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Abstract. This paper considers a class of linear time–invariant perturbed singular systems. The
main aim of this paper is to develop the practical exponential stability of this class of systems
based on Lyapunov techniques. Finally, to illustrate our results more clearly, we introduce a
numerical example.

1. Introduction

Singular systems are those dynamics of which are governed by a mixture of alge-
braic and differential equations. In that sense, singular systems represent the constraints
to the solution of the differential part. These systems are also called degenerate systems,
generalized systems, descriptor systems, semi–state systems, and differential–algebraic
systems.

In [22], Rosenbrock proposed singular systems for the first time and handled the
transformation of linear singular systems. Later on, singular systems representation
has been used as a perfect tool to model a wide variety of problems, such as electrical
engineering, aircraft dynamics, robotics, economics, optimization problems, chemical,
biology, etc.

The stability theory of differential systems is an active research topic. In [18],
Lyapunov was the first who developed the problem of stability for systems of ordinary
differential equations. Later on, different authors investigate the problem of stability of
differential equations, see [1].

Because of the existence of algebraic equations, the investigation of singular sys-
tems is more complicated than standard ordinary differential equations. The complex
nature of descriptor systems causes many difficulties in the analysis.

Owing to the difficulty resulting in analysis, few results are concerned with the
stability of this class of systems.

The stability theory of linear time–invariant singular systems is an active research
topic. Various authors attacked the problem of stability and stabilization of these sys-
tems, the interested reader is referred to [4, 5, 6, 11, 16, 17, 19, 23].
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The main objective of our manuscript is to develop the problem stability of linear
time–invariant singular systems under perturbation based on the explicit solution form
via Lyapunov techniques.

Indeed, the qualitative behavior of the solutions of linear time–invariant perturbed
singular systems is analyzed by regarding the Lyapunov function candidate for the nom-
inal system as an appropriate Lyapunov function candidate for the perturbed system.

Systems can innately show a perturbed structure where the solutions of unper-
turbed equations are in general supposed to be stable, and some restrictions are imposed
on the uncertainties or disturbances like special growth conditions to derive conclusions
about the behavior of solutions of the perturbed state equation.

Different authors have introduced the concept of practical stability. In such a situ-
ation, all state trajectories are bounded and approach a sufficiently small neighborhood
of the origin. One also desires that the state approaches the origin (or some sufficiently
small neighborhood of it) in a sufficiently fast manner especially in presence of pertur-
bations, we mention here [2, 7, 8].

Our results are related to the relation between a perturbed linear time–invariant
singular system and the associated unperturbed one. Given two solutions to the per-
turbed singular system and the associated unperturbed one with initial conditions that
are close at the same value of time, these solutions will remain close over the entire
time interval and not just at the initial time.

In [9], Caraballo et al. developed the problem of stabilization of stochastic non
linear affine systems via Gamidov’s inequality and based on the explicit solution form.
The novelty of our paper is to analyze the problem of stability of linear time–invariant
perturbed singular systems through Gamidov’s inequality and based on Lyapunov tech-
niques.

This paper is structured in the following way: In Section 2, we introduce some
notations, definitions, and preliminaries lemmas about linear time–invariant singular
systems, which will be needed in the sequel. In Section 3, we introduce a class of
linear time–invariant perturbed singular system and we derive some new results on the
stability via Gamidov’s type inequality. In Section 4, we provide a numerical example
to validate the effectiveness of our main result. Finally, some conclusions are included
in Section 5.

Notations

R : Real vector space.

R+ : the set of all nonnegative real numbers, i.e., R+ = [0,)
Sn : the set ofn×n symmetric matrices

C : Complex vector space.

I : Identity matrix.

B := (bi j) ∈ Rn×n : Real matrix.

BT : Transpose of the matrix B.
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B > 0 : Positive definite matrix.

BD : Drazin inverse of the matrix B.

(B) : Kernel of the matrix B.

im(B) : Image of the matrix B.

 (B) : Eigenvalue of the matrix B.

max(B) (min(B)) : The maximum (minimum) eigenvalue of a symmetric matrix B.

||B|| :=
√
max(BTB) : Euclidean matrix norm of B.

||x|| :=
√

xTx : Euclidean norm of x ∈ Rn.

