q-NUMERICAL RADIUS INEQUALITIES FOR PRODUCT OF COMPLEX LINEAR BOUNDED OPERATORS

Mohamed Chraibi Kaadoud and Somayya Moulaharabbi

(Communicated by Y.-T. Poon)

Abstract. In this paper, we prove some q-numerical radius power inequalities for a product of operators on a complex Hilbert space. We introduce also the notion of the q-center for bounded operators, and we give the relationship between this q-center, the q-numerical radius and the center of the q-numerical range.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and denote by $\mathcal{B}(\mathcal{H})$ the space of all linear bounded operators on \mathcal{H} . Let $\mathbb{S}_{\mathcal{H}} = \{x \in \mathcal{H} : ||x|| = 1\}$. For any $A \in \mathcal{B}(\mathcal{H})$ and $q \in \mathbb{C}$ with $|q| \leq 1$, the *q*-numerical range of A is the set defined by

$$W_q(A) = \{ \langle Ax | y \rangle : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x | y \rangle = q \},\$$

and the q-numerical radius of A is given by

$$w_q(A) = \sup\{|\lambda| : \lambda \in W_q(A)\}.$$

Note that $W_q(A)$ is a bounded subset of \mathbb{C} , because $W_q(A)$ is included in the disk of \mathbb{C} centered at 0 with radius ||A||. If q = 1, $W_q(A)$ and $w_q(A)$ are the classical numerical range W(A) and the classical numerical radius w(A), respectively. Then the q-numerical range is a generalization of the classical numerical range.

For operators on a complex Hilbert space we know that the numerical range is a convex subset of \mathbb{C} (see [9]), it is also known that the spectrum is included in the closure of the numerical range. For other properties of the numerical range and numerical radius see [9, 16].

Several authors studied the properties of the *q*-numerical range, especially to generalize the properties of the classical numerical range. In [20], Tsing proved that the *q*-numerical range is convex. In [18, 19], the authors gave some basic properties of the *q*-numerical range, analogous to the classical numerical range. Among these results, they proved that $q\sigma(A) \subset W_q(A)^-$ with $\sigma(A)$ is the spectrum of A and $W_q(A)^-$ is the

Keywords and phrases: q-numerical range, q-numerical radius, norm inequality, the center of a compact set.

Mathematics subject classification (2020): 47A12, 47A30.

closure of $W_q(A)$. They also studied the properties of the *q*-numerical radius as a norm (if $q \neq 0$) and as a seminorm (if q = 0).

The properties of the *q*-numerical range for normal operators are introduced in [5], and for reducible and normal matrices in [6, 7, 17]. M. Aleksiejczyk in [1], gave some inequalities related to the diameter of $W_0(A)$ and the diameter of $W_q(A)$, where *A* is a $n \times n$ complex matrix and $q \in [0, 1]$.

The authors in [14, 18] showed that $W_0(A)$ is a circular disk centered at 0 with radius

$$w_0(A) = d(A) = \inf\{||A - \lambda I|| : \lambda \in \mathbb{C}\} = ||A - c_A I||,$$

with I is the identity operator on \mathcal{H} and c_A is the Stampfli's center of A.

In [12, 13, 14], M. C. Kaadoud proved that

$$w(AB) \leq w(B)w(A) + w_0(B)w_0(A),$$

 $||A||^2 \leq w^2(A) + w_0^2(A)$

and

 $w_0(A) \leq diamW(A),$

with $A, B \in \mathcal{B}(\mathcal{H})$ and diamW(A) is the diameter of W(A). In this paper, we give a generalization of these results for the *q*-numerical range and the *q*-numerical radius. We generalize also others results in [13, 15].

The paper is organized as follows. In Section 2, the notion of the *q*-center $c_q(A)$ of *A* is introduced, and the relationship to $c_q(A)$, $w_q(A)$ and the center $c_{W_q(A)}$ of $W_q(A)$ is established. In section 3, we give a necessary and sufficient condition so that $w_q(A + B) = w_q(A) + w_q(B)$ for $A, B \in \mathcal{B}(\mathcal{H})$, and we show also some power inequalities for the *q*-numerical radius of a product of operators on \mathcal{H} . Section 4, is devoted to prove some inequalities related to $w_0(A)$ and the *q*-numerical radius of *A*.

2. The *q*-center

Let *K* be a compact subset of \mathbb{C} . Denote by R_K and c_K the radius and the center, respectively of the smallest disk $D_K = D(c_K, R_K)$ containing *K*. Let $|K| = \sup\{|\alpha| : \alpha \in K\}$.

LEMMA 2.1. ([13, Proposition 3]) Let K be a compact subset of \mathbb{C} . Then

$$R_K = |K - c_K| = \sup_{\alpha \in K} |c_K - \alpha| = \inf_{\lambda \in \mathbb{C}} \sup_{\alpha \in K} |\lambda - \alpha|,$$

where c_K is the unique scalar satisfies $R_K = |K - c_K|$.

