q-NUMERICAL RADIUS INEQUALITIES FOR PRODUCT OF COMPLEX LINEAR BOUNDED OPERATORS

Mohamed Chraibi Kaadoud and Somayya Moulaharabbi

(Communicated by Y.-T. Poon)

Abstract

In this paper, we prove some q-numerical radius power inequalities for a product of operators on a complex Hilbert space. We introduce also the notion of the q-center for bounded operators, and we give the relationship between this q-center, the q-numerical radius and the center of the q-numerical range.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and denote by $\mathcal{B}(\mathcal{H})$ the space of all linear bounded operators on \mathcal{H}. Let $\mathbb{S}_{\mathcal{H}}=\{x \in \mathcal{H}:\|x\|=1\}$. For any $A \in \mathcal{B}(\mathcal{H})$ and $q \in \mathbb{C}$ with $|q| \leqslant 1$, the q-numerical range of A is the set defined by

$$
W_{q}(A)=\left\{\langle A x \mid y\rangle: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\},
$$

and the q-numerical radius of A is given by

$$
w_{q}(A)=\sup \left\{|\lambda|: \lambda \in W_{q}(A)\right\}
$$

Note that $W_{q}(A)$ is a bounded subset of \mathbb{C}, because $W_{q}(A)$ is included in the disk of \mathbb{C} centered at 0 with radius $\|A\|$. If $q=1, W_{q}(A)$ and $w_{q}(A)$ are the classical numerical range $W(A)$ and the classical numerical radius $w(A)$, respectively. Then the q-numerical range is a generalization of the classical numerical range.

For operators on a complex Hilbert space we know that the numerical range is a convex subset of \mathbb{C} (see [9]), it is also known that the spectrum is included in the closure of the numerical range. For other properties of the numerical range and numerical radius see [9, 16].

Several authors studied the properties of the q-numerical range, especially to generalize the properties of the classical numerical range. In [20], Tsing proved that the q-numerical range is convex. In $[18,19]$, the authors gave some basic properties of the q-numerical range, analogous to the classical numerical range. Among these results, they proved that $q \sigma(A) \subset W_{q}(A)^{-}$with $\sigma(A)$ is the spectrum of A and $W_{q}(A)^{-}$is the

[^0]closure of $W_{q}(A)$. They also studied the properties of the q-numerical radius as a norm (if $q \neq 0$) and as a seminorm (if $q=0$).

The properties of the q-numerical range for normal operators are introduced in [5], and for reducible and normal matrices in [6, 7, 17]. M. Aleksiejczyk in [1], gave some inequalities related to the diameter of $W_{0}(A)$ and the diameter of $W_{q}(A)$, where A is a $n \times n$ complex matrix and $q \in[0,1]$.

The authors in $[14,18]$ showed that $W_{0}(A)$ is a circular disk centered at 0 with radius

$$
w_{0}(A)=d(A)=\inf \{\|A-\lambda I\|: \lambda \in \mathbb{C}\}=\left\|A-c_{A} I\right\|,
$$

with I is the identity operator on \mathcal{H} and c_{A} is the Stampfli's center of A.
In [12, 13, 14], M. C. Kaadoud proved that

$$
\begin{gathered}
w(A B) \leqslant w(B) w(A)+w_{0}(B) w_{0}(A) \\
\|A\|^{2} \leqslant w^{2}(A)+w_{0}^{2}(A)
\end{gathered}
$$

and

$$
w_{0}(A) \leqslant \operatorname{diamW}(A)
$$

with $A, B \in \mathcal{B}(\mathcal{H})$ and $\operatorname{diamW}(A)$ is the diameter of $W(A)$. In this paper, we give a generalization of these results for the q-numerical range and the q-numerical radius. We generalize also others results in [13, 15].

The paper is organized as follows. In Section 2, the notion of the q-center $c_{q}(A)$ of A is introduced, and the relationship to $c_{q}(A), w_{q}(A)$ and the center $c_{W_{q}(A)}$ of $W_{q}(A)$ is established. In section 3 , we give a necessary and sufficient condition so that $w_{q}(A+$ $B)=w_{q}(A)+w_{q}(B)$ for $A, B \in \mathcal{B}(\mathcal{H})$, and we show also some power inequalities for the q-numerical radius of a product of operators on \mathcal{H}. Section 4 , is devoted to prove some inequalities related to $w_{0}(A)$ and the q-numerical radius of A.

2. The q-center

Let K be a compact subset of \mathbb{C}. Denote by R_{K} and c_{K} the radius and the center, respectively of the smallest disk $D_{K}=D\left(c_{K}, R_{K}\right)$ containing K. Let $|K|=\sup \{|\alpha|$: $\alpha \in K\}$.

Lemma 2.1. ([13, Proposition 3]) Let K be a compact subset of \mathbb{C}. Then

$$
R_{K}=\left|K-c_{K}\right|=\sup _{\alpha \in K}\left|c_{K}-\alpha\right|=\inf _{\lambda \in \mathbb{C}} \sup _{\alpha \in K}|\lambda-\alpha|,
$$

where c_{K} is the unique scalar satisfies $R_{K}=\left|K-c_{K}\right|$.
Corollary 2.2. Let $A \in \mathcal{B}(\mathcal{H})$ and $q \in \mathbb{C}$ such that $0<|q| \leqslant 1$. Then

$$
R_{W_{q}(A)}=\left|W_{q}(A)-c_{W_{q}(A)}\right|=w_{q}\left(A-\frac{1}{q} c_{W_{q}(A)} I\right) .
$$

Proof. Since $W_{q}(A)$ is bounded, $W_{q}(A)^{-}$is compact. Then by Lemma 2.1, we have

$$
\begin{aligned}
R_{W_{q}(A)} & =\left|W_{q}(A)-c_{W_{q}(A)}\right|=\sup _{\alpha \in W_{q}(A)}\left|\alpha-c_{W_{q}(A)}\right| \\
& =\sup \left\{\left|\langle A x \mid y\rangle-c_{W_{q}(A)}\right|: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\} \\
& =\sup \left\{\left|\left\langle\left.\left(A-\frac{1}{q} c_{W_{q}(A)} I\right) x \right\rvert\, y\right\rangle\right|: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\} \\
& =w_{q}\left(A-\frac{1}{q} c_{W_{q}(A)} I\right) .
\end{aligned}
$$

Definition 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ and $q \in \mathbb{C}$ with $|q| \leqslant 1$. The scalar β that satisfies

$$
\inf _{\lambda \in \mathbb{C}} w_{q}(A-\lambda I)=w_{q}(A-\beta I)
$$

is called a q-center of A, which we indicate by $c_{q}(A)$.
In this section $q \in \mathbb{C}$ with $0<|q| \leqslant 1$.