2. Preliminaries

In this section, some needed preliminaries about linear time–invariant singular
systems are introduced.

Consider the linear time–invariant singular system:

Eẋ(t) = Ax(t), x(t0) = x0, (2.1)

where x(t) ∈ Rn is the system state vector, x(t0) = x0 ∈ Rn is the initial condition.
E,A ∈ Rn×n are constant matrices, with E is a singular matrix and rank(E) = r <

n .

DEFINITION 2.1. The linear time–invariant singular system (2.1) is said to be:

1. Regular, if det(sE−A) is different from zero for certain s ∈ C .

2. Impulse–free, if deg(det(sE−A)) = rank(E) .

LEMMA 2.1. [4] If the linear time–invariant singular system (2.1) is regular and
impulse–free, then the solution of the system (2.1) exists, impulse–free and unique on
R.

The singularity of the matrix E will ensure that solutions of equation (2.1) exist
only for particular choices of x0 . We will say that an initial condition x0 ∈ Rn is
consistent if there exists a differentiable, continuous solution of (2.1). The problem of
consistent initial conditions is not characteristic for the systems in the classical form
but is a fundamental one for the singular systems. The analysis and generation of the
subspace of consistent initial conditions Wk∗ have received very much attention in the
literature, we refer the reader to [4, 20].

Campbell [4] characterized the subspace of consistent initial conditions by the
following theorem.
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THEOREM 2.2. The initial condition x0 is a consistent initial condition for equa-
tion (2.1), if and only if:

(I− ĔĔD)x0 = 0.

That is,
Wk∗ = (I− ĔĔD),

where ĔD is the Drazin inverse of the matrix Ĕ with Ĕ = (E+A)−1
|=0 .E.

Later on, Ownes & Debeljkovic [20] proved that the radical geometric tool in the
characterization of the subspace of consistent initial conditions Wk∗ is the subspace
sequence, as the following:

W0 ∈ Rn,

...

Wi+1 = A−1(EWi), i � 0.

LEMMA 2.3. [20] The subsequence {W0, W1, W2, · · ·} is nested in the sense
that

W0 ⊃W1 ⊃W3 ⊃ ·· ·
Furthermore,

(A) ⊂Wi, ∀i � 0,

and there exists an integer k � 0, such that

Wk+1 = Wk.

Then it is obvious that
Wk+i = Wk, ∀i � 1.

If k∗ is the smallest integer with this property, then

Wk ∩(E) = {0}, k � k∗, (2.2)

provided that (E−A) is invertible for some  ∈ R.

3. Stability analysis

Assume that some parameters of the linear time–invariant singular system (2.1)
are excited or perturbed, and the perturbed singular system defined as

Eẋ(t) = Ax(t)+ f (t,x(t)), x(0) = x0, (3.1)

where  ∈ Rn×n is a constant matrix such that im = Wk∗ , and f : R+ ×Rn → Rn is
continuous in (t,x) , Lipschitz in x , uniformly in t .
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REMARK 3.1. Systems can naturally show a perturbed structure where the solu-
tions of unperturbed equations are in general supposed to be stable and some restrictions
are imposed on the uncertainties or disturbances like special growth conditions in order
to derive conclusions about the behavior of solutions of the perturbed state equation.

REMARK 3.2. The term  f is a structured perturbation. In fact, it is necessary
to contain the set of allowable perturbations to warranty consistency with the perturbed
singular system (3.1),  f is a structured perturbation that ensures “consistency”. Thus,

 f (t,x(t)) ∈Wk∗ , for all t � 0.

REMARK 3.3. Different authors handled the problem of stability of linear time–
invariant singular systems (E,A) ∈ Rn×n×Rn×n , see [12, 13, 20]. It is well known that
we look for solutions P,Q ∈ Rn×n such that for all Q ∈ Rn×n , there exists P ∈ Rn×n

solves the following equation:

ATPE+ETPA = −Q, (3.2)

and the corresponding Lyapunov function candidate is the following:

V : Wk∗ \ {0}→ R, x 
→ (Ex)TP(Ex).

