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q–NUMERICAL RADIUS INEQUALITIES FOR PRODUCT

OF COMPLEX LINEAR BOUNDED OPERATORS

MOHAMED CHRAIBI KAADOUD AND SOMAYYA MOULAHARABBI

(Communicated by Y.-T. Poon)

Abstract. In this paper, we prove some q -numerical radius power inequalities for a product of
operators on a complex Hilbert space. We introduce also the notion of the q -center for bounded
operators, and we give the relationship between this q -center, the q -numerical radius and the
center of the q -numerical range.

1. Introduction

Let H be a complex Hilbert space and denote by B(H) the space of all linear
bounded operators on H . Let SH = {x ∈H : ‖x‖ = 1} . For any A ∈ B(H) and q ∈ C

with |q| � 1, the q -numerical range of A is the set defined by

Wq(A) = {〈Ax|y〉 : x,y ∈ SH,〈x|y〉 = q},

and the q -numerical radius of A is given by

wq(A) = sup{| | :  ∈Wq(A)}.

Note that Wq(A) is a bounded subset of C , because Wq(A) is included in the disk
of C centered at 0 with radius ‖A‖ . If q = 1, Wq(A) and wq(A) are the classical
numerical range W (A) and the classical numerical radius w(A) , respectively. Then the
q -numerical range is a generalization of the classical numerical range.

For operators on a complex Hilbert space we know that the numerical range is a
convex subset of C (see [9]), it is also known that the spectrum is included in the closure
of the numerical range. For other properties of the numerical range and numerical
radius see [9, 16].

Several authors studied the properties of the q -numerical range, especially to gen-
eralize the properties of the classical numerical range. In [20], Tsing proved that the
q -numerical range is convex. In [18, 19], the authors gave some basic properties of the
q -numerical range, analogous to the classical numerical range. Among these results,
they proved that q(A) ⊂Wq(A)− with (A) is the spectrum of A and Wq(A)− is the
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closure of Wq(A) . They also studied the properties of the q -numerical radius as a norm
(if q �= 0) and as a seminorm (if q = 0).

The properties of the q -numerical range for normal operators are introduced in
[5], and for reducible and normal matrices in [6, 7, 17]. M. Aleksiejczyk in [1], gave
some inequalities related to the diameter of W0(A) and the diameter of Wq(A) , where
A is a n×n complex matrix and q ∈ [0,1] .

The authors in [14, 18] showed that W0(A) is a circular disk centered at 0 with
radius

w0(A) = d(A) = inf{‖A− I‖ :  ∈ C} = ‖A− cAI‖,
with I is the identity operator on H and cA is the Stampfli’s center of A .

In [12, 13, 14], M. C. Kaadoud proved that

w(AB) � w(B)w(A)+w0(B)w0(A),

‖A‖2 � w2(A)+w2
0(A)

and
w0(A) � diamW (A),

with A,B ∈ B(H) and diamW (A) is the diameter of W (A) . In this paper, we give a
generalization of these results for the q -numerical range and the q -numerical radius.
We generalize also others results in [13, 15].

The paper is organized as follows. In Section 2, the notion of the q -center cq(A)
of A is introduced, and the relationship to cq(A) , wq(A) and the center cWq(A) of Wq(A)
is established. In section 3, we give a necessary and sufficient condition so that wq(A+
B) = wq(A)+wq(B) for A,B ∈ B(H) , and we show also some power inequalities for
the q -numerical radius of a product of operators on H . Section 4, is devoted to prove
some inequalities related to w0(A) and the q -numerical radius of A .

2. The q -center

Let K be a compact subset of C . Denote by RK and cK the radius and the center,
respectively of the smallest disk DK = D(cK ,RK) containing K . Let |K| = sup{|| :
 ∈ K}.

LEMMA 2.1. ([13, Proposition 3]) Let K be a compact subset of C . Then

RK = |K− cK| = sup
∈K

|cK −|= inf
∈C

sup
∈K

| −|,

where cK is the unique scalar satisfies RK = |K− cK|.

