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ON THE A SPECTRAL RADIUS AND A ENERGY

OF NON–STRONGLY CONNECTED DIGRAPHS

XIUWEN YANG, LIGONG WANG ∗ AND WEIGE XI

(Communicated by S. Fallat)

Abstract. Let A(G) be the A -matrix of a digraph G and 1,2 , . . . ,n be the eigenvalues
of A(G) . Let  (G) be the A spectral radius of G and E (G) =n

i=1  2
i be the A energy

of G by using second spectral moment. Let Gm
n be the set of non-strongly connected digraphs

with n vertices containing a unique strong component with m vertices and some directed trees
hanging on each vertex of the strong component. In this paper, we characterize the digraph which
has the maximal A spectral radius and the maximal (or minimal) A energy in Gm

n .

1. Introduction

Let G = (V(G),A(G)) be a digraph where V(G) = {v1,v2, . . . ,vn} is the vertex
set of G and A(G) is the arc set of G . For an arc from the vertex vi to v j , we denote by
(vi,v j) , and vi is the tail of (vi,v j) and v j is the head of (vi,v j) . The outdegree d+

i =
d+

G (vi) of G is the number of arcs whose tail is vertex vi and the indegree d−i = d−G (vi)
of G is the number of arcs whose head is vertex vi . We denote the maximum outdegree
of G by +(G) . A walk  of length l from vertex u to vertex v is a sequence of
vertices  : u = v0,v1, . . . ,vl = v , where (vk−1,vk) is an arc of G for any 1 � k � l .
If u = v then  is called a closed walk. Let c2 denote the number of all closed walks
of length 2. A directed path Pn with n vertices is a digraph which the vertex set is
{vi|i = 1,2, . . . ,n} and the arc set is {(vi,vi+1)|i = 1,2, . . . ,n− 1} . A directed cycle
Cn with n � 2 vertices is a digraph which the vertex set is {vi|i = 1,2, . . . ,n} and
the arc set is {(vi,vi+1)|i = 1, . . . ,n− 1}∪{(vn,v1)} . A digraph G is connected if its
underlying graph is connected. A digraph G is strongly connected if for each pair of
vertices vi,v j ∈ V(G) , there is a directed path from vi to v j . A strong component of G
is a maximal strongly connected subdigraph of G . A directed tree T with n vertices is
a digraph for which its underlying graph is connected and does not contain any cycles.
A directed tree with n vertices will have e = n− 1 arcs. Throughout this paper, we
only consider a connected digraph G containing neither loops nor multiple arcs.

For a digraph G with n vertices, the adjacency matrix A(G) = (ai j)n×n of G
is a (0,1)-square matrix whose (i, j)-entry equals 1 if (vi,v j) is an arc of G , and
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equals 0 otherwise. The Laplacian matrix L(G) and the signless Laplacian matrix
Q(G) of G are L(G) = D+(G)−A(G) and Q(G)=D+(G)+A(G) , respectively, where
D+(G) = diag(d+

1 ,d+
2 , . . . ,d+

n ) is a diagonal outdegree matrix of G . In 2019, Liu et al.
[12] defined the A -matrix of G as

A(G) = D+(G)+ (1−)A(G),

where  ∈ [0,1] . It is clear that if  = 0, then A0(G) = A(G) ; if  = 1
2 , then A 1

2
(G) =

1
2Q(G) ; if  = 1, then A1(G) = D+(G) . Since D+(G) is not interesting, we only
consider  ∈ [0,1) . The eigenvalue of A(G) with largest modulus is called the A
spectral radius of G , denoted by (G) .

Actually, in 2017, Nikiforov [15] first proposed the A -matrix of a graph H of
order n as

