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Abstract. We consider the extended metaplectic representation of the semi-direct product of the
Heisenberg group and the symplectic group (the Jacobi group). We give explicit formulas for the
Berezin symbols and for the complex Weyl symbols of the corresponding representation opera-
tors. Then we deduce formulas for the symbols of the representation operators in the classical
Weyl calculus. As an application, we find the classical Weyl symbol of the exponential of an
operator whose Weyl symbol is a polynomial on R

2n of degree � 2 , recovering a result of L.
Hörmander.

1. Introduction

The central object of this note is the extended metaplectic representation of the
Jacobi group. Our main reference is [18, Chap. IV].

Let S := SU(n,n)∩ Sp(n,C) . Then S is a subgroup of SU(n,n) which is iso-
morphic to Sp(n,R) [18, p. 175]. Let Hn be the (2n+1)-dimensional (real) Heisen-
berg group. Then S acts naturally on Hn and we can form the semi-direct product
G := Hn � S called the (multi-dimensional) Jacobi group [7]. Note that the name Ja-
cobi group comes from [17].

By combining the metaplectic representation  of S on the Fock space F with
a non-degenerate unitary irreducible representation  of Hn on F , we obtain the ex-
tended metaplectic representation  of G ,

(h,k) = (h)(k), h ∈ Hn, k ∈ S.

There are different ways to construct  , see in particular [18] and [25]. In [14],
we recovered the formulas for the kernel of (k) , k ∈ S given in [18] by using some
functional equation satisfied by this kernel, see also [13]. We gave also some explicit
formulas for the complex Weyl symbol of (k) for k∈ S . Let us recall that the complex
Weyl calculus W0 is the correspondence between operators on F and functions on Cn

obtained by translating the usual Weyl correspondence (see [18], [23]) by means of the
Bargmann transform.
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In the present note, we extend the results of [14] to  . More precisely, we first ob-
tain a formula for the (covariant) Berezin symbol of (h,k) . Then we deduce formulas
for W0((h,k)) . Moreover, by translating  to the extended metaplectic representation
 ′ of G′ = Hn �Sp(n,R) on L2(Rn) by using the Bargmann transform, we obtain ex-
plicit formulas for the classical Weyl symbols W1( ′(g′)) of  ′(g′) for g′ ∈G′ . Similar
results are also obtain for the differential representations.

This note is organized as follows. We begin with some generalities on the Berezin
correspondence on F (Section 2) and on the complex Weyl calculus (Section 3). In
Section 4, we review some results on  and we compute the Berezin symbol of (g)
for g ∈ G . In Section 5, we give explicit formulas for W0((g)) , g ∈ G and for
W0(d(X)) , X in the Lie algebra of G . From this, we deduce formulas for W1((g)) ,
g ∈ G′ and for W1(d(X)) , X in the Lie algebra of G′ (Section 6). The main results
of this note are then Theorem 5.4 and Theorem 6.1. Finally, we apply the preceding
results to the problem of computing the classical Weyl symbol of the exponential of an
operator whose Weyl symbol is a polynomial on R2n of degree � 2 (Section 7) and to
the problem of computing the Moyal star exponential of such a polynomial (Section 8).

2. Berezin quantization on the Fock space

This section and the next section are mostly of expository nature. We follow
closely [8], [10] and [12].

We first introduce the Fock space. Let  > 0 and let F be the Hilbert space of
all holomorphic functions f on Cn such that

‖ f‖2 :=
∫

Cn
| f (z)|2 e− |z|

2/2 d (z) < +

where d (z) := (2)−n n dm(z) . Here z = x+ iy with x and y in Rn and dm(z) :=
dxdy is the standard Lebesgue measure on C

n .
For each z∈Cn , let ez(w)= exp( zw/2) . Then we have the reproducing property

f (z) = 〈 f ,ez〉 for each f ∈ F .
Let us introduce the Berezin calculus on F [5], [6], [8]. The Berezin (covariant)

symbol of an operator A on F is the function S (A) defined on Cn by

S (A)(z) :=
〈Aez , ez〉
〈ez , ez〉

and the double Berezin symbol s is defined by

s (A)(z,w) :=
〈Aew , ez〉
〈ew , ez〉

for each (z,w) ∈ Cn×Cn such that 〈ew , ez〉 �= 0.
Since s (A)(z,w) is holomorphic in the variable z and anti-holomorphic in the

variable w , this function is determined by its restriction to the diagonal of C
n ×C

n ,
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that is, by S (A) . On the other hand, A can be recovered from s (A) as follows. We
have