Proposition 2.4. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
R_{W_{q}(A)}=\inf _{\lambda \in \mathbb{C}} w_{q}(A-\lambda I)=w_{q}\left(A-c_{q}(A) I\right)
$$

and

$$
c_{q}(A)=\frac{1}{q} c_{W_{q}(A)} .
$$

Proof. We have that

$$
\begin{aligned}
w_{q}\left(A-c_{q}(A) I\right) & =\inf _{\lambda \in \mathbb{C}} w_{q}(A-\lambda I)=\inf _{\lambda \in \mathbb{C}} w_{q}\left(A-\frac{\lambda}{q} I\right) \\
& =\inf _{\lambda \in \mathbb{C}} \sup \left\{|\langle A x \mid y\rangle-\lambda|: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\} \\
& =\left|W_{q}(A)-c_{W_{q}(A)}\right|=R_{W_{q}(A)}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|W_{q}(A)-q c_{q}(A)\right| & =\sup \left\{\left|\langle A x \mid y\rangle-q c_{q}(A)\right|: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\} \\
& =\sup \left\{\left|\left\langle\left(A-c_{q}(A) I\right) x \mid y\right\rangle\right|: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\} \\
& =w_{q}\left(A-c_{q}(A) I\right)
\end{aligned}
$$

Therefore,

$$
\left|W_{q}(A)-q c_{q}(A)\right|=\left|W_{q}(A)-c_{W_{q}(A)}\right|
$$

and by the unicity of the center $c_{W_{q}(A)}$ of $W_{q}(A)$, it follows that $c_{W_{q}(A)}=q c_{q}(A)$.

REMARK 2.5. By Proposition 2.4 , we get the unicity of the q-center $c_{q}(A)$ of $A \in \mathcal{B}(\mathcal{H})$.

Proposition 2.6. Let $A \in \mathcal{B}(\mathcal{H})$. If a sequence $\left(A_{n}\right) \subset \mathcal{B}(\mathcal{H})$ converges to A then the sequence $\left(c_{q}\left(A_{n}\right)\right)$ converges to $c_{q}(A)$.

Proof. By [13, Corollary 11], the sequence $\left(c_{W_{q}\left(A_{n}\right)}\right)$ converges to $c_{W_{q}(A)}$ and by Proposition 2.4, we have $c_{q}\left(A_{n}\right)=\frac{1}{q} c_{W_{q}\left(A_{n}\right)}$. So, $\left(c_{q}\left(A_{n}\right)\right)$ converges to $c_{q}(A)$.

Lemma 2.7. ([13, Corollary 5]) Let K be a compact subset of \mathbb{C} and $c \in \mathbb{C}$. Then the following assertions are equivalent:
(i) $c_{K}=c$.
(ii) $|K-c|<|K-(c+\lambda)|$ for all $\lambda \in \mathbb{C}^{*}$.
(iii) $|K-c|^{2}+|\lambda|^{2} \leqslant|K-(c+\lambda)|^{2}$ for all $\lambda \in \mathbb{C}$.

Corollary 2.8. Let $A \in \mathcal{B}(\mathcal{H})$. Then the following assertions are equivalent:
(i) $c=c_{q}(A)$.
(ii) $\left.w_{q}(A-c I)<w_{q}\left(A-\left(c+\frac{\lambda}{q}\right) I\right) \right\rvert\,$ for all $\lambda \in \mathbb{C}^{*}$.
(iii) $w_{q}^{2}(A-c I)+|\lambda|^{2} \leqslant w_{q}^{2}\left(A-\left(c+\frac{\lambda}{q}\right) I\right)$ for all $\lambda \in \mathbb{C}$.

Proof. Note that $w_{q}\left(A-\frac{\lambda}{q}\right)=\left|W_{q}(A)-\lambda\right|$ for all $\lambda \in \mathbb{C}$ and by Proposition 2.4, $c_{W_{q}(A)}=q c_{q}(A)$. Then by Lemma 2.7, (i), (ii) and (iii) are equivalent.

Corollary 2.9. Let $A \in \mathcal{B}(\mathcal{H})$ such that $0 \in W_{q}(A)$. Then

$$
\left|c_{q}(A)\right| \leqslant \frac{1}{\sqrt{2}|q|} w_{q}(A)
$$

Proof. By [13, Proposition 25], we have

$$
\left|c_{W_{q}(A)}\right| \leqslant \frac{\left|W_{q}(A)\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}} w_{q}(A)
$$

and by Proposition 2.4, it follows that $c_{W_{q}(A)}=q c_{q}(A)$. Hence

$$
\left|c_{q}(A)\right| \leqslant \frac{1}{\sqrt{2}|q|} w_{q}(A)
$$

Let $A \in \mathcal{B}(\mathcal{H})$. In [13], M. C. Kaadoud proved that $R_{W(A)}=w_{0}(A)$ if and only if $w\left(A-c_{W(A)} I\right)=\left\|A-c_{W(A)} I\right\|$, in the following proposition we generalize this result for $W_{q}(A)$.

