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THE OPERATOR EQUATION AXB =X AND
THE FUGLEDE-PUTNAM TYPE PROPERTY

EUNGIL KO AND YOONKYEONG LEE

(Communicated by R. Curto)

Abstract. In this paper, we study some connections between solutions A and B satisfying the
operator equation AXB = X . We also investigate several properties between such solutions A
and B. In particular, we show that if A has the single valued extension property, then so does B
when X is injective. Moreover, we consider the (weak) Fuglede-Putnam type property (defined
below) and investigate the local spectral properties between the solutions A and B under the
Fuglede-Putnam type property.

1. Introduction

Let £ (5¢) be the algebra of all bounded linear operators on a separable complex
Hilbert space . If A € £ (J¢), we write 6(A), 0u(A), 0,(A), and o,,(A) for
the spectrum, the surjective spectrum, the point spectrum, and the approximate point
spectrum of A, respectively, while r(A) denotes the spectral radius of A.

A subspace .# of S is an invariant subspace under the operator A if A.#Z C
A . In addition, if both .# and .#" are invariant subspaces for A, then we say .#
is a reducing subspace for A. The collection of all subspaces of .7’ invariant under A
is denoted by LatA. A hyperinvariant subspace for A is a subspace .# of # such
that S.# C .# for every operator S which commutes with A. The collection of all
subspaces of .7 hyperinvariant under A is denoted by HLarA.

An operator T in .£(4¢) has the unique polar decomposition T = U|T|, where
|T| = (T*T)% and U is the appropriate partial isometry satisfying ker(U) = ker(|T|) =
ker(T) and ker(U*) = ker(T*). Associated with T is a related operator |T|%U\T|%
called the Aluthge transform of T, denoted throughout this paper by 7. In many cases,
the Aluthge transforms of 7' have the better properties than 7 (see [14] and [15] for
more details).

An operator T € £ () is said to be a quasinormal operator if T and T*T
commute. An operator T € £ () is said to be a p-hyponormal operator if (T*T)P >
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(TT*)?,where 0 < p <oo. If p=1, T is called hyponormal. An operator T € L ()
is said to be a subnormal operator if T has a normal extension which means that there
exists a Hilbert space K such that H can be embedded in K and there exists a normal
operator N such that N|,» =T .

We next consider the following operator equation. This type of the operator equa-
tion has been studied by many authors (see [6], [8], [12], etc.)

Let X € Z(J€) be given. If A and B in .Z(J¢) satisfy the operator equation
AXB =X, then (A,B) is said to be a solution of the operator equation AXB =X .

For example, if X is a Toeplitz operator, then (U*,U) is a solution of U*XU =X
where U is the unilateral shift. Moreover, if X is a generalized Toeplitz operator with
respect to given contractions A and B, then AXB* = X holds. Hence (A,B*) is a
solution of AXB* = X . For another example, let T be a contraction, i.e., [|T|| < 1,ona
complex Hilbert space .77 . Since the sequence {T*"T"} is monotonically decreasing,
it converges strongly to a positive contraction X. Hence T*XT = X holds, and then
(T*,T) is a solution of T*XT = X (see [6] for more details). We next consider other
example. Let X = U be the unilateral shift and W, be the weighted shift defined by
Waen = Openyy for a, >0, n=1,2,.... Then WoUWg = U if and only if for all
n=12,...,

WoUWgen = BiOi1en1 = eny1 = Uey.

Hence (W, Wp) is a solution of WyUWp = U if and only if B,0, 1 =1 forall n =
1,2,....
We next consider the generalized derivation type. Define Ay g : Z(H) — L ()
by Axp(X) =AXB—X. Then A} 5(X) = AAs p(X)B— Ay p(X). By the induction, we
get that
L n _ _
N pX) =Y (—1)F <k>A” *xB"*.
k=0

In particular, if A=B*, X =1, and A}} ;(X) =0, then B is an n-isometry.