A(H) = D(H)+ (1−)A(H),

where D(H) = diag(d1,d2, . . . ,dn) is a diagonal degree matrix of H and  ∈ [0,1] .
After that, many scholars began to study the A -matrices of graphs. Nikiforov et al.
[16] gave several results about the A -matrices of trees and gave the upper and lower
bounds for the spectral radius of the A -matrices of arbitrary graphs. Let 1(A(H)) �
2(A(H)) � · · · � n(A(H)) be the eigenvalues of A(H) . Lin et al. [11] char-
acterized the graph H with k(A(H)) = n− 1 for 2 � k � n and showed that
n(A(H)) � 2 − 1 if H contains no isolated vertices. Liu et al. [13] presented
several upper and lower bounds on the k -th largest eigenvalue of A -matrix and char-
acterized the extremal graphs corresponding to some of these obtained bounds. More
results about A -matrix of a graph can be found in [8, 9, 10, 14, 17, 20]. Recently, Liu
et al. [12] characterized the digraph which has the maximal A spectral radius in Gn,r ,
where Gn,r is the set of digraphs of order n with dichromatic number r . Xi et al. [22]
determined the digraphs which attain the maximum (or minimum) A spectral radius
among all strongly connected digraphs with given parameters such as girth, clique num-
ber, vertex connectivity or arc connectivity. Xi and Wang [23] established some lower
bounds on +−(G) for strongly connected irregular digraphs with given maximum
outdegree and some other parameters. Ganie and Baghipur [4] obtained some lower
bounds for the spectral radius of A(G) in terms of the number of vertices, the number
of arcs and the number of closed walks of the digraph G .

It is well-known that the energy of the adjacency matrix of a graph H first defined
by Gutman [5] as EA(H) = n

i=1 i , where i is an eigenvalue of the adjacency matrix
of H . Peña and Rada [19] defined the energy of the adjacency matrix of a digraph G
as EA(G) = n

i=1 |Re(zi)| , where zi is an eigenvalue of the adjacency matrix of G and
Re(zi) is the real part of eigenvalue zi . Some results about the energy of the adjacency
matrices of graphs and digraphs have been obtained in [2, 3, 6]. Lazić [7] defined the
Laplacian energy of a graph H as LE(H) =n

i=1 2
i by using second spectral moment,

where i is an eigenvalue of L(H) . Perera and Mizoguchi [18] defined the Laplacian
energy LE(G) of a digraph G as LE(G) = n

i=1 2
i by using second spectral moment,

where i is an eigenvalue of L(G) . Yang and Wang [24] defined the signless Laplacian
energy as ESL(G) =n

i=1 q2
i of a digraph G by using second spectral moment, where qi
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is an eigenvalue of Q(G) . In this paper, we study the A energy as E(G) = n
i=1 2

 i
of a digraph G by using second spectral moment, where  i is an eigenvalue of A(G) .

The arrangement of this paper is as follows. In Section 2, we introduce some
special digraphs. In Section 3, we characterize the digraph which has the maximal A
spectral radius in Gm

n . In Section 4, we characterize the digraph which has the maximal
(or minimal) A energy in Gm

n .

2. Preliminaries

In this section, we will introduce some special digraphs.

Complete digraph:

Let
↔
Kn denote the complete digraph with n vertices in which two arbitrary distinct

vertices vi,v j ∈ V(
↔
Kn) , there are arcs (vi,v j) ∈ A(

↔
Kn) and (v j,vi) ∈A(

↔
Kn) .

Out-star, in-star and star:
Let

→
K1,n−1 be an out-star with n vertices which has one vertex with outdegree

n− 1 and other vertices with outdegree 0 (see
→
K1,n−1 in Figure 1). Let

←
K1,n−1 be an

in-star with n vertices which has one vertex with indegree n−1 and other vertices with

indegree 0 (see
←
K1,n−1 in Figure 1). Let

↔
K1,n−1 be a star with n vertices which has

one vertex with outdegree and indegree n− 1 and other vertices with outdegree and

indegree 1 (see
↔
K1,n−1 in Figure 1). The vertex with outdegree or indegree n− 1 is

called the centre of
→
K1,n−1 ,

←
K1,n−1 or

↔
K1,n−1 .

1, 1nK
�

� 1, 1nK
�

� 1, 1nK
�

�

Figure 1: An out-star
→
K1,n−1 , an in-star

←
K1,n−1 and a star

↔
K1,n−1 .

In-tree:
Let in-tree be a directed tree with n vertices which the outdegree of each vertex of

the directed tree is at most one. Then the in-tree has exactly one vertex with outdegree
0 and such vertex is called the root of the in-tree (see Figure 2).