COROLLARY 2.2. Let $A \in \mathcal{B}(\mathcal{H})$ and $q \in \mathbb{C}$ such that $0 < |q| \leq 1$. Then

$$R_{W_q(A)} = |W_q(A) - c_{W_q(A)}| = w_q \left(A - \frac{1}{q} c_{W_q(A)}I\right).$$

Proof. Since $W_q(A)$ is bounded, $W_q(A)^-$ is compact. Then by Lemma 2.1, we have

$$\begin{aligned} R_{W_q(A)} &= |W_q(A) - c_{W_q(A)}| = \sup_{\alpha \in W_q(A)} |\alpha - c_{W_q(A)}| \\ &= \sup\{|\langle Ax|y \rangle - c_{W_q(A)}| : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y \rangle = q\} \\ &= \sup\left\{\left|\left\langle \left(A - \frac{1}{q}c_{W_q(A)}I\right)x|y\right\rangle\right| : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y \rangle = q\right\} \\ &= w_q\left(A - \frac{1}{q}c_{W_q(A)}I\right). \quad \Box \end{aligned}$$

DEFINITION 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ and $q \in \mathbb{C}$ with $|q| \leq 1$. The scalar β that satisfies

$$\inf_{\lambda \in \mathbb{C}} w_q(A - \lambda I) = w_q(A - \beta I),$$

is called a q-center of A, which we indicate by $c_q(A)$.

In this section $q \in \mathbb{C}$ with $0 < |q| \leq 1$.

PROPOSITION 2.4. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$R_{W_q(A)} = \inf_{\lambda \in \mathbb{C}} w_q(A - \lambda I) = w_q(A - c_q(A)I),$$

and

$$c_q(A) = \frac{1}{q} c_{W_q(A)}.$$

Proof. We have that

$$\begin{split} w_q(A - c_q(A)I) &= \inf_{\lambda \in \mathbb{C}} w_q(A - \lambda I) = \inf_{\lambda \in \mathbb{C}} w_q\left(A - \frac{\lambda}{q}I\right) \\ &= \inf_{\lambda \in \mathbb{C}} \sup\{|\langle Ax|y \rangle - \lambda| : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y \rangle = q\} \\ &= |W_q(A) - c_{W_q(A)}| = R_{W_q(A)}. \end{split}$$

On the other hand,

$$\begin{split} |W_q(A) - qc_q(A)| &= \sup\{|\langle Ax|y \rangle - qc_q(A)| : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y \rangle = q\} \\ &= \sup\{|\langle (A - c_q(A)I)x|y \rangle| : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y \rangle = q\} \\ &= w_q(A - c_q(A)I). \end{split}$$

Therefore,

$$|W_q(A) - qc_q(A)| = |W_q(A) - c_{W_q(A)}|,$$

and by the unicity of the center $c_{W_q(A)}$ of $W_q(A)$, it follows that $c_{W_q(A)} = qc_q(A)$. \Box

REMARK 2.5. By Proposition 2.4, we get the unicity of the q-center $c_q(A)$ of $A \in \mathcal{B}(\mathcal{H})$.

PROPOSITION 2.6. Let $A \in \mathcal{B}(\mathcal{H})$. If a sequence $(A_n) \subset \mathcal{B}(\mathcal{H})$ converges to A then the sequence $(c_q(A_n))$ converges to $c_q(A)$.

Proof. By [13, Corollary 11], the sequence $(c_{W_q(A_n)})$ converges to $c_{W_q(A)}$ and by Proposition 2.4, we have $c_q(A_n) = \frac{1}{q} c_{W_q(A_n)}$. So, $(c_q(A_n))$ converges to $c_q(A)$.

LEMMA 2.7. ([13, Corollary 5]) Let K be a compact subset of \mathbb{C} and $c \in \mathbb{C}$. Then the following assertions are equivalent:

- (*i*) $c_K = c$.
- (ii) $|K-c| < |K-(c+\lambda)|$ for all $\lambda \in \mathbb{C}^*$.
- (iii) $|K-c|^2 + |\lambda|^2 \leq |K-(c+\lambda)|^2$ for all $\lambda \in \mathbb{C}$.

COROLLARY 2.8. Let $A \in \mathcal{B}(\mathcal{H})$. Then the following assertions are equivalent:

- (*i*) $c = c_q(A)$.
- (*ii*) $w_q(A cI) < w_q(A (c + \frac{\lambda}{q})I)$ for all $\lambda \in \mathbb{C}^*$.
- (iii) $w_q^2(A-cI) + |\lambda|^2 \leq w_q^2(A-(c+\frac{\lambda}{q})I)$ for all $\lambda \in \mathbb{C}$.

Proof. Note that $w_q(A - \frac{\lambda}{q}) = |W_q(A) - \lambda|$ for all $\lambda \in \mathbb{C}$ and by Proposition 2.4, $c_{W_q(A)} = qc_q(A)$. Then by Lemma 2.7, (i), (ii) and (iii) are equivalent. \Box

COROLLARY 2.9. Let $A \in \mathcal{B}(\mathcal{H})$ such that $0 \in W_q(A)$. Then

$$|c_q(A)| \leqslant \frac{1}{\sqrt{2}|q|} w_q(A).$$

Proof. By [13, Proposition 25], we have

$$|c_{W_q(A)}| \leq \frac{|W_q(A)|}{\sqrt{2}} = \frac{1}{\sqrt{2}} w_q(A),$$

and by Proposition 2.4, it follows that $c_{W_q(A)} = qc_q(A)$. Hence

$$|c_q(A)| \leq \frac{1}{\sqrt{2}|q|} w_q(A).$$

Let $A \in \mathcal{B}(\mathcal{H})$. In [13], M. C. Kaadoud proved that $R_{W(A)} = w_0(A)$ if and only if $w(A - c_{W(A)}I) = ||A - c_{W(A)}I||$, in the following proposition we generalize this result for $W_q(A)$.