We next define the (weak) Fuglede-Putnam type property ((W)FPT). We say that
(A,B) satisfies the weak Fuglede-Putnam type property (WFPT) if Ay« p+(Y) = 0 for
some nonzero Y in .Z () whenever A4 p(X) = 0 for some nonzero X in Z(J¢).
In particular, if ¥ = X, we say that (A, B) satisfies the Fuglede-Putnam type property
(FPT) with X.

For example, let U be the unilateral shift defined by Ue, = e,,+1 where {e,} is

an orthonormal basis for J# . Set X = (I—(I)JU* 8) . IHA=U®I and B=1dU*,
then (A,B) satisfies the Fuglede-Putnam type property (FPT) since Ay p(X) =0 =
AA*Jg* (X) .

In this paper, we study some connections between solutions A and B satisfying
the operator equation AXB = X. We also investigate several properties between such
solutions A and B. In particular, we show that if A has the single valued extension
property, then so does B. Moreover, we consider the (weak) Fuglede-Putnam type
property and investigate the local spectral properties between the solutions A and B
under the Fuglede-Putnam type property.
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2. Preliminaries

An operator T € £ () has the single valued extension property (i.e., SVEP)
at A9 € C if for every open neighborhood U of Ay the only analytic function f :
U — 2 which satisfies the equation (T — A) f(A) =0 is the constant function f =0
on U. The operator T is said to have the single valued extension property if 7" has
the single valued extension property at every A € C. For an operator T € £ (5¢)
and for a vector x € ., the local resolvent set pr(x) of T at x is defined as the
union of every open subset G of C on which there is an analytic function f:G —
A such that (T —A)f(A) =x on G. The local spectrum of T at x is given by
or(x) = C\ pr(x). We define the local spectral subspace of an operator T € £ ()
by 7 (F)={x € J : or(x) C F} forasubset F of C. An operator T € .Z () is
said to have Dunford’s property (C) if 7 (F) is closed for each closed subset F' of
C. An operator T € Z(5) is said to have Bishop’s property () if for every open
subset G of C and every sequence {f,} of .7 -valued analytic functions on G such
that (T — A) f,(A) converges uniformly to 0 in norm on compact subsets of G, we get
that f,(A) converges uniformly to O in norm on compact subsets of G. An operator
T € £ (H) is said to be decomposable if for every open cover {U,V} of C there are
T -invariant subspaces 2~ and % such that

H=X+%, o(T|g)CU, and o(T|y)CV.
It is well known that
Bishop’s property (f8) = Dunford’s property (C) = SVEP.

Any of the converse implications does not hold, in general (see [19] for more details).

3. Connections between solutions

Let X € .Z(4¢) be given. Recall thatif A and B in .Z(J¢) satisfy the operator
equation AXB =X, then (A, B) is said to be a solution of AXB =X . In this section we
study some connections between solutions A and B satisfying the operator equation
AXB = X . We first consider the local spectral properties for this program.

THEOREM 3.1. Let X € L(J€) be given with 0 ¢ 6,(X) and let (A,B) be a
solution in £ () satisfying the operator equation AXB =X . If A has the single
valued extension property, then B has the single valued extension property.

Proof. Let f: G — C be an analytic function on G such that (B—AI)(f(4)) =0
on G, where G is a domain of f. Multiplying both sides by AX , we have

AX(B—AD)f(A) = (AXB—AAX)f(A)=0 on G.

Since AXB=X, (I-AA)Xf(A)=0 on G.
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(1) If 0¢ G, then (%I —A)X f(A) =0 on G. Consider an analytic function g given
by g(z) =1 forall z€ G. Set u= 4. Then (u—A)X(f(g)(u))=00on G’ ={5:A €
G}. Since A has the single valued extension property, X (fog)(u) =0 on G’'. Hence
Xf(A)=0on G. Since X is injective, f(A) =0 on G.

