

SOME NOVEL INEQUALITIES FOR BEREZIN NUMBER OF OPERATORS

Ulaş Yamancı, Messaoud Guesba and Duygu Uslu

(Communicated by F. Kittaneh)

Abstract. In this paper, some Berezin number inequalities of bounded linear operators defined on a reproducing kernel Hilbert space are developed which generalize and refine the earlier related inequalities. Some applications of the newly obtained inequalities are also provided.

1. Introduction and preliminaries

Let $\mathcal{B}(\mathcal{H})$ denote the C^* - algebra of all bounded linear operators acting on a non trivial complex Hilbert space \mathcal{H} with the inner product $\langle .,. \rangle$ and the associated norm $\|.\|$. For $T \in \mathcal{B}(\mathcal{H})$, T^* denotes the adjoint of T and $|T| = \sqrt{T^*T}$. Recall that, the numerical range of $T \in \mathcal{B}(\mathcal{H})$ is defined by

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, \ ||x|| = 1 \},$$

while the numerical radius is defined as

$$w(T) = \sup\{|\langle Tx, x\rangle| : x \in \mathcal{H}, ||x|| = 1\}.$$

It is well known that the norm $\|\cdot\|$ and the numerical radius $\omega(\cdot)$ are equivalent, where one has the two-sided inequality:

$$\frac{1}{2}\left\|T\right\|\leqslant w\left(T\right)\leqslant\left\|T\right\|,$$

for any $T \in \mathcal{B}(\mathcal{H})$.

For some results about the numerical radius inequalities and their applications, we refer to see [1, 7, 13, 22, 23].

Let Θ be a nonempty set. A functional Hilbert space $\mathscr{H}(\Theta)$ is a Hilbert space of complex valued functions, which has the property that point evaluations are continuous i.e., for each $v \in \Theta$ the map $f \longmapsto f(v)$ is a continuous linear functional on \mathscr{H} . The Riesz representation theorem ensues that for each $v \in \Theta$ there exists a unique element $k_v \in \mathscr{H}$ such that $f(v) = \langle f, k_v \rangle$ for all $f \in \mathscr{H}$. The set $\{k_v : v \in \Theta\}$ is called the reproducing kernel of the space \mathscr{H} . If $\{e_n\}_{n\geqslant 0}$ is an orthonormal basis for

Keywords and phrases: Berezin number, Berezin symbol, reproducing kernel Hilbert space, inequalities.

Mathematics subject classification (2020): Primary 47A63.

a functional Hilbert space \mathscr{H} , then the reproducing kernel of \mathscr{H} is given by $k_{\nu}(z) = \sum_{n=0}^{+\infty} \overline{e_n(\nu)} e_n(z)$ (see [19]). For $\nu \in \Theta$, let $\widehat{k}_{\nu} = \frac{k_{\nu}}{\|k_{\nu}\|}$ be the normalized reproducing kernel of \mathscr{H} .

Let T be a bounded linear operator on \mathscr{H} , the Berezin symbol of T, which firstly have been introduced by Berezin [8, 9] is the function \widetilde{T} on Θ defined by

$$\widetilde{T}(v) := \left\langle T\widehat{k}_{v}, \widehat{k}_{v} \right\rangle.$$

The Berezin set and the Berezin number of the operator T are defined respectively by:

$$\mathbf{Ber}(T) := \left\{ \left\langle T\widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle : \nu \in \Theta \right\},$$

and

$$\mathbf{ber}\left(T\right):=\sup\left\{ \left|\left\langle T\widehat{k}_{\nu},\widehat{k}_{\nu}\right\rangle \right|:\nu\in\Theta\right\} .$$

It is clear that the Berezin symbol \widetilde{T} is the bounded function on Θ whose value lies in the numerical range of the operator T and hence for any $T \in \mathcal{B}(\mathcal{H}(\Theta))$,

Ber
$$(T) \subset W(T)$$
 and **ber** $(T) \leqslant \omega(T)$.

Moreover, the Berezin number of an operator T satisfies the following properties:

- (i) $\mathbf{ber}(T) = \mathbf{ber}(T^*)$.
- (ii) **ber** $(T) \leq ||T||$.
- (iii) **ber** $(\alpha T) = |\alpha|$ **ber** (T) for all $\alpha \in \mathbb{C}$.
- (iv) $\operatorname{ber}(T+K) \leq \operatorname{ber}(T) + \operatorname{ber}(K)$ for all $T, K \in \mathcal{B}(\mathcal{H}(\Theta))$.

Notice that, in general, the Berezin number does not define a norm. However, if \mathscr{H} is a reproducing kernel Hilbert space of analytic functions, (for instance on the unit disc $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$), then **ber**(.) defines a norm on $\mathscr{B}(\mathscr{H}(\mathbb{D}))$ (see [20, 21]).

The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on Hardy and Bergman spaces. A nice property of the Berezin symbol is mentioned next. If $\widetilde{T}(v) = \widetilde{K}(v)$ for all $v \in \Theta$, then T = K. Therefore, the Berezin symbol uniquely determines the operator. The Berezin symbol and Berezin number have been studied by many mathematicians over the years, a few of them are [2, 6, 18, 26, 27, 29, 30, 31, 32, 33].

Now, for any operator $T\in \mathcal{B}(\mathcal{H}(\Theta))$, the Berezin norm of T denoted as $\|T\|_{ber}$ is defined by

$$||T||_{ber} := \sup_{v \in \Theta} \left| |T\widehat{k}_v| \right|,$$

where \widehat{k}_{v} is normalized reproducing kernel for $v \in \Theta$.

For $T, K \in \mathcal{B}(\mathcal{H}(\Theta))$ it is clear from the definition of the Berezin norm that the following properties hold:

- (i) $||vT||_{ber} = |v| ||T||_{ber}$ for all $v \in \mathbb{C}$,
- (ii) $||T + K||_{ber} \le ||T||_{ber} + ||K||_{ber}$,
- (iii) **ber** $(T) \leq ||T||_{ber} \leq ||T||$.

For further results about the Berezin norm inequalities and their applications, we refer to see [3, 4, 5, 10, 11, 17, 25] and references therein.

In this paper, some refinements and generalizations of Berezin norm and Berezin number inequalities of bounded linear operators defined on a reproducing kernel Hilbert space are established. This work is organized as follows: In Section 2, we collect a few lemmas that are required to state and prove the results in the subsequent section. In Section 3, we establish some new refinements and generalizations of Berezin number inequalities.