PROPOSITION 2.10. Let $A \in \mathcal{B}(\mathcal{H})$. Then $R_{W_a(A)} = w_0(A)$ if and only if

$$w_q(A - c_q(A)I) = ||A - c_q(A)I||.$$

Proof. Assume that $R_{W_q(A)} = w_0(A) = ||A - c_A I||$. Then by Proposition 2.4, it holds:

$$R_{W_q(A)} = w_q(A - c_q(A)I) \le w_q(A - c_AI) \le ||A - c_AI|| = w_0(A) = R_{W_q(A)}.$$

Hence $w_q(A - c_q(A)I) = w_q(A - c_AI)$ and the unicity of the center implies that $c_q(A) = c_A$. Conversely, suppose that $w_q(A - c_q(A)I) = ||A - c_q(A)I||$. Then

$$w_0(A) = ||A - c_A I|| \le ||A - c_q(A)I|| = w_q(A - c_q(A)I) = R_{W_q(A)}.$$

Since $R_{W_q(A)} \leq w_q(A - c_A I)$, it follows that

$$w_0(A) \leqslant R_{W_q(A)} \leqslant ||A - c_A I|| = w_0(A). \quad \Box$$

3. q-numerical radius inequalities

In what follows, let $q \in \mathbb{C}$ with $|q| \leq 1$. The next result has been proved for q = 1 in [2].

THEOREM 3.1. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then the following two assertions are equivalents:

(*i*)
$$w_q(A+B) = w_q(A) + w_q(B)$$
.

(ii) There exists two sequences of unit vectors $(x_n) \subset \mathcal{H}$ and $(y_n) \subset \mathcal{H}$ such that $\langle x_n | y_n \rangle = q$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \langle A^* y_n | x_n \rangle \langle B x_n | y_n \rangle = w_q(A) w_q(B)$.

Proof. Assume that $w_q(A+B) = w_q(A) + w_q(B)$. Since $W_q(A+B)$ is bounded, $W_q(A+B)^-$ is compact. Then there exist two sequences of unit vectors $(x_n) \subset \mathcal{H}$ and $(y_n) \subset \mathcal{H}$ such that $\langle x_n | y_n \rangle = q$ and $w_q(A+B) = \lim_{n \to \infty} |\langle (A+B)x_n | y_n \rangle|$. We have

$$\begin{aligned} |\langle (A+B)x_n|y_n\rangle|^2 &= |\langle Ax_n|y_n\rangle|^2 + |\langle Bx_n|y_n\rangle|^2 + 2Re(\langle A^*y_n|x_n\rangle\langle Bx_n|y_n\rangle) \\ &\leqslant |\langle Ax_n|y_n\rangle|^2 + |\langle Bx_n|y_n\rangle|^2 + 2|\langle A^*y_n|x_n\rangle||\langle Bx_n|y_n\rangle| \\ &= (|\langle Ax_n|y_n\rangle| + |\langle Bx_n|y_n\rangle|)^2 \\ &\leqslant (w_q(A) + w_q(B))^2 = w_q^2(A+B). \end{aligned}$$

Hence $\lim_{n\to\infty} \langle A^* y_n | x_n \rangle \langle Bx_n | y_n \rangle = w_q(A) w_q(B)$. Conversely, suppose (ii) fails to hold. Then $\lim_{n\to\infty} Re(\langle A^* y_n | x_n \rangle \langle Bx_n | y_n \rangle) = w_q(A) w_q(B)$, $\lim_{n\to\infty} |\langle A^* y_n | x_n \rangle| = w_q(A)$ and $\lim_{n\to\infty} |\langle Bx_n | y_n \rangle| = w_q(B)$. So, $\lim_{n\to\infty} |\langle (A+B)x_n | y_n \rangle| = w_q(A) + w_q(B)$ and since $|\langle (A+B)x_n | y_n \rangle| \leq w_q(A+B) \leq w_q(A) + w_q(B)$, it follows that $w_q(A+B) = w_q(A) + w_q(B)$.

Let $A, B \in \mathcal{B}(\mathcal{H})$ such that *B* is self-adjoint and let q = 0. The authors in [15, Theorem 4] proved that if $w_0(A+B) = w_0(A) + w_0(B)$ and $w_0(A) = ||A||$ then $w_0(A)w_0(B) \in W^-(B^*A)$. In the next theorem, we generalize this result for any $q \in [0, 1]$ and without the hypothesis of *B* is self-adjoint.

THEOREM 3.2. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that the dimensional of $\mathcal{H} = \dim(\mathcal{H}) \ge 2$, and let $q \in [0,1]$. If $w_q(A+B) = w_q(A) + w_q(B)$ and $w_q(A) = ||A||$ then $w_q(A)w_q(B) \in W^-(B^*A)$.