Generalized -digraph:
Let [m1,m2, . . . ,mt ] be a generalized -digraph with n = t

i=1 mi− t +1 (mi �
2) vertices which has t directed cycles Cmi with exactly one common vertex (see
[m1,m2, . . . ,mt ] in Figure 3).
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3v2v1v n-1v nv
2v1v n-2vn-3v

n-1v nvnin-tree rooted at  (directed path)v

n-2in-tree rooted at  v

Figure 2: Two different in-trees.
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Figure 3: A generalized  -digraph and a (p+q) -bispindle.

p -spindle and (p+q)-bispindle:
A p -spindle with n vertices is the union of p internally disjoint (x,y)-directed

paths for some vertices x and y . The vertex x is said to be the initial vertex of spindle
and y its terminal vertex. A (p+q)-bispindle with n vertices is the internally disjoint
union of a p -spindle with initial vertex x and terminal vertex y and a q -spindle with
initial vertex y and terminal vertex x . Actually, it is the union of p (x,y)-directed paths
and q (y,x)-directed paths. We denote the (p+q)-bispindle by B[p,q] (see B[p,q] in
Figure 3).

The set of non-strongly connected digraphs Gm
n :

Let Gm
n be the set of non-strongly connected digraphs with n vertices containing

a unique strong component with m vertices and some directed trees hanging on each
vertex of the strong component.

DEFINITION 2.1. Let G∗ be a strong connected digraph with m vertices which
d+

G∗(v1) � d+
G∗(v2) � · · · � d+

G∗(vm) is the outdegrees of vertices of G∗ . Let T i be
the directed tree with ni vertices, where i = 1,2, . . . ,m and n = m

i=1 ni . We give the
digraphs G , G′ , G′′ and G′′′ obtained by G∗ and T i as follow. (We take an example
in Figure 4.)

(i) Let G ∈ Gm
n be a non-strongly connected digraphs with n vertices containing

the unique strong component G∗ with m vertices and some directed trees T i hanging
on each vertex of G∗ , where i = 1,2, . . . ,m and n = m

i=1 ni . Then the vertex set of
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G	

G

G	 G	

'G ''G

1v
G	

'''G

Figure 4: The digraphs G,G′,G′′,G′′′ ∈ Gm
n .

G is V(G) =
⋃m

i=1V(T i) , where V(T i) =
{
ui

1,u
i
2, . . . ,u

i
ni

}
, V(G∗) = {v1,v2, . . . ,vm}

and vi = ui
1 , i = 1,2, . . . ,m . Let d+

G (ui
j) be the outdegree of vertex ui

j of G , where
i = 1,2, . . . ,m and j = 1,2, . . . ,ni .

(ii) Let

G′ = G−
m


i=1

ni


s,t=1

(ui
s,u

i
t)+

m


i=1

ni


j=2

(ui
1,u

i
j),

where (ui
s,u

i
t) ∈A(G) , i = 1,2, . . . ,m and s,t, j = 1,2, . . . ,ni . Then G′ ∈ Gm

n is a non-

strongly connected digraph which each directed tree T i is an out-star
→
K1,ni−1 whose

centre is vi of G∗ , where i = 1,2, . . . ,m .
(iii) Let

G′′ = G−
m


i=1

ni


s,t=1

(ui
s,u

i
t)+

m


i=1

ni


j=2

(u1
1,u

i
j)

= G′ −
m


i=2

ni


j=2

(ui
1,u

i
j)+

m


i=2

ni


j=2

(u1
1,u

i
j),

where (ui
s,u

i
t) ∈A(G) , i = 1,2, . . . ,m and s,t, j = 1,2, . . . ,ni . Then G′′ ∈ Gm

n is a non-

strongly connected digraph which only has an out-star
→
K1,n−m whose centre is v1 of

G∗ , where v1 is the maximal outdegree vertex of G∗ . Since the maximum outdegree
vertex of G∗ may not unique, the digraph G′′ may not unique, too.

(iv) Let G′′′ ∈ Gm
n be a non-strongly connected digraph by changing each directed

tree T i of G to an in-tree whose root is vi of G∗ , where i = 1,2, . . . ,m .

Digraphs Km
n and Cm

n :
Let Km

n be a non-strongly connected digraphwith n vertices containing a complete

digraph
↔
Km and an out-star

→
K1,n−m with centre at any vertex of

↔
Km . Let Cm

n be a non-
strongly connected digraph with n vertices containing a directed cycle Cm and some
in-trees with roots at each vertex of Cm .
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3. The maximal A spectral radius of non-strongly connected digraphs

In this section, we will consider the maximal A spectral radius of non-strongly
connected digraphs in Gm

n . First, we list some known results used for later.