(i) Assume 0 € G. When A =0, since (I—AA)X f(A)=0 on G and kerX = {0},
f(0) =0. Since f is analytic at 0 and f # 0, by Taylor expansion at 0, we may
assume that f has zeros with finite multiplicities, say k at 0. Then f(z) = z*h(z) on
some neighborhood N of 0 in G, where h(0) # 0 on N. Set N’ = N\{0}. Then

Liia Xf(A) = Yo XA*(A)=0 on N'.
(z1-4)xs0) = (71-4)

Since N = N\{0}, we get

1
(XI—A)X/@(A) —0onN'.
By (i), h(A) =0 on N’ C G. By the Identity theorem, #(A) =0 on G. Since

f(A) = A*n(A), f(A) =0 on G. By (i) and (ii), B has the single valued extension
property. [

REMARK 3.2. The condition 0 ¢ 0, (X) in Theorem 3.1 is necessary.

EXAMPLE 3.3. Let U be the unilateral shift defined by Ue,, = e, | where {e,}
is an orthonormal basis for .777. Set X = I (I)JU* 8) .Then 0 € 0,(X). IfA=U®I
and B=1®U", then AXB = X holds. Moreover, since A = U @ is subnormal, it has
the single valued extension property. However, B =1@® U* does not have the single

valued extension property.
REMARK 3.4. The converse of Theorem 3.1 does not hold.

EXAMPLE 3.5. Let X = U (in Theorem 3.1) be the unilateral shift defined by
Ue, = ey where {e,} is an orthonormal basis for .. Then (U*,U) is a solution
of UXU =X and U has the single valued extension property. However, U* does not
have the single valued extension property .

As applications of Theorem 3.1, we get the following corollaries.

COROLLARY 3.6. Let X € Z () be given with 0 ¢ 0,(X) and let (A,B) be
a solution in L () satisfying the operator equation AXB = X. If A is hyponormal
(i.e. A*A > AA*), then B has the single valued extension property.

Proof. 1If A satifies A*A > AA*, then it is known that A has the single valued
extension property. Hence the proof follows from Theorem 3.1. [
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COROLLARY 3.7. Let X =U be the unilateral shift and Wo,, Wy be the weighted
shift defined by Wye, = Qyeny1 and Wge, = Buenyy forall n=1,2,... where {o}
and {B,} are positive sequences. If (WmWé‘ ) satisfies Wo X Wé‘ =X, then

S

— oo,

lim sup(0p -+ Cy41)

n—oo

Proof. Since WoXW; =X, B, = a%l for all n=1,2,---. Since 0,(Wy) =0,
W, has the single valued extension property. Then by Theorem 3.1, W/ has the single
valued extension property. It follows from Theorem 2.89 in [1] that

1 1 n
liminf<—--- ) =0.
n—ee (05 Oyl

=co. [J

S

Hence lim,,—c.sup(05 - - - Q1)

COROLLARY 3.8. Let X € L() be given with 0 ¢ 0,(X*) and let (A,B) be
a solution in £ () satisfying the operator equation AXB = X. If B* has the single
valued extension property, then A* has the single valued extension property.

Proof. If we take the adjoint of the operator equation AXB = X, then the proof
follows from Theorem 3.1. [

COROLLARY 3.9. Let X € Z () be given with 0 ¢ 0,(X) and let (A,B) be
a solution in £ () satisfying the operator equation AXB = X. If A has the sin-
gle valued extension property, then for a vector x € S, pg(x)~! C pa(AXx) where

ps(x) = {7 A € pp(x)}.

Proof. If A has the single valued extension property, then B has the single valued
extension property from Theorem 3.1. If A € pp(x), then there exist a neighborhood D
of A and a .7 -valued analytic function f on D such that (B—AI)f(A) = x defined
on D.If 0 ¢ D, then

(%I—A)AX f(A) = (AXB— AAX)f(A) = AXx

forany A € D. Since AX f(A) is analytic on D, % € pa(AXx).
If 0 € D, choose a proper open subset Dy of D. Then for any A € Dy,

(%I—A) AXf(A) = (AXB— AAX) (%) = AXx.

Hence % € pa(AXx). O
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COROLLARY 3.10. Let X € L () be given with 0 ¢ 6,(X) and let (A,B) be
a solution in £ () satisfying the operator equation AXB =X. If A is an isometry,
then the following statements hold.