DEFINITION 3.1. [14] The perturbed singular system (3.1) is said to be uniformly
exponentially stable, if there exist two positive constants 1 and 2, such that for
t0 ∈ R+, and x0 a consistent initial condition,

||x(t)|| � 1||x0||e−2(t−t0), ∀t � t0.

We suppose the following assumption which is required for stability purposes.
(H∞) There exists a continuous non–negative known function  (t), such that

‖ f (t,x)‖ �  (t)||x||, ∀(t,x) ∈ R+ ×Wk∗ ,

where lim
t→

 (t) = 0.

THEOREM 3.4. The perturbed singular system (3.1) is uniformly exponentially
stable, if there exists a positive definite symmetric matrix P, being the solution of Lya-
punov matrix equation (3.2), where the matrix Q = QT > 0 such that

xTQx > 0, ∀x ∈Wk∗\{0}, (3.3)

where Wk∗ is the subspace of consistent initial conditions. Moreover, the perturbation
term satisfies assumption (H1) .

To prove our theorem, we need to recall the following technical lemma.
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LEMMA 3.5. [10] Consider X ∈ R
n×m , Ỹ ∈ R

n×m , P ∈ Sn , and m > 0 , where
P > 0 , we have

XTPỸ + ỸTPX � mXTPX +
1
m

ỸTPỸ .

Proof of Theorem 3.4.. To establish sufficiency, note that Eq. (2.2) indicates that

V(x) = xTETPEx, (3.4)

is a positive quadratic form on Wk∗ . Furthermore, all smooth solutions x(t) evolve in
Wk∗ .

As a result, V(x) can be used as a Lyapunov function for the perturbed singular
system (3.1).

That is, there exist 1,2 > 0, such that we have

1x
Tx � xTETPEx � 2x

Tx, ∀t � 0, ∀x ∈Wk∗\{0}. (3.5)

The total derivative of V(x(·)) along the trajectory of the singular perturbed system
(3.1), is provided by the following:

V̇(x(t)) = ẋT(t)ETPEx(t)+ xT(t)ETPEẋ(t)

= (Eẋ(t))TPEx(t)+ xT(t)ETP(Eẋ(t))

= (Ax(t)+ f (t,x(t)))T PEx(t)+ xT(t)ETP(Ax(t)+ f (t,x(t)))

= xT(t)
(
ATPE+ETPA

)
x(t)+2xT(t)ETP f (t,x(t))

= −xT(t)Qx(t)+2xT(t)ETP f (t,x(t)),

= −xT(t)Qx(t)+ (Ex(t))T P( f (t,x(t))+ ( f (t,x(t)))T P(Ex) .

From Lemma 3.5, we arrive at

V̇(x(t)) � −xT(t)Qx(t)+m(Ex(t))T PEx(t)+
1
m

( f (t,x(t)))T P( f (t,x(t))) .

Condition (3.3) yields that there exist positive constants q1 and q2, such that

q1x
Tx � xTQx � q2x

Tx, ∀t � 0, ∀x ∈Wk∗\{0}. (3.6)

Based on Eq. (3.5), Eq. (3.6), and assumption (H1) , it derives that

V̇(x(t)) � −q1x
T(t)x(t)+m2x

T(t)x(t)+
max(P)

m
||||2|| f (t,x(t))||2

� −q1x
T(t)x(t)+m2x

T(t)x(t)+
 2(t)

m
max(P)max(T)xT(t)x(t).

Since lim
t→

 (t) = 0, there exists ̃ , such that

 (t) � ̃ , ∀t � 0. (3.7)
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Accordingly, we see

V̇(x(t)) � −
(

q1−m2− ̃ 2

m
max(P)max(T)

)
xT(t)x(t) = −xT(t)x(t),

where  = q1−m2− ̃ 2

m
max(P)max(T) .

Without loss of generality, we may choose m such as

q1 > m2 +
̃ 2

m
max(P)max(T).

By virtue of (3.5), it follows

V̇(x(t)) � − 
2

(Ex(t))TP(Ex(t)) = − 
2

V(x(t)).

Integration over s from 0 to t , gives

V(x(t)) � V(x(0))exp

(
− 
2

t

)
.

Now, we are at a point to determine an estimate for the norm of x(·) .

1||x(t)||2 � xT(t)ETPEx(t) � V(x(0))exp

(
− 
2

t

)
� 2||x0||2 exp

(
− 
2

t

)
.

