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Abstract. The purpose of this article is to study two classes of operators, which we call positively
limited p -convergent operators, and weak ∗ positively p -convergent operators. We discuss the
relationship between these two classes of operators, and other known classes of operators such
as p -convergent operators, limited p -convergent operators, disjoint p -convergent operators,
etc. Moreover, the positive DP ∗ property of order p is studied, and the behavior of these two
classes of operators on Banach lattices with this property (with focus on Banach lattices with
the positively limited p -Schur property) is investigated. In addition, the domination properties
of positively limited p -convergent operators, and weak ∗ positively p -convergent operators on
Banach lattices are considered.

1. Introduction and preliminaries

Throughout this paper E,F denote Banach lattices, X ,Y denote Banach spaces.
If A is a subset of a Banach space X , and for each weak∗ -null sequence (x∗n) in X∗ ,
limn→ supa∈A |〈a,x∗n〉| = 0, then we say that A is limited. Each relatively compact set
is limited [9, 12].

A subset A of a Banach lattice E is said to be almost limited if every disjoint
weak∗ -null sequence (x∗n) in E∗ converges uniformly to zero on A . Each limited set is
almost limited. B� is an almost limited set which is not limited [6, 15].

A bounded set A ⊂ E is positively limited if each positive weak∗ -null sequence
(x∗n) in E∗ converges uniformly to zero on A . Each almost limited set is a positively
limited set. Also, each order interval in a Banach lattice is positively limited [2].

A sequence (xn) ⊂ X is called weakly p-summable, where 1 � p < , if for each
x∗ ∈ X∗ , (x∗(xn)) ∈ �p . Also (xn) ⊂ X is called weakly p-convergent to x ∈ X if
(xn − x) ∈ �w

p(X) , where �w
p(X) is the space of weakly p -summable sequences of X .

For p =  , weakly p -convergent sequences are exactly weakly convergent sequences.
A bounded set A ⊂ X is called relatively weakly p-compact if each sequence in A has
a weakly p -convergent subsequence. A ⊂ X is weakly p-compact if the limit point is
in A [13].
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A Banach space X has the limited p-Schur property (1 � p � ) if all limited
weakly p -compact subsets of X are relatively compact or equivalently, every limited
sequence (xn) ∈ �w

p(X) is norm null [8].
Later, the concept of strong limited p -Schur property in Banach lattices was in-

troduced. A Banach lattice E has the strong limited p-Schur property if each almost
limited weakly p -compact subset of E is relatively compact. Each Banach lattice with
the strong limited p -Schur property has the limited p -Schur property too [3].

Recently the concept of positively limited sets was defined and classes of Banach
lattices with the positively limited p -Schur property were studied. A Banach lattice
E has the positively limited p-Schur property if each positively limited weakly p -
compact subset of E is relatively compact. Every Banach lattice with the positively
limited p -Schur property has the strong limited p -Schur property too [4].

In this paper, at first the class of positively limited p -convergent operators is intro-
duced, and some results of them are obtained. As an application, some characterizations
of the positively limited p -Schur property, and the positive DP∗ property of order p of
E are considered in terms of these operators.

Next, the weak∗ positively p -convergent operators are studied, and the relation-
ships between them with the positively limited p -convergent operators, and the positive
DP∗ property of order p of E are derived.

We also investigate the domination problem of positively limited p -convergent
operators, and weak∗ almost p -convergent operators.

We recall some definitions, and notations. For a Banach lattice E , E+ = {x ∈ E :
x � 0} refers to the positive cone of E . A subset A of E is called solid if |x| � |y| for
some y∈ A implies that x∈ A . The solid hull of A is the set Sol(A) = {y∈E : |y|� |x|,
for some x ∈ A} . A norm bounded subset A of E is solid if |x| � |y| for some
y ∈ A implies that x ∈ A . If for every weakly null sequence (xn) in E , |xn| w−→ 0,
then the lattice operations are called weakly sequentially continuous. Also, if for every

weak∗ -null sequence (x∗n) in E∗ , |x∗n| w∗−→ 0 , the lattice operations are called weak∗
sequentially continuous [1, 16].