COROLLARY 2.2. Let A ∈ B(H) and q ∈ C such that 0 < |q| � 1 . Then

RWq(A) = |Wq(A)− cWq(A)| = wq

(
A− 1

q
cWq(A)I

)
.
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Proof. Since Wq(A) is bounded, Wq(A)− is compact. Then by Lemma 2.1, we
have

RWq(A) = |Wq(A)− cWq(A)| = sup
∈Wq(A)

|− cWq(A)|

= sup{|〈Ax|y〉− cWq(A)| : x,y ∈ SH,〈x|y〉 = q}

= sup

{∣∣∣∣
〈(

A− 1
q
cWq(A)I

)
x|y
〉∣∣∣∣ : x,y ∈ SH,〈x|y〉 = q

}

= wq

(
A− 1

q
cWq(A)I

)
. �

DEFINITION 2.3. Let A ∈ B(H) and q ∈ C with |q| � 1. The scalar  that
satisfies

inf
∈C

wq(A− I) = wq(A− I),

is called a q -center of A , which we indicate by cq(A) .

In this section q ∈ C with 0 < |q| � 1.

PROPOSITION 2.4. Let A ∈ B(H) . Then

RWq(A) = inf
∈C

wq(A− I) = wq(A− cq(A)I),

and

cq(A) =
1
q
cWq(A).

Proof. We have that

wq(A− cq(A)I) = inf
∈C

wq(A− I) = inf
∈C

wq

(
A− 

q
I

)
= inf

∈C

sup{|〈Ax|y〉− | : x,y ∈ SH,〈x|y〉 = q}
= |Wq(A)− cWq(A)| = RWq(A).

On the other hand,

|Wq(A)−qcq(A)| = sup{|〈Ax|y〉−qcq(A)| : x,y ∈ SH,〈x|y〉 = q}
= sup{|〈(A− cq(A)I)x|y〉| : x,y ∈ SH,〈x|y〉 = q}
= wq(A− cq(A)I).

Therefore,
|Wq(A)−qcq(A)| = |Wq(A)− cWq(A)|,

and by the unicity of the center cWq(A) of Wq(A) , it follows that cWq(A) = qcq(A) . �
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REMARK 2.5. By Proposition 2.4, we get the unicity of the q -center cq(A) of
A ∈ B(H) .

PROPOSITION 2.6. Let A ∈ B(H) . If a sequence (An) ⊂ B(H) converges to A
then the sequence (cq(An)) converges to cq(A) .

Proof. By [13, Corollary 11], the sequence (cWq(An)) converges to cWq(A) and by

Proposition 2.4, we have cq(An) = 1
q cWq(An) . So, (cq(An)) converges to cq(A) . �

LEMMA 2.7. ([13, Corollary 5]) Let K be a compact subset of C and c ∈ C .
Then the following assertions are equivalent:

(i) cK = c.

(ii) |K− c|< |K− (c+ )| for all  ∈ C∗ .

(iii) |K− c|2 + | |2 � |K− (c+ )|2 for all  ∈ C .

COROLLARY 2.8. Let A ∈ B(H) . Then the following assertions are equivalent:

(i) c = cq(A) .

(ii) wq(A− cI) < wq(A− (c+ 
q )I)| for all  ∈ C∗ .

(iii) w2
q(A− cI)+ | |2 � w2

q(A− (c+ 
q )I) for all  ∈ C .

Proof. Note that wq(A− 
q ) = |Wq(A)− | for all  ∈ C and by Proposition 2.4,

cWq(A) = qcq(A) . Then by Lemma 2.7, (i), (ii) and (iii) are equivalent. �

COROLLARY 2.9. Let A ∈ B(H) such that 0 ∈Wq(A) . Then

|cq(A)| � 1√
2|q|wq(A).

Proof. By [13, Proposition 25], we have

|cWq(A)| �
|Wq(A)|√

2
=

1√
2
wq(A),

and by Proposition 2.4, it follows that cWq(A) = qcq(A) . Hence

|cq(A)| � 1√
2|q|wq(A). �

Let A ∈ B(H) . In [13], M. C. Kaadoud proved that RW (A) = w0(A) if and only
if w(A− cW(A)I) = ‖A− cW(A)I‖ , in the following proposition we generalize this result
for Wq(A) .
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PROPOSITION 2.10. Let A ∈ B(H) . Then RWq(A) = w0(A) if and only if

wq(A− cq(A)I) = ‖A− cq(A)I‖.

