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Abstract. The objective of this article is to estimate the q -numerical radius of bounded linear
operators on complex Hilbert spaces. One of our main results states that for a bounded linear
operator T in a Hilbert space H and q ∈ [0,1], the relation

2
q (T ) � q22(T )+(1−q2 +q

√
1−q2)‖T‖2

holds where (T), q(T ) are the numerical radius and q -numerical radius of T respectively.
Several refined new upper bounds follow from this result. Finally, the q -numerical radius of
2×2 operator matrices is explored and several new results are established.

1. Introduction

Let H denotes a complex Hilbert space with the inner product 〈., .〉 and B(H)
denotes the C∗ -algebra of bounded linear operators on H . For T ∈ B(H), the operator
norm of T can be defined as

‖T‖ = sup
‖x‖=1

‖Tx‖.

Another expression of ‖T‖ in terms of the inner product is as follows

‖T‖ = sup
‖x‖=‖y‖=1

| 〈Tx,y〉 |.

A norm |||.||| on B(H) is said to be a unitarily invariant norm if it satisfies |||UTV |||=
|||T ||| for all T ∈ B(H) and for all unitary operators U and V in B(H). A norm |||.|||
on B(H) is said to be a weakly unitarily invariant norm if it satisfies |||UTU∗||| =
|||T ||| for all T ∈ B(H) and for all unitary operators U in B(H).

The numerical range of T is denoted and defined by

W (T ) = {〈Tx,x〉 : x ∈H, ‖x‖ = 1}.
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The most important properties of W (T ) are that it always forms a convex set and its
closure contains the spectrum of T. The numerical radius (T ) and the Crawford
number c(T ) of T ∈ B(H) are defined by

(T ) = sup
‖x‖=1

| 〈Tx,x〉 |,

c(T ) = inf
‖x‖=1

| 〈Tx,x〉 |.

The numerical radius (T ) defines a weakly unitarily invariant norm in B(H) . The
operator norm and numerical radius are both equivalent which follows from the follow-
ing well-known inequality

‖T‖
2

� (T ) � ‖T‖. (1)

The above inequalities are sharp. Equality holds in the first inequality if T 2 = 0 and in
the second inequality if T is a normal operator. For the past several years researchers
have attempted to refine the above inequality. Kittaneh [14, 15] proved, respectively,
that, if T ∈ B(H) , then

(T ) � 1
2
‖|T |+ |T∗|‖ � 1

2

(
‖T‖+

√
‖T 2‖

)
, (2)

1
4
‖T ∗T +TT ∗‖ � 2(T ) � 1

2
‖T ∗T +TT ∗‖, (3)

and if A,B,C,D,S,T ∈ B(H) then

(ATB+CSD) � 1
2
‖A|T ∗|2(1−)A∗ +B∗|T |2B+C|S∗|2(1−)C∗ +D∗|S|2D‖, (4)

for all  ∈ [0,1] where |T | = (T ∗T )
1
2 , the absolute value of T. Later on these bounds

were refined extensively. In recent years, there has been a major advancement in the
estimation of the numerical range. For a detailed review of the numerical radius in-
equalities, we refer to the articles [1, 4, 5, 16,21, 23], their references, and the book [3].

There are several generalizations of the classical numerical range in the literature.
Our focus will be on the q -numerical range and its radius of an operator. Let T ∈ B(H)
and q ∈ [0,1]. The q -numerical range Wq(T ) and q -numerical radius q(T ) of T are
defined respectively as

Wq(T ) = {〈Tx,y〉 : x,y ∈H, ‖x‖ = ‖y‖ = 1, 〈x,y〉 = q},
q(T ) = sup

z∈Wq(T)
|z|.