2. Prerequisites

In this section, we present the following lemmas that will be used to develop our results in this paper.

LEMMA 1. ([24]) Let $a, b \ge 0$ and let p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$ab + \min\left\{\frac{1}{p}, \frac{1}{q}\right\} \left(a^{\frac{p}{2}} - b^{\frac{q}{2}}\right)^2 \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

LEMMA 2. ([12]) If a,b,x are vectors in \mathcal{H} with ||x|| = 1, then

$$\left|\left\langle a,x\right\rangle \left\langle x,b\right\rangle \right|\leqslant\frac{1}{2}\left(\left\|a\right\|\left\|b\right\|+\left|\left\langle a,b\right\rangle \right|\right).$$

LEMMA 3. ([28]) Let $T \in B(\mathcal{H})$ be a positive operator and let $x \in \mathcal{H}$ with ||x|| = 1. Then

(i) $\langle Tx, x \rangle^r \leq \langle T^r x, x \rangle$ for $r \geq 1$.

(ii)
$$\langle T^r x, x \rangle \leq \langle T x, x \rangle^r$$
 for $0 < r \leq 1$.

LEMMA 4. ([22]) Let $T \in B(\mathcal{H})$ and let f and g be non-negative continuous functions on $[0,\infty)$ such that f(t)g(t) = t for all $t \in [0,\infty)$. Then

$$\left|\left\langle Tx,y\right\rangle \right|^{2}\leqslant\left\langle f^{2}\left(\left|T\right|\right)x,x\right\rangle \left\langle g^{2}\left(\left|T^{*}\right|\right)y,y\right\rangle ,$$

for all $x, y \in \mathcal{H}$.

In particular, if $f(t) = g(t) = \sqrt{t}$, then we have

$$|\langle Tx, y \rangle|^2 \leqslant \langle |T|x, x \rangle \langle |T^*|y, y \rangle.$$

LEMMA 5. ([15]) Let $x, y, z \in \mathcal{H}$ with $z \neq 0$. Then

$$\left| \langle x, y \rangle - \frac{\langle x, z \rangle}{\|z\|^2} \langle z, y \rangle \right|^2 + \frac{|\langle x, z \rangle|^2}{\|z\|^2} \|y\|^2 \le \|x\|^2 \|y\|^2.$$

LEMMA 6. ([14, p. 116]) *Let* $x, y, z \in \mathcal{H}$. *Then*

$$|\langle z, x \rangle|^2 + |\langle z, y \rangle|^2 \le ||z||^2 \left(\max \left(||x||^2, ||y||^2 \right) + |\langle x, z \rangle| \right).$$

3. Main results

In this section, we present our results. Firstly, we introduce a new refinement of the inequality $\mathbf{ber}(T) \leq ||T||_{ber}$.

THEOREM 1. Let $T \in B(\mathcal{H}(\Theta))$ be an invertible operator. Then

$$\mathbf{ber}^{2}(T) \leq \|T\|_{ber}^{2} - \inf_{v \in \Theta} \eta^{2}(\widehat{k}_{v}),$$

where
$$\eta^{2}\left(\widehat{k}_{v}\right) = \frac{\left|\widetilde{T^{2}}\left(v\right) - \left(\widetilde{T}\left(v\right)\right)^{2}\right|}{\left\|T^{*}\widehat{k}_{v}\right\|}.$$

Proof. Let \hat{k}_{V} be the normalized reproducing kernel of \mathscr{H} . We put $x=T\hat{k}_{V}$, $y=T^{*}\hat{k}_{V}$ and $z=\hat{k}_{V}$ in Lemma 5, we get

$$\left(\frac{\left|\widetilde{T^{2}}(v)-\left(\widetilde{T}(v)\right)^{2}\right|}{\left\|T^{*}\widehat{k}_{v}\right\|}\right)^{2}+\left|\widetilde{T}(v)\right|^{2}\leqslant\left\|T\widehat{k}_{v}\right\|^{2}.$$

Thus,

$$\left|\widetilde{T}\left(v\right)\right|^{2} \leqslant \left\|T\widehat{k}_{v}\right\|^{2} - \inf_{v \in \Theta} \left(\frac{\left|\widetilde{T^{2}}\left(v\right) - \left(\widetilde{T}\left(v\right)\right)^{2}\right|}{\left\|T^{*}\widehat{k}_{v}\right\|}\right)^{2}.$$

Now, by taking the supremum over all $v \in \Theta$ in the above inequality, we get the desired result. \square

Our next result is stated as follows.

THEOREM 2. Let $T \in B(\mathcal{H}(\Theta))$ and let p,q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. If f and g are non-negative continuous functions on $[0,\infty)$ satisfying f(t)g(t) = t $(t \geqslant 0)$, then for all $r \geqslant 1$, we have

$$\mathbf{ber}^{2r}(T) \leqslant \left\| \frac{1}{p} f^{2pr}(|T|) + \frac{1}{q} g^{2qr}(|T^*|) \right\|_{ber} - r_0 \inf_{v \in \Theta} \delta\left(\widehat{k}_v\right),$$

where
$$\delta\left(\widehat{k}_{v}\right) = \left(\left\langle f^{2p}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}} - \left\langle g^{2q}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}}\right)^{2}$$
 and $r_{0} = \max\left\{\frac{1}{p},\frac{1}{q}\right\}$.

Proof. Let \hat{k}_{v} be the normalized reproducing kernel of \mathcal{H} . Then, we have

$$\begin{split} \left|\widetilde{T}\left(v\right)\right|^{2r} &\leqslant \left\langle f^{2}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{r}\left\langle g^{2}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{r} \\ & \text{(by Lemma 4)} \\ &= \left\langle f^{p\frac{2}{p}}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{r}\left\langle g^{q\frac{2}{q}}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{r} \\ &\leqslant \left(\left\langle f^{2p}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{1}{p}}\left\langle g^{2q}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{1}{q}}\right)^{r} \\ & \text{(by Lemma 3)} \\ &\leqslant \left(\frac{1}{p}\left\langle f^{2p}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{r} + \frac{1}{q}\left\langle g^{2q}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{r}\right) \\ &- r_{0}\left(\left\langle f^{2p}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}} - \left\langle g^{2q}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}}\right)^{2} \\ & \text{(by Lemma 1)} \\ &\leqslant \left(\frac{1}{p}\left\langle f^{2pr}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle + \frac{1}{q}\left\langle g^{2qr}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}}\right)^{2} \\ &- r_{0}\left(\left\langle f^{2p}\left(|T|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}} - \left\langle g^{2q}\left(|T^{*}|\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle^{\frac{r}{2}}\right)^{2} \\ &\text{(by Lemma 3)} \end{split}$$