Proof. Assume that RWq(A) = w0(A) = ‖A− cAI‖ . Then by Proposition 2.4, it
holds:

RWq(A) = wq(A− cq(A)I) � wq(A− cAI) � ‖A− cAI‖ = w0(A) = RWq(A).

Hence wq(A−cq(A)I) = wq(A−cAI) and the unicity of the center implies that cq(A) =
cA . Conversely, suppose that wq(A− cq(A)I) = ‖A− cq(A)I‖ . Then

w0(A) = ‖A− cAI‖ � ‖A− cq(A)I‖ = wq(A− cq(A)I) = RWq(A).

Since RWq(A) � wq(A− cAI) , it follows that

w0(A) � RWq(A) � ‖A− cAI‖ = w0(A). �

3. q -numerical radius inequalities

In what follows, let q ∈ C with |q| � 1.
The next result has been proved for q = 1 in [2].

THEOREM 3.1. Let A,B ∈ B(H) . Then the following two assertions are equiva-
lents:

(i) wq(A+B) = wq(A)+wq(B) .

(ii) There exists two sequences of unit vectors (xn)⊂H and (yn)⊂H such that 〈xn|yn〉=
q for all n ∈ N and lim

n→
〈A∗yn|xn〉〈Bxn|yn〉 = wq(A)wq(B) .

Proof. Assume that wq(A+B) = wq(A)+wq(B) . Since Wq(A+B) is bounded,
Wq(A+B)− is compact. Then there exist two sequences of unit vectors (xn) ⊂H and
(yn) ⊂H such that 〈xn|yn〉 = q and wq(A+B) = lim

n→
|〈(A+B)xn|yn〉| . We have

|〈(A+B)xn|yn〉|2 = |〈Axn|yn〉|2 + |〈Bxn|yn〉|2 +2Re(〈A∗yn|xn〉〈Bxn|yn〉)
� |〈Axn|yn〉|2 + |〈Bxn|yn〉|2 +2|〈A∗yn|xn〉||〈Bxn|yn〉|
= (|〈Axn|yn〉|+ |〈Bxn|yn〉|)2

� (wq(A)+wq(B))2 = w2
q(A+B).

Hence lim
n→

〈A∗yn|xn〉〈Bxn|yn〉 = wq(A)wq(B) . Conversely, suppose (ii) fails to

hold. Then lim
n→

Re(〈A∗yn|xn〉〈Bxn|yn〉) = wq(A)wq(B) , lim
n→

|〈A∗yn|xn〉| = wq(A) and

lim
n→

|〈Bxn|yn〉| = wq(B) . So, lim
n→

|〈(A+B)xn|yn〉| = wq(A)+wq(B) and since |〈(A+

B)xn|yn〉| � wq(A+B) � wq(A)+wq(B) , it follows that wq(A+B) = wq(A)+wq(B) .
�



380 M. C. KAADOUD AND S. MOULAHARABBI

Let A,B∈B(H) such that B is self-adjoint and let q = 0. The authors in [15, The-
orem 4] proved that if w0(A+B)= w0(A)+w0(B) and w0(A) = ‖A‖ then w0(A)w0(B)
∈W−(B∗A) . In the next theorem, we generalize this result for any q ∈ [0,1] and with-
out the hypothesis of B is self-adjoint.

THEOREM 3.2. Let A,B ∈ B(H) such that the dimensional of H = dim(H) � 2 ,
and let q∈ [0,1] . If wq(A+B) = wq(A)+wq(B) and wq(A) = ‖A‖ then wq(A)wq(B)∈
W−(B∗A) .

Proof. Assume that wq(A + B) = wq(A) + wq(B) and wq(A) = ‖A‖ . By Theo-
rem 3.1, there exists two sequences of unit vectors (xn) ⊂ H and (yn) ⊂ H such that
〈xn|yn〉= q for all n∈N and lim

n→
〈A∗yn|xn〉〈Bxn|yn〉= wq(A)wq(B) . Then for all n∈N ,

we have Axn = nyn + nzn with zn ∈ SH , 〈yn|zn〉 = 0 and we have n = 〈Axn|yn〉 ,
n = 〈Axn|zn〉 . Note that ‖Axn‖2 = |〈Axn|yn〉|2 + |〈Axn|zn〉|2 and since

lim
n→

|〈Axn|yn〉| = lim
n→

|〈A∗yn|xn〉| = wq(A) = ‖A‖,

it follows that lim
n→

‖Axn‖2 = ‖A‖2 and lim
n→

|〈Axn|zn〉|2 = 0. We have

〈B∗Axn|xn〉 = 〈Axn|yn〉〈B∗yn|xn〉+ 〈Axn|zn〉〈B∗zn|xn〉.