Proof. Assume that $w_q(A + B) = w_q(A) + w_q(B)$ and $w_q(A) = ||A||$. By Theorem 3.1, there exists two sequences of unit vectors $(x_n) \subset \mathcal{H}$ and $(y_n) \subset \mathcal{H}$ such that $\langle x_n | y_n \rangle = q$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \langle A^* y_n | x_n \rangle \langle B x_n | y_n \rangle = w_q(A) w_q(B)$. Then for all $n \in \mathbb{N}$, we have $Ax_n = \alpha_n y_n + \beta_n z_n$ with $z_n \in \mathbb{S}_{\mathcal{H}}$, $\langle y_n | z_n \rangle = 0$ and we have $\alpha_n = \langle A x_n | y_n \rangle$, $\beta_n = \langle A x_n | z_n \rangle$. Note that $||Ax_n||^2 = |\langle A x_n | y_n \rangle|^2 + |\langle A x_n | z_n \rangle|^2$ and since

$$\lim_{n\to\infty} |\langle Ax_n | y_n \rangle| = \lim_{n\to\infty} |\langle A^* y_n | x_n \rangle| = w_q(A) = ||A||,$$

it follows that $\lim_{n\to\infty} ||Ax_n||^2 = ||A||^2$ and $\lim_{n\to\infty} |\langle Ax_n|z_n\rangle|^2 = 0$. We have

$$\langle B^*Ax_n|x_n\rangle = \langle Ax_n|y_n\rangle \langle B^*y_n|x_n\rangle + \langle Ax_n|z_n\rangle \langle B^*z_n|x_n\rangle.$$

Since $\lim_{n \to \infty} \langle A^* y_n | x_n \rangle \langle B x_n | y_n \rangle = w_q(A) w_q(B)$ and $\lim_{n \to \infty} \langle A x_n | z_n \rangle = 0$, it holds: $\lim_{n \to \infty} \langle B^* A x_n | x_n \rangle = w_q(A) w_q(B)$. This implies that $w_q(A) w_q(B) \in W^-(B^*A)$. \Box

In the next example, we show that if $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_q(A+B) = w_q(A) + w_q(B)$ and $w_q(A) \neq ||A||$ then $w_q(A)w_q(B)$ is not necessarily an scalar in $W^-(B^*A)$.

EXAMPLE 3.3. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = A^*$ and suppose that q = 1. We have $w_q(A) = w_q(B) = \frac{1}{2}$ and $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. For $x = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, it holds: ||x|| = 1 and $\langle (A + B)x|x \rangle = 1 = w_q(A) + w_q(B)$. Hence $w_q(A + B) = w_q(A) + w_q(B)$, but $w_q(A)w_q(B) = \frac{1}{4} \notin W^-(B^*A) = W(A^2) = \{0\}$.

LEMMA 3.4. (Buzano inequality, [4]) Let $a, b, e \in \mathcal{H}$. Then

$$|\langle a|e\rangle\langle e|b\rangle| \leqslant \frac{\|e\|^2}{2}(\|a\|\|b\| + |\langle a|b\rangle|).$$

COROLLARY 3.5. Let $A, B \in \mathcal{B}(\mathcal{H})$. If $w_q(A+B) = w_q(A) + w_q(B)$ then

$$w_q(A)w_q(B) \leq \frac{1}{2}(\|A\| \|B\| + w(B^*A)).$$
 (3.1)

Proof. By Lemma 3.4, we have

$$\frac{1}{2}(\|a\|\|b\| + |\langle a|b\rangle|) \ge |\langle a|e\rangle\langle e|b\rangle|, \tag{3.2}$$

for all $a, b, e \in \mathcal{H}$ with ||e|| = 1. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x|y \rangle = q$. Let a = Ax, b = Bx and e = y. Then by (3.2), we infer that

$$\frac{1}{2}(||Ax|| ||Bx|| + |\langle B^*Ax|x\rangle|) \ge |\langle Ax|y\rangle\langle y|Bx\rangle|.$$

If $w_q(A+B) = w_q(A) + w_q(B)$ then by Theorem 3.1, There exist two sequences of unit vectors $(x_n) \subset \mathcal{H}$ and $(y_n) \subset \mathcal{H}$ such that $\langle x_n | y_n \rangle = q$ and $\lim_{n \to \infty} \langle A^* y_n | x_n \rangle \langle B x_n | y_n \rangle = w_q(A) w_q(B)$. Then

$$\frac{1}{2}(\|A\|\|B\| + w(B^*A)) \ge \frac{1}{2}(\|Ax_n\|\|Bx_n\| + |\langle B^*Ax_n|x_n\rangle|)$$
$$\ge |\langle Ax_n|y_n\rangle\langle y_n|Bx_n\rangle|$$
$$= |\langle A^*y_n|x_n\rangle\langle y_n|Bx_n\rangle| \to w_q(A)w_q(B).$$

This completes the proof. \Box

REMARK 3.6. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_q(A+B) = w_q(A) + w_q(B)$. If A and B are normal and AB = BA, then (3.1) becomes an equality. Indeed, since A and B are normal, w(A) = ||A|| and w(B) = ||B||, and by [11, Theorem 3] we have $w(B^*A) \leq w(B)w(A)$. Then (3.1) becomes an equality.

PROPOSITION 3.7. Let $A \in \mathcal{B}(\mathcal{H})$ be positive and let $x, y \in \mathcal{H}$. Then

$$|\langle Ax|y\rangle| \leqslant \frac{\|A\|}{2}(\|x\|\|y\| + |\langle x|y\rangle|),$$

and

$$w_q(A) \leqslant \frac{\|A\|}{2} (1+|q|).$$

Proof. Let $x, y \in \mathcal{H}$. By Lemma 3.4, it follows that

$$|\langle x|Ax\rangle\langle Ax|y\rangle| \leqslant \frac{\|Ax\|^2}{2}(\|x\|\|y\| + |\langle x|y\rangle|).$$

If $\langle x | Ax \rangle \neq 0$ then

$$\begin{split} |\langle Ax|y\rangle| &\leqslant \frac{||Ax||^2}{2\langle x|Ax\rangle} (||x|| ||y|| + |\langle x|y\rangle|) \\ &= \frac{||A^{\frac{1}{2}}A^{\frac{1}{2}}x||^2}{2||A^{\frac{1}{2}}x||^2} (||x|| ||y|| + |\langle x|y\rangle|) \\ &\leqslant \frac{||A^{\frac{1}{2}}||^2}{2} (||x|| ||y|| + |\langle x|y\rangle|) \\ &= \frac{||A||}{2} (||x|| ||y|| + |\langle x|y\rangle|). \end{split}$$

If $\langle x|Ax\rangle = 0$ then $A^{\frac{1}{2}}x = 0$, which implies that Ax = 0. So, the first inequality is evident. The second inequality follows immediately from the first one. \Box

REMARK 3.8. If q = 1 then the second inequality of Proposition 3.7 becomes equality.