It is easy to verify that if q = 1 then Wq(T ) reduces to the classical numerical range
W (T ). The set Wq(T ) was first introduced by Marcus and Andresen [19] in 1977 for a
linear transformation T defined over an n -dimensional unitary space. Nam-Kiu Tsing
[25] established the convexity of the q -numerical range. Several properties of Wq(T )
are discussed by Li et al. [17] and Li and Nakazato [18]. Chien and Nakazato [7]
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described the boundary of the q -numerical range of a square matrix using the concept of
the Davis-Wieldant shell. The q -numerical range of shift operators is also studied [6,8].
Duan [9] draws attention to the vital significance that the idea of q -numerical range
plays in characterizing the perfect distinguishability of quantum operations. Recently,
Moghaddam et al. [10] have studied several q -numerical radius bounds. The following
are a few of the inequalities they have derived:

q
2(2−q2)

‖T‖ � q(T ) � ‖T‖, (5)

2
q (T ) � q2

4

(
‖T‖+

√
‖T 2‖

)2

+(1−q2 +2q
√

1−q2)‖|T |‖2, (6)

q2

4(2−q2)2 ‖T ∗T +TT ∗‖ � 2
q (T ) � (q+2

√
1−q2)2

2
‖T ∗T +TT ∗‖. (7)

These results are in fact generalizations of the corresponding inequalities in (1), (2),
and (3) respectively for numerical radius.

Our interest in this paper lies in the direction of obtaining refined q -numerical
radius inequalities. In section 2, we establish upper bounds for q -numerical radius that
generalize the results of [10]. In addition, the q -numerical radius bounds for 2× 2
operator matrices are also discussed in section 3. Several examples with figures are
provided to supplement the results.

2. q -numerical radius of T ∈ B(H)

First, we recall a few important properties of the q -numerical radius in the follow-
ing lemmas.

LEMMA 2.1. [12, p. 380] Let T ∈ B(H) and q ∈ [0,1] . Then

(i) if dimH = 1 then Wq(T ) is non-empty if and only if q = 1 and for dimH � 2,
Wq(T ) is always non-empty,

(ii) Wq(T ) is a bounded subset of C and it is compact if H is finite-dimensional,

(iii) Wq(U∗TU) = Wq(T ) for any unitary operator U ∈ B(H),

(iv) Wq(aT +bI) = aWq(T )+bq for complex numbers a and b,

(v) Wq(T ) = Wq(T ) for any complex numeber  with | | = 1,

(vi) Wq(T )∗ = Wq(T )∗ = {z : z ∈Wq(T )},

(vii) q(T ) ⊆Wq(T ).
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LEMMA 2.2. [10] The q-numerical radius defines a semi-norm on B(H).

LEMMA 2.3. [17, Proposition 2.11] Let T ∈ B(H) and m(T ) = min{‖T − I‖ :
 ∈ C} . Then

either W0(T ) = {z : |z| < m(T )} or, W0(T ) = {z : |z| � m(T )}.
The number m(T ) is known as the transcendental radius of T . Stampfli [24]

proved that there exists a unique complex number  ∈W (T ) such that

m(T ) = min{‖T − I‖ :  ∈ C} = ‖T − I‖.
Prasanna [22] derived another expression for m(T ) which is

m2(T ) = sup
‖x‖=1

(‖Tx‖2−|〈Tx,x〉 |2).

For our study, the following results are crucial.

LEMMA 2.4. (Bessel’s Inequality) Let E be a orthonormal set in H and h ∈H.
Then


e∈E

|〈h,e〉|2 � ‖h‖2.

LEMMA 2.5. [11] If T ∈ B(H), then

| 〈Tx,y〉 |2 �
〈|T |2x,x

〉〈|T ∗|2(1−)y,y
〉

,

for all x,y ∈H and  ∈ [0,1].

Now we are ready to prove the q -numerical radius inequalities.

THEOREM 2.6. Let T ∈ B(H) and q ∈ [0,1]. Then

2
q (T ) � q22(T )+ (1−q2 +q

√
1−q2)‖T‖2. (8)

Proof. For q = 1 the relation holds trivially. Let q ∈ [0,1) and x,y ∈H such that
‖x‖ = 1 = ‖y‖ with 〈x,y〉 = q. Then y can be expressed as y = qx+

√
1−q2z, where

‖z‖ = 1 and 〈x,z〉 = 0. In this setting we have

|〈Tx,y〉| � q|〈Tx,x〉|+
√

1−q2|〈Tx,z〉|. (9)