All the concepts mentioned above and needed in this paper are collected:

1. A Banach lattice E has the:

• Schur property, if each relatively weakly compact set in E is relatively
compact.

• Gelfand-Phillips property (GP property), if each limited set in E is rela-
tively compact.

• DP∗ property if each relatively weakly compact set in E is limited [9].

• weak DP∗ property if each relatively weakly compact set in E is almost
limited [6].

• positive DP∗ property if each relatively weakly compact set in X is posi-
tively limited [2].

• p-Schur property, if every sequence (yn) ∈ �w
p(E) is norm null [18].
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• property (d), if |x∗n| w∗−→ 0 for every weak∗ -null disjoint sequence (x∗n) in
E∗ [11].

2. An operator T : E → X is called

(a) completely continuous if it carries weakly null sequences to norm null ones
[1].

(a) p-convergent if it carries weakly p -summable sequences to norm null ones
[5].

(d) disjoint p-convergent if it carries disjoint weakly p -summable sequences
to norm null ones [18].

(b) limited p-convergent (abbr. lpc) if it carries limited weakly p -summable
sequences to norm null ones [8, 18].

(c) almost limited p-convergent (abbr. alpc) if it carries almost limited weakly
p -summable sequences to norm null ones [3].

3. An operator T : X →E is called positively limited if T (BX ) is a positively limited
set or equivalently, ‖T ∗x∗n‖ → 0 for each positive weak∗ -null sequence (x∗n) in
E∗ [2].

Throughout this article we assume that 1 � p <  , unless otherwise stated.

2. Positively limited p -convergent operators

In this section, we consider a class of operators related to positively limited sets:
positively limited p -convergent operators.

DEFINITION 2.1. A bounded linear operator T : E → X is positively limited p -
convergent (abbr. plpc) if T carries weakly p -summable positively limited sequences
of E to norm null sequences of X .

The set of all plpc operators from E into X is denoted by Lplpc(E,X) . Clearly,
Lplpc(E,X) is a linear subspace of L(E,X) , where L(E,X) is the class of all bounded
linear operators from E to X . Since each almost limited set is positively limited, a
plpc operator is lpc and alpc. For the converse, we have the following which are the
immediate consequences of [2, Theorem 2.5 & 2.7]:

1. If T : E → X is an lpc operator and E∗ has the weak∗ -sequentially continuous
lattice operations, then T is a plpc operator.

2. If T : E → X is an alpc operator and E has the property (d), then T is a plpc
operator.

EXAMPLE 2.2. (a) The identity operator on each Banach lattice with the posi-
tively limited p -Schur property, and without the p -Schur property, such as c0 is
plpc, but it is not p -convergent.
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(b) The identity operator on each Banach lattice with the limited p -Schur property,
and without the positively limited p -Schur property, such as L1[0,1] is lpc, but
it is not plpc for all p � 2.

(c) The identity operator on each Banach lattice with the strong limited p -Schur
property, and without the positively limited p -Schur property, such as c is alpc,
but it is not plpc.

It is trivial that TS is plpc if F
S−→ X

T−→ Y where S is plpc and T is a bounded
linear operator. It should be noted that order bounded operators between Banach lattices

preserve positively limited sets, see [2, Theorem 2.11]. As a result, if E
T−→ F

S−→ X
where S is plpc and T is order bounded, then ST is also plpc. However, the following
example shows that ST need not be plpc if T is not order bounded.