COROLLARY 3.9. Let $T, S, A \in \mathcal{B}(\mathcal{H})$ with A positive. Then

$$w_q(SAT) \leq \frac{\|A\|}{2} (\|T\| \|S\| + w_q(ST)).$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x | y \rangle = q$. Then by Proposition 3.7, we have

$$\begin{aligned} |\langle SATx|y\rangle| &= |\langle ATx|S^*y\rangle| \\ &\leqslant \frac{\|A\|}{2}(\|Tx\|\|S^*y\| + |\langle STx|y\rangle|) \\ &\leqslant \frac{\|A\|}{2}(\|T\|\|S\| + w_q(ST)). \quad \Box \end{aligned}$$

COROLLARY 3.10. Let $T, S, A \in \mathcal{B}(\mathcal{H})$ with A positive. Then

$$w_q^r(SAT) \leq \frac{\|A\|^r}{2} (\|T\|^r \|S\|^r + w_q^r(ST)), \text{ for all } r \geq 1.$$

Proof. By Corollary 3.9, we have

$$w_q(SAT) \leq \frac{\|A\|}{2} (\|T\| \|S\| + w_q(ST).$$

Since the function $t \mapsto t^r$ is increasing and convex on $[0, +\infty]$, it follows that

$$w_q^r(SAT) \leqslant ||A||^r \left(\frac{||T|| ||S|| + w_q(ST)}{2}\right)^r \\ \leqslant \frac{||A||^r}{2} (||T||^r ||S||^r + w_q^r(ST)). \quad \Box$$

PROPOSITION 3.11. Let A = U|A| be the polar decomposition of $A \in \mathcal{B}(\mathcal{H})$. Then

$$w_q(A) \leq \frac{1}{2}(||A|| + ||A||^{\frac{1}{2}}w_q(U|A|^{\frac{1}{2}})).$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x | y \rangle = q$. We have that

$$\langle Ax|y\rangle = \langle U|A|x \mid y\rangle = \langle |A|^{\frac{1}{2}}x \mid |A|^{\frac{1}{2}}U^*y\rangle.$$

Then by Proposition 3.7, it follows that

$$\begin{aligned} |\langle Ax|y\rangle| &\leqslant \frac{\||A|^{\frac{1}{2}}\|}{2} (\|x\| \, \||A|^{\frac{1}{2}}U^*y\| + |\langle x| \, |A|^{\frac{1}{2}}U^*y\rangle|) \\ &\leqslant \frac{\|A\|^{\frac{1}{2}}}{2} (\|A\|^{\frac{1}{2}} \|U^*\| + |\langle U|A|^{\frac{1}{2}}x|y\rangle|) \\ &\leqslant \frac{\|A\|^{\frac{1}{2}}}{2} (\|A\|^{\frac{1}{2}} \|U^*\| + w_q(U|A|^{\frac{1}{2}})). \end{aligned}$$

Since $||U^*|| = ||U|| \le 1$, we infer that $w_q(A) \le \frac{1}{2}(||A|| + ||A||^{\frac{1}{2}}w_q(U|A|^{\frac{1}{2}}))$. \Box

COROLLARY 3.12. Let A = U|A| be the polar decomposition of $A \in \mathcal{B}(\mathcal{H})$. Then

$$w_q^r(T) \leq \frac{1}{2} (\|A\|^r + \|A\|^{\frac{r}{2}} w_q^r(U|A|^{\frac{1}{2}}), \text{ for all } r \geq 1.$$

Proof. The desired inequality follows from Proposition 3.11 and by using the argument in the proof of Corollary 3.10. \Box

PROPOSITION 3.13. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then

$$w_q(BA) \ge 2(\max(w(A)w'_q(B), w'(A)w_q(B))) - \|A\|\|B\|,$$
(3.3)

with

 $w'_q(T) = \inf\{|\lambda| : \lambda \in W_q(T)\} \text{ and } w'(T) = w'_1(T), \ T \in \{A, B\}.$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x | y \rangle = q$. Let a = Ax, $b = B^*y$ and e = x, in (3.2) we have

$$\frac{1}{2}(\|Ax\|\|B^*y\| + |\langle BAx|y\rangle|) \ge |\langle Ax|x\rangle\langle Bx|y\rangle|.$$

Hence

$$\frac{1}{2}(\|A\|\|B\| + w_q(BA)) \ge \max(w(A)w'_q(B), w'(A)w_q(B)),$$

this completes the proof. \Box

REMARK 3.14. (i) For $A \in \mathcal{B}(\mathcal{H})$, $w_q(A) \ge 2|q|w(A) - ||A||$. Indeed, we have $W_q(I) = \{q\}$ then if we replace *B* by *I* in 3.3, we get

$$w_q(A) \ge 2|q|w(A) - ||A||.$$

(ii) Let A = I and $B \in \mathcal{B}(\mathcal{H})$ such that w(B) = ||B||. Then (3.3) becomes an equality.