Since lim
n→

〈A∗yn|xn〉〈Bxn|yn〉 = wq(A)wq(B) and lim
n→

〈Axn|zn〉 = 0, it holds:

lim
n→

〈B∗Axn|xn〉 = wq(A)wq(B) . This implies that wq(A)wq(B) ∈W−(B∗A) . �

In the next example, we show that if A,B ∈ B(H) such that wq(A+B) = wq(A)+
wq(B) and wq(A) �= ‖A‖ then wq(A)wq(B) is not necessarily an scalar in W−(B∗A) .

EXAMPLE 3.3. Let A =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
= A∗ and suppose that q = 1. We

have wq(A) = wq(B) = 1
2 and A + B =

(
0 1
1 0

)
. For x =

(
1√
2

1√
2

)
, it holds: ‖x‖ =

1 and 〈(A + B)x|x〉 = 1 = wq(A) + wq(B) . Hence wq(A + B) = wq(A)+ wq(B) , but
wq(A)wq(B) = 1

4 /∈W−(B∗A) = W (A2) = {0} .

LEMMA 3.4. (Buzano inequality, [4]) Let a,b,e ∈H . Then

|〈a|e〉〈e|b〉| � ‖e‖2

2
(‖a‖‖b‖+ |〈a|b〉|).

COROLLARY 3.5. Let A,B ∈ B(H) . If wq(A+B) = wq(A)+wq(B) then

wq(A)wq(B) � 1
2
(‖A‖‖B‖+w(B∗A)). (3.1)



q -NUMERICAL RADIUS INEQUALITIES 381

Proof. By Lemma 3.4, we have

1
2
(‖a‖‖b‖+ |〈a|b〉|)� |〈a|e〉〈e|b〉|, (3.2)

for all a,b,e∈H with ‖e‖= 1. Let x,y∈ SH such that 〈x|y〉= q . Let a = Ax , b = Bx
and e = y . Then by (3.2), we infer that

1
2
(‖Ax‖‖Bx‖+ |〈B∗Ax|x〉|) � |〈Ax|y〉〈y|Bx〉|.

If wq(A+B) = wq(A)+wq(B) then by Theorem 3.1, There exist two sequences of unit
vectors (xn) ⊂ H and (yn) ⊂ H such that 〈xn|yn〉 = q and lim

n→
〈A∗yn|xn〉〈Bxn|yn〉 =

wq(A)wq(B) . Then

1
2
(‖A‖‖B‖+w(B∗A)) � 1

2
(‖Axn‖‖Bxn‖+ |〈B∗Axn|xn〉|)

� |〈Axn|yn〉〈yn|Bxn〉|
= |〈A∗yn|xn〉〈yn|Bxn〉| → wq(A)wq(B).

This completes the proof. �

REMARK 3.6. Let A,B ∈ B(H) such that wq(A + B) = wq(A) + wq(B) . If A
and B are normal and AB = BA , then (3.1) becomes an equality. Indeed, since A
and B are normal, w(A) = ‖A‖ and w(B) = ‖B‖ , and by [11, Theorem 3] we have
w(B∗A) � w(B)w(A) . Then (3.1) becomes an equality.

PROPOSITION 3.7. Let A ∈ B(H) be positive and let x,y ∈H . Then

|〈Ax|y〉| � ‖A‖
2

(‖x‖‖y‖+ |〈x|y〉|),
and

wq(A) � ‖A‖
2

(1+ |q|).

Proof. Let x,y ∈H . By Lemma 3.4, it follows that

|〈x|Ax〉〈Ax|y〉| � ‖Ax‖2

2
(‖x‖‖y‖+ |〈x|y〉|).

