POSITIVELY LIMITED *p***-CONVERGENT AND WEAK* POSITIVELY** *p***-CONVERGENT OPERATORS**

H. Ardakani* and Kh. Amjadi

(Communicated by G. Misra)

Abstract. The purpose of this article is to study two classes of operators, which we call positively limited *p*-convergent operators, and weak^{*} positively *p*-convergent operators. We discuss the relationship between these two classes of operators, and other known classes of operators such as *p*-convergent operators, limited *p*-convergent operators, disjoint *p*-convergent operators, etc. Moreover, the positive DP^{*} property of order *p* is studied, and the behavior of these two classes of operators on Banach lattices with this property (with focus on Banach lattices with the positively limited *p*-convergent operators, and weak^{*} positively *p*-convergent operators on Banach lattices are considered.

1. Introduction and preliminaries

Throughout this paper *E*, *F* denote Banach lattices, *X*, *Y* denote Banach spaces. If *A* is a subset of a Banach space *X*, and for each weak*-null sequence (x_n^*) in *X**, $\lim_{n\to\infty} \sup_{a\in A} |\langle a, x_n^* \rangle| = 0$, then we say that *A* is *limited*. Each relatively compact set is limited [9, 12].

A subset A of a Banach lattice E is said to be *almost limited* if every disjoint weak*-null sequence (x_n^*) in E^* converges uniformly to zero on A. Each limited set is almost limited. $B_{\ell_{\infty}}$ is an almost limited set which is not limited [6, 15].

A bounded set $A \subset E$ is *positively limited* if each positive weak*-null sequence (x_n^*) in E^* converges uniformly to zero on A. Each almost limited set is a positively limited set. Also, each order interval in a Banach lattice is positively limited [2].

A sequence $(x_n) \subset X$ is called *weakly p-summable*, where $1 \leq p < \infty$, if for each $x^* \in X^*$, $(x^*(x_n)) \in \ell_p$. Also $(x_n) \subset X$ is called *weakly p-convergent* to $x \in X$ if $(x_n - x) \in \ell_p^w(X)$, where $\ell_p^w(X)$ is the space of weakly *p*-summable sequences of *X*. For $p = \infty$, weakly *p*-convergent sequences are exactly weakly convergent sequences. A bounded set $A \subset X$ is called *relatively weakly p-compact* if each sequence in *A* has a weakly *p*-convergent subsequence. $A \subset X$ is *weakly p-compact* if the limit point is in *A* [13].

* Corresponding author.

Mathematics subject classification (2020): 46B42, 46B40, 46A40, 47B65.

Keywords and phrases: Positively limited set, weakly p-compact set, p-convergent operator, p-Schur property, DP* property.

A Banach space *X* has the *limited p*-*Schur property* $(1 \le p \le \infty)$ if all limited weakly *p*-compact subsets of *X* are relatively compact or equivalently, every limited sequence $(x_n) \in \ell_p^w(X)$ is norm null [8].

Later, the concept of strong limited p-Schur property in Banach lattices was introduced. A Banach lattice E has the *strong limited* p-Schur property if each almost limited weakly p-compact subset of E is relatively compact. Each Banach lattice with the strong limited p-Schur property has the limited p-Schur property too [3].

Recently the concept of positively limited sets was defined and classes of Banach lattices with the positively limited p-Schur property were studied. A Banach lattice E has the *positively limited* p-Schur property if each positively limited weakly p-compact subset of E is relatively compact. Every Banach lattice with the positively limited p-Schur property has the strong limited p-Schur property too [4].

In this paper, at first the class of positively limited p-convergent operators is introduced, and some results of them are obtained. As an application, some characterizations of the positively limited p-Schur property, and the positive DP* property of order p of E are considered in terms of these operators.

Next, the weak^{*} positively *p*-convergent operators are studied, and the relationships between them with the positively limited *p*-convergent operators, and the positive DP^{*} property of order *p* of *E* are derived.

We also investigate the domination problem of positively limited p-convergent operators, and weak^{*} almost p-convergent operators.

We recall some definitions, and notations. For a Banach lattice $E, E^+ = \{x \in E : x \ge 0\}$ refers to the positive cone of E. A subset A of E is called solid if $|x| \le |y|$ for some $y \in A$ implies that $x \in A$. The solid hull of A is the set $Sol(A) = \{y \in E : |y| \le |x|, for some <math>x \in A\}$. A norm bounded subset A of E is solid if $|x| \le |y|$ for some $y \in A$ implies that $x \in A$. If for every weakly null sequence (x_n) in $E, |x_n| \xrightarrow{w} 0$, then the lattice operations are called weakly sequentially continuous. Also, if for every weak*-null sequence (x_n^*) in $E^*, |x_n^*| \xrightarrow{w^*} 0$, the lattice operations are called weak* sequentially continuous [1, 16].