EXAMPLE 2.3. Let T : L1[0,1] → c0 be defined as

T f = (
∫ 1

0
f (t)rn(t)dt)n=1, for all f ∈ L1[0,1],

where rn(t) is the n’th Rademacher function on [0,1] . The operator T is not order
bounded. Indeed, (rn(t))n=1 is weakly p -summable, for all 2 � p �  , and order
bounded (−1 � rn � 1 , n ∈ N), hence positively limited in L1[0,1] , but (Trn(t))n=1
is not order bounded in c0 . On the other hand, ‖Trn‖ = 1, n ∈ N . Therefore T is not
plpc. Note that the identity operator Idc0 is plpc [2, Theorem 3.6]. However, Idc0T = T
is not plpc.

THEOREM 2.4. An operator T on E is plpc if and only if for each positively
limited weakly p-compact set A ⊆ E , the set T (A) is relatively compact.

Proof. To show that an operator T is plpc, we assume that (xn) is a weakly p -
summable positively limited sequence in E . For each subsequence of (xn) , which
is denoted again by (xn) , the sequence (Txn) is relatively compact and so it has a
convergent, and also weakly p -summable subsequence (Txnk) . Then ‖Txnk‖ → 0 as
k →  which implies that T is plpc.

For the converse, let A ⊂ E be a positively limited weakly p -compact set, and T :
E → Y be a plpc operator. Then every sequence (xn) in A has a weakly p -convergent
subsequence, denoted again by (xn) . On the other hands, the difference set A− A
is positively limited. Hence the sequence (xn − xm) is positively limited weakly p -
summable, and by hypothesis (Txn) is Cauchy and so is norm convergent in Y . Thus
T (A) is relatively compact. �

Note that, a plpc operator does not necessarily take positively limited sets to rela-
tively compact sets.

EXAMPLE 2.5. An operator R : C[0,1] → c0 defined by

R f = (
∫ 1

0
f (t)rn(t)dt)n=1, for all f ∈ L1[0,1],
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where rn is the n’th Rademacher function on [0,1] . The operator R is weakly compact.
By the Dunford-Pettis property of C[0,1] , R is completely continuous, and so it is plpc.
However, R is not compact. Hence R(BC[0,1]) is not a relatively compact set in c0 ,
while the closed unit ball BC[0,1] is a positively limited set.

Indeed, every plpc operator takes positively limited sets to relatively weakly com-
pact sets.

THEOREM 2.6. Every plpc operator T : E → Y carries positively limited sets
to relatively weakly compact sets. In particular, every plpc operator is order weakly
compact.

Proof. Let (xn) be an arbitrary order bounded disjoint sequence in E . Then (xn)
is weakly p -summable [3] and positively limited. Thus, ‖Txn‖ → 0, since T is plpc.
Hence T is order weakly compact. From (cf. [1, Theorem 5.58] ), T admits a factor-
ization through a Banach lattice G with order continuous norm

E
T ��

R ���
��

��
��

Y

G
S

���������

such that R : E → G is a lattice homomorphism. From [2, Theorem 2.11] for each
positively limited set B⊂ E , R(B) is also positively limited in G , and so it is relatively
weakly compact, see [2, Theorem 3.4]. Therefore, T (B) = SR(B) is relatively weakly
compact. �

We can prove the following lemma. The proof is similar to the proof of Lemma
3.23 of [14].

LEMMA 2.7. Let (xn) be a positively limited weakly p-summable sequence in E .
Then the operator T : �p∗ → E , T (b) = 

n=1 bnxn , b = (bn) ∈ �p∗ is positively limited
(1 < p < ) .

We then have the following composition result:

THEOREM 2.8. Let 1 < p < , and T : E →Y be an operator. The following are
equivalent:

(a) T is a plpc operator,

(b) for every Banach space Z , and any positively limited, weakly p-compact opera-
tor S : Z → E , the operator TS : Z → Y is compact,

(c) for every positively limited operator S : �p∗ → E , the operator TS : �p∗ → Y is
compact.
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Proof. (a)⇒ (b) If S : Z →E is a positively limited, weakly p -compact operator,
then S(BZ) is a positively limited weakly p -compact subset of E . Using the plpc-ness
of T , and following the Theorem 2.4, we can prove that TS(BZ) is relatively compact,
and so the operator TS is compact.