If 〈x|Ax〉 �= 0 then

|〈Ax|y〉| � ‖Ax‖2

2〈x|Ax〉 (‖x‖‖y‖+ |〈x|y〉|)

=
‖A 1

2 A
1
2 x‖2

2‖A 1
2 x‖2

(‖x‖‖y‖+ |〈x|y〉|)

� ‖A 1
2 ‖2

2
(‖x‖‖y‖+ |〈x|y〉|)

=
‖A‖
2

(‖x‖‖y‖+ |〈x|y〉|).
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If 〈x|Ax〉 = 0 then A
1
2 x = 0, which implies that Ax = 0. So, the first inequality is

evident. The second inequality follows immediately from the first one. �

REMARK 3.8. If q = 1 then the second inequality of Proposition 3.7 becomes
equality.

COROLLARY 3.9. Let T,S,A ∈ B(H) with A positive. Then

wq(SAT ) � ‖A‖
2

(‖T‖‖S‖+wq(ST )).

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . Then by Proposition 3.7, we have

|〈SATx|y〉| = |〈ATx|S∗y〉|
� ‖A‖

2
(‖Tx‖‖S∗y‖+ |〈STx|y〉|)

� ‖A‖
2

(‖T‖‖S‖+wq(ST )). �

COROLLARY 3.10. Let T,S,A ∈ B(H) with A positive. Then

wr
q(SAT ) � ‖A‖r

2
(‖T‖r‖S‖r +wr

q(ST )), for all r � 1.

Proof. By Corollary 3.9, we have

wq(SAT ) � ‖A‖
2

(‖T‖‖S‖+wq(ST ).

Since the function t �→ tr is increasing and convex on [0,+[ , it follows that

wr
q(SAT ) � ‖A‖r

(‖T‖‖S‖+wq(ST )
2

)r

� ‖A‖r

2
(‖T‖r‖S‖r +wr

q(ST )). �

PROPOSITION 3.11. Let A = U |A| be the polar decomposition of A ∈ B(H) .
Then

wq(A) � 1
2
(‖A‖+‖A‖ 1

2 wq(U |A| 1
2 )).

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . We have that

〈Ax|y〉 = 〈U |A|x | y〉 = 〈|A| 1
2 x | |A| 1

2U∗y〉.
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Then by Proposition 3.7, it follows that

|〈Ax|y〉| � ‖|A| 1
2 ‖

2
(‖x‖‖|A| 1

2U∗y‖+ |〈x | |A| 1
2U∗y〉|)

� ‖A‖ 1
2

2
(‖A‖ 1

2 ‖U∗‖+ |〈U |A| 1
2 x|y〉|)

� ‖A‖ 1
2

2
(‖A‖ 1

2 ‖U∗‖+wq(U |A| 1
2 )).

Since ‖U∗‖ = ‖U‖ � 1, we infer that wq(A) � 1
2 (‖A‖+‖A‖ 1

2 wq(U |A| 1
2 )). �

COROLLARY 3.12. Let A =U |A| be the polar decomposition of A∈B(H) . Then

wr
q(T ) � 1

2
(‖A‖r +‖A‖ r

2 wr
q(U |A| 1

2 ), for all r � 1.

Proof. The desired inequality follows from Proposition 3.11 and by using the ar-
gument in the proof of Corollary 3.10. �

PROPOSITION 3.13. Let A,B ∈ B(H) . Then

wq(BA) � 2(max(w(A)w′
q(B),w′(A)wq(B)))−‖A‖‖B‖, (3.3)

with
w′

q(T ) = inf{| | :  ∈Wq(T )} and w′(T ) = w′
1(T ), T ∈ {A,B}.

Proof. Let x,y ∈ SH such that 〈x|y〉= q . Let a = Ax , b = B∗y and e = x , in (3.2)
we have

1
2
(‖Ax‖‖B∗y‖+ |〈BAx|y〉|) � |〈Ax|x〉〈Bx|y〉|.

Hence
1
2
(‖A‖‖B‖+wq(BA)) � max(w(A)w′

q(B),w′(A)wq(B)),

this completes the proof. �

REMARK 3.14. (i) For A∈ B(H) , wq(A) � 2|q|w(A)−‖A‖ . Indeed, we have
Wq(I) = {q} then if we replace B by I in 3.3, we get

wq(A) � 2|q|w(A)−‖A‖.

(ii) Let A = I and B∈B(H) such that w(B) = ‖B‖ . Then (3.3) becomes an equality.

Let A ∈ B(H) and q = 0. The author in [13, Proposition 31] proved that

w0(A) � diamW (A).