Taking the supremum in over $v \in \Theta$, we get

$$\begin{aligned} \mathbf{ber}^{2r}(T) &\leqslant \mathbf{ber}\left(\frac{1}{p}f^{2pr}(|T|) + \frac{1}{q}g^{2qr}(|T^*|)\right) - r_0\inf_{v \in \Theta}\delta\left(\widehat{k}_v\right) \\ &\leqslant \left\|\frac{1}{p}f^{2pr}(|T|) + \frac{1}{q}g^{2qr}(|T^*|)\right\|_{ber} - r_0\inf_{v \in \Theta}\delta\left(\widehat{k}_v\right), \\ (\text{since } \mathbf{ber}(X) \leqslant \|X\|_{ber} \text{ for every } X \in B\left(\mathscr{H}(\Theta)\right)) \end{aligned}$$

where
$$\delta\left(\widehat{k}_{V}\right) = \left(\left\langle f^{2p}\left(|T|\right)\widehat{k}_{V},\widehat{k}_{V}\right\rangle^{\frac{r}{2}} - \left\langle g^{2q}\left(|T^{*}|\right)\widehat{k}_{V},\widehat{k}_{V}\right\rangle^{\frac{r}{2}}\right)^{2}$$
.
This completes the proof. \Box

Letting p = q = 2 in Theorem 2, we have the following corollary.

COROLLARY 1. Let $T \in B(\mathcal{H}(\Theta))$. If f and g are non-negative continuous functions on $[0,\infty)$ satisfying f(t)g(t)=t $(t \ge 0)$, then

$$\mathbf{ber}^{2r}(T) \leqslant \frac{1}{2} \left\| f^{4r}(|T|) + g^{4r}(|T^*|) \right\|_{ber} - \frac{1}{2} \inf_{v \in \Theta} \delta\left(\widehat{k}_v\right),$$
where $\delta\left(\widehat{k}_v\right) = \left(\left\langle f^4(|T|)\widehat{k}_v, \widehat{k}_v \right\rangle^{\frac{r}{2}} - \left\langle g^4(|T^*|)\widehat{k}_v, \widehat{k}_v \right\rangle^{\frac{r}{2}}\right)^2.$

Considering $f(t) = g(t) = \sqrt{t}$ in Corollary 1, we get the following inequality.

COROLLARY 2. If $T \in B(\mathcal{H}(\Theta))$ and $r \ge 1$, then

$$\mathbf{ber}^{2r}(T) \leqslant \frac{1}{2} \left\| (TT^*)^r + (T^*T)^r \right\|_{ber} - \frac{1}{2} \inf_{v \in \Theta} \delta\left(\widehat{k}_v\right),$$

where
$$\delta\left(\widehat{k}_{\nu}\right) = \left(\left\langle |T|^{2}\widehat{k}_{\nu}, \widehat{k}_{\nu}\right\rangle^{\frac{r}{2}} - \left\langle |T^{*}|^{2}\widehat{k}_{\nu}, \widehat{k}_{\nu}\right\rangle^{\frac{r}{2}}\right)^{2}$$
.

REMARK 1. We note that the inequality in Corollary 2 refines the inequality

$$\mathbf{ber}^{r}(T) \leqslant \frac{1}{2}\mathbf{ber}(|T|^{r} + |T^{*}|^{r}), \text{ for all } r \geqslant 1.$$

obtained in [29, Corollary 3.5].

Now, we state the following theorem.

THEOREM 3. Let $T \in B(\mathcal{H}(\Theta))$ and let f be a non-negative increasing convex function on $[0,\infty)$. Then

$$f\left(\mathbf{ber}^{2}\left(T\right)\right) \leqslant \frac{1}{4}\left(f\left(\left\|T^{*}T + TT^{*}\right\|_{ber}\right) + f\left(\left\|T^{*}T - TT^{*}\right\|_{ber}\right)\right) + \frac{1}{2}f\left(\mathbf{ber}\left(T^{2}\right)\right).$$

Proof. Let \widehat{k}_{V} be the normalized reproducing kernel of \mathscr{H} . Putting $x=T\widehat{k}_{V}$, $y=T^{*}\widehat{k}_{V}$, and $z=\widehat{k}_{V}$ in Lemma 6, and using the fact $\max\left\{a,b\right\}=\left(|a+b|+|a-b|\right)/2$, we obtain

$$\begin{split} &\left|\left\langle \widehat{k}_{v}, T\widehat{k}_{v} \right\rangle\right| \left|\left\langle \widehat{k}_{v}, T^{*}\widehat{k}_{v} \right\rangle\right| \\ &\leqslant \frac{1}{2} \left(\left|\left\langle \widehat{k}_{v}, T\widehat{k}_{v} \right\rangle\right|^{2} + \left|\left\langle \widehat{k}_{v}, T^{*}\widehat{k}_{v} \right\rangle\right|^{2} \right) \\ &\text{(by the arithmetic-geometric mean inequality)} \\ &\leqslant \frac{1}{2} \left(\max\left\{\left\|T\widehat{k}_{v}\right\|^{2}, \left\|T^{*}\widehat{k}_{v}\right\|^{2} \right\} + \left|\left\langle T\widehat{k}_{v}, T^{*}\widehat{k}_{v} \right\rangle\right| \right) \\ &\text{(by Lemma 6)} \\ &= \frac{1}{4} \left(\left|\left\langle (T^{*}T + TT^{*})\widehat{k}_{v}, \widehat{k}_{v} \right\rangle\right| + \left|\left\langle (T^{*}T - TT^{*})\widehat{k}_{v}, \widehat{k}_{v} \right\rangle\right| \right) \\ &+ \frac{1}{2} \left|\left\langle T^{2}\widehat{k}_{v}, \widehat{k}_{v} \right\rangle\right|. \end{split}$$