All the concepts mentioned above and needed in this paper are collected:

- 1. A Banach lattice E has the:
 - *Schur property*, if each relatively weakly compact set in *E* is relatively compact.
 - *Gelfand-Phillips property (GP property)*, if each limited set in *E* is relatively compact.
 - DP^* property if each relatively weakly compact set in E is limited [9].
 - *weak DP** *property* if each relatively weakly compact set in *E* is almost limited [6].
 - *positive DP** *property* if each relatively weakly compact set in X is positively limited [2].
 - *p*-Schur property, if every sequence $(y_n) \in \ell_p^w(E)$ is norm null [18].

- property (d), if $|x_n^*| \xrightarrow{w^*} 0$ for every weak*-null disjoint sequence (x_n^*) in E^* [11].
- 2. An operator $T: E \to X$ is called
 - (a) *completely continuous* if it carries weakly null sequences to norm null ones[1].
 - (a) *p*-convergent if it carries weakly *p*-summable sequences to norm null ones [5].
 - (d) *disjoint p-convergent* if it carries disjoint weakly *p*-summable sequences to norm null ones [18].
 - (b) *limited p-convergent (abbr.* lpc) if it carries limited weakly *p*-summable sequences to norm null ones [8, 18].
 - (c) *almost limited p-convergent (abbr.* alpc) if it carries almost limited weakly *p*-summable sequences to norm null ones [3].
- 3. An operator $T: X \to E$ is called *positively limited* if $T(B_X)$ is a positively limited set or equivalently, $||T^*x_n^*|| \to 0$ for each positive weak*-null sequence (x_n^*) in E^* [2].

Throughout this article we assume that $1 \le p < \infty$, unless otherwise stated.

2. Positively limited *p*-convergent operators

In this section, we consider a class of operators related to positively limited sets: positively limited *p*-convergent operators.

DEFINITION 2.1. A bounded linear operator $T : E \to X$ is positively limited *p*-convergent (*abbr*. plpc) if *T* carries weakly *p*-summable positively limited sequences of *E* to norm null sequences of *X*.

The set of all plpc operators from *E* into *X* is denoted by $\mathcal{L}_{plpc}(E,X)$. Clearly, $\mathcal{L}_{plpc}(E,X)$ is a linear subspace of $\mathcal{L}(E,X)$, where $\mathcal{L}(E,X)$ is the class of all bounded linear operators from *E* to *X*. Since each almost limited set is positively limited, a plpc operator is lpc and alpc. For the converse, we have the following which are the immediate consequences of [2, Theorem 2.5 & 2.7]:

- 1. If $T: E \to X$ is an lpc operator and E^* has the weak *-sequentially continuous lattice operations, then *T* is a plpc operator.
- 2. If $T: E \to X$ is an alpc operator and *E* has the property (d), then *T* is a plpc operator.
 - EXAMPLE 2.2. (a) The identity operator on each Banach lattice with the positively limited *p*-Schur property, and without the *p*-Schur property, such as c_0 is plpc, but it is not *p*-convergent.

- (b) The identity operator on each Banach lattice with the limited *p*-Schur property, and without the positively limited *p*-Schur property, such as $L^1[0,1]$ is lpc, but it is not plpc for all $p \ge 2$.
- (c) The identity operator on each Banach lattice with the strong limited p-Schur property, and without the positively limited p-Schur property, such as c is alpc, but it is not plpc.

It is trivial that *TS* is plpc if $F \xrightarrow{S} X \xrightarrow{T} Y$ where *S* is plpc and *T* is a bounded linear operator. It should be noted that order bounded operators between Banach lattices preserve positively limited sets, see [2, Theorem 2.11]. As a result, if $E \xrightarrow{T} F \xrightarrow{S} X$ where *S* is plpc and *T* is order bounded, then *ST* is also plpc. However, the following example shows that *ST* need not be plpc if *T* is not order bounded.

EXAMPLE 2.3. Let $T: L^1[0,1] \to c_0$ be defined as

$$Tf = \left(\int_0^1 f(t)r_n(t)dt\right)_{n=1}^{\infty}, \quad \text{for all } f \in L^1[0,1],$$

where $r_n(t)$ is the n'th Rademacher function on [0,1]. The operator T is not order bounded. Indeed, $(r_n(t))_{n=1}^{\infty}$ is weakly p-summable, for all $2 \le p \le \infty$, and order bounded $(-1 \le r_n \le 1, n \in \mathbb{N})$, hence positively limited in $L^1[0,1]$, but $(Tr_n(t))_{n=1}^{\infty}$ is not order bounded in c_0 . On the other hand, $||Tr_n|| = 1, n \in \mathbb{N}$. Therefore T is not plpc. Note that the identity operator Id_{c_0} is plpc [2, Theorem 3.6]. However, $Id_{c_0}T = T$ is not plpc.

THEOREM 2.4. An operator T on E is plpc if and only if for each positively limited weakly p-compact set $A \subseteq E$, the set T(A) is relatively compact.