Finally, for all t � 0, and all consistent initial conditions x0 , we arrive at

||x(t)|| �
√

2

1
||x0||exp

(
− 

22
t

)
.

That is, the singular perturbed system (3.1) is uniformly exponentially stable. �

Assume that there exists t such that f (t,0) �= 0, i.e., the linear time–invariant
perturbed singular system (3.1) does not have the trivial solution x ≡ 0.

DEFINITION 3.2. [14] The perturbed singular system (3.1) is said to be practi-
cally uniformly exponentially stable, if there exist two positive constants 1, 2 , and
r > 0 such that for t0 ∈ R+ , and x0 a consistent initial condition the following inequal-
ity is:

‖ x(t) ‖� 1 ‖ x0 ‖ exp(−2t)+ r, ∀t � 0. (3.8)

REMARK 3.6. Eq. (3.8) implies that x(t) will be bounded by a small bound r >
0, thus ||x(t)|| will be small for sufficiently large t . That is to say, the solution provided
in Eq. (3.8) will be uniformly ultimately bounded for sufficiently large t . The factor
2 in Eq. (3.8) is called the convergence speed, whereas the factor 1 is called the
transient estimate.

It is even worth seeing that, in the earlier definition, if we take r = 0, then we
recover the standard concept of the uniform exponential stability of the origin viewed
as an equilibrium point.
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Next our principal purpose is to state sufficient conditions to provide the practi-
cal uniform exponential stability of the linear time–invariant perturbed singular system
(3.1), under different restrictions are imposed on the uncertainties or disturbances. In
fact, if we suppose that the perturbation term is bounded, then the origin is not nec-
essarily an equilibrium point. For that reason, we will analyze the convergence of the
solutions toward a neighborhood of origin.

(H∈) The perturbation term f (t,x) satisfies, the following condition:

‖ f (t,x)‖ �  (t)||x||+  (t), ∀(t,x) ∈ R+ ×Wk∗ ,

where lim
t→

 (t) = 0, and  (·) is a continuous non–negative bounded function.

THEOREM 3.7. The perturbed singular system (3.1) is practically uniformly ex-
ponentially stable, if there exists a positive definite symmetric matrix P, being the so-
lution of Lyapunov matrix equation (3.2), where the matrix Q = QT > 0 satisfies (3.3),
and the perturbation term satisfies assumption (H2) .

In order to prove this Theorem, we need to recall an important Gronwall–lemma.

LEMMA 3.8. [21] Let g : [0,) −→ [0,) be a continuous function,  is a posi-
tive real number and m is a strictly positive real number. Assume that for all t ∈ [0,)
and 0 � u � t, we have

g(t)−g(u) �
∫ t

u
(−mg(s)+ )ds.

Then we obtain
g(t) � 

m
+g(0)exp(−mt).

Proof of Theorem 3.7. We reconsider the Lyapunov function (3.4), and the total
derivative of V(x(·)) , where x(·) is a trajectory of the perturbed system (3.1) is given
by the following:

V̇(x(t)) = ẋT(t)ETPEx(t)+ xT(t)ETPEẋ(t)

= xT(t)
(
ATPE+ETPA

)
x(t)+2xT(t)ETP f (t,x(t))

= −xT(t)Qx(t)+2xT(t)ETP f (t,x(t))

= −xT(t)Qx(t)+ (Ex(t))T P( f (t,x(t))+ ( f (t,x(t)))T P(Ex(t)) .

Besides, it implies from Lemma 3.5 that

V̇(x(t)) � −xT(t)Qx(t)+m(Ex(t))T PEx(t)+
1
m

( f (t,x(t)))TP( f (t,x(t))).

By Eq. (3.5) and Eq. (3.6), we arrive at

V̇(x(t)) � −q1x
T(t)x(t)+m2x

T(t)x(t)+
max(P)

m
||||2|| f (t,x(t))||2.
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Using assumption (H2 ), it derives that

V̇(x(t)) � −q1x
T(t)x(t)+m2x

T(t)x(t)+
max(P)

m
max(T)( (t)||x(t)||+  (t))2 .