Whence,

$$\begin{split} &f\left(\left|\left\langle \widehat{k}_{\mathsf{v}}, T\widehat{k}_{\mathsf{v}}\right\rangle\right|\left|\left\langle \widehat{k}_{\mathsf{v}}, T^{*}\widehat{k}_{\mathsf{v}}\right\rangle\right|\right) \\ &\leqslant f\left(\frac{1}{4}\left(\left|\left\langle (T^{*}T + TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right| + \left|\left\langle (T^{*}T - TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right) + \frac{1}{2}\left|\left\langle T^{2}\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right) \\ &= f\left(\frac{\frac{1}{2}\left(\left|\left\langle (T^{*}T + TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right| + \left|\left\langle (T^{*}T - TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right) + \left|\left\langle T^{2}\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|}{2}\right) \\ &\leqslant \frac{1}{2}\left(f\left(\left|\left\langle (T^{*}T + TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right| + \left|\left\langle (T^{*}T - TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right) + f\left(\left|\left\langle T^{2}\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right)\right) \\ &\leqslant \frac{1}{4}\left(f\left(\left|\left\langle (T^{*}T + TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right) + f\left(\left|\left\langle (T^{*}T - TT^{*})\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right)\right) \\ &+ \frac{1}{2}f\left(\left|\left\langle T^{2}\widehat{k}_{\mathsf{v}}, \widehat{k}_{\mathsf{v}}\right\rangle\right|\right). \end{split}$$

Therefore, we infer that

$$\begin{split} & f\left(\left|\left\langle \widehat{k}_{v}, T\widehat{k}_{v}\right\rangle\right|\left|\left\langle \widehat{k}_{v}, T^{*}\widehat{k}_{v}\right\rangle\right|\right) \\ & \leqslant \frac{1}{4}\left(f\left(\left|\left\langle (T^{*}T + TT^{*})\widehat{k}_{v}, \widehat{k}_{v}\right\rangle\right|\right) + f\left(\left|\left\langle (T^{*}T - TT^{*})\widehat{k}_{v}, \widehat{k}_{v}\right\rangle\right|\right)\right) \\ & + \frac{1}{2}f\left(\left|\left\langle T^{2}\widehat{k}_{v}, \widehat{k}_{v}\right\rangle\right|\right). \end{split}$$

Now, by taking supremum over $v \in \Theta$ in the above inequality, we get the desired inequality. \square

Considering $f(t) = t^r$, $r \ge 1$ in Theorem 3, we get the following corollary.

COROLLARY 3. Let $T \in B(\mathcal{H}(\Theta))$. Then

$$\mathbf{ber}^{2r}\left(T\right)\leqslant\frac{1}{4}\left(\left\|T^{*}T+TT^{*}\right\|_{ber}^{r}+\left\|T^{*}T-TT^{*}\right\|_{ber}^{r}\right)+\frac{1}{2}\mathbf{ber}^{r}\left(T^{2}\right),$$

for any $r \geqslant 1$.

In particular, for r = 1 we have

$$\mathbf{ber}^{2}\left(T\right) \leqslant \frac{1}{4}\left(\|T^{*}T + TT^{*}\|_{ber} + \|T^{*}T - TT^{*}\|_{ber}\right) + \frac{1}{2}\mathbf{ber}\left(T^{2}\right).$$

REMARK 2. If T is normal operator, we get

$$\mathbf{ber}^{2r}(T) \leqslant 2^{r-2} \|T^*T\|_{ber}^r + \frac{1}{2} \mathbf{ber}^r(T^2),$$

for any $r \geqslant 1$.

The following theorem is a remarkable generalization and improvement of [10, Theorem 2.15].

THEOREM 4. Let $T \in B(\mathcal{H}(\Theta))$ and let f,g be nonnegative continuous functions on $[0,\infty)$ satisfying f(t)g(t)=t, $(t \ge 0)$. Then

$$\begin{split} \mathbf{ber}^{2r}(T) \leqslant & \frac{1}{4}\mathbf{ber}\left(f^{4r}\left(|T|\right) + g^{4r}\left(|T^*|\right)\right) \\ & + \frac{1}{4}\mathbf{ber}\left(f^{2r}\left(|T|\right)g^{2r}\left(|T^*|\right) + g^{2r}\left(|T^*|\right)f^{2r}\left(|T|\right)\right), \end{split}$$

for any $r \ge 1$.

Proof. Let \hat{k}_{v} be the normalized reproducing kernel of \mathscr{H} . We have

$$\begin{split} & \left| \left\langle T \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right|^{2r} \\ & \leqslant \left\langle f^{2} \left(|T| \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle^{r} \left\langle g^{2} \left(|T^{*}| \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle^{r} \\ & \text{(by Lemma 4)} \\ & \leqslant \left\langle f^{2r} \left(|T| \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \left\langle g^{2r} \left(|T^{*}| \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \\ & \text{(by Lemma 3)} \\ & \leqslant \left(\frac{\left\langle f^{2r} \left(|T| \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle + \left\langle g^{2r} \left(|T^{*}| \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle}{2} \right)^{2} \\ & \text{(by the arithmetic-geometric mean inequality)} \\ & = \frac{1}{4} \left\langle \left(f^{2r} \left(|T| \right) + g^{2r} \left(|T^{*}| \right) \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle^{2} \\ & \leqslant \frac{1}{4} \left\langle \left(f^{2r} \left(|T| \right) + g^{2r} \left(|T^{*}| \right) \right)^{2} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \\ & \text{(by Lemma 3)} \\ & = \frac{1}{4} \left\langle \left(f^{4r} \left(|T| \right) + g^{4r} \left(|T^{*}| \right) + f^{2r} \left(|T| \right) g^{2r} \left(|T^{*}| \right) + g^{2r} \left(|T^{*}| \right) f^{2r} \left(|T| \right) \right) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \\ & \leqslant \frac{1}{4} \mathbf{ber} \left(f^{4r} \left(|T| \right) + g^{4r} \left(|T^{*}| \right) + f^{2r} \left(|T| \right) g^{2r} \left(|T^{*}| \right) + g^{2r} \left(|T^{*}| \right) f^{2r} \left(|T| \right) \right) \\ & \leqslant \frac{1}{4} \mathbf{ber} \left(f^{4r} \left(|T| \right) + g^{4r} \left(|T^{*}| \right) \right) + \frac{1}{4} \mathbf{ber} \left(f^{2r} \left(|T| \right) g^{2r} \left(|T^{*}| \right) + g^{2r} \left(|T^{*}| \right) f^{2r} \left(|T| \right) \right). \end{split}$$

Thus,

$$\begin{split} \left| \left\langle T \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right|^{2r} & \leq \frac{1}{4} \mathbf{ber} \left(f^{4r} \left(|T| \right) + g^{4r} (|T^*|) \right) \\ & + \frac{1}{4} \mathbf{ber} \left(f^{2r} \left(|T| \right) g^{2r} \left(|T^*| \right) + g^{2r} (|T^*|) f^{2r} \left(|T| \right) \right). \end{split}$$

Now, by taking supremum over $v \in \Theta$ in the above inequality, we get the desired inequality. \square

If we take $f(t) = t^{1-p}$ and $g(t) = t^p$ with $0 \le p \le 1$ in Theorem 4, then we get the following corollary.