DEFINITION 3.1. ([1]) Let A = (ai j) , B = (bi j) be two n×n matrices. If ai j �
bi j for all i and j , then A � B . If A � B and A 	= B , then A < B . If ai j < bi j for all i
and j , then A
 B .

LEMMA 3.2. ([1]) Let A = (ai j) , B = (bi j) be two n×n matrices with the spec-
tral radii (A) and (B) , respectively. If 0 � A � B, then (A) � (B) . Furthermore,
If 0 � A < B and B is irreducible, then (A) < (B) .

LEMMA 3.3. ([12]) Let G be a digraph with the A spectral radius (G) and
maximal outdegree +(G) . If H is a subdigraph of G, then (H) � (G) , espe-
cially, (G) � +(G) . If G is strongly connected and H is a proper subdigraph of
G, then (H) < (G) .

Second, we give some lemmas to prove our main results.

LEMMA 3.4. Let G ∈ Gm
n be a non-strongly connected digraph with V(G) =

{v1,v2, . . .,vn} . Let G∗ be a unique strong component of G with V(G∗)= {v1,v2, . . .,vm} .
Let 1,2, . . . ,n be the eigenvalues of A(G) and d+

1 ,d+
2 , . . . ,d+

n be the outde-
grees of vertices of G. Then

 i = d+
i ,

for i = m+1,m+2, . . .,n.

Proof. Let A(G)=D+(G)+(1−)A(G) be the A -matrix of G . Let V(G) =
V1
⋃V2 be the vertex set of G , where V1 = V(G∗) = {v1,v2, . . . ,vm} and V2 = V(G−

G∗) = {vm+1,vm+2, . . . ,vn} . According to the partition of vertex set of G , we partition
A(G) into

A(G) =
(

A11 A12

A21 A22

)
.

The characteristic polynomial A (G)(x) of G is A (G)(x) = |xIn−A(G)| . Since the
vertices of V2 are not on the strong component, there must exist a vertex with indegree
0 or outdegree 0. Then the elements of column or row of A(G) corresponding to that
vertex are all 0 , except the diagonal element. So by the property of determinant, we
have A (G)(x) = |xIn−A(G)| = |xIn−A11|n

i=m+1(x−d+
i ) . Hence  i = d+

i ,
for i = m+1,m+2, . . .,n . �

With the above lemma, we can get a more general result.

COROLLARY 3.5. Let G be an arbitrary digraph with n vertices. Let 1,
2, . . . ,n be the eigenvalues of A(G) and d+

1 ,d+
2 , . . . ,d+

n be the outdegrees of
vertices of G. For any vertex vi which is not on the strong components of G, we have

 i = d+
i .
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LEMMA 3.6. Let G,G′ ∈ Gm
n be two non-strongly connected digraphs as defined

in Definition 2.1. Then (G′) � (G) .

Proof. By the definition of G′ , we know G′ ∈ Gm
n is a non-strongly connected

digraph, which each directed tree T i is an out-star
→
K1,ni−1 whose centre is vi of G∗ ,

where i = 1,2, . . . ,m . Then d+
G′(vi) = d+

G′(u
i
1) = d+

G∗(vi)+ni−1, d+
G′(u

i
j) = 0, where

i = 1,2, . . . ,m and j = 2,3, . . . ,ni .
First, we consider the A -eigenvalues of G′ . From Lemma 3.4, for the vertex ui

j
which is not on the strong component G∗ , we have

G′(ui
j) = d+

G′(u
i
j) = 0,

where i = 1,2, . . . ,m and j = 2,3, . . . ,ni . For the vertex vi = ui
1 which is on the

strong component G∗ , the A -eigenvalues G′(ui
1) are equal to the eigenvalues of

A′11 , where

A′11 =diag
(
d+

G∗(v1)+n1−1,d+
G∗(v2)+n2−1, . . . ,d+

G∗(vm)+nm−1
)
+(1−)A(G∗).

Obviously, (G′) = (A′11) .
Next, we consider the A -eigenvalues of G . From Lemma 3.4, for the vertex ui

j
which is not on the strong component G∗ , we have

G(ui
j) = d+

G (ui
j),

where i = 1,2, . . . ,m and j = 2,3, . . . ,ni . For the vertex vi = ui
1 which is on the strong

component G∗ , the A -eigenvalues G(ui
1) are equal to the eigenvalues of A11 , where

A11 = diag
(
d+

G (v1),d+
G (v2), . . . ,d+

G (vm)
)
+(1−)A(G∗).