Based on the inequality, (d + c)n � 2n−1(dn + cn) , for all d,c � 0, n � 1, we get

V̇(x(t)) � −q1x
T(t)x(t)+m2x

T(t)x(t)+
2
m
max(P)max(T) 2(t)xT(t)x(t)

+
2
m
max(P)max(T) 2(t).

Since t 
→  (t) is a continuous non–negative bounded function, there exists  > 0,
such that

 (t) �  , ∀t � 0. (3.9)

By virtue of Eq. (3.7) and Eq. (3.9), it follows

V̇(x(t)) � −q1x
T(t)x(t)+m2x

T(t)x(t)+
2
m
max(P)max(T)̃ 2xT(t)x(t)

+
2
m
max(P)max(T)

2

= −
(

q1−m2− 2
m
max(P)max(T)̃ 2

)
xT(t)x(t)

+
2
m
max(P)max(T)

2
.

We may take m , such as q1 > m2 + 2
mmax(P)max(T)̃ 2.

Set  = q1−m2− 2
mmax(P)max(T)̃ 2. We see that,

V̇(x(t)) � − 
2

(Ex(t))TP(Ex(t))+
2
m
max(P)max(T)

2
. (3.10)

Integrating (3.10) from u ∈ [0,t] to t � 0, on both sides of the inequality, it yields

V(x(t))−V(x(u)) �
∫ t

u
−V(x(s))+

2
m
max(P)max(T)

2
ds.

By Lemma 3.8, we obtain

V(x(t)) � V(x0)exp(− t)+
2max(P)max(T)

2

m
.

It then follows,

1||x(t)||2 � xT(t)ETPEx(t) � V(x0)exp(− t)+
2max(P)max(T)

2

m

� 2||x0||2 exp(− t)+
2max(P)max(T)

2

m
.
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That is,

||x(t)||2 � 2

1
||x0||2 exp(− t)+

2max(P)max(T)
2

m1
.

Then for all t � 0, and all consistent initial conditions x0 ,

||x(t)|| �
(
2

1

) 1
2

||x0||exp

(
−

2
t

)
+

√
2max(P) ||||√

m1
,

which means that the singular perturbed system (3.1) is practically uniformly exponen-
tially stable. �

An extension can be done via Gamidov’s type inequality, if we replace the as-
sumption (H2) by the following:

(H′
2) Assume that, there exists a continuous non–negative known function  ′(t),

such that
|| f (t,x)|| �  ′(t)||x||q, ∀(t,x) ∈ R+ ×Wk∗ ,

where q ∈]0,1[ and  ′(t) is a known non–negative continuous function, with(∫ +

0
 ′(t)2dt

) 1
2

�  ′ < +,

for a certain non–negative constant  ′ .

THEOREM 3.9. The perturbed singular system (3.1) is practically uniformly ex-
ponentially stable, if there exists a positive definite symmetric matrix P, being the so-
lution of Lyapunov matrix equation (3.2), where the matrix Q = QT > 0 satisfies (3.3).
Moreover, the perturbation term satisfies assumption (H′

2) .

Proof. Consider the following Lyapunov–like function:

V(x) = xTETPEx,

which is a positive quadratic form on Wk∗ .
The total derivative V(x(·)) with respect to time along the perturbed singular sys-

tem (3.1) is given by the following:

V̇(x(t)) = ẋT(t)ETPEx(t)+ xT(t)ETPEẋ(t)

= xT(t)
(
ATPE+ETPA

)
x(t)+2xT(t)ETP f (t,x(t))

= −xT(t)Qx(t)+2xT(t)ETP f (t,x(t)).

Using Eq. (3.3) and assumption (H′
2) , we arrive at

V̇(x(t)) � −q1||x(t)||2 +2||x(t)|| ||E|| ||P|| |||| || f (t,x(t))||
� −q1||x(t)||2 +2||E|| ||P|| ||||  ′(t) ||x(t)||q+1.
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By (3.5), it derives that

V̇(x(t)) � −q1

2
V(x(t))+

2max(P)||E|| ||||


q+1
2

1

 ′(t)V q+1
2 (x(t)). (3.11)

Setting,  =
q1

2
> 0, (t) =

2max(P)||E|| ||||


q+1
2

1

 ′(t), we have

V̇(x(t)) � −V(x(t))+(t)V q+1
2 (x(t)).