COROLLARY 4. Let $T \in B(\mathcal{H}(\Theta))$. Then

$$\begin{split} \mathbf{ber}^{2r}(T) \leqslant \frac{1}{4}\mathbf{ber}\left(|T|^{4(1-p)r} + |T^*|^{4pr}\right) \\ + \frac{1}{4}\mathbf{ber}\left(|T|^{2(1-p)r}|T^*|^{2pr} + |T^*|^{2pr}|T|^{2(1-p)r}\right), \end{split}$$

for any $p \in [0,1]$ and $r \geqslant 1$.

In particular, for $p = \frac{1}{2}$

$$\mathbf{ber}^{2r}\left(T\right)\leqslant\frac{1}{4}\mathbf{ber}\left(\left|T\right|^{2r}+\left|T^{*}\right|^{2r}\right)+\frac{1}{4}\mathbf{ber}\left(\left|T\right|^{r}\left|T^{*}\right|^{r}+\left|T^{*}\right|^{r}\left|T\right|^{r}\right).$$

REMARK 3. We note that the inequality obtained in Corollary 4 refines the following inequality obtained in [10, Theorem 2.15] as

$$\mathbf{ber}^{2r}\left(T\right)\leqslant\frac{1}{4}\mathbf{ber}\left(\left|T\right|^{2r}+\left|T^{*}\right|^{2r}\right)+\frac{1}{2}\mathbf{ber}\left(\left|T\right|^{r}\left|T^{*}\right|^{r}\right),$$

for any $r \geqslant 1$.

Indeed, it can observe that

$$\mathbf{ber}^{2r}(T) \leqslant \frac{1}{4}\mathbf{ber}\left(|T|^{2r} + |T^*|^{2r}\right) + \frac{1}{4}\mathbf{ber}(|T|^r |T^*|^r + |T^*|^r |T|^r)$$

$$\leqslant \frac{1}{4}\mathbf{ber}\left(|T|^{2r} + |T^*|^{2r}\right) + \frac{1}{4}\left(\mathbf{ber}(|T|^r |T^*|^r) + \mathbf{ber}(|T^*|^r |T|^r)\right)$$

$$= \frac{1}{4}\mathbf{ber}\left(|T|^{2r} + |T^*|^{2r}\right) + \frac{1}{4}\left(\mathbf{ber}(|T|^r |T^*|^r) + \mathbf{ber}(|T|^r |T^*|^r)^*\right)$$
(since $\mathbf{ber}(X) = \mathbf{ber}(X^*)$ for any $X \in B(\mathcal{H}(\Theta))$)
$$= \frac{1}{4}\mathbf{ber}\left(|T|^{2r} + |T^*|^{2r}\right) + \frac{1}{2}\mathbf{ber}(|T|^r |T^*|^r).$$

The following theorem is an extension of [16, Theorem 2].

Theorem 5. Let $T \in B(\mathcal{H}(\Theta))$. Then

$$\mathbf{ber}^{n}\left(T\right)\leqslant\frac{1}{2^{n-1}}\mathbf{ber}\left(T^{n}\right)+\left\Vert T^{*}\right\Vert _{ber}\sum_{p=1}^{n-1}\frac{1}{2^{p}}\mathbf{ber}^{n-p-1}\left(T\right)\left\Vert T^{p}\right\Vert _{ber},$$

for any $n \ge 2$.

Proof. Let \hat{k}_{V} be the normalized reproducing kernel of \mathcal{H} , we first prove that

$$\left|\widetilde{T}(v)\right|^{n} \leqslant \frac{1}{2^{n-1}} \left|\widetilde{T^{n}}(v)\right| + \sum_{p=1}^{n-1} \frac{1}{2^{p}} \left|\widetilde{T}(v)\right|^{n-p-1} \left\|T^{p}\widehat{k}_{v}\right\| \left\|T^{*}\widehat{k}_{v}\right\|, \tag{3.1}$$

for any $n \ge 2$.

We will use induction on n to establish the required inequality. Substituting $a = T\hat{k}_v$ and $b = T^*\hat{k}_v$ in Lemma 2, simply proved that that the inequality (3.1) is true for n = 2.

On the other hand, assume that (3.1) is true for n. Applying Lemma 2 with $a = T^n \hat{k}_v$ and $b = T^* \hat{k}_v$, we get

$$\left|\widetilde{T^{n}}(v)\right|\left|\widetilde{T}(v)\right| \leqslant \frac{1}{2}\left(\left\|T^{n}\widehat{k}_{v}\right\|\left\|T^{*}\widehat{k}_{v}\right\| + \left|\widetilde{T^{n+1}}(v)\right|\right).$$

Under the assumption of induction, we observe that

$$\begin{split} \left| \widetilde{T} (v) \right|^{n+1} &= \left| \widetilde{T} (v) \right|^{n} \left| \widetilde{T} (v) \right| \\ &\leq \frac{1}{2^{n-1}} \left| \widetilde{T^{n}} (v) \right| \left| \widetilde{T} (v) \right| + \sum_{p=1}^{n-1} \frac{1}{2^{p}} \left| \widetilde{T} (v) \right|^{n-p} \left\| T^{p} \widehat{k}_{v} \right\| \left\| T^{*} \widehat{k}_{v} \right\| \\ &\leq \frac{1}{2^{n}} \left(\left\| T^{n} \widehat{k}_{v} \right\| \left\| T^{*} \widehat{k}_{v} \right\| + \left| \widetilde{T^{n+1}} (v) \right| \right) + \sum_{p=1}^{n-1} \frac{1}{2^{p}} \left| \widetilde{T} (v) \right|^{n-p} \left\| T^{p} \widehat{k}_{v} \right\| \left\| T^{*} \widehat{k}_{v} \right\| \\ &= \frac{1}{2^{n}} \left| \widetilde{T^{n+1}} (v) \right| + \sum_{n=1}^{n} \frac{1}{2^{p}} \left| \widetilde{T} (v) \right|^{n-p} \left\| T^{p} \widehat{k}_{v} \right\| \left\| T^{*} \widehat{k}_{v} \right\|. \end{split}$$

Thus,

$$\left|\widetilde{T}\left(v\right)\right|^{n+1} \leqslant \frac{1}{2^{n}} \left|\widetilde{T^{n+1}}\left(v\right)\right| + \sum_{n=1}^{n} \frac{1}{2^{p}} \left|\widetilde{T}\left(v\right)\right|^{n-p} \left\|T^{p}\widehat{k}_{v}\right\| \left\|T^{*}\widehat{k}_{v}\right\|.$$

Hence, (3.1) is true for n+1.