(i) For any closed set F in C,

XHp(F) C Hp+(F) and o4+ (Xx) C op(x)

where Hg(F) ={x € 2 : og(x) C F}.
(ii) If there exists Ay € 0(A*)\0(B), then Hp+(F) is dense in 7 .
(iii) Uye 04+ (Xx) C 0(B).

Proof. (i) Since A is an isometry, it has the single valued extension property. In

fact, let f: G — C be an analytic function on G such that (A —AI)(f(1)) =0 on G,
where G is a domain of f. Then

0=[[(A=ADfA)] = {[Af A = ALl = L= [A[[IF ()]

forany A € G. Hence f(A)=0 on G. Thus A has the single valued extension property.
By Theorem 3.1, B has also the single valued extension property. Since A*A =1 and
AXB=X,XB=A*X. If x € Hg(F), then og(x) C F,i.e., F* C pg(x). Hence there
exists a 7 -valued analytic function f defined on F° such that

(B—=ADf(A)=x, A€F".
Since XB = A*X, we get
(A*—ADXf(A)=X(B—-AI)f(A) =Xx.

Hence A € pa+(Xx), i.e., 04«(Xx) C F. That implies Xx € Hy«(F), i.e., XHg(F) C
Hp(F).

For any Ay € pp(x), there exist a neighborhood D of Ay and a 5 -valued analytic
function f on D such that (B—AI)f(A)=ux forany A € D. Hence

(A* = ADXf(A) = (XB—AX)f(A) = Xx.

Hence p € pa(Xx). Thus pg(x) C pa=(Xx), i.e., 04+ (Xx) C 0p(x).

(ii) If there exists A9 € 0(A*)\0(B), then dy = dist(Ay,0(B)) >0. Set F ={z €
C:|A—A| > %0} Then o(B) C F. Since A has the single valued extension property,
by Theorem 3.1 B has the single valued extension property. Since op(x) C o(B) C F
forany x € 5, ¢ C Hg(F). By (i),

H =X C XHy(F) C Hp-(F).

Since Hy+(F) C A clearly, Hy«(F) = H# = .
(iii) By Theorem 3.1, B has the single valued extension property. Since o4+ (Xx) C
op(x) by (i),
Uxez 04+ (Xx) C Uxe 0B (x) = 0(B).
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So we complete the proof. [

Recall that a conjugation on .7Z is an antilinear operator C : ¢ — ¢ which
satisfies (Cx,Cy) = (y,x) forall x,y € 5# and C*> =1. An operator T € () is said
to be complex symmetric if there exists a conjugation C on .7 such that T = CT*C.
In this case, we say that 7' is a complex symmetric operator with conjugation C.

THEOREM 3.11. Let X € L () with 0 ¢ 0,(X) and let A and B be complex
symmetric operators with a conjugation C satisfying AXB = X. If A has the single
valued extension property, then B and B* have the single valued extension property.

Proof. By Theorem 3.1, B has the single valued extension property. Since CA*C =
A and CB*C =B,

CXC = CAXBC = (CAC)(CXC)(CBC) = A*(CXC)B".

Note that 0,,(X) = 6,(CXC)*. In fact, if y € 6,,(X), there exists a nonzero x such that
Xx = yx. Hence

0=C(X —y)x = CXx —JCx = CXC*x — JCx = (CXC —7)Cx

Since Cx#0, ¥ € 6,(CXC). Hence y € 6,(CXC)*. Therefore, 6,(X) C 6,((CXC)*).
Similarly, 6,(CXC)* C 6,,(X). Thus 6,(X) = 0,(CXC)

Now it suffices to show that B* has the single valued extension property. If (B* —
¥)f(y) = 0 for an analytic function f on a domain D, then (CBC —y)f(y) =0 on D.
Then

0= (BC—TO)f(y) = (B—T)Cf(y) on D

Take z=7%. Then 0 = (B—z)Cf(Z) on D* where D* = {Z:z € D}. Since f(y) is
analyticon D, f(y) =Y. _oan(y—)" for yp € D . Hence