Proof. To show that an operator T is plpc, we assume that (x_n) is a weakly p-summable positively limited sequence in E. For each subsequence of (x_n) , which is denoted again by (x_n) , the sequence (Tx_n) is relatively compact and so it has a convergent, and also weakly p-summable subsequence (Tx_{n_k}) . Then $||Tx_{n_k}|| \to 0$ as $k \to \infty$ which implies that T is plpc.

For the converse, let $A \subset E$ be a positively limited weakly *p*-compact set, and $T : E \to Y$ be a plpc operator. Then every sequence (x_n) in *A* has a weakly *p*-convergent subsequence, denoted again by (x_n) . On the other hands, the difference set A - A is positively limited. Hence the sequence $(x_n - x_m)$ is positively limited weakly *p*-summable, and by hypothesis (Tx_n) is Cauchy and so is norm convergent in *Y*. Thus T(A) is relatively compact. \Box

Note that, a plpc operator does not necessarily take positively limited sets to relatively compact sets.

EXAMPLE 2.5. An operator $R: C[0,1] \rightarrow c_0$ defined by

$$Rf = \left(\int_0^1 f(t)r_n(t)dt\right)_{n=1}^{\infty}, \quad \text{for all } f \in L^1[0,1],$$

where r_n is the n'th Rademacher function on [0, 1]. The operator R is weakly compact. By the Dunford-Pettis property of C[0, 1], R is completely continuous, and so it is plpc. However, R is not compact. Hence $R(B_{C[0,1]})$ is not a relatively compact set in c_0 , while the closed unit ball $B_{C[0,1]}$ is a positively limited set.

Indeed, every plpc operator takes positively limited sets to relatively weakly compact sets.

THEOREM 2.6. Every plpc operator $T : E \to Y$ carries positively limited sets to relatively weakly compact sets. In particular, every plpc operator is order weakly compact.

Proof. Let (x_n) be an arbitrary order bounded disjoint sequence in *E*. Then (x_n) is weakly *p*-summable [3] and positively limited. Thus, $||Tx_n|| \rightarrow 0$, since *T* is plpc. Hence *T* is order weakly compact. From (cf. [1, Theorem 5.58]), *T* admits a factorization through a Banach lattice *G* with order continuous norm

such that $R : E \to G$ is a lattice homomorphism. From [2, Theorem 2.11] for each positively limited set $B \subset E$, R(B) is also positively limited in G, and so it is relatively weakly compact, see [2, Theorem 3.4]. Therefore, T(B) = SR(B) is relatively weakly compact. \Box

We can prove the following lemma. The proof is similar to the proof of Lemma 3.23 of [14].

LEMMA 2.7. Let (x_n) be a positively limited weakly p-summable sequence in E. Then the operator $T : \ell_{p^*} \to E$, $T(b) = \sum_{n=1}^{\infty} b_n x_n$, $b = (b_n) \in \ell_{p^*}$ is positively limited (1 .

We then have the following composition result:

THEOREM 2.8. Let $1 , and <math>T : E \to Y$ be an operator. The following are equivalent:

- (a) T is a plpc operator,
- (b) for every Banach space Z, and any positively limited, weakly p-compact operator $S: Z \rightarrow E$, the operator $TS: Z \rightarrow Y$ is compact,
- (c) for every positively limited operator $S: \ell_{p^*} \to E$, the operator $TS: \ell_{p^*} \to Y$ is compact.

Proof. $(a) \Rightarrow (b)$ If $S: Z \rightarrow E$ is a positively limited, weakly *p*-compact operator, then $S(B_Z)$ is a positively limited weakly *p*-compact subset of *E*. Using the plpc-ness of *T*, and following the Theorem 2.4, we can prove that $TS(B_Z)$ is relatively compact, and so the operator *TS* is compact.

 $(b) \Rightarrow (c)$ It follows easily from the fact that $Id(\ell_{p^*}) \in W_p$ (the class of weakly *p*-compact operators).

 $(c) \Rightarrow (a)$ Let $(x_n) \in \ell_p^w(E)$ be a positively limited sequence. By Lemma 2.7 the operator $S : \ell_{p^*} \to E$ defined by $S(b) = \sum_{n=1}^{\infty} b_n x_n$, $b = (b_n) \in \ell_{p^*}$ such that $S(e_n) = x_n$ for all *n* is positively limited (note that, $\ell_p^w(E) = L(\ell_{p^*}, E)$). Hence the operator *TS* is compact and so $||Tx_n|| = ||TS(e_n)|| \to 0$. \Box

As a consequence of Theorem 2.8, we obtain the following characterization:

COROLLARY 2.9. Let 1 . The following are equivalent:

- (a) E has the positively limited p-Schur property,
- (b) for every Banach space Z, any positively limited weakly p-compact operator $S: Z \rightarrow E$ is compact,
- (c) each positively limited operator $S: \ell_{p^*} \to E$ is compact.

The following theorem provides a characterization of the positively limited *p*-Schur property with respect to plpc operators.