Taking the supremum over all $v \in \Theta$, we obtain

$$\mathbf{ber}^{n}(T) \leqslant \frac{1}{2^{n-1}}\mathbf{ber}(T^{n}) + \|T^{*}\|_{ber} \sum_{p=1}^{n-1} \frac{1}{2^{p}}\mathbf{ber}^{n-p-1}(T) \|T^{p}\|_{ber}.$$

Hence, the desired inequality is proved. \Box

If n = 2 in Theorem 5, then we have the following result.

COROLLARY 5. Let $T \in B(\mathcal{H}(\Theta))$. Then

$$\mathbf{ber}^{2}(T) \leqslant \frac{1}{2} (\|T\|_{ber} \|T^{*}\|_{ber} + \mathbf{ber}(T^{2})).$$

REMARK 4. Since $t \mapsto t^r$, $r \ge 1$ is a convex increasing function on $[0, \infty)$ and by using Corollary 5, it is not difficult to see that

$$\mathbf{ber}^{2r}\left(T\right)\leqslant\frac{1}{2}\left(\left\Vert T\right\Vert _{ber}^{r}\left\Vert T^{\ast}\right\Vert _{ber}^{r}+\mathbf{ber}^{r}\left(T^{2}\right)\right),$$

this inequality proved recently in [16, Theorem 2].

Kittaneh in [22] proved the mixed Schwarz inequality, which asserts

$$\left| \left\langle Tx, y \right\rangle \right|^2 \leqslant \left\langle \left| T \right|^{2(1-t)} x, x \right\rangle \left\langle \left| T^* \right|^{2\lambda} y, y \right\rangle, \, 0 \leqslant t \leqslant 1 \tag{3.2}$$

for $T \in B(H)$ and the vectors $x, y \in H$.

In the following theorem, we give a result about the triangle inequality for the Berezin number.

THEOREM 6. Let $\mathcal{H} = \mathcal{H}(\Theta)$ be a RKHS on Θ and $T_1, T_2 \in \mathcal{B}(\mathcal{H})$. Then

$$ber(T_1 + T_2) \leq \frac{1}{\sqrt{2}} (\mathbf{ber}(|T_1| + i|T_2|) + \mathbf{ber}(|T_1^*| + i|T_2^*|))$$

Proof. Let \hat{k}_{v} be normalized reproducing kernel. Then

$$\begin{split} & \left| \left\langle (T_{1} + T_{2}) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| \\ & \leq \left| \left\langle T_{1} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| \left| \left\langle T_{2} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| \\ & \leq \sqrt{\left\langle |T_{1}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \left\langle |T_{1}^{*}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle} + \sqrt{\left\langle |T_{2}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \left\langle |T_{2}^{*}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle} \quad \text{(by (3.2))} \\ & \leq \frac{1}{2} \left(\left\langle |T_{1}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle + \left\langle |T_{1}^{*}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle + \left\langle |T_{2}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle + \left\langle |T_{2}^{*}| \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right) \\ & = \frac{\sqrt{2}}{2} \left(\left| \left\langle (|T_{1}| + i|T_{2}|) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| + \left| \left\langle (|T_{1}^{*}| + i|T_{2}^{*}|) \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| \right) \end{split}$$

and so

$$\left| \left\langle (T_1 + T_2) \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| \leqslant \frac{\sqrt{2}}{2} \left(\left| \left\langle (|T_1| + i|T_2|) \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| + \left| \left\langle (|T_1^*| + i|T_2^*|) \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| \right)$$

for all $v \in \Theta$. Taking the supremum over $v \in \Theta$ above inequality, we have

$$ber(T_1 + T_2) \leq \frac{1}{\sqrt{2}} (\mathbf{ber}(|T_1| + i|T_2|) + \mathbf{ber}(|T_1^*| + i|T_2^*|))$$

which yields the desired result. \Box

Next result is a refinement of Proposition 3.5 in [32].

THEOREM 7. Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$. Then

$$\begin{split} \mathbf{ber}^2\left(T_1+T_2\right) \leqslant \mathbf{ber}\left(T_1^2\right) + \mathbf{ber}\left(T_2^2\right) \\ + \frac{1}{\sqrt{2}}\mathbf{ber}\left(\left(\left|T_1\right|^2 + \left|T_2\right|^2\right) + i\left(\left|T_1^*\right|^2 + \left|T_2^*\right|^2\right)\right). \end{split}$$

Proof. Putting $T = T_1 \hat{k}_{\nu}$, $b = T_1^* \hat{k}_{\nu}$ and $x = \hat{k}_{\nu}$ in (3.2), we have

$$\begin{split} \left| \widetilde{T}_{1}\left(\nu \right) \right|^{2} & \leqslant \frac{1}{2} \left(\left| \left\langle T_{1}^{2} \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| + \left\| T_{1} \widehat{k}_{\nu} \right\| \left\| T_{1}^{*} \widehat{k}_{\nu} \right\| \right) \\ & = \frac{1}{2} \left(\left| \left\langle T_{1}^{2} \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| + \sqrt{\left\langle \left| T_{1} \right|^{2} \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \left\langle \left| T_{1}^{*} \right|^{2} \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle} \right) \\ & \leqslant \frac{1}{2} \left(\left| \left\langle T_{1}^{2} \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| + \frac{1}{4} \left\langle \left(\left| T_{1} \right|^{2} + \left| T_{1}^{*} \right|^{2} \right) \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right) \end{split}$$

and hence

$$\left|\widetilde{T}_{1}\left(\nu\right)\right| \leqslant \frac{1}{2}\sqrt{2\left|\left\langle T_{1}^{2}\widehat{k}_{\nu},\widehat{k}_{\nu}\right\rangle\right| + \left\langle\left(\left|T_{1}\right|^{2} + \left|T_{1}^{*}\right|^{2}\right)\widehat{k}_{\nu},\widehat{k}_{\nu}\right\rangle}$$

