K,L):= sup inf[l¢—y].
ek |l¢o|=1VEE

Also when K = {0}, we define §(K,L) =0.

THEOREM 3.6. Let {n}i € Vﬁ |i=1,2,---,n, g € H} be a rank n continuous
frame in VR with bounds m(A) and M(A) and let {ﬁfl eVR|i=1,2,--,n, g H}
be the dual frame of {Thl, eVR|i=1,2,---,n, g € H} with bounds C,D. Suppose that
{¥, eV |i=1,2,---,n, g€ H} is a family in V{§. Let K = rightspan{¥/ }?_|,L =
rightspan{né |, where g € H. and the right span is taken over H. Assume that
S(K,L) < 1. If {¥, € VR i=1,2,---,n, g € H} satisfies the following conditions:

1. )L:zZ/HHn;—‘{‘fluzdu(q)<°°;
i=1

2 yi= 3 [ g =¥yl duta) < 1.

Then {‘I’ﬁl eVR1i=1,2,--,n, g € H} is a rank n continuous frame with bounds

2
_ )2
% and M(A) (1 + M?A)) = 5(1K,L))2' Moreover; the restriction of the

orthogonal projection Py, to K is an isomorphism from K onto L.
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Proof. Let h € K then h =hy +h— hy, where hy € L with PLh=hy, h= P h+
h — hy. Therefore

[BLR| = [|All = [lh = Ao

= [l = e ”th Tl
> [l — Al sup inf ¢ — v
ek, |o)|=1VEL
_ Il - ]| 8(K. L)
— (1- 5(K,L)) ]

Therefore ||PLh|| > (1—06(K,L))||k||, forall h € K. Let Vﬁ :L@L_L and Py : VE —
L be the orthogonal projection. Now for each i,Vﬁ S>Y, = PL(‘I’;) + @, for some
P € _LL. Now n; —‘{‘; = (n; — PL(¥})) — @, for all i. Note that ) —¥, € Vif ) —
PL(W¥}) € L and —®}, € L*. Then for each i,
Hn; H (w+vju+vy, Whereu:né—PL(‘I’;)eLandv:—deieLl
2
= [lul| + Guv) + (v]u) + [Iv]
2 2
= [[ull*+[IV[I* as (ulv) = (v|u) =0
2
2 [|ull
= [[mg =¥ |

Therefore ||né—PL(‘P£I)H < ||né—‘1’;||, for all i. Hence,
3 [ -t du) < 3, [ =) dto
and . .
$ [ Ini el mdanca) < 3 [ g 41wt
= 1=

We apply Theorem 3.4 to the sequence {PL(‘PZ)}?:l in L and to the frame
(1-v?

d

D an

{niy, for L to obtain {PL(¥})}" | as a frame for L with bounds
2

A
M(A) (1 + W) . We have P (K) = L and hence the restriction Q := P, |g is an

isomorphism from K onto L. Now the claim is {‘{‘f] eVR|i=1,2,--,n,qeH} isa
frame for K. For ¥ € K, we have

3 [ orefante) = 3 [ (vie- o0 duto
_21/} DO | du(g
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<M(A)<1+ ﬁ) @ el
2
< M(A) <1+ ﬁ) {1y
1 2
:M(A)<1+ M(A)> o | 1w
2
A 1
gM(A)(” M<A>> i—swop "

Hence

2
;/H|<‘f"*’2>|2du(q)<M(A)<l+ M)(LA)> (1—6(1K,L))2”‘P”2’ (3.11)

forall ¥ € K. Now
> [ Je) Pauta = 3 [ [((©

> U gy

“Hiw|o(w) >| du(q

)2
e [T
a2
S TR
Hence . ,
Z,l/ IS ITY)II‘Pllz, (3.12)

for all ¥ € K. Therefore, {¥ € Vf [ i=1,2,---,n, g € H} is a rank n continuous

2
(1-p)7° A 1
TandM(A)<1+ M(A)> TsxDE U

DEFINITION 3.7. We call a sequence {n,’i € V]ﬁ |i=1,2,---,n, g € H} aquater-
nionic rank n continuous Riesz family if there exists two constants A, B > 0 such that
for every scalar sequence {c;}! | C H",

frame for K with bounds

2
AN el < Lcidu(q)|| <BY,|eil,
i=1 i=1 i=1

where A, B are called Riesz bounds.
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THEOREM 3.8. Let {n}i € VHIE | i=1,2,---,n, q € H} be a quaternionic rank
n continuous Riesz family in V& with bounds m(A) and M(A) and let {& e VR i=

1,2,---,n, g € H} be a family in Vﬁ which satisfies Y = 2":/ Hn; —é;” HSilnt;Hdu(q)
i=1/H

< 1. Then {51; eVR|i=1,2,---,n, g € H} is a rank n continuous Riesz family with

2
bounds m(A)(1—v)* and M(A) <1+ ﬁ) ,where)L::;/HHY);—&;szu(q)

and S is a frame operatorof{né eVR|i=1,2,---,n,qeH} in L:=rightspan{né lge
H}L -

Proof. For {c;}}_, € H",
Leidu( ’c, d
11/5 (g z/us ldu(q)
- ;/ﬂﬂ}!ci(éé—né+né)|\du(0)
<3 [ et = &lanta) + 3 [ e anta)
= Yo [, 10~ £l o) + 3, [l ta)

(54) (g7

/M) (2 |c,-2>

=Va <_§")1|c,-2> +/M(A) <i|c,-2>

1

2 2
= M(A) (1 + Mﬁ) (21 |Ci2> .

Define U : VE — VE by U¢ = 2/ (oIS~ 'n})du(q). Forany ¢ € VR, we have
i=1/H

{015~ n})du(q)

< 3 [ leitoisni) auta)

< (VA+VM(@A)) (Zl /H|<¢s—1n;>;2>
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1

= (VA+VM(@4)) (Zl /H|<PL¢S‘1né>|2)

< (V2+/M(4)) (— 1ol )

_ A+ /MA)
ST U@

Since {né eVE|i=1,2,---,n, g € H} is a continuous frame for L, by the frame
decomposition, U(n,) = &, forall i=1,2,...,n and g € H. For ¢ € L,

1l

lo-vol =3 [ né<¢lS‘1nZ}>du(q>—i§1 [ € ¢ols™ ni)dula)

2/ ny 0 (9ls ™ n}) du(a)
<3 [, = &) Cols ) ata)
-3 /Hnn;—asu o155 du(a)

<3 [l &lls " mgllloNan(a
=rloll-

Hence [[¢ —U¢[ < yl|¢]. It follows that [[|¢[| - [[U¢[l] < [[¢ —U¢[ < v[l¢] and

U] = (1—7v)]|¢|. We have
U (; /H n;cidu(q)> H

3 [ eduta)
> (1-v) ; /H nicid(q)
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