In the next proposition, we generalize this result for any q ∈ [0,1] .
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PROPOSITION 3.15. Let A ∈ B(H) and q ∈ [0,1] . Then

wq(A) � qw(A)+diamW(A). (3.4)

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . Then by the polarization identity, it
holds:

2〈Ax|y〉 =
〈

A

(
x+ y√

2

)
|x+ y√

2

〉
−
〈

A

(
x− y√

2

)
|x− y√

2

〉

+i

〈
A

(
x+ iy√

2

)
|x+ iy√

2

〉
− i

〈
A

(
x− iy√

2

)
|x− iy√

2

〉

= (1+q)
〈

A

(
x+ y√
2
√

1+q

)
| x+ y√

2
√

1+q

〉
− (1−q)〈

A

(
x− y√
2
√

1−q

)
| x− y√

2
√

1−q

〉

+i

〈
A

(
x+ iy√

2

)
|x+ iy√

2

〉
− i

〈
A

(
x− iy√

2

)
|x− iy√

2

〉

=
[〈

A

(
x+ y√
2
√

1+q

)
| x+ y√

2
√

1+q

〉
−
〈

A

(
x− y√
2
√

1−q

)
| x− y√

2
√

1−q

〉]

+i

[〈
A

(
x+ iy√

2

)
|x+ iy√

2

〉
−
〈

A

(
x− iy√

2

)
|x− iy√

2

〉]

+q

[〈
A

(
x+ y√
2
√

1+q

)
| x+ y√

2
√

1+q

〉
+
〈

A

(
x− y√
2
√

1−q

)
| x− y√

2
√

1−q

〉]
.

This implies that

2|〈Ax|y〉| � diamW(A)+diamW(A)+q2w(A).

So, wq(A) � diamW (A)+qw(A). �

4. Inequalities between the q -numerical radius and the distance to scalar’s

PROPOSITION 4.1. Let A ∈ B(H) . Then

wq(A) � |q|w(A)+
√

1−|q|2w0(A). (4.1)

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . Then y = qx +
√

1−|q|2z for some
z ∈ SH such that 〈x|z〉 = 0. Then

|〈Ax|y〉| = |〈Ax|x〉q+ 〈Ax|z〉
√

1−|q|2

� |q|w(A)+
√

1−|q|2w0(A). �
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REMARK 4.2. Let A ∈ B(H) and q = 1, then (4.1) becomes an equality.

Let A,B ∈ B(H) and q = 1. The author in [12, Corollary 5], proved that

w(AB) = w1(AB) � w1(B)w(A)+w0(B)w0(A) = w(B)w(A)+w0(B)w0(A).

In the next proposition, we generalize this result for any q ∈ C , |q| � 1.

PROPOSITION 4.3. Let A,B ∈ B(H) . Then

wq(AB) � wq(B)w(A)+dq(B)w0(A), (4.2)

with
d2

q(B) = sup{‖Bx‖2−|〈Bx|y〉|2 : x,y ∈ SH,〈x|y〉 = q}.

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . Let Bx = y + z with z ∈ SH and
〈y|z〉 = 0. Then  = 〈Bx|y〉 ,  = 〈Bx|z〉 and ‖Bx‖2 = ||2 + | |2 . Hence

〈ABx|y〉 = 〈Bx|y〉〈Ay|y〉+ 〈Az|y〉.

This implies that wq(AB) � wq(B)w(A)+ | |w0(A) and since

| |2 = ‖Bx‖2−|〈Bx|y〉|2 � d2
q(B),

it follows that wq(AB) � wq(B)w(A)+dq(B)w0(A). �

COROLLARY 4.4. Let A,B ∈ B(H) such that w0(A) = RW (A) . Then

wq(AB) � wq(B)w(A)+dq(B)RW(A). (4.3)

In particular, if A is self-adjoint such that Co((A)) = [1,2] then

wq(AB) � wq(B)w(A)+dq(B)(‖A‖− |1 +2|/2), (4.4)

and if A is positive then

wq(AB) � ‖A‖(wq(B)+
1
2
dq(B)). (4.5)

Proof. Since w0(A) = RW (A) , (4.3) follows immediately from Proposition 4.3. If
A is self-adjoint and Co((A)) = [1,2] then RW(A) = ‖A‖− |1 +2|/2 hence (4.4)
follows from (4.3). If A is positive then w(A) = ‖A‖ and by Proposition 3.7, we have