THEOREM 2.10. For a Banach lattice E, the following are equivalent:

- (a) E has the positively limited p-Schur property,
- (b) for each Banach space Y, $\mathcal{L}_{plpc}(E,Y) = \mathcal{L}(E,Y)$,
- (c) $\mathcal{L}_{plpc}(E, \ell_{\infty}) = \mathcal{L}(E, \ell_{\infty}).$

Proof. $(a) \Rightarrow (b)$ Let $T : E \to Y$ be an operator and A be a positively limited weakly p-compact subset of E. By the positively limited p-Schur property of E, A and so T(A) are relatively compact sets in Y. Then by Theorem 2.4, T is plpc.

 $(b) \Rightarrow (c)$ It is obvious.

 $(c) \Rightarrow (a)$ Assume by way of contradiction that *E* does not have the positively limited *p*-Schur property. Then, there is a weakly *p*-summable positively limited sequence (x_n) in *E* such that $||x_n|| = 1$ for all *n*. Choose a normalized sequence (x_n^*) in *E*^{*} such that $|\langle x_n, x_n^* \rangle| = 1$ for all *n*. Then the operator $T : E \to \ell_{\infty}$ defined by

$$Tx = (\langle x, x_n^* \rangle), \qquad x \in E$$

is not plpc (since the sequence (x_n) is weakly *p*-summable and positively limited, and $||Tx_n|| \ge 1$ for all *n*). This leads to a contradiction. \Box

Note that in Theorem 2.10 one cannot replace the positively limited *p*-Schur property of the domain *E* of related operators by their images. The Banach lattice c_0 has the positively limited *p*-Schur property, but the operator $T: L^1[0,1] \rightarrow c_0$ defined by

$$Tf = (\int_0^1 f(t)r_n(t)dt)_{n=1}^{\infty}, \quad \text{for all } f \in L^1[0, I],$$

is not plpc for all $p \ge 2$ (since the Rademacher sequence $f_n(t) = r_n(t)$ is weakly 2-summable and positively limited, but $||Tf_n|| = 1$).

We can show that in order for the positively limited p-Schur property of the domain E of related operators to be replaced by their images in Theorem 2.10, it is sufficient for the operators to be positive.

PROPOSITION 2.11. If $T : E \to F$ is a positive operator, and F has the positively limited p-Schur property, then T is plpc.

Proof. Note that from [2], for each positively limited weakly *p*-compact set $A \subset E$, T(A) is positively limited (and also weakly *p*-compact) in *F*. It follows from the positively limited *p*-Schur property of *F* that T(A) is relatively compact. This proves that *T* is plpc. \Box

If $R : E \to F$ and $S : F \to X$ are two operators such that R is plpc, then SR is likewise plpc. In fact, if $(x_n) \in \ell_p^w(E)$ is a positively limited sequence, and R is an plpc operator, then $||Rx_n|| \to 0$, and so $||S(Rx_n)|| \to 0$. Consequently $SR : E \to X$ is plpc. However, if S is plpc, then SR is not necessarily plpc.

EXAMPLE 2.12. An operator $R: L^1[0,1] \rightarrow c_0$ defined by

$$Rf = \left(\int_0^1 f(t)r_n(t)dt\right)_{n=1}^{\infty}, \quad \text{ for all } f \in L^1[0,1],$$

where r_n is the n'th Rademacher function on [0,1], is not plpc. Consider an operator $S = Id_{c_0}$. Then S is plpc, but SR = R is not plpc.

However, one easily verifies that if *S* is plpc and *R* is positive, then *SR* is plpc. It is enough to note that in this case, for each positively limited sequence $(x_n) \in \ell_p^w(E)$, (Rx_n) is a weakly *p*-summable and positively limited sequence. Hence plpc-ness of *S* ensures that $||S(Rx_n)|| \rightarrow 0$. This proves that *SR* is plpc.

THEOREM 2.13. Let E and F be two Banach lattices with F σ -Dedekind complete. If every bounded linear operator T from E into F is plpc, then either E or F has order continuous norm.

Proof. If neither *E* nor *F* has order continuous norm, then there exists an order bounded disjoint sequence $(x_n)_n^{\infty} \subset E$ such that $||x_n|| = 1$ for all $n \in \mathbb{N}$. Clearly, (x_n)

is positively limited and weakly *p*-summable. We choose a normalized sequence (x_n^*) in E^* such that $|\langle x_n, x_n^* \rangle| = 1$ for all $n \in \mathbb{N}$, and define the operator $T : E \to \ell_{\infty}$ by

$$Tx = (\langle x, x_n^* \rangle), \qquad x \in E.$$

Since *F* is a σ -Dedekind complete Banach lattice without order continuous norm, ℓ_{∞} lattice embeds in *F*. Let $j: \ell_{\infty} \to F$ be the lattice embedding. Then it is easily verified $joT: E \to F$ is not plpc since $||Tx_n|| \ge 1$ for all $n \in \mathbb{N}$. \Box

REMARK 2.14. Example 2.12 implies that the converse of Proposition 2.13 does not necessarily hold. However, if E^* has the weak*-sequentially continuous lattice operations and either E or F has order continuous norm, then each operator T from E into F is plpc. Indeed, if either E or F has order continuous norm, then either Eor F has the limited p-Schur property, and hence every operator $T: E \to F$ is lpc. On the other hand, since E^* has the weak*-sequentially continuous lattice operations, Tis plpc.