=

h(z) = Cf(z) = C( Y, an(z—10)")

n=0

= 2 Can(z—7)",
n=0
which means that h(z) is analytic at % . From this, we know that Cf(zZ) is analytic
on D*. Since B has the single valued extension property, Cf(Z) = 0 on D*. Hence
f@) =0 on D*, ie, f(y) =0 on D. Hence B* has the single valued extension
property. [

EXAMPLE 3.12. Let X = U (in Theorem 3.1) be the unilateral shift defined by
Uey = eny1 where {e,} is an orthonormal basis for 7. If A and B are diagonal
operators defined by Ae, = dye, and Be, = e,, for each n, respectively, then A and
B are complex symmetric operators, A has the single valued extension property, and
(A,B) is a solution of AXB =X . Moreover, B and B* have the single valued extension

property.
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COROLLARY 3.13. Let X € L () be with 0 ¢ 6,(X). If A is normal and B is
a complex symmetric operator with a conjugation C satisfying AXB = X, then B and
B* have the single valued extension property.

Proof. Since A is normal, it has known that A has the single valued extension
property. Hence B has the single valued extension property from Theorem 3.1. As
an application of the proof of Theorem 3.11, B* has the single valued extension prop-
erty. U

COROLLARY 3.14. Let X € () with 0 ¢ 0,(X) andlet A and B be complex
symmetric operators with a conjugation C satisfying AXB = X. If A has the single
valued extension property, then

0(B) = 0w(B) = 04p(B).

Proof. Since B and B* have the single valued extension property, from Theorem
3.11, the proof follows from [1]. [

In the following proposition, we consider the spectra of a solution (A, B) satisfying
AXB=X.

PROPOSITION 3.15. Let X € L () be given, and let (A,B) be a solution of
AXB=X. Set G"' ={ : A € G}. Then the following statements hold.

(i) If 0 ¢ 6,(X), then 0 ¢ 6,(B) and 6,(B)~! C 6,(A).

(ii) If 0 ¢ 0,p(X), then 0 ¢ 0,,(B) and 6,,(B) ™' C 04p(A).

(iii) If 0 ¢ o(X), then 0 ¢ 0,,(B) and A is surjective.

Proof. In order to prove (i) and (ii), it suffices to show that (ii) holds. If O ¢
0Oup(X), then there exists ¢ > 0 such that ||Xx|| > c|[x|| forall x € JZ.If A € 6,,(B),
then there exists a sequence {x,} with ||x,|| =1 such that lim, ...||(B — 4 )x,|| = 0.
Since AXB=X,

0= lim ||AX (B — Al)xy|| = lim ||(AXB — AAX x|
= lim ||(1— AA)Xx,]]. (1)

If A =0, then 0 = limy—e | [Xxp|| > hm,HoocHan = ¢ > 0. Therefore, 0 ¢ 0,,(B).
Then from (1), we get that hm,HmH(— —A)Xx,|| =0. Since ||Xx,|| = c||xn|| = ¢ >

Toerll = 0. Hence, 1 € 04(4). Since A € 04y(B),

0 for all n, lim,—.. /(5 —A)
0up(B)™! C 04 (4).
(iii) If 0 ¢ o(X), then B is left invertible and A is right invertible. Hence 0 ¢

0,4p(B) and A is surjective. [J

PROPOSITION 3.16. Let X € £ () be given, and let (A,B) be a solution of
AXB = X. Then the following statements hold.
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(i) (A",B") are also solutions of AXB=X forn>1.

(ii) XkerB C kerA and Xker(B—A) C ker(A — %) if A #£0.

(iii) (A,B) is a solution of AYB =Y where Y = |A|%XUB\B\% and A and B are
the Aluthge transforms of A and B, respectively.

Proof. (i) The proof is trivial.
(i1) If x € kerB, then 0 = AXBx = Xx. Hence AXx =0, i.e., Xx € kerA. Thus
XkerB C kerA. If x € ker(B—A), then

0= (AXB—AAX)x= (X — AAX)x = (I — AA)Xx.

Since A #0, (A— %)Xx = 0. Thus Xx € ker(A — Al), and hence Xker(B—A1) C
ker(A— 1).