Proposition 2.10. Let $A \in \mathcal{B}(\mathcal{H})$. Then $R_{W_{q}(A)}=w_{0}(A)$ if and only if

$$
w_{q}\left(A-c_{q}(A) I\right)=\left\|A-c_{q}(A) I\right\| .
$$

Proof. Assume that $R_{W_{q}(A)}=w_{0}(A)=\left\|A-c_{A} I\right\|$. Then by Proposition 2.4, it holds:

$$
R_{W_{q}(A)}=w_{q}\left(A-c_{q}(A) I\right) \leqslant w_{q}\left(A-c_{A} I\right) \leqslant\left\|A-c_{A} I\right\|=w_{0}(A)=R_{W_{q}(A)}
$$

Hence $w_{q}\left(A-c_{q}(A) I\right)=w_{q}\left(A-c_{A} I\right)$ and the unicity of the center implies that $c_{q}(A)=$ c_{A}. Conversely, suppose that $w_{q}\left(A-c_{q}(A) I\right)=\left\|A-c_{q}(A) I\right\|$. Then

$$
w_{0}(A)=\left\|A-c_{A} I\right\| \leqslant\left\|A-c_{q}(A) I\right\|=w_{q}\left(A-c_{q}(A) I\right)=R_{W_{q}(A)}
$$

Since $R_{W_{q}(A)} \leqslant w_{q}\left(A-c_{A} I\right)$, it follows that

$$
w_{0}(A) \leqslant R_{W_{q}(A)} \leqslant\left\|A-c_{A} I\right\|=w_{0}(A)
$$

3. q-numerical radius inequalities

In what follows, let $q \in \mathbb{C}$ with $|q| \leqslant 1$.
The next result has been proved for $q=1$ in [2].
THEOREM 3.1. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then the following two assertions are equivalents:
(i) $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$.
(ii) There exists two sequences of unit vectors $\left(x_{n}\right) \subset \mathcal{H}$ and $\left(y_{n}\right) \subset \mathcal{H}$ such that $\left\langle x_{n} \mid y_{n}\right\rangle=$ q for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle=w_{q}(A) w_{q}(B)$.

Proof. Assume that $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$. Since $W_{q}(A+B)$ is bounded, $W_{q}(A+B)^{-}$is compact. Then there exist two sequences of unit vectors $\left(x_{n}\right) \subset \mathcal{H}$ and $\left(y_{n}\right) \subset \mathcal{H}$ such that $\left\langle x_{n} \mid y_{n}\right\rangle=q$ and $w_{q}(A+B)=\lim _{n \rightarrow \infty}\left|\left\langle(A+B) x_{n} \mid y_{n}\right\rangle\right|$. We have

$$
\begin{aligned}
\left|\left\langle(A+B) x_{n} \mid y_{n}\right\rangle\right|^{2} & =\left|\left\langle A x_{n} \mid y_{n}\right\rangle\right|^{2}+\left|\left\langle B x_{n} \mid y_{n}\right\rangle\right|^{2}+2 \operatorname{Re}\left(\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle\right) \\
& \leqslant\left|\left\langle A x_{n} \mid y_{n}\right\rangle\right|^{2}+\left|\left\langle B x_{n} \mid y_{n}\right\rangle\right|^{2}+2\left|\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\right|\left|\left\langle B x_{n} \mid y_{n}\right\rangle\right| \\
& =\left(\left|\left\langle A x_{n} \mid y_{n}\right\rangle\right|+\left|\left\langle B x_{n} \mid y_{n}\right\rangle\right|\right)^{2} \\
& \leqslant\left(w_{q}(A)+w_{q}(B)\right)^{2}=w_{q}^{2}(A+B) .
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty}\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle=w_{q}(A) w_{q}(B)$. Conversely, suppose (ii) fails to hold. Then $\lim _{n \rightarrow \infty} \operatorname{Re}\left(\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle\right)=w_{q}(A) w_{q}(B), \lim _{n \rightarrow \infty}\left|\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\right|=w_{q}(A)$ and $\lim _{n \rightarrow \infty}\left|\left\langle B x_{n} \mid y_{n}\right\rangle\right|=w_{q}(B)$. So, $\lim _{n \rightarrow \infty}\left|\left\langle(A+B) x_{n} \mid y_{n}\right\rangle\right|=w_{q}(A)+w_{q}(B)$ and since $\mid\langle(A+$ $B) x_{n}\left|y_{n}\right\rangle \mid \leqslant w_{q}(A+B) \leqslant w_{q}(A)+w_{q}(B)$, it follows that $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$.

Let $A, B \in \mathcal{B}(\mathcal{H})$ such that B is self-adjoint and let $q=0$. The authors in [15, Theorem 4] proved that if $w_{0}(A+B)=w_{0}(A)+w_{0}(B)$ and $w_{0}(A)=\|A\|$ then $w_{0}(A) w_{0}(B)$ $\in W^{-}\left(B^{*} A\right)$. In the next theorem, we generalize this result for any $q \in[0,1]$ and without the hypothesis of B is self-adjoint.

THEOREM 3.2. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that the dimensional of $\mathcal{H}=\operatorname{dim}(\mathcal{H}) \geqslant 2$, and let $q \in[0,1]$. If $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$ and $w_{q}(A)=\|A\|$ then $w_{q}(A) w_{q}(B) \in$ $W^{-}\left(B^{*} A\right)$.

Proof. Assume that $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$ and $w_{q}(A)=\|A\|$. By Theorem 3.1, there exists two sequences of unit vectors $\left(x_{n}\right) \subset \mathcal{H}$ and $\left(y_{n}\right) \subset \mathcal{H}$ such that $\left\langle x_{n} \mid y_{n}\right\rangle=q$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle=w_{q}(A) w_{q}(B)$. Then for all $n \in \mathbb{N}$, we have $A x_{n}=\alpha_{n} y_{n}+\beta_{n} z_{n}$ with $z_{n} \in \mathbb{S}_{\mathcal{H}},\left\langle y_{n} \mid z_{n}\right\rangle=0$ and we have $\alpha_{n}=\left\langle A x_{n} \mid y_{n}\right\rangle$, $\beta_{n}=\left\langle A x_{n} \mid z_{n}\right\rangle$. Note that $\left\|A x_{n}\right\|^{2}=\left|\left\langle A x_{n} \mid y_{n}\right\rangle\right|^{2}+\left|\left\langle A x_{n} \mid z_{n}\right\rangle\right|^{2}$ and since

$$
\lim _{n \rightarrow \infty}\left|\left\langle A x_{n} \mid y_{n}\right\rangle\right|=\lim _{n \rightarrow \infty}\left|\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\right|=w_{q}(A)=\|A\|,
$$

it follows that $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|^{2}=\|A\|^{2}$ and $\lim _{n \rightarrow \infty}\left|\left\langle A x_{n} \mid z_{n}\right\rangle\right|^{2}=0$. We have

$$
\left\langle B^{*} A x_{n} \mid x_{n}\right\rangle=\left\langle A x_{n} \mid y_{n}\right\rangle\left\langle B^{*} y_{n} \mid x_{n}\right\rangle+\left\langle A x_{n} \mid z_{n}\right\rangle\left\langle B^{*} z_{n} \mid x_{n}\right\rangle .
$$