Also, note that the σ -Dedekind completeness of a Banach lattice F cannot be removed. Each operator $T: \ell_{\infty} \to c$ is plpc, while neither ℓ_{∞} nor c has order continuous norm.

Theorem 2.13 has the two following consequences.

COROLLARY 2.15. If E^* has the weak^{*} sequentially continuous lattice operations, Then the following are equivalent:

- (a) Each operator $T: E \to \ell_{\infty}$ is plpc.
- (b) E has order continuous norm.

The order continuity of the norm is also characterized.

COROLLARY 2.16. Let F be a σ -Dedekind complete Banach lattice. Then the following are equivalent:

- (a) Each operator $T : c \to F$ is plpc.
- (b) F has order continuous norm.

Recently, the authors introduced the *p*-positive DP* property in [4]. A Banach lattice *E* has the *p*-positive DP* property if every relatively weakly *p*-compact subset of *E* is positively limited; alternatively, $x_n^*(x_n) \to 0$ for every weakly *p*-summable sequence (x_n) , and every weak*-null sequence $(x_n^*) \subset (E^*)^+$. For our convenience, let $\mathcal{L}_{pc}(X,Y)$ denote the set of all *p*-convergent operators from *X* into *Y*. $\mathcal{L}_{pc}(E,X) \subset \mathcal{L}_{plpc}(E,X)$ holds.

THEOREM 2.17. For a Banach lattice E the following assertions are equivalent.

- (a) E has the p-positive DP^* property.
- (b) for every Banach space X, $\mathcal{L}_{plpc}(E,X) = \mathcal{L}_{pc}(E,X)$.
- (c) $\mathcal{L}_{plpc}(E,c_0) = \mathcal{L}_{pc}(E,c_0).$

Proof. (a) \Rightarrow (b) Let $T \in \mathcal{L}_{plpc}(E,X)$, and $(x_n)_{n=1}^{\infty}$ be a weakly *p*-summable sequence in *E*. Since *E* has the *p*-positive DP^{*} property, (x_n) is positively limited in *E* and by hypothesis, $||T(x_n)|| \rightarrow 0$. This implies that $T \in \mathcal{L}_{pc}(E,X)$

 $(b) \Rightarrow (c)$ Obvious.

 $(c) \Rightarrow (a)$ Let $(x_n)_{n=1}^{\infty}$ be a weakly *p*-summable sequence in *E*, and $(x_n^*)_{n=1}^{\infty}$ be a sequence in $(E^*)^+$ satisfying $x_n^* \xrightarrow{w^*} 0$. We define the positive operator $T: E \to c_0$ by

$$Tx = (x_n^*(x)), \qquad x \in E.$$

Since c_0 has the positively limited *p*-Schur property, and the operator *T* is positive, by Proposition 2.11, *T* is plpc. By hypothesis, $T \in \mathcal{L}_{pc}(E, c_0)$ and hence $||Tx_n|| \to 0$. As a result, $x_n^*(x_n) \to 0$ since the inequality $|x_n^*(x_n)| \leq ||Tx_n||$ holds for all $n \in \mathbb{N}$. This implies that *E* has the *p*-positive DP^{*} property. \Box

The *p*-positive DP^{*} property is then also characterized by plpc operators as follows. For this, we need the following lemma of [4]. See more information of type and cotype in [10, Chapter 16].

LEMMA 2.18. Suppose that E is a Banach lattice with the type q (with $1 < q \le 2$), and $p \ge q'$. Then each disjoint sequence (z_n) in the solid hull of a bounded set $W \subset E$ is weakly p-summable.

THEOREM 2.19. Assume that the type of a Banach lattice E is q $(1 < q \leq 2)$, and $p \geq q'$. Then the following assertions are equivalent:

- (a) E has the p-positive DP^* property,
- (b) every plpc operator $T : E \to Y$ is disjoint p-convergent for every Banach space Y,
- (c) every plpc operator $T: E \rightarrow c_0$ is disjoint p-convergent.

Proof. $(a) \Rightarrow (b)$ In this case, every plpc operator $T : E \rightarrow Y$ is *p*-convergent, for every Banach space *Y*.

 $(b) \Rightarrow (c)$ It is clear.