(iii) Let A = U4|A| and B = Up|B| be the polar decomposition of A and B, re-
spectively. Since AXB =X, AYB =Y where ¥ = |A|2XUpy|B|2. O

We next study the (weak) Fuglede-Putnam type property ((W)FPT). Define A4 5 :
L(AH)— L(H) by Ay p(X) =AXB—X . We first recall the (weak) Fuglede-Putnam
type property ((W)FPT).

DEFINITION 3.17. We say that (A,B) satisfies the weak Fuglede-Putnam type
property (WFPT) if Ay« g« (Y) = 0 for some nonzero Y in £ (%) whenever Ay (X ) =
0 for some X # 0 in £ (). In particular, if ¥ = X, we say that (A, B) satisfies the
Fuglede-Putnam type property (FPT) with X .

We next give some basic properties for the Fuglede-Putnam type property (FPT).
Recall that if x and y are vectors in .77, then the rank one operator x®y on J7 is
defined by (x®y)z= (z,y)x for z € .

PROPOSITION 3.18. (i) If A and B* are isometries, then (A,B) satisfies the
Fuglede-Putnam type property (FPT) with X .

(ii) If A*x = yYAx and B*y =YBy for some nonzero y € C, then (A,B) satisfies the
Fuglede-Putnam type property (FPT) with x X y.

(iii) If (A, B) satisfies the Fuglede-Putnam type property (FPT) with X , then (A®
A,B® B) satisfies the Fuglede-Putnam type property (FPT) with X ® X .

Proof. (i) Assume that A4 (X) =0 for some X # 0 in .Z (/7). Then AXB=X,
and hence A*XB* = A*(AXB)B* = (A*A)X(BB*) =X . Hence As«p+(X) =0.
(ii) Assume Ay p(x®y) = 0. Then

Aprpr(x®@y) = A"(x@Y)B" —x@y=A"X®By —x®y
1
= YAX® ?B*y—x®y:Ax®B*y—x®y

=A(x®y)B—xQy=xQy—x®y=0.
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(iii) Since (A, B) satisfies the Fuglede-Putnam type property (FPT), Ay« g« (X) =0
whenever Ay g(X) =0 for some X # 0 in (). If Ay p(X) =0 for some X #0,
then AAEBA,B&BB(X @X) = 0. Since AA*J;* (X) =0, AA*&BA*,B*EBB* (X @X) =0. O

COROLLARY 3.19. Let Ayp(X) =0 for all X in L (J¢). If A and B* are
isometries, then
[AYB —Y +X|| > [IX]|

forallY € L ().

Proof. Since A and B are contractions and (A,B) satisfies the Fuglede-Putnam
type property (FPT) from Proposition 3.18, the proof follows from [17] or [22]. [J

REMARK 3.20. If (A,B) satisfies the Fuglede-Putnam type property (FPT) with
X, then (A, B) satisfies the weak Fuglede-Putnam type property (WFPT). But the con-
verse is not true.

EXAMPLE 3.21. Let X = (Z :Z) € Z(C*) where a#0. If A= (‘1) (1)) and

B— G ‘01>, then AXB = X holds. If ¥ — (Z Z) € Z(C?) where a # 0, then
A*YB* =Y holds. Hence (A,B) satisfies the weak Fuglede-Putnam type property
(WFPT). However, since A*XB* # X, (A,B) does not satisfy the Fuglede-Putnam type
property (FPT) with X

We observe from Example 3.21 that (WFPT) does not preserve the normality,
indeed, A is normal, but B is not. We next study the basic properties of the (weak)
Fuglede-Putnam type property ((W)FPT).

PROPOSITION 3.22. (i) If A is similar to B via A= SBS™" where S is invertible,
then (A,B) satisfies the weak Fuglede-Putnam type property (WFPT).

(ii) If A and B are complex symmetric operators, then (A,B) satisfies the weak
Fuglede-Putnam type property (WFPT).

Proof. (1) If A4 p(X) =0 for some X # 0 in £ (), then
X =AXB=SBS 'XB=SB(S'X5)S'B.
Therefore we get that
S7!x =B(S"'X)B=B(S'X)s'AS.