Since $\lim _{n \rightarrow \infty}\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle=w_{q}(A) w_{q}(B)$ and $\lim _{n \rightarrow \infty}\left\langle A x_{n} \mid z_{n}\right\rangle=0$, it holds: $\lim _{n \rightarrow \infty}\left\langle B^{*} A x_{n} \mid x_{n}\right\rangle=w_{q}(A) w_{q}(B)$. This implies that $w_{q}(A) w_{q}(B) \in W^{-}\left(B^{*} A\right)$.

In the next example, we show that if $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_{q}(A+B)=w_{q}(A)+$ $w_{q}(B)$ and $w_{q}(A) \neq\|A\|$ then $w_{q}(A) w_{q}(B)$ is not necessarily an scalar in $W^{-}\left(B^{*} A\right)$.

EXAMPLE 3.3. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=A^{*}$ and suppose that $q=1$. We have $w_{q}(A)=w_{q}(B)=\frac{1}{2}$ and $A+B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. For $x=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$, it holds: $\|x\|=$ 1 and $\langle(A+B) x \mid x\rangle=1=w_{q}(A)+w_{q}(B)$. Hence $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$, but $w_{q}(A) w_{q}(B)=\frac{1}{4} \notin W^{-}\left(B^{*} A\right)=W\left(A^{2}\right)=\{0\}$.

Lemma 3.4. (Buzano inequality, [4]) Let $a, b, e \in \mathcal{H}$. Then

$$
|\langle a \mid e\rangle\langle e \mid b\rangle| \leqslant \frac{\|e\|^{2}}{2}(\|a\|\|b\|+|\langle a \mid b\rangle|) .
$$

Corollary 3.5. Let $A, B \in \mathcal{B}(\mathcal{H})$. If $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$ then

$$
\begin{equation*}
w_{q}(A) w_{q}(B) \leqslant \frac{1}{2}\left(\|A\|\|B\|+w\left(B^{*} A\right)\right) \tag{3.1}
\end{equation*}
$$

Proof. By Lemma 3.4, we have

$$
\begin{equation*}
\frac{1}{2}(\|a\|\|b\|+|\langle a \mid b\rangle|) \geqslant|\langle a \mid e\rangle\langle e \mid b\rangle| \tag{3.2}
\end{equation*}
$$

for all $a, b, e \in \mathcal{H}$ with $\|e\|=1$. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Let $a=A x, b=B x$ and $e=y$. Then by (3.2), we infer that

$$
\frac{1}{2}\left(\|A x\|\|B x\|+\left|\left\langle B^{*} A x \mid x\right\rangle\right|\right) \geqslant|\langle A x \mid y\rangle\langle y \mid B x\rangle| .
$$

If $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$ then by Theorem 3.1, There exist two sequences of unit vectors $\left(x_{n}\right) \subset \mathcal{H}$ and $\left(y_{n}\right) \subset \mathcal{H}$ such that $\left\langle x_{n} \mid y_{n}\right\rangle=q$ and $\lim _{n \rightarrow \infty}\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle B x_{n} \mid y_{n}\right\rangle=$ $w_{q}(A) w_{q}(B)$. Then

$$
\begin{aligned}
\frac{1}{2}\left(\|A\|\|B\|+w\left(B^{*} A\right)\right) & \geqslant \frac{1}{2}\left(\left\|A x_{n}\right\|\left\|B x_{n}\right\|+\left|\left\langle B^{*} A x_{n} \mid x_{n}\right\rangle\right|\right) \\
& \geqslant\left|\left\langle A x_{n} \mid y_{n}\right\rangle\left\langle y_{n} \mid B x_{n}\right\rangle\right| \\
& =\left|\left\langle A^{*} y_{n} \mid x_{n}\right\rangle\left\langle y_{n} \mid B x_{n}\right\rangle\right| \rightarrow w_{q}(A) w_{q}(B)
\end{aligned}
$$

This completes the proof.
REMARK 3.6. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_{q}(A+B)=w_{q}(A)+w_{q}(B)$. If A and B are normal and $A B=B A$, then (3.1) becomes an equality. Indeed, since A and B are normal, $w(A)=\|A\|$ and $w(B)=\|B\|$, and by [11, Theorem 3] we have $w\left(B^{*} A\right) \leqslant w(B) w(A)$. Then (3.1) becomes an equality.

Proposition 3.7. Let $A \in \mathcal{B}(\mathcal{H})$ be positive and let $x, y \in \mathcal{H}$. Then

$$
|\langle A x \mid y\rangle| \leqslant \frac{\|A\|}{2}(\|x\|\|y\|+|\langle x \mid y\rangle|)
$$

and

$$
w_{q}(A) \leqslant \frac{\|A\|}{2}(1+|q|) .
$$

Proof. Let $x, y \in \mathcal{H}$. By Lemma 3.4, it follows that

$$
|\langle x \mid A x\rangle\langle A x \mid y\rangle| \leqslant \frac{\|A x\|^{2}}{2}(\|x\|\|y\|+|\langle x \mid y\rangle|)
$$

If $\langle x \mid A x\rangle \neq 0$ then

$$
\begin{aligned}
|\langle A x \mid y\rangle| & \leqslant \frac{\|A x\|^{2}}{2\langle x \mid A x\rangle}(\|x\|\|y\|+|\langle x \mid y\rangle|) \\
& =\frac{\left\|A^{\frac{1}{2}} A^{\frac{1}{2}} x\right\|^{2}}{2\left\|A^{\frac{1}{2}} x\right\|^{2}}(\|x\|\|y\|+|\langle x \mid y\rangle|) \\
& \leqslant \frac{\left\|A^{\frac{1}{2}}\right\|^{2}}{2}(\|x\|\|y\|+|\langle x \mid y\rangle|) \\
& =\frac{\|A\|}{2}(\|x\|\|y\|+|\langle x \mid y\rangle|)
\end{aligned}
$$

If $\langle x \mid A x\rangle=0$ then $A^{\frac{1}{2}} x=0$, which implies that $A x=0$. So, the first inequality is evident. The second inequality follows immediately from the first one.