(b) ⇒ (c) It follows easily from the fact that Id(�p∗) ∈Wp (the class of weakly
p -compact operators).

(c) ⇒ (a) Let (xn) ∈ �w
p(E) be a positively limited sequence. By Lemma 2.7 the

operator S : �p∗ → E defined by S(b) =
n=1 bnxn , b = (bn) ∈ �p∗ such that S(en) = xn

for all n is positively limited (note that, �w
p(E) = L(�p∗ ,E)). Hence the operator TS is

compact and so ‖Txn‖ = ‖TS(en)‖→ 0. �

As a consequence of Theorem 2.8, we obtain the following characterization:

COROLLARY 2.9. Let 1 < p <  . The following are equivalent:

(a) E has the positively limited p-Schur property,

(b) for every Banach space Z , any positively limited weakly p-compact operator
S : Z → E is compact,

(c) each positively limited operator S : �p∗ → E is compact.

The following theorem provides a characterization of the positively limited p -
Schur property with respect to plpc operators.

THEOREM 2.10. For a Banach lattice E , the following are equivalent:

(a) E has the positively limited p-Schur property,

(b) for each Banach space Y , Lplpc(E,Y ) = L(E,Y ),

(c) Lplpc(E, �) = L(E, �) .

Proof. (a) ⇒ (b) Let T : E → Y be an operator and A be a positively limited
weakly p -compact subset of E . By the positively limited p -Schur property of E , A
and so T (A) are relatively compact sets in Y . Then by Theorem 2.4, T is plpc.

(b) ⇒ (c) It is obvious.
(c) ⇒ (a) Assume by way of contradiction that E does not have the positively

limited p -Schur property. Then, there is a weakly p -summable positively limited se-
quence (xn) in E such that ‖xn‖ = 1 for all n . Choose a normalized sequence (x∗n) in
E∗ such that |〈xn,x∗n〉| = 1 for all n . Then the operator T : E → � defined by

Tx = (〈x,x∗n〉), x ∈ E

is not plpc (since the sequence (xn) is weakly p -summable and positively limited, and
‖Txn‖ � 1 for all n ). This leads to a contradiction. �
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Note that in Theorem 2.10 one cannot replace the positively limited p -Schur prop-
erty of the domain E of related operators by their images. The Banach lattice c0 has
the positively limited p -Schur property, but the operator T : L1[0,1] → c0 defined by

T f = (
∫ 1

0
f (t)rn(t)dt)n=1, for all f ∈ L1[0,1],

is not plpc for all p � 2 (since the Rademacher sequence fn(t) = rn(t) is weakly 2-
summable and positively limited, but ‖T fn‖ = 1).

We can show that in order for the positively limited p -Schur property of the do-
main E of related operators to be replaced by their images in Theorem 2.10, it is suffi-
cient for the operators to be positive.

PROPOSITION 2.11. If T : E → F is a positive operator, and F has the positively
limited p-Schur property, then T is plpc.

Proof. Note that from [2], for each positively limited weakly p -compact set A ⊂
E , T (A) is positively limited (and also weakly p -compact) in F . It follows from the
positively limited p -Schur property of F that T (A) is relatively compact. This proves
that T is plpc. �

If R : E → F and S : F → X are two operators such that R is plpc, then SR is
likewise plpc. In fact, if (xn) ∈ �w

p(E) is a positively limited sequence, and R is an plpc
operator, then ‖Rxn‖ → 0, and so ‖S(Rxn)‖ → 0. Consequently SR : E → X is plpc.
However, if S is plpc, then SR is not necessarily plpc.

EXAMPLE 2.12. An operator R : L1[0,1] → c0 defined by

R f = (
∫ 1

0
f (t)rn(t)dt)n=1, for all f ∈ L1[0,1],

where rn is the n’th Rademacher function on [0,1] , is not plpc. Consider an operator
S = Idc0 . Then S is plpc, but SR = R is not plpc.