Let E be any orthonormal set in H containing x and z. From Bessel’s Inequality it
follows


e∈E\{x}

| 〈Tx,e〉 |2 + | 〈Tx,x〉 |2 � ‖Tx‖2

⇒ |〈Tx,z〉|2 � 
e∈E\{x}

| 〈Tx,e〉 |2 � ‖Tx‖2−|〈Tx,x〉 |2.
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Using the above relation in equation (9), we get

|〈Tx,y〉| � q|〈Tx,x〉|+
√

1−q2(‖Tx‖2−|〈Tx,x〉|2) 1
2 (10)

⇒ |〈Tx,y〉|2 �
(
q|〈Tx,x〉|+

√
1−q2(‖Tx‖2−|〈Tx,x〉|2) 1

2

)2

= q2|〈Tx,x〉|2 +2q
√

1−q2|〈Tx,x〉|(‖Tx‖2−|〈Tx,x〉|2) 1
2

+(1−q2)(‖Tx‖2 −|〈Tx,x〉|2)
� q2|〈Tx,x〉|2 +2q

√
1−q2|〈Tx,x〉|(‖Tx‖2−|〈Tx,x〉|2) 1

2

+(1−q2)‖Tx‖2

� q2|〈Tx,x〉|2 +q
√

1−q2(|〈Tx,x〉|2 +‖Tx‖2−|〈Tx,x〉|2)
+(1−q2)‖Tx‖2 (applying AM-GM inequality)

= q2|〈Tx,x〉|2 +(1−q2 +q
√

1−q2)‖Tx‖2

� q22(T )+ (1−q2 +q
√

1−q2)‖T‖2.

Taking supremum for all x,y ∈H with ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = q we get

2
q (T ) � q22(T )+ (1−q2 +q

√
1−q2)‖T‖2. �

Now we mention a few observations and derive several corollaries based on the
above Theorem.

1. From the result (T ) � 1
2 (‖T‖+‖T 2‖ 1

2 ), mentioned in Theorem 1 of [14], we
have the following corollary from Theorem 2.6.

COROLLARY 2.7. For T ∈ B(H) and q ∈ [0,1] we have

2
q (T ) � q2

4
(‖T‖+‖T2‖ 1

2 )2 +(1−q2 +q
√

1−q2)‖T‖2. (11)

Using the fact ‖|T |‖ = ‖T‖, we have the following relations

2
q (T ) � q2

4
(‖T‖+‖T2‖ 1

2 )2 +(1−q2 +q
√

1−q2)‖T‖2

� q2

4
(‖T‖+‖T2‖ 1

2 )2 +(1−q2 +2q
√

1−q2)‖|T |‖2.

This shows that the inequality mentioned in (11) provides an improvement on the result
(6), proved in Theorem 2.10 in [10].

2. From the relation 2(T ) � 1
2‖T ∗T +TT ∗‖ as obtained in Theorem 1 in [15] we

have the following corollary which follows from the Theorem 2.6.



348 A. PATRA AND F. ROY

COROLLARY 2.8. For T ∈ B(H) and q ∈ [0,1], the following relation holds

2
q (T ) � q2

2
‖T ∗T +TT ∗‖+(1−q2+q

√
1−q2)‖T‖2. (12)

Here we prove the refinement of the above result in comparison to the existing
upper bound (7) of 2(T ) mentioned in Theorem 3.1 in [10]. For this, we use the fact
that

‖T ∗T +TT ∗‖ � ‖T‖2.

From Corollary 2.8 it follows

2
q (T ) � q2

2
‖T ∗T +TT ∗‖+(1−q2 +q

√
1−q2)‖T‖2

�
(

1− q2

2
+q
√

1−q2)
)
‖T ∗T +TT ∗‖

� (q+2
√

1−q2)2

2
‖T ∗T +TT ∗‖.

The last inequality follows from the fact that

(q+2
√

1−q2)2

2
−
(

1− q2

2
+q
√

1−q2)
)

=
2q2 +4(1−q2)−2+2q

√
1−q2

2
� 0.

REMARK 1. It is crucial to note that the upper bound of 2
q (T ) given in equation

(7) reduces to 2‖T ∗T +TT ∗‖ when q approaches zero whereas the upper bound stated
in Corollary 2.8 reduces to ‖T‖2 as q = 0.

Now we provide an example to demonstrate our results. For this, the following
lemma on the q -numerical radius of 2×2 matrices is required.