for all $v \in \Theta$. From above inequality, we have

$$\left(\left|\widetilde{T}_{1}(v)\right| + \left|\widetilde{T}_{2}(v)\right|\right)^{2} \\
\leq \frac{1}{4} \left(\sqrt{2\left|\left\langle T_{1}^{2}\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right| + \left\langle\left(\left|T_{1}\right|^{2} + \left|T_{1}^{*}\right|^{2}\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle} \\
+ \sqrt{2\left|\left\langle T_{2}^{2}\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right| + \left\langle\left(\left|T_{2}\right|^{2} + \left|T_{2}^{*}\right|^{2}\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle} \\
\leq \left|\left\langle T_{1}^{2}\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right| + \left|\left\langle T_{2}^{2}\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right| \\
+ \frac{1}{2} \left(\left\langle\left(\left|T_{1}\right|^{2} + \left|T_{1}^{*}\right|^{2}\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle + \left\langle\left(\left|T_{2}\right|^{2} + \left|T_{2}^{*}\right|^{2}\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right) \\
\leq \left|\left\langle T_{1}^{2}\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right| + \left|\left\langle T_{2}^{2}\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right| \\
+ \frac{1}{\sqrt{2}} \left|\left\langle\left(\left(\left|T_{1}\right|^{2} + \left|T_{2}\right|^{2}\right) + i\left(\left|T_{1}^{*}\right|^{2} + \left|T_{2}^{*}\right|^{2}\right)\right)\widehat{k}_{v},\widehat{k}_{v}\right\rangle\right|$$

(since $|a+b| \leq \sqrt{2} |a+ib|$ for all $a,b \in \mathbb{R}$) and thus

$$\left| \widetilde{(T_1 + T_2)}(v) \right|^2 \leqslant \left| \widetilde{T_1^2}(v) \right| + \left| \widetilde{T_2^2}(v) \right| + \frac{1}{\sqrt{2}} \left| \left\langle \left(\left(|T_1|^2 + |T_2|^2 \right) + i \left(|T_1^*|^2 + |T_2^*|^2 \right) \right) \widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right|$$

for all $v \in \Theta$. So, we get that

$$\begin{split} &\sup_{\boldsymbol{v} \in \Theta} \left| \widetilde{(T_1 + T_2)} \left(\boldsymbol{v} \right) \right|^2 \\ &\leqslant \sup_{\boldsymbol{v} \in \Theta} \left| \widetilde{T_1^2} \left(\boldsymbol{v} \right) \right| + \sup_{\boldsymbol{v} \in \Theta} \left| \widetilde{T_2^2} \left(\boldsymbol{v} \right) \right| \\ &+ \frac{1}{\sqrt{2}} \sup_{\boldsymbol{v} \in \Theta} \left| \left\langle \left(\left(\left| T_1 \right|^2 + \left| T_2 \right|^2 \right) + i \left(\left| T_1^* \right|^2 + \left| T_2^* \right|^2 \right) \right) \widehat{k}_{\boldsymbol{v}}, \widehat{k}_{\boldsymbol{v}} \right\rangle \right|, \end{split}$$

and

$$ber^{2}(T_{1}+T_{2}) \leq ber(T_{1}^{2}) + ber(T_{2}^{2}) + \frac{1}{\sqrt{2}}ber((|T_{1}|^{2} + |T_{2}|^{2}) + i(|T_{1}^{*}|^{2} + |T_{2}^{*}|^{2})). \quad \Box$$

THEOREM 8. Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$. Then

$$ber^{2}(T_{1}+T_{2}) \leq \frac{3}{2} ||T_{1}|^{2} + |T_{2}|^{2} ||_{ber} + ber(T_{2}^{*}T_{1})$$

Proof. Putting $x = \hat{k}_v$, $a = T_1 \hat{k}_v$, $b = T_2 \hat{k}_v$ in Lemma 2, we have

$$\left| \left\langle T_{1}\widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| \left| \left\langle T_{2}\widehat{k}_{\nu}, \widehat{k}_{\nu} \right\rangle \right| \leq \frac{\left\| T_{1}\widehat{k}_{\nu} \right\| \left\| T_{2}\widehat{k}_{\nu} \right\| + \left| \left\langle T_{1}\widehat{k}_{\nu}, T_{2}\widehat{k}_{\nu} \right\rangle \right|}{2}$$

for all $v \in \Theta$. Hence, we obtain

$$\begin{split} \left| (\widetilde{T_{1} + T_{2}})(v) \right|^{2} &\leq \left(\left| \left\langle T_{1} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| + \left| \left\langle T_{2} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right|^{2} \\ &= \left| \left\langle T_{1} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right|^{2} + \left| \left\langle T_{2} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right|^{2} + 2 \left| \left\langle T_{1} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| \left| \left\langle T_{2} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right| \\ &\leq \left| \left\langle T_{1} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right|^{2} + \left| \left\langle T_{2} \widehat{k}_{v}, \widehat{k}_{v} \right\rangle \right|^{2} + \left\| T_{1} \widehat{k}_{v} \right\| \left\| T_{2} \widehat{k}_{v} \right\| + \left| \left\langle T_{1} \widehat{k}_{v}, T_{2} \widehat{k}_{v} \right\rangle \right| \\ &\leq \left\| T_{1} \widehat{k}_{v} \right\|^{2} + \left\| T_{2} \widehat{k}_{v} \right\|^{2} + \left\| T_{1} \widehat{k}_{v} \right\| \left\| T_{2} \widehat{k}_{v} \right\| + \left| \left\langle T_{1} \widehat{k}_{v}, T_{2} \widehat{k}_{v} \right\rangle \right| \\ &= \left\| T_{1} \widehat{k}_{v} \right\|^{2} + \left\| T_{2} \widehat{k}_{v} \right\|^{2} + \sqrt{\left\langle T_{1} \widehat{k}_{v}, T_{1} \widehat{k}_{v} \right\rangle \left\langle T_{2} \widehat{k}_{v}, T_{2} \widehat{k}_{v} \right\rangle} \\ &+ \left| \left\langle T_{1} \widehat{k}_{v}, T_{2} \widehat{k}_{v} \right\rangle \right| \\ &\leq \left| \widetilde{T_{1}^{2}} \right| (v) + \left| \widetilde{T_{2}^{2}} \right| (v) + \frac{1}{2} \left(\left| \widetilde{T_{1}^{2}} \right| (v) + \left| \widetilde{T_{2}^{2}} \right| (v) \right) + \left| \widetilde{T_{2}^{*}} T_{1} \right) (v) \right| \\ &= \frac{3}{2} \left(\left| T_{1}^{2} \right| + \left| T_{2}^{2} \right| \right) (v) + \left| \widetilde{T_{2}^{*}} T_{1} \right) (v) \right| \end{split}$$