Let u(t) = V 1−q
2 (x(t)) , it comes that

u̇(t) =
1−q

2
V̇(x(t))V− 1+q

2 (x(t)). (3.12)

Hence, when Eq. (3.11) and Eq. (3.12) are combined, it gives

1−q
2

V̇(x(t))V− 1+q
2 (x(t)) � − 1−q

2
V 1−q

2 (x(t))+
1−q

2
(t).

That is,

u̇(t) � − 1−q
2

u(t)+
1−q

2
(t).

By using, the comparison lemma [15], one has

u(t) � u(0)e− 1−q
2 t +

1−q
2

e− 1−q
2 t
∫ t

0
(s)e

1−q
2 sds.

By Cauchy-Schwarz inequality, we then derive that


1−q
2

1 ||x(t)||1−q � 
1−q
2

2 ||x0||1−qe− 1−q
2 t

+
1−q

2
e− 1−q

2 t
(∫ 

0
2(s)ds

) 1
2
(∫ 

0
e2 1−q

2 sds

) 1
2

.

That is, we obtain


1−q
2

1 ||x(t)||1−q � 
1−q
2

2 ||x0||1−qe− 1−q
2 t +(1−q)e− 1−q

2 t max(P)||E|| ||||


q+1
2

1

 ′

× 1
(1−q)

(
e(1−q)t −1

) 1
2
.

It is easily observed that,

||x(t)||1−q � 
1−q
2

2


1−q
2

1

||x0||1−qe− 1−q
2 t +

 ′


max(P)||E|| ||||

1

=


1−q
2

2


1−q
2

1

||x0||1−qe− 1−q
2 t +

 ′


max(P)

√
max(ETE)

√
max(T)

1
.
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Thus, we obtain for all t � 0, and all consistent initial conditions x0 ,

||x(t)|| �
√2√1

||x0||e− 1
2 t +

⎛⎝ ′


max(P)

√
max(ETE)

√
max(T)


p+3
2

1

⎞⎠
1

1−q

,

that is the singular perturbed system (3.1) is practically uniformly exponentially sta-
ble. �

(H3) Assume that, the function f (t,x) satisfies the following condition:

|| f (t,x)|| � ′(t)||x||q +(t)||x||, ∀(t,x) ∈ R+ ×Wk∗ ,

where q ∈]0,1[ , (t) is a continuous non–negative bounded function, and ′(t) is a
known non–negative continuous function, with(∫ +

0
′(t)2dt

) 1
2

� ′ < ,

for a certain non–negative constant ′ .

THEOREM 3.10. The perturbed singular system (3.1) is practically uniformly ex-
ponentially stable, if there exists a positive definite symmetric matrix P, being the so-
lution of Lyapunov matrix equation (3.2), where the matrix Q = QT > 0 satisfies (3.3).
Moreover, the perturbation term satisfies assumption (H3) .

Proof. We consider the following Lyapunov function:

V(x) = xTETPEx,

which is a positive quadratic form on Wk∗ . The total derivative V(x(·)) with respect to
time along the perturbed singular system (3.1) equal to the following:

V̇(x(t)) = −xT(t)Qx(t)+2xTETP f (t,x(t)).

Using Eq. (3.3) and assumption (H3) , we see that

V̇(x(t)) � −q1||x(t)||2 +2||x(t)|| ||E|| ||P|| |||| || f (t,x(t))||
� −q1||x(t)||2 +2||E|| ||P|| |||| ′(t) ||x(t)||q+1 +2||E|| ||P|| |||| (t) ||x(t)||2.

By (3.5), it follows that

V̇(x(t)) � −q1

2
V(x(t))+

2max(P)||E|| ||||


q+1
2

1

′(t)V q+1
2 (x(t))

+
2max(P)||E|| ||||

1
(t)V(x(t)).
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Since, (t) is a non–negative continuous bounded function, there exists m such that

(t) � m, ∀t � 0.