LEMMA 2.9. ( [20]) Suppose 0 � q � 1 and T ∈ M2(C) . Then T is unitarily

similar to eit

(
 a
b 

)
for some 0 � t � 2 and 0 � b � a. Also,

Wq(T ) = eit{q+ r((c+ pd)coss+ i(d + pc)sins) : 0 � r � 1,0 � s � 2},

with c = a+b
2 ,d = a−b

2 and p =
√

1−q2 .

EXAMPLE 2.10. Consider the matrix T =

(
1

200
1
25

1
36

1
200

)
. From Lemma 2.9,

Wq(T ) =
{ q

200
+

r
1800

(
(61+11

√
1−q2)coss+ i(11+61

√
1−q2)sins

)
:

0 � r � 1,0 � s � 2)
}
.
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Therefore, q(T ) = q
200 + 1

1800(61 + 11
√

1−q2) . Also ‖T‖ = 0.0418 and ‖T 2‖ =
0.0015, computed correct upto four decimal places using MATLAB command norm. In
this example we will compare the upper bounds (6) and (7) of q(T ) obtained in [10]
with our results Corollary 2.7 and Corollary 2.8. From the relations (6) and (11) we
respectively get

q(T ) �
√

0.0017−0.0001q2+0.0035q
√

1−q2 = f1(q) (13)

and

q(T ) �
√

0.0017−0.0001q2+0.0017q
√

1−q2 = f2(q). (14)

Figure 1 presents the graphical representation of upper bounds (13), (14) and q(T ) .

Figure 1: Comparision of q(T ) with upper bounds f1(q) and f2(q) for Example 2.10

Again using MATLAB, ‖T ∗T +TT ∗‖ = 0.0031. Hence from inequalities (7) and
(12) we get the upper bounds

q(T ) � 0.0394(q+2
√

1−q2) = f3(q) (15)

and

q(T ) �
√

0.0017−0.0002q2+0.0017q
√

1−q2 = f4(q). (16)

Figure 2 presents the graphical representation of upper bounds (15), (16) and
q(T ) .

It is clear from Figure 1 and 2 that upper bounds obtained using Corollary 2.7 and
Corollary 2.8 are more refined than those of [10].

Using the concept of Crawford number c(T ) , we can further refine Theorem 2.6
and also the corresponding corollaries 2.7 and 2.8 as follows.



350 A. PATRA AND F. ROY

Figure 2: Comparision of q(T ) with upper bounds f3(q) and f4(q) for Example 2.10

THEOREM 2.11. Let T ∈ B(H) and q ∈ [0,1]. Then

2
q (T ) � q22(T )+ (1−q2 +q

√
1−q2)‖T‖2− (1−q2)c(T ). (17)

Proof. For q = 1 the inequality holds trivially. Let q ∈ [0,1). In accordance with
the proof of Theorem 2.6, it follows from the relation (10) that

|〈Tx,y〉| � q|〈Tx,x〉|+
√

1−q2(‖Tx‖2−|〈Tx,x〉|2) 1
2

⇒ |〈Tx,y〉|2 �
(
q|〈Tx,x〉|+

√
1−q2(‖Tx‖2−|〈Tx,x〉|2) 1

2

)2

= q2|〈Tx,x〉|2 +2q
√

1−q2|〈Tx,x〉|(‖Tx‖2−|〈Tx,x〉|2) 1
2

+(1−q2)(‖Tx‖2−|〈Tx,x〉|2)
� q2|〈Tx,x〉|2 +(1−q2 +q

√
1−q2)‖Tx‖2− (1−q2)|〈Tx,x〉|2

� q22(T )+ (1−q2 +q
√

1−q2)‖T‖2− (1−q2)c2(T ),

where the second to last inequality follows from the AM-GM inequality. This proves
the desired result. �

REMARK 2. Clearly the relation (17) improves the relation (8) of Theorem 2.6
when c(T ) > 0. If c(T ) = 0, then the the upper bound in (17) reduces to the upper
bound of (8). In this regard it is worth mentioning that c(T ) > 0 if and only if 0 /∈
W (T ).