REMARK 3.8. If $q=1$ then the second inequality of Proposition 3.7 becomes equality.

Corollary 3.9. Let $T, S, A \in \mathcal{B}(\mathcal{H})$ with A positive. Then

$$
w_{q}(S A T) \leqslant \frac{\|A\|}{2}\left(\|T\|\|S\|+w_{q}(S T)\right)
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Then by Proposition 3.7, we have

$$
\begin{aligned}
|\langle S A T x \mid y\rangle| & =\left|\left\langle A T x \mid S^{*} y\right\rangle\right| \\
& \leqslant \frac{\|A\|}{2}\left(\|T x\|\left\|S^{*} y\right\|+|\langle S T x \mid y\rangle|\right) \\
& \leqslant \frac{\|A\|}{2}\left(\|T\|\|S\|+w_{q}(S T)\right) .
\end{aligned}
$$

Corollary 3.10. Let $T, S, A \in \mathcal{B}(\mathcal{H})$ with A positive. Then

$$
w_{q}^{r}(S A T) \leqslant \frac{\|A\|^{r}}{2}\left(\|T\|^{r}\|S\|^{r}+w_{q}^{r}(S T)\right), \text { for all } \quad r \geqslant 1
$$

Proof. By Corollary 3.9, we have

$$
w_{q}(S A T) \leqslant \frac{\|A\|}{2}\left(\|T\|\|S\|+w_{q}(S T)\right.
$$

Since the function $t \mapsto t^{r}$ is increasing and convex on $[0,+\infty[$, it follows that

$$
\begin{aligned}
w_{q}^{r}(S A T) & \leqslant\|A\|^{r}\left(\frac{\|T\|\|S\|+w_{q}(S T)}{2}\right)^{r} \\
& \leqslant \frac{\|A\|^{r}}{2}\left(\|T\|^{r}\|S\|^{r}+w_{q}^{r}(S T)\right)
\end{aligned}
$$

Proposition 3.11. Let $A=U|A|$ be the polar decomposition of $A \in \mathcal{B}(\mathcal{H})$. Then

$$
w_{q}(A) \leqslant \frac{1}{2}\left(\|A\|+\|A\|^{\frac{1}{2}} w_{q}\left(U|A|^{\frac{1}{2}}\right)\right)
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. We have that

$$
\left.\langle A x \mid y\rangle=\langle U| A|x| y\rangle=\left.\left.\langle | A\right|^{\frac{1}{2}} x| | A\right|^{\frac{1}{2}} U^{*} y\right\rangle
$$

Then by Proposition 3.7, it follows that

$$
\begin{aligned}
|\langle A x \mid y\rangle| & \left.\left.\leqslant \frac{\left\||A|^{\frac{1}{2}}\right\|}{2}\left(\|x\|\left\|\left.| | A\right|^{\frac{1}{2}} U^{*} y\right\|+\left.|\langle x|| A\right|^{\frac{1}{2}} U^{*} y\right\rangle \right\rvert\,\right) \\
& \leqslant \frac{\|A\|^{\frac{1}{2}}}{2}\left(\left.\|A\|^{\frac{1}{2}}\left\|U^{*}\right\|+|\langle U| A|^{\frac{1}{2}} x|y\rangle \right\rvert\,\right) \\
& \leqslant \frac{\|A\|^{\frac{1}{2}}}{2}\left(\|A\|^{\frac{1}{2}}\left\|U^{*}\right\|+w_{q}\left(U|A|^{\frac{1}{2}}\right)\right)
\end{aligned}
$$

Since $\left\|U^{*}\right\|=\|U\| \leqslant 1$, we infer that $w_{q}(A) \leqslant \frac{1}{2}\left(\|A\|+\|A\|^{\frac{1}{2}} w_{q}\left(U|A|^{\frac{1}{2}}\right)\right)$.
Corollary 3.12. Let $A=U|A|$ be the polar decomposition of $A \in \mathcal{B}(\mathcal{H})$. Then

$$
w_{q}^{r}(T) \leqslant \frac{1}{2}\left(\|A\|^{r}+\|A\|^{\frac{r}{2}} w_{q}^{r}\left(U|A|^{\frac{1}{2}}\right), \text { for all } \quad r \geqslant 1\right.
$$

Proof. The desired inequality follows from Proposition 3.11 and by using the argument in the proof of Corollary 3.10.

Proposition 3.13. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
w_{q}(B A) \geqslant 2\left(\max \left(w(A) w_{q}^{\prime}(B), w^{\prime}(A) w_{q}(B)\right)\right)-\|A\|\|B\|, \tag{3.3}
\end{equation*}
$$

with

$$
w_{q}^{\prime}(T)=\inf \left\{|\lambda|: \lambda \in W_{q}(T)\right\} \quad \text { and } \quad w^{\prime}(T)=w_{1}^{\prime}(T), T \in\{A, B\}
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Let $a=A x, b=B^{*} y$ and $e=x$, in (3.2) we have

$$
\frac{1}{2}\left(\|A x\|\left\|B^{*} y\right\|+|\langle B A x \mid y\rangle|\right) \geqslant|\langle A x \mid x\rangle\langle B x \mid y\rangle| .
$$

Hence

$$
\frac{1}{2}\left(\|A\|\|B\|+w_{q}(B A)\right) \geqslant \max \left(w(A) w_{q}^{\prime}(B), w^{\prime}(A) w_{q}(B)\right)
$$

this completes the proof.
REMARK 3.14. (i) For $A \in \mathcal{B}(\mathcal{H}), w_{q}(A) \geqslant 2|q| w(A)-\|A\|$. Indeed, we have $W_{q}(I)=\{q\}$ then if we replace B by I in 3.3, we get

$$
w_{q}(A) \geqslant 2|q| w(A)-\|A\| .
$$

(ii) Let $A=I$ and $B \in \mathcal{B}(\mathcal{H})$ such that $w(B)=\|B\|$. Then (3.3) becomes an equality. Let $A \in \mathcal{B}(\mathcal{H})$ and $q=0$. The author in [13, Proposition 31] proved that

$$
w_{0}(A) \leqslant \operatorname{diamW}(A)
$$

In the next proposition, we generalize this result for any $q \in[0,1]$.