A f (z) = 〈A f , ez〉 = 〈 f , A∗ ez〉
=
∫

Cn
f (w)A∗ ez(w)e− |w|

2/2 d (w)

=
∫

Cn
f (w)〈A∗ ez,ew〉e− |w|2/2 d (w)

=
∫

Cn
f (w)s (A)(z,w)〈ew,ez〉e− |w|2/2 d (w).

This implies in particular that the map A → S (A) is injective and that the kernel of A
is the function

kA(z,w) = 〈Aew,ez〉 = s (A)(z,w)〈ew,ez〉. (2.1)

It is also known that S is a bounded operator from the space L2(F ) of all
Hilbert-Schmidt operators on F (endowed with the Hilbert-Schmidt norm) to
L2(Cn, ) which is one-to-one and has dense range [29]. Let S∗ be the adjoint opera-
tor of S . Recall that the Berezin transform is the operator B on L2(Cn, ) defined
by B := SS∗ . We have the integral formula

(B f )(z) =
∫

Cn
f (w)e− |z−w|2/2 d (w),

see [5], [6], [29]. Note also that we have B = exp(/2 ) where = 4n
k=1  2/ zk zk ,

see [29], [26].
Now, we introduce the non-degenerate unitary irreducible representations of the

Heisenberg group.
For each z, w ∈ Cn , we denote zw := n

k=1 zkwk . For each z,z′,w,w′ ∈ Cn , let

((z,w),(z′,w′)) = i
2(zw′ − z′w).

The (2n+1)-dimensional real Heisenberg group is

Hn := {((z, z),c) : z ∈ C
n,c ∈ R}

equipped with the multiplication

((z, z),c) · ((z′, z ′),c′) = ((z+ z′, z + z ′),c+ c′ + 1
2((z, z),(z′, z ′))).

By the Stone-von Neumann theorem, there exists a unique (up to unitary equiva-
lence) unitary irreducible representation  of Hn whose restriction to the center of Hn

is the character ((0,0),c) → ei c [28]. The Bargmann-Fock realization of  on F
is defined as follows [2]. We have

( (h) f )(z) = exp
(
ic0 + 

2 z0z− 
4 |z0|2

)
f (z− z0)

for each h = ((z0,z0),c0) ∈ Hn and z ∈ C
n .
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We also need later another realization of the unitary irreducible representation of
Hn with central character ((0,0),c) → ei c , that is, the Schrödinger representation  ′


defined on L2(Rn) by

( ′
 ((a+ ib,a− ib),c))(x) = exp

(
i (c−bx+ 1

2ab)
)
(x−a)

for each a,b ∈ Rn , c ∈ R and x ∈ Rn .
A unitary intertwining operator between  and  ′

 is then the Bargmann trans-
form B : L2(Rn) → F defined by

(B f )(z) =
(



)n/4 ∫
Rn

exp
(
− 

4 z2 + zx− 
2 x2
)
(x)dx,

see in particular [8], [18].
Let us mention that the Heisenberg group and its unitary irreducible represen-

tations play a prominent role in a modern branch of harmonic analysis called time-
frequency analysis, see [21, Chap. 9]. A recent application of this theory can be found
in [22]. Moreover, the metaplectic group, which will be introduced here in Section 4
can be seen as the fundamental symmetry group in time-frequency analysis [19], [21].
These facts and references were brought to my attention by the referee.

3. Complex Weyl quantization on the Fock space

Here we first recall the definition of the complex Weyl correspondence W0 on F ,
see [1, Example 2.2 and Example 4.2] and [10].

DEFINITION 3.1. The complex Weyl symbol of an operator A on F with kernel
kA is the function W0(A) on Cn defined by

W0(A)(z) = 2n
∫

Cn
kA(z+w,z−w)exp

(

2 (−zz −ww+ zw− zw)

)
d (w). (3.1)

Recall that that W0 : L2(F )→ L2(Cn, ) is the unitary part in the polar decom-

position of S , that is we have S = B1/2
 W0 , see [26, Theorem 6], [8], [12].