The Corollary 2.7 and Corollary 2.8 can be improved by using the Theorem 2.11
as follows.
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COROLLARY 2.12. For T ∈ B(H) and q ∈ [0,1] we have

2
q (T ) � q2

4
(‖T‖+‖T2‖ 1

2 )2 +(1−q2 +q
√

1−q2)‖T‖2− (1−q2)c2(T ).

COROLLARY 2.13. For T ∈ B(H) and q ∈ [0,1], the following relation holds

2
q (T ) � q2

2
‖T ∗T +TT ∗‖+(1−q2 +q

√
1−q2)‖T‖2− (1−q2)c2(T ).

Now we provide a more general q -numerical radius inequality from which several
other inequalities related to products and commutators of operators follows. This result
is q -numerical radius version of the inequality (4).

THEOREM 2.14. If A,B,C,D,S,T ∈ B(H) and q ∈ [0,1], then

q(ATB+CSD) � q
2
‖B∗|T |2B+A|T∗|2(1−)A∗ +D∗|S|2D+C|S∗|2(1−)C∗‖

+(
√

1−q2 +
√

2q
√

1−q2)
(√

‖B∗|T |2B‖‖A|T∗|2(1−)A∗‖

+
√
‖D∗|S|2D∗‖‖C|S∗|2(1−)C∗‖

)
.

Proof. The case q = 1 follows directly from the relation (4) which was derived
in [15]. Let x,y ∈ H such that ‖x‖ = ‖y‖ = 1 with 〈x,y〉 = q. Then we have y =
qx+

√
1−q2z where ‖z‖ = 1 and 〈x,z〉 = 0. Then from Lemma 2.5 we have

| 〈(ATB+CSD)x,y〉|
� | 〈TBx,A∗y〉 |+ | 〈SDx,C∗y〉 |

�
〈
B∗|T |2Bx,x

〉 1
2
〈
A|T ∗|2(1−)A∗y,y

〉 1
2 +
〈
D∗|S|2Dx,x

〉 1
2
〈
C|S∗|2(1−)C∗y,y

〉 1
2

�
〈
B∗|T |2Bx,x

〉 1
2
(
q2
〈
A|T ∗|2(1−)A∗x,x

〉
+(1−q2)

〈
A|T ∗|2(1−)A∗z,z

〉
+2q

√
1−q2

∣∣∣〈A|T ∗|2(1−)A∗x,z
〉∣∣∣) 1

2

+
〈
D∗|S|2Dx,x

〉 1
2
(
q2
〈
C|S∗|2(1−)C∗x,x

〉
+(1−q2)

〈
C|S∗|2(1−)C∗z,z

〉
+2q

√
1−q2

∣∣∣〈C|S∗|2(1−)C∗x,z
〉∣∣∣) 1

2
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�
〈
B∗|T |2Bx,x

〉 1
2

(
q
〈
A|T ∗|2(1−)A∗x,x

〉 1
2 +
√

1−q2
〈
A|T ∗|2(1−)A∗z,z

〉 1
2

+
√

2q
√

1−q2
∣∣∣〈A|T ∗|2(1−)A∗x,z

〉∣∣∣ 1
2
)

+
〈
D∗|S|2Dx,x

〉 1
2

(
q
〈
C|S∗|2(1−)C∗x,x

〉 1
2 +
√

1−q2
〈
C|S∗|2(1−)C∗z,z

〉 1
2

+
√

2q
√

1−q2
∣∣∣〈C|S∗|2(1−)C∗x,z

〉∣∣∣ 1
2
)

= q

(〈
B∗|T |2Bx,x

〉 1
2
〈
A|T ∗|2(1−)A∗x,x

〉 1
2 +
〈
D∗|S|2Dx,x

〉 1
2

×
〈
C|S∗|2(1−)C∗x,x

〉 1
2
)

+
√

1−q2

(〈
B∗|T |2Bx,x

〉 1
2
〈
A|T ∗|2(1−)A∗z,z

〉 1
2

+
〈
D∗|S|2Dx,x

〉 1
2
〈
C|S∗|2(1−)C∗z,z

〉 1
2
)