Proposition 3.15. Let $A \in \mathcal{B}(\mathcal{H})$ and $q \in[0,1]$. Then

$$
\begin{equation*}
w_{q}(A) \leqslant q w(A)+\operatorname{diamW}(A) . \tag{3.4}
\end{equation*}
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Then by the polarization identity, it holds:

$$
\begin{aligned}
2\langle A x \mid y\rangle= & \left\langle\left. A\left(\frac{x+y}{\sqrt{2}}\right) \right\rvert\, \frac{x+y}{\sqrt{2}}\right\rangle-\left\langle\left. A\left(\frac{x-y}{\sqrt{2}}\right) \right\rvert\, \frac{x-y}{\sqrt{2}}\right\rangle \\
& +i\left\langle\left. A\left(\frac{x+i y}{\sqrt{2}}\right) \right\rvert\, \frac{x+i y}{\sqrt{2}}\right\rangle-i\left\langle\left. A\left(\frac{x-i y}{\sqrt{2}}\right) \right\rvert\, \frac{x-i y}{\sqrt{2}}\right\rangle \\
= & (1+q)\left\langle\left. A\left(\frac{x+y}{\sqrt{2} \sqrt{1+q}}\right) \right\rvert\, \frac{x+y}{\sqrt{2} \sqrt{1+q}}\right\rangle-(1-q) \\
& \left\langle\left. A\left(\frac{x-y}{\sqrt{2} \sqrt{1-q}}\right) \right\rvert\, \frac{x-y}{\sqrt{2} \sqrt{1-q}}\right\rangle \\
& +i\left\langle\left. A\left(\frac{x+i y}{\sqrt{2}}\right) \right\rvert\, \frac{x+i y}{\sqrt{2}}\right\rangle-i\left\langle\left. A\left(\frac{x-i y}{\sqrt{2}}\right) \right\rvert\, \frac{x-i y}{\sqrt{2}}\right\rangle \\
= & {\left[\left\langle\left. A\left(\frac{x+y}{\sqrt{2} \sqrt{1+q}}\right) \right\rvert\, \frac{x+y}{\sqrt{2} \sqrt{1+q}}\right\rangle-\left\langle\left. A\left(\frac{x-y}{\sqrt{2} \sqrt{1-q}}\right) \right\rvert\, \frac{x-y}{\sqrt{2} \sqrt{1-q}}\right\rangle\right] } \\
& +i\left[\left\langle\left. A\left(\frac{x+i y}{\sqrt{2}}\right) \right\rvert\, \frac{x+i y}{\sqrt{2}}\right\rangle-\left\langle\left. A\left(\frac{x-i y}{\sqrt{2}}\right) \right\rvert\, \frac{x-i y}{\sqrt{2}}\right\rangle\right] \\
& +q\left[\left\langle\left. A\left(\frac{x+y}{\sqrt{2} \sqrt{1+q}}\right) \right\rvert\, \frac{x+y}{\sqrt{2} \sqrt{1+q}}\right\rangle+\left\langle\left. A\left(\frac{x-y}{\sqrt{2} \sqrt{1-q}}\right) \right\rvert\, \frac{x-y}{\sqrt{2} \sqrt{1-q}}\right\rangle\right] .
\end{aligned}
$$

This implies that

$$
2|\langle A x \mid y\rangle| \leqslant \operatorname{diamW}(A)+\operatorname{diamW}(A)+q 2 w(A)
$$

So, $w_{q}(A) \leqslant \operatorname{diamW}(A)+q w(A)$.

4. Inequalities between the q-numerical radius and the distance to scalar's

Proposition 4.1. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
w_{q}(A) \leqslant|q| w(A)+\sqrt{1-|q|^{2}} w_{0}(A) \tag{4.1}
\end{equation*}
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Then $y=q x+\sqrt{1-|q|^{2}} z$ for some $z \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid z\rangle=0$. Then

$$
\begin{aligned}
|\langle A x \mid y\rangle| & =\mid\langle A x \mid x\rangle \bar{q}+\langle A x \mid z\rangle \sqrt{1-|q|^{2}} \\
& \leqslant|q| w(A)+\sqrt{1-|q|^{2}} w_{0}(A)
\end{aligned}
$$

REMARK 4.2. Let $A \in \mathcal{B}(\mathcal{H})$ and $q=1$, then (4.1) becomes an equality.
Let $A, B \in \mathcal{B}(\mathcal{H})$ and $q=1$. The author in [12, Corollary 5], proved that

$$
w(A B)=w_{1}(A B) \leqslant w_{1}(B) w(A)+w_{0}(B) w_{0}(A)=w(B) w(A)+w_{0}(B) w_{0}(A) .
$$

In the next proposition, we generalize this result for any $q \in \mathbb{C},|q| \leqslant 1$.
Proposition 4.3. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
w_{q}(A B) \leqslant w_{q}(B) w(A)+d_{q}(B) w_{0}(A), \tag{4.2}
\end{equation*}
$$

with

$$
d_{q}^{2}(B)=\sup \left\{\|B x\|^{2}-|\langle B x \mid y\rangle|^{2}: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=q\right\} .
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Let $B x=\alpha y+\beta z$ with $z \in \mathbb{S}_{\mathcal{H}}$ and $\langle y \mid z\rangle=0$. Then $\alpha=\langle B x \mid y\rangle, \beta=\langle B x \mid z\rangle$ and $\|B x\|^{2}=|\alpha|^{2}+|\beta|^{2}$. Hence

$$
\langle A B x \mid y\rangle=\langle B x \mid y\rangle\langle A y \mid y\rangle+\beta\langle A z \mid y\rangle
$$