 $(c) \Rightarrow (a)$ Let $(x_n) \in \ell_p^w(E)$ be a disjoint sequence, and (x_n^*) be a positive weak*null sequence in E^* . It is enough to show that $x_n^*(x_n) \to 0$, see [4, Theorem 3.6]. Consider the positive operator $T: E \to c_0$ defined by $Tx = (\langle x, x_n^* \rangle)$ for all $x \in E$. According to Proposition 2.11, T is plpc, and so it is disjoint p-convergent. Thus, $||Tx_n|| \to 0$, and hence $x_n^*(x_n) \to 0$, as desired. \Box PROPOSITION 2.20. Assume that E is a weak p-consistent Banach lattice, F is a Banach lattice and $S,T: E \to F$ are two positive operators satisfying $0 \leq S \leq T$. If T is a plpc operator, then S is a plpc operator.

Proof. Let $(x_n) \in \ell_p^w(E)$ be a positively limited sequence. Since *E* is weak *p*-consistent, $(|x_n|) \in \ell_p^w(E)$ also holds in *E*. Also, $(|x_n|)$ is positively limited [2] and so $||T|x_n|| \to 0$. Our conclusion follows from the inequalities $|S(x_n)| \leq S|x_n| \leq T|x_n|$. \Box

If $0 \le S \le T : E \to F$ are two positive operators between Banach lattices and *T* is plpc, is then *S* necessarily plpc? We pose a question, and have to leave it open.

3. Weak* positively *p*-convergent operators

This section focuses on the so-called weak^{*} positively *p*-convergent operators, and discuss some properties of them related to plpc operators, and the positively limited *p*-Schur property.

DEFINITION 3.1. An operator $T: X \to E$ is called *weak*^{*} *positively p-convergent* if for each sequence $(x_n) \in \ell_p^w(X)$, and positive weak^{*}-null sequence (x_n^*) in E^* , $x_n^*(Tx_n) \to 0$.

THEOREM 3.2. Let $T: X \to E$ be an operator. The following are equivalent:

- (a) T is a weak^{*} positively p-convergent operator,
- (b) T maps each weakly p-compact set in X to a positively limited set in E,
- (c) for each Banach space Z, and each weakly p-compact operator $S: Z \to X$, the operator TS is positively limited,
- (d) for each operator $S: \ell_{p^*} \to X$, TS is positively limited.

Proof. $(a) \Rightarrow (b)$ Let *W* be a weakly *p*-compact set in *X*. We show that T(W) is a positively limited set in *E*; that is, for each positive weak*-null sequence (x_n^*) in *E**, and each sequence (x_n) in *W*, $x_n^*(Tx_n) \rightarrow 0$. Since *W* is weakly *p*-compact, (x_n) has a weakly *p*-convergent subsequence to $x \in X$ which is denoted by (x_n) again. Then $(x_n - x)$, and so $(Tx_n - Tx)$ are weakly *p*-summable, and by the definition of weak* positively *p*-convergent operators, $x_n^*(Tx_n) = x_n^*(Tx_n - Tx) + x_n^*(Tx) \rightarrow 0$.

 $(b) \Rightarrow (c)$ Obvious.

 $(c) \Rightarrow (d)$ It is clear (since $B_{\ell_{p^*}}$ is a weakly *p*-compact set).

 $(d) \Rightarrow (a)$. We show that for each positive weak*-null sequence (x_n^*) in E^* , and every sequence $(x_n) \in \ell_p^w(X)$, $x_n^*(Tx_n) \to 0$. An operator $S : \ell_{p^*} \to E$ defined by $S(b) = \sum_{n=1}^{\infty} b_n x_n$, $b = (b_n) \in \ell_{p^*}$ is weakly *p*-compact, and so *TS* is positively limited. Then $TS(B_{\ell_n^*})$ is a positively limited set which implies that $x_n^*(Tx_n) \to 0$. \Box

The following result characterizes the class of Banach lattices with the p-positive DP* property by weak* positively p-convergent operators.

COROLLARY 3.3. Let E be a Banach lattice. Then the following are equivalent:

- (a) E has the p-positive DP^* property,
- (b) the identity operator on E is weak^{*} positively p-convergent.
- (c) every weakly p-compact operator T from an arbitrary Banach space Z to E is a positively limited operator.
- (d) every bounded linear operator $S : \ell_{p^*} \to E$ is positively limited.

THEOREM 3.4. Let *E* be a Banach lattice and $T : X \rightarrow E$ be an operator. Then the following are equivalent:

- (a) T is a weak^{*} positively p-convergent operator,
- (b) for each positive operator S from E to a Banach lattice F with the positively limited p-Schur property, the operator ST is p-convergent,
- (c) for each positive operator $S: E \to c_0$ the operator ST is p-convergent.

Proof. $(a) \Rightarrow (b)$ Let W be a weakly p-compact set in X. By hypothesis (a), T(W) is a positively limited and weakly p-compact set in E. Since $S: E \to F$ is positive, ST(W) is a positively limited and weakly p-compact set in F. Hence by the positively limited p-Schur property of F, ST(W) is relatively compact. Thus ST is p-convergent.

 $(b) \Rightarrow (c)$ It is clear.