Let $A \in \mathcal{B}(\mathcal{H})$ and q = 0. The author in [13, Proposition 31] proved that

$$w_0(A) \leq diamW(A).$$

In the next proposition, we generalize this result for any $q \in [0, 1]$.

PROPOSITION 3.15. Let $A \in \mathcal{B}(\mathcal{H})$ and $q \in [0,1]$. Then

$$w_q(A) \leqslant qw(A) + diamW(A). \tag{3.4}$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x | y \rangle = q$. Then by the polarization identity, it holds:

$$\begin{aligned} 2\langle Ax|y\rangle &= \left\langle A\left(\frac{x+y}{\sqrt{2}}\right) \left|\frac{x+y}{\sqrt{2}}\right\rangle - \left\langle A\left(\frac{x-y}{\sqrt{2}}\right) \left|\frac{x-y}{\sqrt{2}}\right\rangle \right. \\ &+ i \left\langle A\left(\frac{x+iy}{\sqrt{2}}\right) \left|\frac{x+iy}{\sqrt{2}}\right\rangle - i \left\langle A\left(\frac{x-iy}{\sqrt{2}}\right) \left|\frac{x-iy}{\sqrt{2}}\right\rangle \right. \\ &= (1+q) \left\langle A\left(\frac{x+y}{\sqrt{2}\sqrt{1+q}}\right) \left|\frac{x+y}{\sqrt{2}\sqrt{1+q}}\right\rangle - (1-q) \right. \\ &\left\langle A\left(\frac{x-y}{\sqrt{2}\sqrt{1-q}}\right) \left|\frac{x-y}{\sqrt{2}\sqrt{1-q}}\right\rangle \right. \\ &+ i \left\langle A\left(\frac{x+iy}{\sqrt{2}}\right) \left|\frac{x+iy}{\sqrt{2}}\right\rangle - i \left\langle A\left(\frac{x-iy}{\sqrt{2}}\right) \left|\frac{x-iy}{\sqrt{2}}\right\rangle \right. \\ &= \left[\left\langle A\left(\frac{x+y}{\sqrt{2}\sqrt{1+q}}\right) \left|\frac{x+y}{\sqrt{2}\sqrt{1+q}}\right\rangle - \left\langle A\left(\frac{x-y}{\sqrt{2}\sqrt{1-q}}\right) \left|\frac{x-y}{\sqrt{2}\sqrt{1-q}}\right\rangle \right] \right. \\ &+ i \left[\left\langle A\left(\frac{x+iy}{\sqrt{2}}\right) \left|\frac{x+iy}{\sqrt{2}}\right\rangle - \left\langle A\left(\frac{x-iy}{\sqrt{2}}\right) \left|\frac{x-iy}{\sqrt{2}}\right\rangle \right] \right. \\ &\left. + q \left[\left\langle A\left(\frac{x+y}{\sqrt{2}\sqrt{1+q}}\right) \left|\frac{x+y}{\sqrt{2}\sqrt{1+q}}\right\rangle + \left\langle A\left(\frac{x-y}{\sqrt{2}\sqrt{1-q}}\right) \left|\frac{x-y}{\sqrt{2}\sqrt{1-q}}\right\rangle \right] \right] . \end{aligned}$$

This implies that

$$2|\langle Ax|y\rangle| \leq diamW(A) + diamW(A) + q^{2}w(A).$$

So, $w_q(A) \leq diamW(A) + qw(A)$. \Box

4. Inequalities between the q-numerical radius and the distance to scalar's

PROPOSITION 4.1. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$w_q(A) \leq |q|w(A) + \sqrt{1 - |q|^2 w_0(A)}.$$
(4.1)

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x|y \rangle = q$. Then $y = qx + \sqrt{1 - |q|^2}z$ for some $z \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x|z \rangle = 0$. Then

$$\begin{split} |\langle Ax|y\rangle| &= |\langle Ax|x\rangle \overline{q} + \langle Ax|z\rangle \sqrt{1 - |q|^2} \\ &\leqslant |q|w(A) + \sqrt{1 - |q|^2} w_0(A). \quad \Box \end{split}$$

REMARK 4.2. Let $A \in \mathcal{B}(\mathcal{H})$ and q = 1, then (4.1) becomes an equality.

Let $A, B \in \mathcal{B}(\mathcal{H})$ and q = 1. The author in [12, Corollary 5], proved that

$$w(AB) = w_1(AB) \leqslant w_1(B)w(A) + w_0(B)w_0(A) = w(B)w(A) + w_0(B)w_0(A).$$

In the next proposition, we generalize this result for any $q \in \mathbb{C}$, $|q| \leq 1$.