However, one easily verifies that if S is plpc and R is positive, then SR is plpc. It
is enough to note that in this case, for each positively limited sequence (xn) ∈ �w

p(E) ,
(Rxn) is a weakly p -summable and positively limited sequence. Hence plpc-ness of S
ensures that ‖S(Rxn)‖ → 0. This proves that SR is plpc.

THEOREM 2.13. Let E and F be two Banach lattices with F  -Dedekind com-
plete. If every bounded linear operator T from E into F is plpc, then either E or F
has order continuous norm.

Proof. If neither E nor F has order continuous norm, then there exists an order
bounded disjoint sequence (xn)n ⊂ E such that ‖xn‖ = 1 for all n ∈ N . Clearly, (xn)
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is positively limited and weakly p -summable. We choose a normalized sequence (x∗n)
in E∗ such that |〈xn,x∗n〉| = 1 for all n ∈ N , and define the operator T : E → � by

Tx = (〈x,x∗n〉), x ∈ E.

Since F is a  -Dedekind complete Banach lattice without order continuous norm, �
lattice embeds in F . Let j : � → F be the lattice embedding. Then it is easily verified
joT : E → F is not plpc since ‖Txn‖ � 1 for all n ∈ N . �

REMARK 2.14. Example 2.12 implies that the converse of Proposition 2.13 does
not necessarily hold. However, if E∗ has the weak∗ -sequentially continuous lattice
operations and either E or F has order continuous norm, then each operator T from
E into F is plpc. Indeed, if either E or F has order continuous norm, then either E
or F has the limited p -Schur property, and hence every operator T : E → F is lpc. On
the other hand, since E∗ has the weak∗ -sequentially continuous lattice operations, T
is plpc.

Also, note that the  -Dedekind completeness of a Banach lattice F cannot be
removed. Each operator T : �→ c is plpc, while neither � nor c has order continuous
norm.

Theorem 2.13 has the two following consequences.

COROLLARY 2.15. If E∗ has the weak∗ sequentially continuous lattice opera-
tions, Then the following are equivalent:

(a) Each operator T : E → � is plpc.

(b) E has order continuous norm.

The order continuity of the norm is also characterized.

COROLLARY 2.16. Let F be a  -Dedekind complete Banach lattice. Then the
following are equivalent:

(a) Each operator T : c → F is plpc.

(b) F has order continuous norm.

Recently, the authors introduced the p -positive DP∗ property in [4]. A Banach
lattice E has the p-positive DP ∗ property if every relatively weakly p -compact subset
of E is positively limited; alternatively, x∗n(xn) → 0 for every weakly p -summable
sequence (xn) , and every weak∗ -null sequence (x∗n)⊂ (E∗)+ . For our convenience, let
Lpc(X ,Y ) denote the set of all p -convergent operators from X into Y . Lpc(E,X) ⊂
Lplpc(E,X) holds.
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THEOREM 2.17. For a Banach lattice E the following assertions are equivalent.

(a) E has the p-positive DP ∗ property.

(b) for every Banach space X , Lplpc(E,X) = Lpc(E,X) .

(c) Lplpc(E,c0) = Lpc(E,c0) .

Proof. (a) ⇒ (b) Let T ∈ Lplpc(E,X) , and (xn)n=1 be a weakly p -summable
sequence in E . Since E has the p -positive DP∗ property, (xn) is positively limited in
E and by hypothesis, ‖T (xn)‖→ 0. This implies that T ∈ Lpc(E,X)

(b) ⇒ (c) Obvious.
(c) ⇒ (a) Let (xn)n=1 be a weakly p -summable sequence in E , and (x∗n)n=1 be

a sequence in (E∗)+ satisfying x∗n
w∗−→ 0. We define the positive operator T : E → c0

by
Tx = (x∗n(x)), x ∈ E.