DEFINITION 3.2. The classical Weyl symbol of an operator A on L2(Rn) is the
function W1(A) on R2n defined by

W1(A)(x,y) = W0(BAB−1)(x+ iy).

Now we connect W1 to the classical Weyl correspondence on R2n which can be
defined as follows [18], [23]. For each function f in the Schwartz space S (R2n) , we
define the operator W ( f ) acting on the Hilbert space L2(Rn) by

(W ( f ))(x) = (2)−n
∫

R2n
eiyt f (x+ 1

2y,t)(x+ y)dydt. (3.2)

Then we have the following proposition.
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PROPOSITION 3.3. ([11], [14]) Let f ∈ S (R2n) . Then, for each x,y ∈ Rn , we
have

W1(W ( f ))(x,y) = f (x,y)

and, if  = 1, then W1 and W are inverse to each other.

4. The extended metaplectic representation

In this section, we first review some results from [18] about the metaplectic repre-
sentation.

Let S := Sp(n,C)∩SU(n,n) . Then the map M →UMU−1 where U :=
(

In iIn
In −iIn

)
is an isomorphism from S to Sp(n,R) [18, p. 175]. Note that S consists of all matrices

k =
(

P Q
Q P

)
, P,Q ∈ Mn(C), PP∗−QQ∗ = In, PQt = QPt .

Here the superscript ’t’ denotes transposition. We also have

P∗P−QtQ = In, P∗Q = QtP.

and we see that P is invertible and that P−1Q and QP−1 are symmetric.

Consider the natural action of k =
(

P Q
Q P

)
∈ S on (z, z) , z ∈ Cn :

k(z, z) = (Pz+Qz ,Qz+Pz).

Then S also acts on Hn by

k · ((z, z),c) = (k(z, z),c).

For each k =
(

P Q
Q P

)
∈ S , let (k) be the operator on F with kernel

bk(z,w) = (DetP)−1/2 exp
(

4

(
z(QP−1z)+2(P−1z)w−w(P−1Qw)

))
. (4.1)

where z1/2 as the principal determination of the square-root. Then we have the follow-
ing result.

PROPOSITION 4.1. ([14], [18])

1. For each k,k′ ∈ S , we have (kk′) = ±(k)(k′) ;

2. For each k ∈ S , (k) is unitary;

3. For each k ∈ S and h ∈ Hn , we have  (k ·h)(k) = (k) (h) ;

4. For each k =
(

P Q
Q P

)
∈ S , we have

S ((k))(z)= (DetP)−1/2 exp
(

4

(
z(QP−1z)+2((P−1− In)z)z − z(P−1Qz)

))
.
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We have also a similar result for d . Let s be the Lie algebra of S .

PROPOSITION 4.2. ([14]) Let X =
(A B

B A

) ∈ s .

1. We have

(d(X) f )(z) = (− 1
2 Tr(A)+ 

4 z(Bz)) f (z)−
n


j=1

(Az) j
 f
 z j

− 1
 

j,k

b jk
 2 f

 z j zk

where B = (b jk) ;

2. The kernel of d(X) is

bX(z,w) =
(
− 1

2 Tr(A)+ 
4 z(Bz)− 

2 (Az)w− 
4 w(Bw)

)
exp
(

2 zw

)
;

3. We have

S (d(X))(z) = − 1
2 Tr(A)+ 

4 z(Bz)− 
2 (Az)z − 

4 z(Bz).

The (multi-dimensional) Jacobi group is the semi-direct product G := Hn �S with
respect to the action of S on Hn [7], [9], [27]. The elements of G are written as
((z, z ),c,k) where z ∈ C

n , c ∈ R and k ∈ S . The multiplication of G is then given by

((z, z),c,k) · ((z′, z ′),c′,k′) = ((z, z)+ k(z′, z ′),c+ c′+ 1
2((z, z),k(z′, z ′)),kk′).

We denote by g the Lie algebra of G . The elements of g can be written as(
(z, z),c,

(A B
B A

))
.

The extended metaplectic representation  of G is defined by

(h,k) :=  (h)(k), (h,k) ∈ G.