PROPOSITION 4.3. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then

$$w_q(AB) \leqslant w_q(B)w(A) + d_q(B)w_0(A), \tag{4.2}$$

with

$$d_q^2(B) = \sup\{||Bx||^2 - |\langle Bx|y\rangle|^2 : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y\rangle = q\}.$$

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x|y \rangle = q$. Let $Bx = \alpha y + \beta z$ with $z \in \mathbb{S}_{\mathcal{H}}$ and $\langle y|z \rangle = 0$. Then $\alpha = \langle Bx|y \rangle$, $\beta = \langle Bx|z \rangle$ and $||Bx||^2 = |\alpha|^2 + |\beta|^2$. Hence

$$\langle ABx|y\rangle = \langle Bx|y\rangle\langle Ay|y\rangle + \beta\langle Az|y\rangle.$$

This implies that $w_q(AB) \leq w_q(B)w(A) + |\beta|w_0(A)$ and since

$$|\beta|^2 = ||Bx||^2 - |\langle Bx|y\rangle|^2 \leqslant d_q^2(B),$$

it follows that $w_q(AB) \leq w_q(B)w(A) + d_q(B)w_0(A)$. \Box

COROLLARY 4.4. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_0(A) = R_{W(A)}$. Then

$$w_q(AB) \leqslant w_q(B)w(A) + d_q(B)R_{W(A)}.$$
(4.3)

In particular, if A is self-adjoint such that $Co(\sigma(A)) = [\lambda_1, \lambda_2]$ then

$$w_q(AB) \le w_q(B)w(A) + d_q(B)(||A|| - |\lambda_1 + \lambda_2|/2),$$
(4.4)

and if A is positive then

$$w_q(AB) \leq ||A|| (w_q(B) + \frac{1}{2}d_q(B)).$$
 (4.5)

Proof. Since $w_0(A) = R_{W(A)}$, (4.3) follows immediately from Proposition 4.3. If *A* is self-adjoint and $Co(\sigma(A)) = [\lambda_1, \lambda_2]$ then $R_{W(A)} = ||A|| - |\lambda_1 + \lambda_2|/2$ hence (4.4) follows from (4.3). If *A* is positive then w(A) = ||A|| and by Proposition 3.7, we have $R_{W(A)} = w_0(A) = w_0(A) \leq \frac{||A||}{2}$. Thus by (4.3), we infer that

$$egin{aligned} &w_q(AB)\leqslant w_q(B)\|A\|+d_q(B)R_{W(A)}\ &\leqslant w_q(B)\|A\|+rac{1}{2}d_q(B)\|A\|. \ \ \Box \end{aligned}$$

REMARK 4.5. Let $A \in \mathcal{B}(\mathcal{H})$ and q = 1, then we have that

$$d_1^2(A) = \sup\{||Ax||^2 - |\langle Ax|y\rangle|^2 : x, y \in \mathbb{S}_{\mathcal{H}}, \langle x|y\rangle = 1\}$$

= sup{ $||Ax||^2 - |\langle Ax|x\rangle|^2 : x \in \mathbb{S}_{\mathcal{H}}$ }.

By [3, Theorem 3.2], it holds:

$$\inf\{\|A-\lambda I\|:\lambda\in\mathbb{C}\}^2=\sup\{\|Ax\|^2-|\langle Ax|x\rangle|^2:x\in\mathbb{S}_{\mathcal{H}}\},\$$

and since $w_0(A) = \inf\{||A - \lambda I|| : \lambda \in \mathbb{C}\}$, it follows that $d_1(A) = w_0(A)$.

COROLLARY 4.6. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that $w_0(A) = R_{W(A)}$. If A is positive then

$$w(AB) \leq ||A||(w(B) + \frac{1}{2}diamW(B)).$$

Proof. Since $w_0(A) = R_{W(A)}$ and A is positive, by Corollary 4.4 it follows that

$$w(AB) \leq ||A||(w(B) + \frac{1}{2}d_1(B))$$

We have $d_1(B) = w_0(B)$ (see [1]) and by [13, Proposition 31], we have that $d_1(B) = w_0(B) \leq dianW(B)$. This completes the proof. \Box

In [13, Proposition 34], M. C. Kaadoud proved that, for $A \in \mathcal{B}(\mathcal{H})$ and q=1, it holds:

$$||A||^2 \leq w_1^2(A) + d_1^2(A) = w^2(A) + w_0^2(A).$$

In the next proposition, we generalize this result for any $q \in \mathbb{C}$, $|q| \leq 1$.

PROPOSITION 4.7. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$\|A\|^2 \leqslant w_q^2(A) + d_q^2(A).$$
(4.6)

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x|y \rangle = q$. Let $Ax = \alpha y + \beta z$ with $z \in \mathbb{S}_{\mathcal{H}}$ and $\langle y|z \rangle = 0$ then $\alpha = \langle Ax|y \rangle$ and $\beta = \langle Ax|z \rangle$. Hence

$$\begin{split} \|Ax\|^2 &= |\alpha|^2 + |\beta|^2 \\ &\leqslant w_q^2(A) + (\|Ax\|^2 - |\langle Ax|y\rangle|^2) \\ &\leqslant w_q^2(A) + d_q^2(A). \end{split}$$

So, $||A||^2 \le w_q^2(A) + d_q^2(A)$. \Box

PROPOSITION 4.8. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$d_q(A) = \sup_{\substack{x,y \in \mathbb{S}_{\mathcal{H}} \\ \langle x | y
angle = q}} \inf_{\lambda \in \mathbb{C}} \|Ax - \lambda y\|$$

Proof. Note that

$$\inf_{\lambda \in \mathbb{C}} \|a - \lambda b\|^2 = \frac{\|a\|^2 \|b\|^2 - |\langle a|b\rangle|^2}{\|b\|^2},\tag{4.7}$$

for all $a, b \in \mathcal{H}$, $b \neq 0$. This equality is due to Dragomir (see [8]). Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x|y \rangle = q$. Let a = Ax and b = y then by the equality (4.7), it follows that

$$\inf_{\lambda \in \mathbb{C}} \|Ax - \lambda y\|^2 = \|Ax\|^2 - |\langle Ax|y \rangle|^2.$$