 $(c) \Rightarrow (a)$ We show that for each positive weak* null sequence (x_n^*) in E^* and every weakly *p*-summable sequence (x_n) in X, $x_n^*(Tx_n) \to 0$. Consider the operator $S: E \to c_0$ defined by $Sx = (x_n^*(x)), x \in E$. Then *S* is a positive operator, and by hypothesis, *ST* is *p*-convergent. Thus, $||S(T(x_n))|| \to 0$ which implies that $x_n^*(Tx_n) \to 0$. \Box

We have immediate consequences of Theorem 3.4.

- 1. If $T: E \to F$ is weak^{*} positively *p*-convergent and *F* has the positively limited *p*-Schur property, then *T* is *p*-convergent.
- 2. If $T: E \to F$ is weak^{*} positively *p*-convergent, then for each Banach space *Y* and each plpc operator $S: F \to Y$, the operator $ST: E \to Y$ is *p*-convergent.

THEOREM 3.5. Let $T: E \rightarrow F$ be an operator. The following are equivalent:

- (a) *T* is a weak^{*} positively *p*-convergent operator,
- (b) for each positive operator $S: F \to c_0$, the operator ST is p-convergent.

Proof. $(a) \Rightarrow (b)$ It is clear, since the operator $S: F \rightarrow c_0$ is plpc (Proposition 2.11).

 $(b) \Rightarrow (a)$ We show that for each positive weak* null sequence (x_n^*) in F^* and every weakly *p*-summable sequence (x_n) in E, $x_n^*(Tx_n) \to 0$. Consider the operator $S: F \to c_0$ defined by $Sx = (x_n^*(x)), x \in F$. *S* is a positive operator. By hypothesis, *ST* is *p*-convergent, and so $||S(T(x_n))|| \to 0$ which implies that $x_n^*(Tx_n) \to 0$. \Box

THEOREM 3.6. Suppose that F is a σ -Dedekind complete Banach lattice with the weakly sequentially continuous lattice operations, and E is a Banach lattice. Then the following are equivalent:

- (a) Each weak^{*} positively p-convergent operator $T: E \rightarrow F$ is plpc.
- (b) E has the positively limited p-Schur property or F has order continuous norm.

Proof. $(a) \Rightarrow (b)$ Suppose that *E* does not have the positively limited *p*-Schur property and *F* does not have order continuous norm. Then there is a weakly *p*-summable and positively limited sequence (x_n) in *E* with $||x_n|| > \varepsilon$, for some $\varepsilon > 0$. So, there is a sequence (x_n^*) in E^* such that $||x_n^*|| = 1$ and $x_n^*(x_n) = ||x_n||$. Consider the operator $S: E \to \ell_{\infty}$ defined by

$$Sx = (\langle x, x_n^* \rangle), \qquad x \in E.$$

Also, *F* is σ -Dedekind complete without order continuous norm and so there is a lattice embedding $i : \ell_{\infty} \to F$. Thus an operator $T := ioS : E \to F$ defined by $Tx = (\langle x, x_n^* \rangle)$ for all $x \in E$ is weak^{*} (positively) *p*-convergent, but it is not plpc.

 $(b) \Rightarrow (a)$ If *E* has the positively limited *p*-Schur property, then clearly each operator $T: E \to F$ is plpc. If *F* has order continuous norm and $T: E \to F$ is a weak* positively *p*-convergent operator, then we show that *T* is *p*-convergent. Let (x_n) be a weakly *p*-summable sequence in *E*. Then (Tx_n) is a weakly *p*-summable positively limited sequence in *F*, because *T* is weak* positively *p*-convergent. Since *E* has the weakly sequentially continuous lattice operations, and order continuous norm, it is discrete [7, Corollary 2.3]. By [2, Theorem 2.5], (Tx_n) is a weakly *p*-summable limited sequence in *F*. Since *F* has the GP property [17], $||Tx_n|| \to 0$, and so the operator *T* is *p*-convergent. \Box

As some consequences of Theorem 3.6, we obtain two following characterizations. Note that ℓ_{∞} is a σ -Dedekind complete Banach lattice with the weakly sequentially continuous lattice operations.

COROLLARY 3.7. For a Banach lattice E, the following are equivalent:

(a) each weak^{*} positively p-convergent operator $T: E \to \ell_{\infty}$ is plpc.

(b) E has the positively limited p-Schur property.

COROLLARY 3.8. Let *F* be a σ -Dedekind complete Banach lattice with the weakly sequentially continuous lattice operations. Then the following are equivalent:

(a) each weak^{*} positively p-convergent operator $T : \ell_{\infty} \to F$ is plpc,

(b) F has order continuous norm.

Following the same arguments as in the proof of Theorem 3.6, we conclude that if F is a σ -Dedekind complete Banach lattice with the weakly sequentially continuous lattice operations, then each weak^{*} positively *p*-convergent operator $T : E \to F$ is *p*-convergent if and only if *E* has the *p*-Schur property or *F* has order continuous norm.