+
√

2q
√

1−q2

(〈
B∗|T |2Bx,x

〉 1
2
∣∣∣〈A|T ∗|2(1−)A∗x,z

〉∣∣∣ 1
2

+
〈
D∗|S|2Dx,x

〉 1
2
∣∣∣〈C|S∗|2(1−)C∗x,z

〉∣∣∣ 1
2
)

� q
2

〈(
B∗|T |2B+A|T∗|2(1−)A∗ +D∗|S|2D+C|S∗|2(1−)C∗

)
x,x
〉

+
√

1−q2

(〈
B∗|T |2Bx,x

〉 1
2
〈
A|T ∗|2(1−)A∗z,z

〉 1
2 +
〈
D∗|S|2Dx,x

〉 1
2

×
〈
C|S∗|2(1−)C∗z,z

〉 1
2
)

+
√

2q
√

1−q2

(〈
B∗|T |2Bx,x

〉 1
2

×
∣∣∣〈A|T ∗|2(1−)A∗x,z

〉∣∣∣ 1
2
+
〈
D∗|S|2Dx,x

〉 1
2
∣∣∣〈C|S∗|2(1−)C∗x,z

〉∣∣∣ 1
2
)

� q
2
‖B∗|T |2B+A|T∗|2(1−)A∗ +D∗|S|2D+C|S∗|2(1−)C∗‖

+
(√

1−q2 +
√

2q
√

1−q2

)(√
‖B∗|T |2B‖‖A|T∗|2(1−)A∗‖

+
√
‖D∗|S|2D‖‖C|S∗|2(1−)C∗‖

)
.

The result follows by taking supremum over all such x,y ∈H with ‖x‖= ‖y‖= 1, and
〈x,y〉 = q on the left-hand side. �

Here we mention a few particular cases of the above theorem.
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REMARK 3. Consider a few particular cases of the above result:

(i) If T = B = I and S = 0 then

q(A) � q
2
‖AA∗+ I‖+

(√
1−q2 +

√
2q
√

1−q2

)
‖A‖.

Also, if A = B = I , S = 0 and  = 1
2 then we have

q(T ) � q
2
‖|T |+ |T ∗|‖+

(√
1−q2 +

√
2q
√

1−q2

)√
‖|T |‖‖|T ∗|‖

=
q
2
‖|T |+ |T ∗|‖+

(√
1−q2 +

√
2q
√

1−q2

)
‖T‖.

(ii) If T = I and S = 0 then

q(AB) � q
2
‖AA∗ +BB∗‖+

(√
1−q2 +

√
2q
√

1−q2

)
‖A‖‖B‖.

(iii) If T = I , C = B and D = A then

q(AB+BA)� q
2
‖AA∗+B∗B+A∗A+BB∗‖+

(√
1−q2 +

√
2q
√

1−q2

)
‖A‖2‖B‖2.

3. q -numerical radius of 2×2 operator matrices

In this section, we derive a few bounds for the q -numerical range of 2×2 operator
matrices. Let H1 and H2 are two complex Hilbert spaces with the inner product 〈., .〉 .
Then H1 ⊕H2 forms a Hilbert space and any operator T ∈ B(H1⊕H2) has an 2×2
matrix representation of the form

T =
[
A B
C D

]
,

where A ∈ B(H1) , B ∈ B(H2,H1) , C ∈ B(H1,H2), and D ∈ B(H2).
As the q -numerical radius forms a weakly unitarily invariant norm, from the result

mentioned in (p. 107 [2]), we can deduce the following inequalities

q

([
A 0
0 D

])
� q

([
A B
C D

])
(18)

and

q

([
0 B
C 0

])
� q

([
A B
C D

])
. (19)

The numerical radius of diagonal operator matrices enjoy the following equality
( [13])


([

A 0
0 D

])
= max{(A),(D)}. (20)
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A similar conclusion is not true for q -numerical radius. This is seen in the Example
3.2 that follows. The following lemma provides the shape of the q -numerical radius of
Hermitian matrices for {q ∈ C : |q| � 1} .

LEMMA 3.1. (Theorem 3.5 [12]) If T is an n× n Hermitian matrix with eigen-
values 1 � 2 � · · · � n and |q| � 1 , then the numerical range Wq(T ) equals the
(closed) elliptic disc with foci q1 and qn and minor axis of length

√
1−|q|2(1 −

n).