Since c0 has the positively limited p -Schur property, and the operator T is positive,
by Proposition 2.11, T is plpc. By hypothesis, T ∈ Lpc(E,c0) and hence ‖Txn‖ → 0.
As a result, x∗n(xn)→ 0 since the inequality |x∗n(xn)| � ‖Txn‖ holds for all n ∈ N . This
implies that E has the p -positive DP ∗ property. �

The p -positive DP∗ property is then also characterized by plpc operators as fol-
lows. For this, we need the following lemma of [4]. See more information of type and
cotype in [10, Chapter 16].

LEMMA 2.18. Suppose that E is a Banach lattice with the type q (with 1 < q �
2 ), and p � q′ . Then each disjoint sequence (zn) in the solid hull of a bounded set
W ⊂ E is weakly p-summable.

THEOREM 2.19. Assume that the type of a Banach lattice E is q (1 < q � 2) ,
and p � q′ . Then the following assertions are equivalent:

(a) E has the p-positive DP∗ property,

(b) every plpc operator T : E → Y is disjoint p-convergent for every Banach space
Y ,

(c) every plpc operator T : E → c0 is disjoint p-convergent.

Proof. (a)⇒ (b) In this case, every plpc operator T : E →Y is p -convergent, for
every Banach space Y .

(b) ⇒ (c) It is clear.
(c)⇒ (a) Let (xn) ∈ �w

p(E) be a disjoint sequence, and (x∗n) be a positive weak∗ -
null sequence in E∗ . It is enough to show that x∗n(xn) → 0, see [4, Theorem 3.6].
Consider the positive operator T : E → c0 defined by Tx = (〈x,x∗n〉) for all x ∈ E .
According to Proposition 2.11, T is plpc, and so it is disjoint p -convergent. Thus,
‖Txn‖→ 0, and hence x∗n(xn) → 0, as desired. �
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PROPOSITION 2.20. Assume that E is a weak p-consistent Banach lattice, F is
a Banach lattice and S,T : E → F are two positive operators satisfying 0 � S � T . If
T is a plpc operator, then S is a plpc operator.

Proof. Let (xn) ∈ �w
p(E) be a positively limited sequence. Since E is weak p -

consistent, (|xn|) ∈ �w
p(E) also holds in E . Also, (|xn|) is positively limited [2] and so

‖T |xn|‖→ 0. Our conclusion follows from the inequalities |S(xn)|� S|xn|� T |xn| . �
If 0 � S � T : E → F are two positive operators between Banach lattices and T is

plpc , is then S necessarily plpc? We pose a question, and have to leave it open.

3. Weak∗ positively p -convergent operators

This section focuses on the so-called weak∗ positively p -convergent operators,
and discuss some properties of them related to plpc operators, and the positively limited
p -Schur property.

DEFINITION 3.1. An operator T : X →E is called weak∗ positively p-convergent
if for each sequence (xn) ∈ �w

p(X) , and positive weak∗ -null sequence (x∗n) in E∗ ,
x∗n(Txn) → 0.

THEOREM 3.2. Let T : X → E be an operator. The following are equivalent:

(a) T is a weak∗ positively p-convergent operator,

(b) T maps each weakly p-compact set in X to a positively limited set in E ,

(c) for each Banach space Z , and each weakly p-compact operator S : Z → X , the
operator TS is positively limited,

(d) for each operator S : �p∗ → X , TS is positively limited.

Proof. (a)⇒ (b) Let W be a weakly p -compact set in X . We show that T (W ) is
a positively limited set in E ; that is, for each positive weak∗ -null sequence (x∗n) in E∗ ,
and each sequence (xn) in W , x∗n(Txn) → 0. Since W is weakly p -compact, (xn) has
a weakly p -convergent subsequence to x ∈ X which is denoted by (xn) again. Then
(xn − x) , and so (Txn −Tx) are weakly p -summable, and by the definition of weak∗
positively p -convergent operators, x∗n(Txn) = x∗n(Txn−Tx)+ x∗n(Tx) → 0.