Then S™'XS~! = B(S~!XS 1HA. Hence A*(S~!XS~)*B* = (S7'XS71)*, and
Ape g (STIXS71) = 0.

(ii) Assume that Ay g(X) =0 for some X # 0 in £ (). Since CA*C = A and
DB*D = B where C and D are conjugations, X = AXB = (CA*C)X(DB*D). Hence
A*(CXD)B* = CXD. Thus Ay - (CXD) =0. [
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PROPOSITION 3.23. If (A,B) satisfies the Fuglede-Putnam type property (FPT)
with X, then the following statements hold.

(i) If R and S are similar to A and B, respectively, then (R,S) satisfies the weak
Fuglede-Putnam type property (WFPT). In particular, if R and S are unitarily equiv-
alent to A and B, respectively, then (R,S) satisfies the Fuglede-Putnam type property
(FPT) with X .

(ii) (g , E) satisfies the weak Fuglede-Putnam type property (WFPT). In particular,
if A and B are quasinormal, then (g, E) satisfies the Fuglede-Putnam type property
(FPT) with X .

Proof. (i) If R and S are similar to A and B, respectively, then there exist in-
vertible operators U and V such that R=UAU ! and S =VBV~!. If Ags(X)=0
for some X # 0 in .Z(), then A(U"'XV)B=U"'XV. Since (A,B) satisfies the
Fuglede-Putnam type property (FPT), A*(U~'XV)B* = U~'XV. Since R = UAU !
and S =VBV~', R*((UU*)"'X(VV*))S* = (UU*)"'X(VV*). Hence (R,S) satisfies
the weak Fuglede-Putnam type property (WFPT). In particular, if R and S are unitarily
equivalent to A and B, respectively, then UU* =1 = VV*. Hence we get the result.

(ii) We know that (A,B) is a solution of AYB =Y where ¥ = \A|%XUB\B\% by
Proposition 3.16. Since (A)*|A|2 U = |A|2UA* and B*|B|? = |B|2 (B)*, (A)*Z(B)* =
Z where Z = |A|%U “X|B \% . In particular, if A and B are quasinormal, then A = A and
B = B from [14]. So we complete the proof. [l

In the following example, we show that (R,S) in Proposition 3.23 may not satisfy
the Fuglede-Putnam type property (FPT) with the same X, even if (A,B) satisfies the
Fuglede-Putnam type property (FPT) with X .

10 -10 11 .
EXAMPLE 3.24. Let A = (0_1), B = (0 1), U=V = (0 _1> be in

Z(CH. IfR=UAU' = (é _21) and S=VBV ! = <_01 _12) , then R and S are
01

00
Thus (A, B) satisfies the Fuglede-Putnam type property (FPT). But RXS = X. On the
other hand, R*XS* # X . Hence (R,S) does not satisfiy the Fuglede-Putnam type prop-

erty (FPT) with X . On the other hand, if ¥ = “ —a) where a or b is nonzero, then

similar to A and B, respectively. If X = ,then AXB=X and A*XB* =X hold.

b —a
R*YS* =Y. Hence (R,S) satisfies the weak Fuglede-Putnam type property (WFPT).

THEOREM 3.25. Assume that B is normal and A is similar to B via A= TBT !
where T is invertible. If Ay g(X) =0 for some X #0 in L (), then the following
statements hold.

(i) (B,B) satisfies the Fuglede-Putnam type property (FPT) with T~'X .

(ii) (A,B) satisfies the weak Fuglede-Putnam type property (WFPT).
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Proof. (i) Since Agp(X) =0 for some X #0 in Z(), B(T 'X)B=T"'X.
Hence T~ !X € kerAp p. Note that kerAp p = ker Ag+ p+. In fact,
Ap g (App(T7'X)) = B*App(T ' X)B* — App(T~'X)
=B [B(T"'X)B—T"'X|B*—B(T"'X)B+ T 'X
and
App(Ap g+ (T7'X)) = BAp g+ (T 'X)B — Ape p+(T7'X)
= B[B*(T"'X)B* — T 'X|B—B*(T"'X)B* + T 'X.
Since B is normal, A;B = Ap+ g+, and
Ape g (Aps(T~'X)) = App(Ap- 5+ (T7'X)),

App is normal. Hence kerApgp = kerAp« p«. Thus T-x € kerAp+ g+, and then
B*(T~'X)B* = T~'X. Hence (B, B) satisfies the Fuglede-Putnam type property (FPT)
with 771X .