Thus, one obtains

V̇(x(t)) � −q1

2
V(x(t))+

2max(P)||E|| ||||


q+1
2

1

′(t)V q+1
2 (x(t)) (3.13)

+
2max(P)||E|| ||||

1
mV(x(t))

� −
(

q1

2
− 2max(P)||E|| ||||m

1

)
V(x(t)) (3.14)

+
2max(P)||E|| ||||


q+1
2

1

′(t)V q+1
2 (x(t)). (3.15)

Without loss of generality, we may assume that
q1

2
>

2max(P)||E|| ||||m
1

.

Now, we set

 ′ =
q1

2
− 2max(P)||E|| ||||m

1
> 0, 1(t) =

2max(P)||E|| ||||


q+1
2

1

′(t).

Hence, we see

V̇(x(t)) � − ′V(x(t))+1(t)V
q+1
2 (x(t)).

Let U(t) = V 1−q
2 (x(t)) , it comes that

U̇(t) =
1−q

2
V̇(x(t))V− 1+q

2 (x(t)). (3.16)

Combining Eq. (3.13) and Eq. (3.16), one obtains

1−q
2

V̇(x(t))V− 1+q
2 (x(t)) � − 1−q

2
V 1−q

2 (x(t))+
1−q

2
1(t).

That is,

U̇(t) � − ′ 1−q
2

U(t)+
1−q

2
1(t).

Thus, one has

U(t) � U(0)e− ′ 1−q
2 t +

1−q
2

e− ′ 1−q
2 t
∫ t

0
1(s)e

′ 1−q
2 sds.

From the Cauchy-Schwarz inequality, it follows that


1−q
2

1 ||x(t)||1−q � 
1−q
2

2 ||x0||1−qe− ′ 1−q
2 t

+
1−q

2
e− ′ 1−q

2 t
(∫ 

0
2

1 (s)ds

) 1
2
(∫ 

0
e2 ′ 1−q

2 sds

) 1
2

.
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Hence, we obtain


1−q
2

1 ||x(t)||1−q � 
1−q
2

2 ||x0||1−qe− ′ 1−q
2 t +(1−q)e− ′ 1−q

2 t max(P)||E|| ||||


q+1
2

1

′

× 1
(1−q) ′

(
e

′(1−q)t −1
) 1

2
.

It is easily observed that,

||x(t)||1−q � 
1−q
2

2


1−q
2

1

||x0||1−qe− ′ 1−q
2 t +

′

 ′
max(P)||E|| ||||

1

=


1−q
2

2


1−q
2

1

||x0||1−qe− ′ 1−q
2 t +

′

 ′
max(P)

√
max(ETE)

√
max(T)

1
.

Thus, we obtain for all t � 0, and all consistent initial conditions x0 ,

||x(t)|| �
√2√1

||x0||e− ′ 1
2 t +

(
′

 ′
max(P)

√
max(ETE)

√
max(T)

1

) 1
1−q

,

which in turn gives that the singular perturbed system (3.1) is practically uniformly
exponentially stable. �

4. Example

Consider the following perturbed singular system:

Eẋ(t) = Ax(t)+ f (t,x(t)), (4.1)

where x = (x1,x2,x3) ∈ R3.

E =

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠ , A =

⎛⎝−1 −1 0
0 −1 0
−1 0 −1

⎞⎠ , f (t,x) =

⎛⎝ f1(t,x)
f2(t,x)
f3(t,x)

⎞⎠ ,

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(t,x) = 0

f2(t,x) =
1

ch(t)

f3(t,x) = e−t
√
|x3|,  > 0.

The system (4.1) might be viewed as a perturbed singular system of the following linear
time–invariant singular system:

Eẋ(t) = Ax(t). (4.2)
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Figure 1: The initial response of the nominal system (4.2), with the initial condition
x0 = [1, 0, 2]T

Note that, with this term of perturbation f , the fact that the function
√|x3| is not

Lipschitzian around zero does not pose a problem for the uniqueness of the solutions
because our study is done outside a small ball centered at the origin.

In fact, we have det(zE−A)= (z+1)2 �= 0 for some z∈C , and deg(det(zE−A))=
rank(E)= 2. Then the linear time–invariant singular system (4.1) is regular and impulse–
free.