(b) ⇒ (c) Obvious.
(c) ⇒ (d) It is clear (since B�p∗ is a weakly p -compact set).
(d) ⇒ (a). We show that for each positive weak∗ -null sequence (x∗n) in E∗ , and

every sequence (xn)∈ �w
p(X) , x∗n(Txn)→ 0. An operator S : �p∗ →E defined by S(b)=


n=1 bnxn , b = (bn) ∈ �p∗ is weakly p -compact, and so TS is positively limited. Then

TS(B�p∗ ) is a positively limited set which implies that x∗n(Txn) → 0. �
The following result characterizes the class of Banach lattices with the p -positive

DP∗ property by weak∗ positively p -convergent operators.
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COROLLARY 3.3. Let E be a Banach lattice. Then the following are equivalent:

(a) E has the p-positive DP∗ property,

(b) the identity operator on E is weak∗ positively p-convergent.

(c) every weakly p-compact operator T from an arbitrary Banach space Z to E is
a positively limited operator.

(d) every bounded linear operator S : �p∗ → E is positively limited.

THEOREM 3.4. Let E be a Banach lattice and T : X → E be an operator. Then
the following are equivalent:

(a) T is a weak∗ positively p-convergent operator,

(b) for each positive operator S from E to a Banach lattice F with the positively
limited p-Schur property, the operator ST is p-convergent,

(c) for each positive operator S : E → c0 the operator ST is p-convergent.

Proof. (a) ⇒ (b) Let W be a weakly p -compact set in X . By hypothesis (a),
T (W ) is a positively limited and weakly p -compact set in E . Since S : E → F is
positive, ST (W ) is a positively limited and weakly p -compact set in F . Hence by the
positively limited p -Schur property of F , ST (W ) is relatively compact. Thus ST is
p -convergent.

(b) ⇒ (c) It is clear.
(c) ⇒ (a) We show that for each positive weak∗ null sequence (x∗n) in E∗ and

every weakly p -summable sequence (xn) in X , x∗n(Txn) → 0. Consider the operator
S : E → c0 defined by Sx = (x∗n(x)) , x ∈ E . Then S is a positive operator, and by
hypothesis, ST is p -convergent. Thus, ‖S(T(xn))‖→ 0 which implies that x∗n(Txn)→
0. �

We have immediate consequences of Theorem 3.4.

1. If T : E → F is weak∗ positively p -convergent and F has the positively limited
p -Schur property, then T is p -convergent.

2. If T : E → F is weak∗ positively p -convergent, then for each Banach space Y
and each plpc operator S : F → Y , the operator ST : E → Y is p -convergent.

THEOREM 3.5. Let T : E → F be an operator. The following are equivalent:

(a) T is a weak∗ positively p-convergent operator,

(b) for each positive operator S : F → c0 , the operator ST is p-convergent.
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Proof. (a) ⇒ (b) It is clear, since the operator S : F → c0 is plpc (Proposition
2.11).

(b) ⇒ (a) We show that for each positive weak∗ null sequence (x∗n) in F∗ and
every weakly p -summable sequence (xn) in E , x∗n(Txn) → 0. Consider the operator
S : F → c0 defined by Sx = (x∗n(x)) , x ∈ F . S is a positive operator. By hypothesis, ST
is p -convergent, and so ‖S(T(xn))‖ → 0 which implies that x∗n(Txn) → 0. �

THEOREM 3.6. Suppose that F is a  -Dedekind complete Banach lattice with
the weakly sequentially continuous lattice operations, and E is a Banach lattice. Then
the following are equivalent:

(a) Each weak∗ positively p-convergent operator T : E → F is plpc.

(b) E has the positively limited p-Schur property or F has order continuous norm.