EXAMPLE 3.2. Let q∈ [0,1] . For any 2×2 matrix T =
[
a 0
0 d

]
with a,d > 0 and

a 
= d , the q -numerical range of T is given by

Wq(T ) =

{
(x,y) :

(
x− q

2 (a+d)
)2

1
4 (a−d)2

+
y2

1
4 (1−q2)(a−d)2

� 1

}
. (21)

The q -numerical radius of T =
[
a 0
0 d

]
can be obtained via the following maximization

problem

max
√

x2 + y2, subject to

(
x− q

2 (a+d)
)2

1
4(a−d)2

+
y2

1
4 (1−q2)(a−d)2

= 1.

Solving this we get

max
√

x2 + y2 =
(

q
2
(a+d)+

1
2
|a−d|

)
occurs at

(
q
2
(a+d)+

1
2
|a−d|,0

)
.

Hence

q

([
a 0
0 d

])
=
(

q
2
(a+d)+

1
2
|a−d|

)
> max{qa,qd} when q 
= 1.

The above equation implies that when q 
= 1, the q -numerical range does not satisfy
the relation

q

([
A 0
0 D

])
= max{(A)q,q(D)}

similar to the relation mentioned in (20).

In this regard, the following result provides upper and lower bound of the q -
numerical radius.

THEOREM 3.3. Let H1 and H2 are Hilbert spaces and let A ∈ B(H1), B ∈
B(H2,H1), C ∈B(H1,H2), D∈B(H2) and q∈ [0,1]. Then the following inequalities
hold
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(i) max

{
q(A),q(D),q

([
0 B
C 0

])}
� q

([
A B
C D

])
,

(ii) q

([
A B
C D

])
� max{‖A‖,‖D‖}+

(
1− 3q2

4 +q
√

1−q2
) 1

2
(‖B‖+‖C‖),

(iii) q

([
A B
C D

])
�
√

1−q2
(‖A‖2 +‖B‖2 +‖C‖2 +‖D‖2

) 1
2

+q
(
max{(A),(D)}+ ‖B‖+‖C‖

2

)
.

Proof.

(i) The case q = 1 follows directly from relation (20). Let q∈ [0,1) and x1,y1 ∈H1

such that ‖x1‖ = ‖y1‖ = 1 with 〈x1,y1〉 = q . Then

q

([
A B
C D

])
�
∣∣∣∣
〈[

A B
C D

](
x1

0

)
,

(
y1

0

)〉∣∣∣∣
= | 〈Ax1,y1〉 |.

Taking supremum over all such x1 and y1 with ‖x1‖= ‖y1‖= 1 and 〈x1,y1〉= q,
it follows that

q

([
A B
C D

])
� q(A). (22)

In a similar way, it can be proved that

q

([
A B
C D

])
� q(D). (23)

Finally from the relations (19), (22), and (23) we get

max

{
q(A),q(D),q

([
0 B
C 0

])}
� q

([
A B
C D

])
.

(ii) Note that the q -numeical range forms a semi-norm and the following relation
holds

q

([
A B
C D

])
� q

([
A 0
0 D

])
+q

([
0 B
0 0

])
+q

([
0 0
C 0

])
. (24)

Since

[
0 B
0 0

]2

=
[
0 0
C 0

]2

=
[
0 0
0 0

]
, Theorem 2.5 of [10] and (24) imply that

q

([
A B
C D

])
� q

([
A 0
0 D

])
+
(

1− 3q2

4
+q
√

1−q2

) 1
2

(‖B‖+‖C‖). (25)
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Let

(
x1

x2

)
,

(
y1

y2

)
∈H1⊕H2, with

∥∥∥∥
(

x1

x2

)∥∥∥∥=
∥∥∥∥
(

y1

y2

)∥∥∥∥= 1, and

〈(
x1

x2

)
,

(
y1

y2

)〉
= q.

Observe that∣∣∣∣
〈[

A 0
0 D

](
x1

x2

)
,

(
y1

y2

)〉∣∣∣∣ � | 〈Ax1,y1〉 |+ | 〈Dx2,y2〉 |
� ‖A‖‖x1‖‖y1‖+‖D‖‖x2‖‖y2‖
� max{‖A‖,‖D‖}.