The fact that  is a (projective) unitary representation of G follows from Propo-
sition 4.1. Moreover,  is irreducible since  is.

Now, we compute the Berezin symbols of (g) , g ∈ G and d(X) , X ∈ g .

PROPOSITION 4.3. Let g = (h,k)∈G with h = ((z0,z0),c0)∈Hn and k =
( P Q

Q P

)
∈ S . Then the kernel of (g) is

Bg(z,w) =(DetP)−1/2 exp(ic0)exp
(

4

(
−|z0|2 + z0(QP−1z0)

))
× exp

(

2

(
z0z− z(QP−1z0)− (P−1z0)w

))
× exp

(

4

(
z(QP−1z)+2(P−1z)w−w(P−1Qw)

))
.

Moreover, we have

S ((g))(z) =(DetP)−1/2 exp(ic0)exp
(

4

(
−|z0|2 + z0(QP−1z0)

))
× exp

(

2

(
z0z− z(QP−1z0)− (P−1z0)z

))
× exp

(

4

(
z(QP−1z)+2((P−1− In)z)z − z(P−1Qz)

))
.
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Proof. Let g = (h,k) ∈ G with h = ((z0,z0),c0) ∈ Hn and k =
( P Q

Q P

) ∈ S . By

Equation 2.1, the kernel Bg(z,w) of (g) is given by

Bg(z,w) = 〈(g)ew,ez〉 = 〈 (h)(k)ew,ez〉 = 〈(k)ew, (h)−1ez〉.

But we have

( (h)−1ez)(w) = exp
(
−ic0− 

2 z0w− 
4 |z0|2

)
ez(w+ z0)

= exp
(
−ic0 + 

2 zz0− 
4 |z0|2

)
ez−z0(w).

This gives

 (h)−1ez = exp
(
−ic0 + 

2 zz0 − 
4 |z0|2

)
ez−z0

hence

Bg(z,w) = exp
(
ic0 + 

2 z0z− 
4 |z0|2

)
〈(k)ew,ez−z0〉

= exp
(
ic0 + 

2 z0z− 
4 |z0|2

)
bk(z− z0,w).

The desired formula for Bg(z,w) follows from Proposition 4.1. To prove the second
assertion of the proposition, we have just to write that

S ((g)) = Bg(z,z)〈ez,ez〉−1. �

Passing to the differential of  and using Proposition 4.2, we easily obtain the
following proposition.

PROPOSITION 4.4. Let X =
(
(z0,z0),c0,

(A B
B A

)) ∈ g . Then we have

S (d(X))(z) = ic0 + 
2 (z0z− z0 z)− 1

2 Tr(A)+ 
4 z(Bz)− 

2 (Az)z − 
4 z(Bz).

5. Complex Weyl symbols of representation operators

In this section, we compute W0((g)) for g ∈ G . We start with some technical
lemmas.

LEMMA 5.1. Let A,B,D be n× n complex matrices such that At = A,Dt = D.
Let M =

(
A Bt

B D

)
, U =

( In iIn
In −iIn

)
and N =UtMU . Assume that Re(N) is positive definite.

Let u,v ∈ Cn . Then we have∫
Cn

exp(−(w(Aw)+w(Dw)+2w(Bw)))exp(uw+ vw)dm(w)

=n(DetN)−1/2 exp

(
1
4

(
u v
)
M−1

(
u
v

))
.
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Proof. See [18, App A, Theorem 3] or [14]. �

LEMMA 5.2. Let a,b, p be n× n complex matrices such that
( −a In+pt

In+p d

)
has

inverse matrix
( 
 
)
. Then we have the following equations(

a In− pt

p− In d

)(
 
 

)(
a pt − In

In− p d

)
=
(

4 −a 3In−4− pt

3In−4 − p 4 +d

)
;(

a In− pt

p− In d

)(
 
 

)(−a In
p 0

)
=
(

a−2 2− In
2 + p−2In −2

)
;(−a pt

In 0

)(
 
 

)(−a In
p 0

)
=
(
 −a In− 
In− 

)
.