Proof. (a) ⇒ (b) Suppose that E does not have the positively limited p -Schur
property and F does not have order continuous norm. Then there is a weakly p -
summable and positively limited sequence (xn) in E with ‖xn‖ >  , for some  > 0.
So, there is a sequence (x∗n) in E∗ such that ‖x∗n‖ = 1 and x∗n(xn) = ‖xn‖ . Consider the
operator S : E → � defined by

Sx = (〈x,x∗n〉), x ∈ E.

Also, F is  -Dedekind complete without order continuous norm and so there is a
lattice embedding i : � → F . Thus an operator T := ioS : E → F defined by Tx =
(〈x,x∗n〉) for all x ∈ E is weak∗ (positively) p -convergent, but it is not plpc.

(b) ⇒ (a) If E has the positively limited p -Schur property, then clearly each
operator T : E → F is plpc. If F has order continuous norm and T : E → F is a weak∗
positively p -convergent operator, then we show that T is p -convergent. Let (xn) be a
weakly p -summable sequence in E . Then (Txn) is a weakly p -summable positively
limited sequence in F , because T is weak∗ positively p -convergent. Since E has
the weakly sequentially continuous lattice operations, and order continuous norm, it
is discrete [7, Corollary 2.3]. By [2, Theorem 2.5], (Txn) is a weakly p -summable
limited sequence in F . Since F has the GP property [17], ‖Txn‖ → 0, and so the
operator T is p -convergent. �

As some consequences of Theorem 3.6, we obtain two following characterizations.
Note that � is a  -Dedekind complete Banach lattice with the weakly sequentially
continuous lattice operations.

COROLLARY 3.7. For a Banach lattice E , the following are equivalent:

(a) each weak∗ positively p-convergent operator T : E → � is plpc.

(b) E has the positively limited p-Schur property.
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COROLLARY 3.8. Let F be a  -Dedekind complete Banach lattice with the weakly
sequentially continuous lattice operations. Then the following are equivalent:

(a) each weak∗ positively p-convergent operator T : � → F is plpc,

(b) F has order continuous norm.

Following the same arguments as in the proof of Theorem 3.6, we conclude that if
F is a  -Dedekind complete Banach lattice with the weakly sequentially continuous
lattice operations, then each weak∗ positively p -convergent operator T : E → F is
p -convergent if and only if E has the p -Schur property or F has order continuous
norm.

An operator T : X → Y is called weak∗ p-convergent if for each weakly p -
summable sequence (xn) in X and weak∗ null sequence (x∗n) in Y ∗ , x∗n(Txn)→ 0, see
[18, Definition 4.1.1]. It is clear that each weak∗ p -convergent operator carries weakly
p -compact sets into limited sets. If T : X → E is an operator and E has the positively
limited p -Schur property, then it is easily verified that T is p -convergent if and only if
T is weak∗ p -convergent if and only if T is weak∗ positively p -convergent.

PROPOSITION 3.9. Suppose that R : E → F is a positive operator. If S : X → E
is a weak∗ positively p-convergent operator, and T : Y → X is an operator. Then the
composition operators RST : Y → F is a weak∗ positively p-convergent operator.

Proof. Let W be a weakly p -compact set in Y . Then T (W ) is a weakly p -
compact set in X , and so S(TW ) is a positively limited set in E (since S is a weak∗
positively p -convergent operator). Also, R : E → F is a positive operator and so
R(STW ) is a positively limited set in F . Hence RST is a weak∗ positively p -convergent
operator. �

We consider a result of the domination property of the weak∗ positively p -convergent
operators.

THEOREM 3.10. Let T : E → F be a weak∗ positively p-convergent operator. If
E is weak p-consistent, and 0 � S � T . Then S is a weak∗ positively p-convergent
operator.

Proof. Let (xn) be a weakly p -summable sequence in E and (x∗n) be a posi-
tive weak∗ null sequence in F∗ . By assumption, the sequence (|xn|) is weakly p -
summable in E . Then

x∗n(S(xn)) � x∗n(S(|xn|)) � x∗n(T (|xn|)) → 0.

This proves that S is a weak∗ positively p -convergent operator. �
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