Hence we have the following result:

q

([
A 0
0 D

])
� max{‖A‖,‖D‖}. (26)

The desired upper bound of q

([
A B
C D

])
follows from the inequalities (25) and

(26).

(iii) To prove the last inequality let

(
x1

x2

)
,

(
y1

y2

)
∈H1⊕H2, with

∥∥∥∥
(

x1

x2

)∥∥∥∥=
∥∥∥∥
(

y1

y2

)∥∥∥∥= 1, and

〈(
x1

x2

)
,

(
y1

y2

)〉
= q.

In this setting, we can take

y1 = qx1 +
√

1−q2z1, and y2 = qx2 +
√

1−q2z2

where z1 ∈H1, z2 ∈H2 with

∥∥∥∥
(

z1

z2

)∥∥∥∥= 1, and

〈(
x1

x2

)
,

(
z1

z2

)〉
= 0.

We assume that ‖x1‖ = cos , ‖x2‖ = sin , ‖z1‖ = cos , and ‖z2‖ = sin
where  , ∈ [0, 2 ]. Also, we use the fact that for any a,b ∈ R,

(1) max


(acos +bsin ) =
√

a2 +b2,

(2) max


(acos2  +bsin2  ) = max{a,b}.
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In this setting we have∣∣∣∣
〈[

A B
C D

](
x1

x2

)
,

(
y1

y2

)〉∣∣∣∣� | 〈Ax1,y1〉 |+ | 〈Bx2,y1〉 |+ | 〈Cx1,y2〉 |+ | 〈Dx2,y2〉 |.
(27)

The subsequent computations are mentioned below:

| 〈Ax1,y1〉 |+ | 〈Bx2,y1〉 |+ | 〈Cx1,y2〉 |+ | 〈Dx2,y2〉 |
= |
〈
Ax1,qx1 +

√
1−q2z1

〉
|+ |

〈
Bx2,qx1 +

√
1−q2z1

〉
|

+|
〈
Cx1,qx2 +

√
1−q2z2

〉
|+ |

〈
Dx2,qx2 +

√
1−q2z2

〉
|

� q(| 〈Ax1,x1〉 |+ | 〈Bx2,x1〉 |+ | 〈Cx1,x2〉 |+ | 〈Dx2,x2〉 |)
+
√

1−q2 (| 〈Ax1,z1〉 |+ | 〈Bx2,z1〉 |+ | 〈Cx1,z2〉 |+ | 〈Dx2,z2〉 |)
� q

(
(A)cos2  +(D)sin2  +

1
2
(‖B‖+‖C‖)sin2

)

+
√

1−q2(‖A‖cos cos +‖B‖sin cos
+‖C‖cos sin +‖D‖sin sin)

� q

(
max{(A),(D)}+

‖B‖+‖C‖
2

)

+
√

1−q2
(‖A‖2 +‖B‖2 +‖C‖2 +‖D‖2) 1

2 .

The desired result follows from the above inequality and relation (27). �

REMARK 4. Some highlights of the aforementioned theorem are given below:

(i) If B = C = 0 in Theorem 3.3(i) and (ii), it follows

max
{
q(A),q(D)

}
� q

([
A 0
0 D

])
� max{‖A‖,‖D‖}.

The above relation implies that max
{
q(A),q(D)

}
actually provides a lower

bound of q

([
A 0
0 D

])
where it is proved that q -numerical radius fails to satisfy

an analogous relation as of equation (20).

(ii) If q = 1 then the first and the third relations of Theorem 3.3 reduce to existing

lower and upper bounds of 
([

A B
C D

])
mentioned in [13].

(iii) The upper bounds obtained in (ii) and (iii) of Theorem 3.3 are noncomparable.

Let T =
[
a b
c d

]
=
[

1.5442+1.4193i 0.0859+0.2916i
−1.4916+0.1978i −0.7423+1.5877i

]
, randomly generated

by MATLAB command randn. Figure 3, demonstrates the comparison of the
upper bounds (ii) and (iii) of Theorem 3.3 for the matrix T .
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Figure 3: Comparision of upper bounds (ii) and (iii) of Theorem 3.3 for q(T )
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