Proof. From the equalities(
 
 

)( −a In + pt

In + p d

)
=
( −a In + pt

In + p d

)(
 
 

)
= I2n

we deduce the series of equations

a = (In + p)− In; a =  (In + p);
d =−(In + pt); d = In− (In + pt);
a =(In + pt)− In; a = (In + pt) ;

d =− (In + p); d = In− (In + p) .

By using these equations, we verify that(
 
 

)(
a −In + pt

In− p d

)
=
(

2 − In −2
2 In−2

)

which implies that(
a In− pt

−In + p d

)(
2 − In −2

2 In−2

)
=
(

4 −a 3In−4− pt

3In−4 − p 4 +d

)
.

Hence we have proved the first equation of the lemma. Similarly, one can use the
preceding series of equations in order to verify that(

 
 

)(−a In
p 0

)
=
(

In− 
− 

)

and (
a In− pt

p− In d

)(
In− 
− 

)
=
(

a−2 2− In
2 + p−2In −2

)
.

The second equation of the lemma follows. We also have(−a pt

In 0

)(
In− 
− 

)
=
(
 −a In− 
In− 

)
.

This gives the third equation of the lemma. �
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LEMMA 5.3. Let k =
( P Q

Q P

) ∈ S .

1. Let

M0 =
(−QP−1 In +(Pt)−1

In +P−1 P−1Q

)
.

Then we have

Det(M0) = (−1)n(DetP)−1 Det(k+ I2n).

2. Let J =
( 0 In
−In 0

)
. With the notation of Lemma 5.2, take a = QP−1 , d = P−1Q

and p = P−1 . Then we have

1
2J(k− I2n)(k+ I2n)−1 =

(
 1

2 In− 
1
2 In− 

)

and

J(k+ I2n)−1 =
( − 
 − In −

)
.

3. Let J0 =
( 0 In

In 0

)
, M′

0 = M0−J0 and N0 =UtM0U . Assume that Det(k+ I2n) �= 0 .
Then Re(N0) is a positive definite matrix.

Proof. Part of this lemma has already been proved in [14]. Netherless, we detail
here the whole proof for completness. We remark that we have

(−QP−1In +(Pt)−1

In +P−1 P−1Q

)(−P −Q
0 In

)
=
(

Q QP−1Q+ In +(Pt)−1

−In−P −Q

)

=
(

Q In +P
−In−P −Q

)
= J(k+ I2n)

since

QP−1Q+(Pt)−1 = (QP−1QPt + In)(Pt)−1 = P.

Then, by taking the determinant, we get (1). Moreover, we also obtain(−P −Q
0 In

)
=
(
 
 

)
J(k+ I2n)

hence (
 1

2 In− 
1
2 In− 

)
=

1
2

(
0 In
In 0

)
− J

(
 
 

)
J

=
1
2

(
0 In
In 0

)
− J

(−P −Q
0 In

)
(k+ I2n)−1
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and the first equation of (2) follows. Similarly, we can write( − 
 − In −

)
=
(

0 0
−In 0

)
+ J

(
 
 

)
J

=
(

0 0
−In 0

)
+ J

(−P −Q
0 In

)
(k+ I2n)−1

=
((

0 0
−In 0

)
(k+ I2n)+ J

(−P −Q
0 In

))
(k+ I2n)−1

= J(k+ I2n)−1.

This ends the proof of (2). In order to prove (3), we first note that

UN0U
∗ = (UUt)M0(UU∗) = 4J0M0 = 4J0(J0 +M′

0) = 4(I2n + J0M
′
0).

By using the relations given at the beginning of Section 4, we can verify that M′
0 is

unitary, hence J0M′
0 is unitary. Then there exist a unitary matrix T0 and t1, t2, . . . ,t2n ∈

R such that
J0M

′
0 = T0 Diag(eit1 ,eit2 , . . . ,eit2n)T ∗

0 .

Thus we have

UN0U
∗ = 4T0 Diag(1+ eit1 ,1+ eit2 , . . . ,1+ eit2n)T ∗

0 .

Consequently, we can write

N0 = T Diag(1+ eit1 ,1+ eit2 , . . . ,1+ eit2n)T ∗

where T is invertible. Noting that N0 is symmetric since M0 is symmetric, we deduce
that

Re(N0)= 1
2(N0 +N0)= 1

2(N0 +N∗
0 )= T Diag(1+cos(t1),1+cos(t2), . . . ,1+cos(t2n))T ∗.