This implies that $w_{q}(A B) \leqslant w_{q}(B) w(A)+|\beta| w_{0}(A)$ and since

$$
|\beta|^{2}=\|B x\|^{2}-|\langle B x \mid y\rangle|^{2} \leqslant d_{q}^{2}(B)
$$

it follows that $w_{q}(A B) \leqslant w_{q}(B) w(A)+d_{q}(B) w_{0}(A)$.
Corollary 4.4. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_{0}(A)=R_{W(A)}$. Then

$$
\begin{equation*}
w_{q}(A B) \leqslant w_{q}(B) w(A)+d_{q}(B) R_{W(A)} . \tag{4.3}
\end{equation*}
$$

In particular, if A is self-adjoint such that $\operatorname{Co}(\sigma(A))=\left[\lambda_{1}, \lambda_{2}\right]$ then

$$
\begin{equation*}
w_{q}(A B) \leqslant w_{q}(B) w(A)+d_{q}(B)\left(\|A\|-\left|\lambda_{1}+\lambda_{2}\right| / 2\right) \tag{4.4}
\end{equation*}
$$

and if A is positive then

$$
\begin{equation*}
w_{q}(A B) \leqslant\|A\|\left(w_{q}(B)+\frac{1}{2} d_{q}(B)\right) \tag{4.5}
\end{equation*}
$$

Proof. Since $w_{0}(A)=R_{W(A)}$, (4.3) follows immediately from Proposition 4.3. If A is self-adjoint and $\operatorname{Co}(\sigma(A))=\left[\lambda_{1}, \lambda_{2}\right]$ then $R_{W(A)}=\|A\|-\left|\lambda_{1}+\lambda_{2}\right| / 2$ hence (4.4) follows from (4.3). If A is positive then $w(A)=\|A\|$ and by Proposition 3.7, we have $R_{W(A)}=w_{0}(A)=w_{0}(A) \leqslant \frac{\|A\|}{2}$. Thus by (4.3), we infer that

$$
\begin{aligned}
w_{q}(A B) & \leqslant w_{q}(B)\|A\|+d_{q}(B) R_{W(A)} \\
& \leqslant w_{q}(B)\|A\|+\frac{1}{2} d_{q}(B)\|A\|
\end{aligned}
$$

Remark 4.5. Let $A \in \mathcal{B}(\mathcal{H})$ and $q=1$, then we have that

$$
\begin{aligned}
d_{1}^{2}(A) & =\sup \left\{\|A x\|^{2}-|\langle A x \mid y\rangle|^{2}: x, y \in \mathbb{S}_{\mathcal{H}},\langle x \mid y\rangle=1\right\} \\
& =\sup \left\{\|A x\|^{2}-|\langle A x \mid x\rangle|^{2}: x \in \mathbb{S}_{\mathcal{H}}\right\} .
\end{aligned}
$$

By [3, Theorem 3.2], it holds:

$$
\inf \{\|A-\lambda I\|: \lambda \in \mathbb{C}\}^{2}=\sup \left\{\|A x\|^{2}-|\langle A x \mid x\rangle|^{2}: x \in \mathbb{S}_{\mathcal{H}}\right\}
$$

and since $w_{0}(A)=\inf \{\|A-\lambda I\|: \lambda \in \mathbb{C}\}$, it follows that $d_{1}(A)=w_{0}(A)$.
Corollary 4.6. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_{0}(A)=R_{W(A)}$. If A is positive then

$$
w(A B) \leqslant\|A\|\left(w(B)+\frac{1}{2} \operatorname{diamW}(B)\right) .
$$

Proof. Since $w_{0}(A)=R_{W(A)}$ and A is positive, by Corollary 4.4 it follows that

$$
w(A B) \leqslant\|A\|\left(w(B)+\frac{1}{2} d_{1}(B)\right) .
$$

We have $d_{1}(B)=w_{0}(B)$ (see [1]) and by [13, Proposition 31], we have that $d_{1}(B)=$ $w_{0}(B) \leqslant \operatorname{diamW}(B)$. This completes the proof.

In [13, Proposition 34], M. C. Kaadoud proved that, for $A \in \mathcal{B}(\mathcal{H})$ and $\mathrm{q}=1$, it holds:

$$
\|A\|^{2} \leqslant w_{1}^{2}(A)+d_{1}^{2}(A)=w^{2}(A)+w_{0}^{2}(A) .
$$

In the next proposition, we generalize this result for any $q \in \mathbb{C},|q| \leqslant 1$.
Proposition 4.7. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
\|A\|^{2} \leqslant w_{q}^{2}(A)+d_{q}^{2}(A) \tag{4.6}
\end{equation*}
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Let $A x=\alpha y+\beta z$ with $z \in \mathbb{S}_{\mathcal{H}}$ and $\langle y \mid z\rangle=0$ then $\alpha=\langle A x \mid y\rangle$ and $\beta=\langle A x \mid z\rangle$. Hence

$$
\begin{aligned}
\|A x\|^{2} & =|\alpha|^{2}+|\beta|^{2} \\
& \leqslant w_{q}^{2}(A)+\left(\|A x\|^{2}-|\langle A x \mid y\rangle|^{2}\right) \\
& \leqslant w_{q}^{2}(A)+d_{q}^{2}(A)
\end{aligned}
$$

So, $\|A\|^{2} \leqslant w_{q}^{2}(A)+d_{q}^{2}(A)$.
Proposition 4.8. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
d_{q}(A)=\sup _{\substack{x, y \in \mathbb{S}_{\mathcal{H}} \\\langle x \mid y\rangle=q}} \inf _{\lambda \in \mathbb{C}}\|A x-\lambda y\|
$$