Hence, (G) = max
1�i�m,2� j�ni

{
(A11),d+

G (ui
j)
}

.

Finally, we prove

(G′) = (A′11) � (G) = max
1�i�m,2� j�ni

{
(A11),d+

G (ui
j)
}

.

From Lemma 3.2, since

d+
G∗(vi)+ni−1 � d+

G (vi),

we have A′11 � A11 . Then (A′11) � (A11) . From Lemma 3.3, we have

(G′) � +(G′) � +(G) � d+
G (ui

j).

Therefore, we have (G′) � (G) . �

Finally, we give our main result.
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THEOREM 3.7. Among all digraphs in Gm
n , Km

n is the unique digraph which has
the maximal A spectral radius.

Proof. From the proof of Lemma 3.6, we know that (G′) = (A′11) � (G) ,
where

A′11 =diag
(
d+

G∗(v1)+n1−1,d+
G∗(v2)+n2−1, . . . ,d+

G∗(vm)+nm−1
)
+(1−)A(G∗).

When G∗ =
↔
Km ,

↔
A′11= diag(m+n1−2,m+n2−2, . . . ,m+nm−2)+ (1−)A(

↔
Km).

From Lemmas 3.2 and 3.3, for the strong component G∗ , we know that adding the arcs

will increase the A spectral radius. So when G∗ =
↔
Km , we have (

↔
A′11) � (A′11) =

(G′) . Next we prove (Km
n ) � (

↔
A′11) .

Suppose that x = (x1,x2, . . . ,xm)T is a Perron vector of
↔
A′11 corresponding to

(
↔
A′11) . We assume xt = max{xi : i = 1,2, . . . ,m} . Let

↔
A′′11= diag

(
m−1, . . . ,m−1,n−1︸︷︷︸

t−th

,m−1, . . . ,m−1
)

+(1−)A(
↔
Km).

Then we have

xT
(↔

A′′11 −
↔
A′11

)
x =−

i	=t

(ni−1)x2
i +(n−m−nt +1)x2

t

=−
i	=t

(ni−1)x2
i +

i	=t

(ni−1)x2
t

= 
i	=t

(ni−1)
(
x2
t − x2

i

)
� 0.

So (
↔
A′′11) � (

↔
A′11) .

Since Km
n is a non-strongly connected digraph with n vertices containing a com-

plete digraph
↔
Km and an out-star

→
K1,n−m with centre at any vertex of

↔
Km , without

loss of generality, let such vertex be vt . Then d+
Km

n
(vt) = d+↔

Km
(vt) + n−m = n− 1,

d+
Km

n
(ut

j) = 0 and d+
Km

n
(vi) = d+↔

Km
(vi) = m− 1, where i = 1, . . . ,t− 1,t + 1, . . . ,m and

j = 2,3, . . . ,n−m + 1. So we have (Km
n ) = (

↔
A′′11) � (

↔
A′11) . Hence, Km

n is
the unique digraph which has the maximal A spectral radius among all digraphs in
Gm

n . �

REMARK 3.8. Let G′,G′′ ∈ Gm
n be two non-strongly connected digraphs as de-

fined in Definition 2.1. If  = 0, then (G′′) = (G′) . Actually, if the strong
component G∗ of G and ni for i = 1,2, . . . ,m are fixed, can we get (G′′) � (G′)
for any  ∈ [0,1)?
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4. The maximal (or minimal) A energy of non-strongly connected digraphs

In this section, we will consider the maximal (or minimal) A energy of non-
strongly connected digraphs in Gm

n . Firstly, we will introduce some basic concepts of
A energy of digraphs.

Let E(G) be the A energy of a digraph G . By using second spectral moment,
Xi [21] defined the A energy as E(G) = n

i=1 2
 i , where  i is an eigenvalue of

A(G) . She also obtained the following result.

LEMMA 4.1. ([21]) Let G be a connected digraph with n vertices. Let d+
1 ,d+

2 , . . . ,
d+

n be the outdegrees of vertices of G and c2 be the number of all closed walks of length
2 . Then

E(G) =
n


i=1

 2
 i = 2

n


i=1

(d+
i )2 +(1−)2c2.

From Lemma 4.1, we take the Example 4.2.