Now, on the one hand, we have

DetN0 = (DetU)2 DetM0 = (DetU)2(−1)n(DetP)−1 Det(k+ I2n) �= 0

and, on the other hand,

DetN0 = |DetT |2
2n


j=1

(1+ eit j).

This shows that, for each j = 1,2, . . . ,2n , we have 1+ eit j �= 0 hence 1+ cos(t j) > 0.
This implies that Re(N0) is positive definite. �

Let us denote by Arg(z) the principal argument of z∈C . For each k =
( P Q

Q P

)∈ S ,

define cn(k) as follows.

cn(k) := 2n(Det(I2n + k))−1/2 if Det(I2n + k) > 0;

cn(k) := −i2n|Det(I2n + k)|−1/2 if Det(I2n + k) < 0and Arg(Det(P)) ∈]0, [;

cn(k) := i2n|Det(I2n + k)|−1/2 if Det(I2n + k) < 0and Arg(Det(P)) ∈]− ,0[.
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THEOREM 5.4. Let k =
( P Q

Q P

) ∈ S such that Det(I2n + k) �= 0 . Let g = ((z0,z0),

c0,k) ∈ G. Let
( 
 
)

be the inverse matrix of
(−QP−1 In+(Pt)−1

In+P−1 P−1Q

)
.

1. For each z ∈ Cn , we have

W0((g))(z) =cn(k)exp(ic0) exp

(

(
z z
)(  1

2 In− 
1
2 In− 

)(
z
z

))

× exp

(

(
z z
)( − 

 − In −
)(

z0

z0

))

× exp

(

4

(
z0 z0

)(  1
2 In− 

1
2 In− 

)(
z0

z0

))
.

2. Alternatively, for each z ∈ Cn , we have

W0((g))(z) =cn(k)exp(ic0) exp

(

2

(
z z
)
J(k− I2n)(k+ I2n)−1

(
z
z

))

× exp

(

(
z z
)
J(k+ I2n)−1

(
z0

z0

))

× exp

(

8

(
z0 z0

)
J(k− I2n)(k+ I2n)−1

(
z0

z0

))
.

Proof. Let g = ((z0,z0),c0,k) ∈ G with k =
( P Q

Q P

) ∈ S . We use the following
formula, see Definition 3.1:

W0((g))(z) =
(



)n ∫
Cn

Bg(z+w,z−w)exp
(

2 (−zz −ww+ zw− zw)

)
dm(w)

where the kernel Bg of (g) is given by Proposition 4.3. This gives

W0((g))(z) =
(



)n
(DetP)−1/2 exp

(
ic0− 

4 |z0|2 + 
4 z0(QP−1z0)

)
× exp

(

2 z(z0 −QP−1z0)− 

2 (P−1z0)z
)

× exp
(

4

(
z(QP−1z)+2z(P−1− In)z− z (P−1Qz)

))
×
∫

Cn
exp
(

4

(
wQP−1w−w(P−1Qw)−2w(In +P−1)w

))
× exp

(

2 (QP−1z+((Pt)−1− In)z + z0−QP−1z0)w

)
× exp

(

2 ((In −P−1)z+P−1Qz +P−1z0)w)

)
dm(w).

The integral in this formula, which we denote by I(g) , can be computed by applying
Lemma 5.1 to

M = 
4

(−QP−1 In +(Pt)−1

In +P−1 P−1Q

)



468 B. CAHEN

and

u = 
2 (QP−1z+((Pt)−1− In)z + z0−QP−1z0) ;

v = 
2 ((In−P−1)z+P−1Qz +P−1z0).