Therefore,

$$\sup_{\substack{x,y\in\mathbb{S}_{\mathcal{H}}\\\langle x|y\rangle=q}} \inf_{\lambda\in\mathbb{C}} \|Ax - \lambda y\|^2 = \sup_{\substack{x,y\in\mathbb{S}_{\mathcal{H}}\\\langle x|y\rangle=q}} (\|Ax\|^2 - |\langle Ax|y\rangle|^2) = d_q(A)^2. \quad \Box$$

COROLLARY 4.9. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$d_q^2(A) + w_q'(A)^2 \leqslant ||A||^2.$$
(4.8)

Proof. Let $x, y \in \mathbb{S}_{\mathcal{H}}$ such that $\langle x | y \rangle = q$. Let a = Ax and b = y then by the equality (4.7), we have

$$\inf_{\lambda \in \mathbb{C}} ||Ax - \lambda y||^2 = ||Ax||^2 - |\langle Ax|y \rangle|^2$$
$$\leqslant ||A||^2 - w'_q(A)^2.$$

Hence Proposition 4.8 implies that $d_q^2(A) + w'_q(A)^2 \leq ||A||^2$. \Box

REMARK 4.10. (i) Note that the inequalities (4.2), (4.3), (4.4), (4.5), (4.6) and (4.8) are proved in [10] for q = 1.

- (ii) If $A = \lambda I$ for some $\lambda \in \mathbb{C}$ then $w_0(A) = 0$. So, the inequalities (4.2) and (4.3) becomes equalities for all $B \in \mathcal{B}(\mathcal{H})$.
- (iii) The inequality (4.8) becomes equality if A = I, since $d_q^2(I) = 1 |q|^2$ and $w'_q(I)^2 = |q|^2$.

Disclosure statement. We have no conflicts of interest to disclose.

Data availability. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

REFERENCES

- M. ALEKSIEJCZYK, On the diameter of the generalized numerical range, Demonstratio Mathematica. 30 (1) (1997), 129–136.
- [2] A. ABU-OMAR AND F. KITTANEH, Notes on some spectral radius and numerical radius inequalities, Studia Mathematica. 227 (2) (2015), 97–109.
- [3] M. BARRAA AND M. BOUMAZGOUR, A note on the orthogonality of bounded linear operators, Functional Analysis Approximation and Computation. 41 (2012), 65–70.
- [4] M. L. BUZANO, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. Politech. Torino. 31 (1974), 405–409.
- [5] M. T. CHIEN AND H. NAKAZATO, *The q-numerical ranges of normal operators*, Linear Algebra and its Applications. 53 (6) (2005) 393–416.
- [6] M. T. CHIEN AND H. NAKAZATO, The q-numerical range of a reducible matrix via a normal operator, Linear Algebra and its Applications. 419 (2006), 440–465.
- [7] M. T. CHIEN AND H. NAKAZATO, The boundary of the q-numerical range of a reducible matrix, Linear and Multilinear Algebra. 55 (2007), 275–292.
- [8] S. S. DRAGOMIR, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (1) (2008), 1–7.
- [9] K. E. GUSTAFSON AND D. K. M. RAO, *Numerical range*, Universitext, Springer-Verlag, New York, 1997.
- [10] M. S. HOSSEINIA AND B. MOOSAVI, Some Numerical Radius Inequalities for Products of Hilbert Space Operators, Filomat. 33 (7) (2019), 2089–2093.
- [11] M. C. KAADOUD, Domaine numérique du produit AB avec A normal, Serdica Math. J. 32 (2006), 1–6.
- [12] M. C. KAADOUD, *Domaine numérique du produit et de la bimultiplication* $M_{2,A,B}$, Proc. Amer. Math. Soc. **132** (2004), 2421–2428.
- [13] M. C. KAADOUD, Géométrie du spectre dans une algèbre de Banach et domaine numérique, Studia Mathematica. 162 (1) (2004), 1–14.
- [14] M. C. KAADOUD, Domaine numérique de l'opérateur produit $M_{2,A,B}$ de la dérivation généralisée $\delta_{2,A,B}$, Extracta mathematica. 17 (1) (2002), 59–68.
- [15] M. C. KAADOUD, E. H. BENABDI AND M. GUESBA, Some inequalities related to numerical radius and distance from scalar operators in Hilbert spaces, Operators and Matrices. 17 (3) (2023), 857–866.
- [16] C. S. KUBRUSLY, Spectral Theory of Operators on Hilbert Spaces, Birkhäuser, Springer, New York, 2012.
- [17] C. K. LI, q-numerical ranges of normal and convex matrices, Linear and Multilinear Algebra. 43 (1998), 377–384.
- [18] C. K. LI, P. P. MEHTA AND L. RODMAN, A generalized numerical range: the range of a constrained sesquilinear form, Linear and Multilinear Algebra. 37 (1994), 25–49.
- [19] C. K. LI, AND H. NAKAZATO, Some Results on the q-Numerical, Linear and Multilinear Algebra. 43 (1998), 385–409.
- [20] N. K. TSING, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56 (1984), 195–206.

(Received November 8, 2023)

Mohamed Chraibi Kaadoud Department of Mathematics Faculty of Sciences Semlalia University Cadi Ayyad Marrakesh, Morocco e-mail: chraibik@uca.ac.ma

Somayya Moulaharabbi Department of Mathematics Faculty of Sciences Semlalia University Cadi Ayyad Marrakesh, Morocco e-mail: soma.molaha@gmail.com