An operator $T: X \to Y$ is called *weak*^{*} *p*-convergent if for each weakly *p*-summable sequence (x_n) in X and weak^{*} null sequence (x_n^*) in Y^* , $x_n^*(Tx_n) \to 0$, see [18, Definition 4.1.1]. It is clear that each weak^{*} *p*-convergent operator carries weakly *p*-compact sets into limited sets. If $T: X \to E$ is an operator and *E* has the positively limited *p*-Schur property, then it is easily verified that *T* is *p*-convergent if and only if *T* is weak^{*} *p*-convergent.

PROPOSITION 3.9. Suppose that $R: E \to F$ is a positive operator. If $S: X \to E$ is a weak^{*} positively *p*-convergent operator, and $T: Y \to X$ is an operator. Then the composition operators $RST: Y \to F$ is a weak^{*} positively *p*-convergent operator.

Proof. Let W be a weakly p-compact set in Y. Then T(W) is a weakly p-compact set in X, and so S(TW) is a positively limited set in E (since S is a weak^{*} positively p-convergent operator). Also, $R : E \to F$ is a positive operator and so R(STW) is a positively limited set in F. Hence RST is a weak^{*} positively p-convergent operator. \Box

We consider a result of the domination property of the weak * positively *p*-convergent operators.

THEOREM 3.10. Let $T : E \to F$ be a weak* positively p-convergent operator. If E is weak p-consistent, and $0 \leq S \leq T$. Then S is a weak* positively p-convergent operator.

Proof. Let (x_n) be a weakly *p*-summable sequence in *E* and (x_n^*) be a positive weak* null sequence in F^* . By assumption, the sequence $(|x_n|)$ is weakly *p*-summable in *E*. Then

$$x_n^*(S(x_n)) \leqslant x_n^*(S(|x_n|)) \leqslant x_n^*(T(|x_n|)) \to 0.$$

This proves that S is a weak^{*} positively p-convergent operator. \Box

REFERENCES

- [1] C. D. ALIPRANTIS AND O. BURKISHAW, *Positive Operators*, Academic Press, New York, London, 1978.
- [2] H. ARDAKANI AND J. X. CHEN, Positively limited sets in Banach lattices, J. Math. Anal. Appl. 526 (1) (2023), 127220, https://doi.org/10.1016/j.jmaa.2023.127220.
- [3] H. ARDAKANI AND KH. TAGHAVINEJAD, The strong limited p-Schur property in Banach lattices, OaM. 16 (2022), 811–825.
- [4] H. ARDAKANI AND KH. AMJADI, The positively limited p-Schur property in Banach lattices, Ann. Funct. Anal. 16 (2023), https://doi.org/10.1007/s43034-023-00292-y.
- [5] J. CASTILLO AND F. SANCHEZ, Dunford-Pettis-like Properties of Continuous Vector Function Spaces, Revista Mathematica, 6 (1993), 43–59.
- [6] J. X. CHEN, Z. L. CHEN AND G. X. JI, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412 (2014), 547–563.
- [7] Z. L. CHEN AND A. W. WICKSTEAD, Relative weak compactness of solid hulls in Banach lattices, Indag. Mathem. N.S. 9 (1995), 187–196.
- [8] M. B. DEHGHANI, S. M. MOSHTAGHIOUN AND M. DEHGHANI, On the limited p-Schur property of soe operator spaces, IJAA. 16 (2018), 50–61.
- [9] J. DIESTEL, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer-Verlag, Berlin, 1984.
- [10] J. DIESTEL, Absolutely Summing Operators, Cambridge University Press, 1995.
- [11] A. ELBOUR, Some characterizations of almost limited operators, Positivity 21 (2017), 865–874.
- [12] G. EMMANUELE, On Banach spaces with the Gelfand–Phillips property, III, J. Math. Pures Appl. 72 (1993), 327–333.
- [13] J. H. FOURIE AND E. D. ZEEKOEI, *DP**-properties of order *p* on Banach spaces, Quaest. Math. **37** (2014), 349–358.
- [14] I. GHENCIU, Some classes of Banach spaces and complemented subspaces of operators, Adv. Oper. Theory 4 (2019), 369–387.
- [15] N. MACHRAFI, A. ELBOUR AND M. MOUSSA, Some characterizations of almost limited sets and applications (2013), arXiv:1312.2770v1.
- [16] P. MEYER-NIEBERG, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991.
- [17] W. WNUK, Banach Lattices with Order Continuous Norms, Polish Scientific Publishers PWN, Warsaw, 1999.
- [18] E. ZEEKOEI, *Classes of Dunford-Pettis-type operators with applications to Banach spaces and Banach lattices*, Ph.D. Thesis, 2017.

(Received October 5, 2023)

H. Ardakani Department of Mathematics Payame Noor University Tehran Iran e-mail: ardakani@pnu.ac.ir halimeh_ardakani@yahoo.com

Kh. Amjadi Department of Mathematics Payame Noor University Tehran Iran e-mail: amjadi55@student.pnu.ac.ir