and so

$$\sup_{v \in \Theta} \left| \left(\widetilde{T_1 + T_2} \right) (v) \right|^2 \leqslant \frac{3}{2} \left\| \left| T_1^2 \right| + \left| T_2^2 \right| \right\|_{ber} + \sup_{v \in \Theta} \left| \left(\widetilde{T_2^* T_1} \right) (v) \right|,$$

which yields

$$ber^{2}(T_{1}+T_{2}) \leqslant \frac{3}{2} ||T_{1}|^{2} + |T_{2}|^{2} ||_{ber} + ber(T_{2}^{*}T_{1}). \quad \Box$$

Acknowledgement. The authors are very grateful to the referee for careful reading and for helpful comments.

REFERENCES

- [1] D. AFRAZ, R. LASHKARIPOUR, M. BAKHERAD, Further norm and numerical radius inequalities for sum of Hilbert space operators, Filomat 38 (9) (2024), 3235–3242.
- [2] M. W. ALOMARI, M. HAJMOHAMADI, M. BAKHERAD, Norm-parallelism of Hilbert space operators and the Davis-Wielandt Berezin number, J. Math. Inequal. 17 (1) (2023), 231–258.
- [3] M. BAKHERAD, M. T. GARAYEV, Berezin number inequalities for operators, Concr Oper. 6 (2019), 33–43.
- [4] M. BAKHERAD, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J. 68
 (4) (2018), 997–1009.
- [5] M. BAKHERAD M, M. HAJMOHAMADI, R. LASHKARIPOUR, S. SAHOO, Some extensions of Berezin number inequalities on operators, Rocky Mountain J. Math. 51 (6) (2021), 1941–1951.
- [6] M. BAKHERAD, F. KITTANEH, Improved Berezin radius inequalities for certain operator matrices, Rend. Circ. Mat. Palermo (to appear).
- [7] M. BAKHERAD, F. KITTANEH, Numerical radius inequalities involving commutators of G₁ operators, Complex Anal. Oper. Theory 13 (4) (2019), 1557–1567.
- [8] F. A. BEREZIN, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117– 1151.
- [9] F. A. BEREZIN, Quantizations, Math. USSR-Izv. 8 (1974), 1109-1163.
- [10] P. BHUNIA, A. SEN, K. PAUL, Development of the Berezin number inequalities, Acta. Math. Sin.-English Ser. 39 (2023), 1219–1228.
- [11] P. BHUNIA, K. PAUL, A. SEN, *Inequalities involving Berezin norm and Berezin number*, Complex Anal. Oper. Theory 17 (7) (2023), 1–17.
- [12] M. L. BUZANO, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend Sem Mat Univ e Politech Torino. 31 (1974), 405–409.
- [13] S. S. DRAGOMIR, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demonstratio Math. 40 (2) (2007), 411–417.
- [14] S. S. DRAGOMIR, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, 2013.
- [15] M. FUJII, R. NAKAMOTO, Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math. J. 9 (2) (1998), 219–225.
- [16] M. T. GARAYEV, M. W. ALOMARI, Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory 15 (2021), 1–30.
- [17] M. GARAYEV, M. BAKHERAD, R. TAPDIGOĞLU, The weighted and the Davis-Wielandt Berezin number, Oper. Matrices 17 (2) (2023), 469–484.
- [18] M. HAJMOHAMADI, R. LASHKARIPOUR, M. BAKHERAD, Improvements of Berezin number inequalities, Linear Multilinear Algebra 68 (6) (2020), 1218–1229.
- [19] P. R. HALMOS, A Hilbert Space Problem Book, 2nd ed., springer, New York, 1982.
- [20] M. T. KARAEV, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal. 238 (2006), 181–192.
- [21] M. T. KARAEV, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory 7 (2013), 983–1018.
- [22] F. KITTANEH, Notes on some inequalities for Hilbert space operators, Publ. RIMS Kyoto Univ. 24 (1988), 283–293.
- [23] F. KITTANEH, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (1) (2005), 73–80.

- [24] F. KITTANEH, Y. MANASRAH, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), 262–269.
- [25] N. E. MAHDIABADI, M. BAKHERAD, An extension of the Euclidean Berezin number, Filomat 37 (24) (2023), 8377–8388.
- [26] S. SAHOO, U. YAMANCI, Further results on Berezin number inequalities and related problems, Filomat 37 (30), 10415–10429.
- [27] S. SAHOO, M. BAKHERAD, Some Extended Berezin Number Inequalities, Filomat 35 (6) (2021), 2043–2053.
- [28] B. SIMON, Trace ideals and their applications, Cambridge University Press, 1979.
- [29] A. TAGHAVI, T. A. ROUSHAN, AND V. DARVISH, Some upper bounds for the Berezin number of Hilbert space operators, Filomat 33 (14) (2019), 4353–4360.
- [30] U. YAMANCI, M. GUESBA, Refinements of some Berezin number inequalities and related questions, J. Anal. 31 (1) (2023), 539–549.
- [31] U. YAMANCI, M. TAPDIGOĞLU, Some results related to the Berezin number inequalities, Turk. J. Math. 43 (4) (2019), 1940–1952.
- [32] U. YAMANCI, M. GARAYEV, C. ÇELIK, Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear Multilinear Algebra 67 (2019), 830–842.
- [33] U. YAMANCI, İ. M. KARLI, Further refinements of the Berezin number inequalities on operators, Linear Multilinear Algebra **70** (20) (2022), 5237–5246.

(Received April 6, 2024)

Ulaş Yamancı Department of Statistics Suleyman Demirel University 32260, Isparta, Turkey e-mail: ulasyamanci@sdu.edu.tr

Messaoud Guesba Department of Mathematics El Oued University 39000 Algeria

 $\textit{e-mail:} \verb|guesba-messaoud@univ-eloued.dz|$

Duygu Uslu Department of Mathematics Suleyman Demirel University 32260, Isparta, Turkey

e-mail: duyguu-uslu@hotmail.com