EXAMPLE 4.2. We give A energies of some special digraphs as follow:
(1) E(Pn) = 2(n−1) ;

(2) E(Cn) =

{
2n, if n � 3,

22 +2(1−)2, if n = 2;

(3) E(
→
K1,n−1) = 2(n−1)2 ;

(4) E(
←
K1,n−1) = 2(n−1) ;

(5) E(
↔
K1,n−1) = 2n(n−1)+2(1−)2(n−1) ;

(6) E(
↔
Kn) = 2n(n−1)2 +(1−)2n(n−1) ;

(7) E([m1,m2, . . . ,mt ]) = 2(t2 +n−1)+2s(1−)2,
where 2 = m1 · · · = ms < ms+1 � · · · � mt ;

(8) E(B[p,q])=

{
2(p2 +q2 +n−2)+2(1−)2, if (x,y),(y,x) ∈ A(B[p,q]),
2(p2 +q2 +n−2), otherwise;

(9) E(Km
n ) = 2(n−1)2 +2(m−1)3 +(1−)2m(m−1) ;

(10) E(Cm
n ) =

{
2n, if m � 3,

2n+2(1−)2, if m = 2.

LEMMA 4.3. ([21]) Let T be a directed tree with n vertices. Then

2(n−1) � E(T ) � 2(n−1)2.

Moreover, E(T ) = 2(n−1) if and only if T is an in-tree with n vertices; E(T ) =
2(n−1)2 if and only if T is an out-star

→
K1,n−1 with n vertices.

Next, we give some lemmas to prove our main results.
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LEMMA 4.4. Let G,G′ ∈ Gm
n be two non-strongly connected digraphs as defined

in Definition 2.1. Then E(G′) � E(G) with equality holding if and only if G∼= G′ .

Proof. By the definition of G , we know G ∈ Gm
n is a non-strongly connected

digraph with n vertices containing a unique strong component with m vertices and
some directed trees hanging on each vertex of the strong component. From Lemma 4.3,
we know the maximal A energy of T i is(

E(T i)
)
max = 2(ni−1)2,

where i = 1,2, . . . ,m . Then we have

E(G) = 2
m


i=1

ni


j=1

(
d+

G (ui
j)
)2 +(1−)2c2(G∗)

= 2
m


i=1

(
d+

G∗(u
i
1)+d+

Ti(u
i
1)
)2 +2

m


i=1

ni


j=2

(
d+

G (ui
j)
)2 +(1−)2c2(G∗)

= 2
m


i=1

((
d+

G∗(vi)
)2 +

(
d+

Ti(ui
1)
)2

+2d+
G∗(vi)d+

T i(ui
1)
)

+2
m


i=1

ni


j=2

(
d+

Ti(u
i
j)
)2

+(1−)2c2(G∗)

= 2
m


i=1

(
d+

G∗(vi)
)2 +2

m


i=1

ni


j=1

(
d+

Ti(u
i
j)
)2

+22
m


i=1

d+
G∗(vi)d+

T i(vi)+ (1−)2c2(G∗)

� 2
m


i=1

(
d+

G∗(vi)
)2 +2

m


i=1

(ni−1)2

+22
m


i=1

d+
G∗(vi)(ni−1)+ (1−)2c2(G∗)

= 2
m


i=1

(
d+

G∗(vi)+ (ni−1)
)2 +(1−)2c2(G∗)

= E(G′).

The equality holds if and only if

ni


j=1

(
d+

Ti(ui
j)
)2

+2d+
G∗(vi)d+

Ti(vi) = (ni−1)2 +2d+
G∗(vi)(ni−1),

for all i = 1,2, . . . ,m . Anyway, the strong component G∗ does not change, so d+
G∗(vi)

does not change. That is, d+
G (ui

1) = d+
T i(vi) = ni − 1, and d+

G (ui
j) = 0, where i =

1,2, . . . ,m and j = 2,3, . . . ,ni . Then each directed tree T i is an out-star
→
K1,ni−1 .

Hence, we have E(G′)� E(G) with equality holding if and only if G∼= G′ . �
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LEMMA 4.5. Let G′,G′′ ∈ Gm
n be two non-strongly connected digraphs as defined

in Definition 2.1. Then E(G′′) � E(G′) with equality holding if and only if G′ ∼= G′′ .