Proof. Note that

$$
\begin{equation*}
\inf _{\lambda \in \mathbb{C}}\|a-\lambda b\|^{2}=\frac{\|a\|^{2}\|b\|^{2}-|\langle a \mid b\rangle|^{2}}{\|b\|^{2}} \tag{4.7}
\end{equation*}
$$

for all $a, b \in \mathcal{H}, b \neq 0$. This equality is due to Dragomir (see [8]). Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Let $a=A x$ and $b=y$ then by the equality (4.7), it follows that

$$
\inf _{\lambda \in \mathbb{C}}\|A x-\lambda y\|^{2}=\|A x\|^{2}-|\langle A x \mid y\rangle|^{2}
$$

Therefore,

$$
\sup _{\substack{x, y \in \mathbb{S}_{\mathcal{H}} \\\langle x \mid y\rangle=q}} \inf _{\lambda \in \mathbb{C}}\|A x-\lambda y\|^{2}=\sup _{\substack{x, y \in \mathbb{S}_{\mathcal{H}} \\\langle x \mid y\rangle=q}}\left(\|A x\|^{2}-|\langle A x \mid y\rangle|^{2}\right)=d_{q}(A)^{2}
$$

Corollary 4.9. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
d_{q}^{2}(A)+w_{q}^{\prime}(A)^{2} \leqslant\|A\|^{2} \tag{4.8}
\end{equation*}
$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x \mid y\rangle=q$. Let $a=A x$ and $b=y$ then by the equality (4.7), we have

$$
\begin{aligned}
\inf _{\lambda \in \mathbb{C}}\|A x-\lambda y\|^{2} & =\|A x\|^{2}-|\langle A x \mid y\rangle|^{2} \\
& \leqslant\|A\|^{2}-w_{q}^{\prime}(A)^{2}
\end{aligned}
$$

Hence Proposition 4.8 implies that $d_{q}^{2}(A)+w_{q}^{\prime}(A)^{2} \leqslant\|A\|^{2}$.

REMARK 4.10. (i) Note that the inequalities (4.2), (4.3), (4.4), (4.5), (4.6) and (4.8) are proved in [10] for $q=1$.
(ii) If $A=\lambda I$ for some $\lambda \in \mathbb{C}$ then $w_{0}(A)=0$. So, the inequalities (4.2) and (4.3) becomes equalities for all $B \in \mathcal{B}(\mathcal{H})$.
(iii) The inequality (4.8) becomes equality if $A=I$, since $d_{q}^{2}(I)=1-|q|^{2}$ and $w_{q}^{\prime}(I)^{2}$ $=|q|^{2}$.

Disclosure statement. We have no conflicts of interest to disclose.

Data availability. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

REFERENCES

[1] M. Aleksiejczyk, On the diameter of the generalized numerical range, Demonstratio Mathematica. 30 (1) (1997), 129-136.
[2] A. Abu-Omar and F. Kittaneh, Notes on some spectral radius and numerical radius inequalities, Studia Mathematica. 227 (2) (2015), 97-109.
[3] M. Barraa and M. Boumazgour, A note on the orthogonality of bounded linear operators, Functional Analysis Approximation and Computation. 41 (2012), 65-70.
[4] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. Politech. Torino. 31 (1974), 405-409.
[5] M. T. Chien and H. Nakazato, The q-numerical ranges of normal operators, Linear Algebra and its Applications. 53 (6) (2005) 393-416.
[6] M. T. Chien and H. Nakazato, The q-numerical range of a reducible matrix via a normal operator, Linear Algebra and its Applications. 419 (2006), 440-465.
[7] M. T. ChiEn And H. NAKAZATO, The boundary of the q-numerical range of a reducible matrix, Linear and Multilinear Algebra. 55 (2007), 275-292.
[8] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (1) (2008), 1-7.
[9] K. E. Gustafson and D. K. M. Rao, Numerical range, Universitext, Springer-Verlag, New York, 1997.
[10] M. S. Hosseinia and B. Moosavi, Some Numerical Radius Inequalities for Products of Hilbert Space Operators, Filomat. 33 (7) (2019), 2089-2093.
[11] M. C. KaAdoud, Domaine numérique du produit AB avec A normal, Serdica Math. J. 32 (2006), 1-6.
[12] M. C. KaAdoud, Domaine numérique du produit et de la bimultiplication $M_{2, A, B}$, Proc. Amer. Math. Soc. 132 (2004), 2421-2428.
[13] M. C. KAADOUD, Géométrie du spectre dans une algèbre de Banach et domaine numérique, Studia Mathematica. 162 (1) (2004), 1-14.
[14] M. C. KAADOUD, Domaine numérique de l'opérateur produit $M_{2, A, B}$ de la dérivation généralisée $\delta_{2, A, B}$, Extracta mathematica. 17 (1) (2002), 59-68.
[15] M. C. KaAdoud, E. H. Benabdi and M. Guesba, Some inequalities related to numerical radius and distance from scalar operators in Hilbert spaces, Operators and Matrices. 17 (3) (2023), 857-866.
[16] C. S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhäuser, Springer, New York, 2012.
[17] C. K. Li, q-numerical ranges of normal and convex matrices, Linear and Multilinear Algebra. 43 (1998), 377-384.
[18] C. K. Li, P. P. MEhta and L. Rodman, A generalized numerical range: the range of a constrained sesquilinear form, Linear and Multilinear Algebra. 37 (1994), 25-49.
[19] C. K. Li, and H. Nakazato, Some Results on the q-Numerical, Linear and Multilinear Algebra. 43 (1998), 385-409.
[20] N. K. Tsing, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56 (1984), 195-206.
(Received November 8, 2023)

> Mohamed Chraibi Kaadoud Department of Mathematics Faculty of Sciences Semlalia University Cadi Ayyad Marrakesh, Morocco e-mail: chraibik@uca.ac.ma

Somayya Moulaharabbi
Department of Mathematics
Faculty of Sciences Semlalia
University Cadi Ayyad
Marrakesh, Morocco
e-mail: soma.molaha@gmail.com

[^0]: Mathematics subject classification (2020): 47A12, 47A30.
 Keywords and phrases: q-numerical range, q-numerical radius, norm inequality, the center of a compact set.