Our objective now is to find the subspace of consistent initial conditions within the
method of Campbell. In fact, we have

Ĕ = (E+A)−1
|=0.E,

Ĕ = A−1E =

⎛⎝−1 1 0
0 −1 0
1 −1 −1

⎞⎠⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠=

⎛⎝−1 0 0
0 0 0
1 0 −1

⎞⎠ .

Additionally,

 (Ĕ) = {0, −1, −1}.

Applying the method of Campbell [3], one obtains

ĔD = Ĕ2(3I+2Ĕ) =

⎛⎝−1 0 0
0 0 0
−1 0 −1

⎞⎠ .
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Thus, it yields that

ĔĔD =

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠ ,

and


(
I− ĔĔD)= (I− ĔĔD)x0 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠x0 = 0.

Then the subspace of consistent initial conditions is given by the following:

(I− ĔĔD) = Wk∗ = {x ∈ R3 : x1 ∈ R, x2 = 0, x3 ∈ R}. (4.3)

Let’s consider the matrices P and Q in the general form:

P =

⎛⎝11 12 13

12 22 23

13 23 33

⎞⎠= PT, Q =

⎛⎝q11 q12 q13

q12 q22 q23

q13 q23 q33

⎞⎠= QT.

By a superficial calculation, one receives

ATPE+ETPA =

⎛⎝−1 0 −1
−1 −1 0
0 0 −1

⎞⎠⎛⎝11 12 13

12 22 23

13 23 33

⎞⎠⎛⎝−1 −1 0
0 −1 0
−1 0 −1

⎞⎠
+

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠⎛⎝11 12 13

12 22 23

13 23 33

⎞⎠⎛⎝−1 0 0
0 −1 0
0 −1 −1

⎞⎠
=

⎛⎝−211 −213 −11 −12 −213 −33

−11 −12 0 −13 −23

−213 −33 −13 −23 −233

⎞⎠= −Q.

That is, q22 = 0, for 12 = 23 = 13 = 0, then the matrix Q is the following:

Q =

⎛⎝q11 q12 q13

q12 0 0
q13 0 q33

⎞⎠ ,

where q11 = 211 �= 0, q12 = 11 �= 0, q13 = 33 �= 0, q33 = 233 �= 0.

We select P and Q, as follows:

P =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠= PT, Q =

⎛⎝2 1 1
1 0 0
1 0 2

⎞⎠= QT.
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Then it yields

xTQx = (x1 x2 x3)

⎛⎝2 1 1
1 0 0
1 0 2

⎞⎠⎛⎝ x1

x2

x3

⎞⎠
=
(
2x2

1 +2x1x2 +2x1x3 +2x2
3

)
x2=0

= 2x2
1 +2x1x3 +2x2

3 > 0, ∀x ∈Wk∗\{0}.

Utilizing MATLAB, one obtains q1 = 1, q2 = 3.

On the other side, we have

V(x) = xTETPEx = (x1 x2 x3)

⎛⎝ 1 0 0
0 0 0
0 0 1

⎞⎠⎛⎝ x1

x2

x3

⎞⎠
= x2

1 + x2
3 > 0, ∀x ∈Wk∗\{0}.

Consequently, V(x) can be used as a Lyapunov function candidate for the system (4.1).
Based on the set of consistent initial conditions (4.3), we might choose  as the

following:

=

⎛⎝1 1 1
0 0 0
1 1 1

⎞⎠ .

Figure 2: The initial response of the perturbed singular system (4.1), with the initial condition
x0 = [1, 0, 3]T
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By easy calculation, one gets

 f (t,x) =

⎛⎝ f2(t,x)+ f3(t,x)
0

f2(t,x)+ f3(t,x)

⎞⎠ .

Thus, for all t � 0, and all x ∈Wk∗ , we obtain

|| f (t,x)|| � e−t
√
|x3|.

It is clear that assumption (H′
2) is satisfied with  ′(t) = e−t . Then all assump-

tions of Theorem 3.9 are satisfied, thus the linear time–invariant perturbed singular
system (4.1) is practically uniformly exponentially stable, as shown in Figure 2, for
= 2.

5. Conclusion

We managed to use Gamidov’s type inequality to establish stability results. The
proposed approach for stability analysis is relied on the bounds of perturbations that
characterize the asymptotic convergence of the solutions to a closed ball centered at the
origin. We developed an example to show the validity of our main findings.
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