Proof. By the definition of G′′ , we know G′′ ∈ Gm
n is a non-strongly connected

digraph which only has an out-star
→
K1,n−m whose centre is v1 of G∗ , where v1 is the

maximal outdegree vertex of G∗ . Then we have

E(G′′) = 2 (d+
G∗(v1)+n−m

)2 +2
m


i=2

(d+
G∗(vi))2 +(1−)2c2(G∗).

Since

E(G′) = 2
m


i=1

(
d+

G∗(vi)+ (ni−1)
)2 +(1−)2c2(G∗)

= 2

(
m


i=1

(d+
G∗(vi))2 +

m


i=1

(ni−1)2 +2
m


i=1

d+
G∗(vi)(ni−1)

)
+(1−)2c2(G∗)

� 2

⎛⎝ m


i=1

(d+
G∗(vi))2 +

(
m


i=1

(ni−1)

)2

+2
m


i=1

d+
G∗(v1)(ni−1)

⎞⎠
+(1−)2c2(G∗)

= 2

(
m


i=1

(d+
G∗(vi))2 +(n−m)2 +2d+

G∗(v1)(n−m)

)
+(1−)2c2(G∗)

= 2 (d+
G∗(v1)+n−m

)2 +2
m


i=2

(d+
G∗(vi))2 +(1−)2c2(G∗)

= E(G′′).

The equality holds if and only if

m


i=1

(ni−1)2 +2
m


i=1

d+
G∗(vi)(ni−1) =

(
m


i=1

(ni−1)

)2

+2
m


i=1

d+
G∗(v1)(ni−1).

Anyway, the strong component G∗ does not change, so d+
G∗(vi) does not change. That

is, ni− 1 = 0 for all i = 2,3, . . . ,m and n1 = n−m+ 1. Then the directed tree T 1 is

an out-star
→
K1,n−m , and each other directed tree is a vertex vi , where i = 2,3, . . . ,m .

Hence, we have E(G′′) � E(G′) with equality holding if and only if G′ ∼=
G′′ . �

Actually, since the maximum outdegree vertex of G∗ may not unique, the digraph
G′′ may not unique, too. But by the property of A energy, it does not affect the value
of A energy, we also have E(G′′) � E(G′) .
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LEMMA 4.6. Let G,G′′′ ∈ Gm
n be two non-strongly connected digraphs as defined

in Definition 2.1. Then E(G) � E(G′′′) with equality holding if and only if G∼= G′′′ .

Proof. From Lemma 4.3, we know the minimal A energy of T i is(
E(T i)

)
min = 2(ni−1),

where i = 1,2, . . . ,m . Similar to the proof of Lemma 4.4, we can get the result easily.
And

E(G′′′) = 2
m


i=1

(d+
G∗(vi))2 +2(n−m)+ (1−)2c2(G∗). �

From Lemmas 4.4–4.6, we have the following result.

COROLLARY 4.7. Let G,G′′,G′′′ ∈ Gm
n be non-strongly connected digraphs as

defined in Definition 2.1. Then

2
m


i=1

(d+
G∗(vi))2 +2(n−m)+ (1−)2c2(G∗) � E(G)

� 2 (d+
G∗(v1)+n−m

)2 +2
m


i=2

(d+
G∗(vi))2 +(1−)2c2(G∗).

Moreover, the first equality holds if and only if G∼= G′′′ and the second equality holds
if and only if G∼= G′′ .

From Corollary 4.7, we can get bounds of A energies of some special non-
strongly connected digraphs.

EXAMPLE 4.8. The bounds of A energies of special non-strongly connected di-
graphs Ûm

n , ̂[m1,m2, . . . ,mt ] and B̂[p,q] .
(i) Let Ûm

n ∈ Gm
n be a unicyclic digraph with n vertices containing a unique di-

rected cycle Cm and some directed trees hanging on each vertex of Cm , where m � 2.
Then

22 +2(n−2)+2(1−)2 � E(Û2
n ) � 2(n−1)2 +2 +2(1−)2,

and

2m+2(n−m) � E(Ûm
n ) � 2(n−m+1)2 +2(m−1) (m � 3).

Moreover, the first equality holds if and only if Ûm
n
∼= Cm

n ; the second equality holds if

and only if Ûm
n ∈ Gm

n only has an out-star
→
K1,n−m whose centre is an any vertex of Cm .