(ii) Since A = TBT~!, B* = T*A*(T~!)*. Since B*(T~'X)B* = T~'X by (i),

A (T~ Y 17 'X)B* = (171" T 'X.

Thus As+ g+ (|]T~'>X) = 0. Hence (A, B) satisfies the weak Fuglede-Putnam type prop-
erty (WFPT). U

COROLLARY 3.26. Assume that A and B* are subnormal satisfying Ay p(X) =0
Sfor some X #0 in L (). Then their normal extensions (S,T) satisfies the weak
Fuglede-Putnam type property (WFPT).

Proof. Since A and B* are subnormal, their normal extensions S and T are fol-

lowings;
_(AA (B O
S = <0A2> and T = (Bl Bz>'
X0

Take ¥ = < 0 0). Then SYT =Y. Since S and T are normal, (S,7T) satisfies the

weak Fuglede-Putnam type property (WFPT) from Theorem 3.25. [

Recall that an operator T € £ (5¢°) has the Bishop’s property () modulo a
closed set S C C if for all open subsets V C C\S the mapping on the space

oV, 5#)— 0V, ), f—(T—2)f

is injective with closed range on the space &'(V,5#) of all analytic functions on V with
values in 7. If this condition is satisfied with S = 0, the T will be said to possess
the Bishop’s property (f3). We also recall that 7 has the property (6) modulo S if for
every open cover {U,V} of C, the decomposition % = Hy (V) + Hy (C\U) holds for
SscucUcV.

In the following theorem, we show that the Fuglede-Putnam type property pre-
serves the Bishop’s property () modulo a closed set S C C of an operator.
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THEOREM 3.27. Assume that (A,B) satisfies the Fuglede-Putnam type property
(FPT) with X bounded below. If A has the Bishop’s property () modulo {0}, then B
has also the Bishop’s property () modulo {0}.

Proof. Assume that A has the Bishop’s property () modulo {0}. Let V C
C\{0} be open and let {f,} be a sequence in &'(V, %) with

lim (B —z) fu(z) = 0.

n—oo

Since (A, B) satisfies the Fuglede-Putnam type property (FPT), AXB = X . Hence
Tim AX(B—z)fy(z) = lim (AXB —zAX) fu(2)
= Tim (I = 2A)X fu(2) = 0

in O(V,7). Since 0¢V,

fim (11— A)X fu(z) = 0

n—oo 7

in 0(V,5). Consider an analytic function g given by g(z) = % for all ze V. Set
U= i Then lim, (I —A)X(f,0g)(u)) =0 in O(V',#) where V' = {% 1z €
V. Smce A has the Bishop’s property () modulo {0}, lim, X (frog)(u) =0
in O(V', ). Hence limy—wXfy(z) =0 in O(V,7). Since X is bounded be-
low, lim, . f,(z) =0 in €(V, ). Hence B has the Bishop’s property () modulo
{0}. O

COROLLARY 3.28. Assume that (A,B) satisfies the Fuglede-Putnam type prop-
erty (FPT) with X bounded below . If A is decomposable modulo {0}, then B is also
decomposable modulo {0} .

Proof. Since A and A* have the Bishop’s property () modulo {0}, B and B*
have the Bishop’s property () modulo {0} from Theorem 3.27. Hence B is decom-
posable modulo {0}. O

COROLLARY 3.29. Assume that (A,B) satisfies the Fuglede-Putnam type prop-

erty (FPT) with X bounded below . If A is normal or compact, then B is decomposable
modulo {0}.

Proof. Since A is decomposable, B is decomposable modulo {0} from Corollary
328. O
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