RW(A) = w0(A) = w0(A) � ‖A‖
2 . Thus by (4.3), we infer that

wq(AB) � wq(B)‖A‖+dq(B)RW (A)

� wq(B)‖A‖+
1
2
dq(B)‖A‖. �
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REMARK 4.5. Let A ∈ B(H) and q = 1, then we have that

d2
1(A) = sup{‖Ax‖2−|〈Ax|y〉|2 : x,y ∈ SH,〈x|y〉 = 1}

= sup{‖Ax‖2−|〈Ax|x〉|2 : x ∈ SH}.
By [3, Theorem 3.2], it holds:

inf{‖A− I‖ :  ∈ C}2 = sup{‖Ax‖2−|〈Ax|x〉|2 : x ∈ SH},
and since w0(A) = inf{‖A− I‖ :  ∈ C}, it follows that d1(A) = w0(A) .

COROLLARY 4.6. Let A,B ∈ B(H) such that w0(A) = RW (A) . If A is positive
then

w(AB) � ‖A‖(w(B)+
1
2
diamW (B)).

Proof. Since w0(A) = RW(A) and A is positive, by Corollary 4.4 it follows that

w(AB) � ‖A‖(w(B)+
1
2
d1(B)).

We have d1(B) = w0(B) (see [1]) and by [13, Proposition 31], we have that d1(B) =
w0(B) � diamW(B) . This completes the proof. �

In [13, Proposition 34], M. C. Kaadoud proved that, for A ∈ B(H) and q=1, it
holds:

‖A‖2 � w2
1(A)+d2

1(A) = w2(A)+w2
0(A).

In the next proposition, we generalize this result for any q ∈ C , |q| � 1.

PROPOSITION 4.7. Let A ∈ B(H) . Then

‖A‖2 � w2
q(A)+d2

q(A). (4.6)

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . Let Ax = y + z with z ∈ SH and
〈y|z〉 = 0 then  = 〈Ax|y〉 and  = 〈Ax|z〉 . Hence

‖Ax‖2 = ||2 + | |2
� w2

q(A)+ (‖Ax‖2−|〈Ax|y〉|2)
� w2

q(A)+d2
q(A).

So, ‖A‖2 � w2
q(A)+d2

q(A). �

PROPOSITION 4.8. Let A ∈ B(H) . Then

dq(A) = sup
x,y∈SH
〈x|y〉=q

inf
∈C

‖Ax−y‖.
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Proof. Note that

inf
∈C

‖a−b‖2 =
‖a‖2‖b‖2−|〈a|b〉|2

‖b‖2 , (4.7)

for all a,b ∈ H , b �= 0. This equality is due to Dragomir (see [8]). Let x,y ∈ SH such
that 〈x|y〉 = q . Let a = Ax and b = y then by the equality (4.7), it follows that

inf
∈C

‖Ax−y‖2 = ‖Ax‖2−|〈Ax|y〉|2.

Therefore,

sup
x,y∈SH
〈x|y〉=q

inf
∈C

‖Ax−y‖2 = sup
x,y∈SH
〈x|y〉=q

(‖Ax‖2−|〈Ax|y〉|2) = dq(A)2. �

COROLLARY 4.9. Let A ∈ B(H) . Then

d2
q(A)+w′

q(A)2 � ‖A‖2. (4.8)

Proof. Let x,y ∈ SH such that 〈x|y〉 = q . Let a = Ax and b = y then by the
equality (4.7), we have

inf
∈C

‖Ax−y‖2 = ‖Ax‖2−|〈Ax|y〉|2

� ‖A‖2−w′
q(A)2.

Hence Proposition 4.8 implies that d2
q(A)+w′

q(A)2 � ‖A‖2. �

REMARK 4.10. (i) Note that the inequalities (4.2), (4.3), (4.4), (4.5), (4.6) and
(4.8) are proved in [10] for q = 1.

(ii) If A =  I for some  ∈ C then w0(A) = 0. So, the inequalities (4.2) and (4.3)
becomes equalities for all B ∈ B(H) .

(iii) The inequality (4.8) becomes equality if A = I , since d2
q(I) = 1−|q|2 and w′

q(I)2

= |q|2 .
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