(ii) Let ̂[m1,m2, . . . ,mt ] ∈ Gm
n be a generalized ̂ -digraph with n vertices con-

taining [m1,m2, . . . ,mt ] and some directed trees hanging on each vertex of [m1,
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m2, . . . ,mt ] , where 2 = m1 · · · = ms < ms+1 � · · · � mt , m = t
i=1 mi− t + 1 and the

common vertex of t directed cycles Cmi is v . Then

2(m−1+ t2)+2(n−m)+2s(1−)2 � E(̂[m1,m2, . . . ,mt ])

� 2 (n−m+ t)2 +2(m−1)+2s(1−)2.

Moreover, the first equality holds if and only if each directed tree is an in-tree with
root at each vertex of [m1,m2, . . . ,mt ] ; the second equality holds if and only if ̂[m1,

m2, . . . ,mt ] ∈ Gm
n only has an out-star

→
K1,n−m whose centre is v .

(iii) Let B̂[p,q] ∈ Gm
n be a digraph with n vertices containing B[p,q] and some

directed trees hanging on each vertex of B[p,q] , where V(B[p,q]) = m and p � q . If
both (x,y) and (y,x) are arcs in B̂[p,q] , then

2(m−2+ p2 +q2)+2(n−m)+2(1−)2 � E(B̂[p,q])

� 2 (n−m+ p)2 +2(m−2+q2)+2(1−)2.

Otherwise,

2(m−2+ p2 +q2)+2(n−m) � E(B̂[p,q]) � 2 (n−m+ p)2 +2(m−2+q2).

Moreover, the first equality holds if and only if each directed tree is an in-tree with root
at each vertex of B[p,q] ; the second equality holds if and only if B̂[p,q] ∈ Gm

n only has

an out-star
→
K1,n−m whose centre is x .

Finally, we give our main result.

THEOREM 4.9. Among all digraphs in Gm
n , Km

n is the unique digraph which has
the maximal A energy and Cm

n is the digraph which has the minimal A energy.

Proof. From Lemmas 4.4–4.6, we have known E(G′′) � E(G′) � E(G) �
E(G′′′) , if the strong component G∗ of G and ni for i = 1,2, . . . ,m are fixed. By

Corollary 4.7, we know E(G′′) = 2
(
d+

G∗(v1)+n−m
)2 +2m

i=2(d
+
G∗(vi))2 +(1−

)2c2(G∗) and E(G′′′) = 2m
i=1(d

+
G∗(vi))2 +2(n−m) + (1−)2c2(G∗) . Obvi-

ously, m−1 � d+
G∗(vi) � 1 for all i = 1,2, . . . ,m and c2(

↔
Km) � c2(G∗) � c2(Cm) . So

we get E(Km
n ) � E(G′′) and E(G′′′) � E(Cm

n ) .
Hence among all digraphs in Gm

n , Km
n is the unique digraph which has the maximal

A energy and Cm
n is the digraph which has the minimal A energy. �

REMARK 4.10. Since the in-trees of Cm
n is not unique, the minimal digraph of

the lower bound of any G ∈ Gm
n is not unique, too. But by the property of A energy,

we know the lower bound is unique. And

2(n−1)2 +2(m−1)3 +(1−)2m(m−1)

� E(G) �
{
2n, if m > 2,

2n+2(1−)2, if m = 2.
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5. Concluding

In this paper, we characterized the digraph which has the maximal A spectral
radius and the maximal (or minimal) A energy in Gm

n , where Gm
n is a special class

of non-strongly connected digraphs with n vertices which contains a unique strong
componentwith m vertices and some directed trees hanging on each vertex of the strong
component. We want to further study the influence of the non-strongly connected part
of the non-strongly connected digraph on the A spectral radius or A energy. Not just
a directed tree, but an arbitrary acyclic digraph. We leave this as an open problem.

Acknowledgement. The authors thank the anonymous referee for their careful re-
view and valuable comments.
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[16] V. NIKIFOROV, G. PASTÉN, O. ROJO, R. L. SOTO, On the A -spectra of trees, Linear Algebra Appl.

520 (2017) 286–305.
[17] V. NIKIFOROV, O. ROJO, A note on the positive semidefiniteness of A(G) , Linear Algebra Appl.

519 (2017) 156–163.
[18] K. PERERA, Y. MIZOGUCHI, Laplacian energy of directed graphs and minimizing maximum outde-

gree algorithms, MI Preprint Series (2010) 2010-35.
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