Note that we have(
u
v

)
= 

2

(
QP−1 (Pt)−1 − In

In−P−1 P−1Q

)(
z
z

)
+ 

2

(−QP−1 In
P−1 0

)(
z0

z0

)

and, consequently,

(
u v
)
M−1

(
u
v

)

=
(
z z
)( QP−1 In− (Pt)−1

−In +P−1 P−1Q

)(−QP−1 In +(Pt)−1

In +P−1 P−1Q

)−1

×
(

QP−1 −In +(Pt)−1

In−P−1 P−1Q

)(
z
z

)

+2
(
z z
)( QP−1 In− (Pt)−1

−In +P−1 P−1Q

)(−QP−1 In +(Pt)−1

In +P−1 P−1Q

)−1

×
(−QP−1 In

P−1 0

)(
z0

z0

)

+
(
z0 z0

)(−QP−1 (Pt)−1

In 0

)(−QP−1 In +(Pt)−1

In +P−1 P−1Q

)−1

×
(−QP−1 In

P−1 0

)(
z0

z0

)
.

Recalling the notation a = QP−1 , d = P−1Q , p = P−1 and

(
 
 

)
=
( −a In + pt

In + p d

)−1

=
(−QP−1 In +(Pt)−1

In +P−1 P−1Q

)−1

and taking Lemma 5.2 into account, we get

(
u v
)
M−1

(
u
v

)
= 

(
z z
)( 4 −a 3In−4− pt

3In−4 − p 4 +d

)(
z
z

)

+2
(
z z
)( a−2 2− In

2 + p−2In −2

)(
z0

z0

)

+
(
z0 z0

)( −a In− 
In− 

)(
z0

z0

)
.
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Thus we obtain

I(g) = n(DetUtMU)−1/2 exp

(
1
4

(
u v
)
M−1

(
u
v

))

= n(DetUtMU)−1/2 exp

(

4

(
z z
)( 4 −a 3In−4− pt

3In−4 − p 4 +d

)(
z
z

))

× exp

(

2

(
z z
)( a−2 2− In

2 + p−2In −2

)(
z0

z0

))

× exp

(

4

(
z0 z0

)( −a In− 
In− 

)(
z0

z0

))
.

On the other hand, the factor in front of I(g) in the formula for W0((g)) can be
written as(




)n
(DetP)−1/2 exp(ic0)exp

(

4

(
z z
)( a pt − In

p− In −d

)(
z
z

))

× exp

(

2

(
z z
)(−a In

−p 0

)(
z0

z0

))
exp

(

4

(
z0 z0

)( a − 1
2 In

− 1
2 In 0

)(
z0

z0

))
.

Putting this expression with the formula found for I(g) , we obtain

W0((g))(z) =  n(DetP)−1/2(DetUtMU)−1/2

× exp(ic0) exp

(

(
z z
)(  1

2 In− 
1
2 In− 

)(
z
z

))

× exp

(

(
z z
)( − 

 − In −
)(

z0

z0

))

× exp

(

4

(
z0 z0

)(  1
2 In− 

1
2 In− 

)(
z0

z0

))
.

But by using Lemma 5.3 we notice that

Det(UtMU) = (−1)n22n Det(M) = 2−2n 2n Det(k+ I2n)(DetP)−1

where Det(k+ I2n) is real, since there exists k′ ∈ Sp(n,R) such that k =U−1k′U hence
Det(k+I2n)= Det(k′+I2n) . This proves that 2n(DetP)−1/2(Det(k+I2n)(DetP)−1)−1/2

takes the announced value cn(k) . This ends the proof of (1).
(2) is just a reformulation of (1) taking Lemma 5.3 into account. �
We compute now W0(d(X)) for X ∈ g .

PROPOSITION 5.5. Let X = ((z0,z0),c0,Y ) ∈ g with Y =
(A B

B A

) ∈ s . Then we
have

W0(d(X))(z) = ic0 + 
2 (z 0z− z0 z)+ 

4 (z(Bz)− z (Bz)−2(Az)z)

for each z ∈ C
n .
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Proof. We can use the formula W0 = B−1/2
 S , see Section 3, where B = exp(/2 )

with =4n
k=1  2/ zk zk , see Section 2. Then we get B−1/2

 =exp(− 1
 

n
k=1  2/ zk zk) .

Thus, by using the formula for S (d(X)) given in Proposition 4.3, we find

B−1/2
 (S (d(X)))(z) = − 1



n


k=1

 2/ zk zk(S (d(X))) = 1
2

n


k=1

(Aek)ek = 1
2 Tr(A),

hence the result follows. �

6. Classical Weyl symbols of representation operators

For each (x,y) ∈ Rn ×Rn and each c ∈ R , let us denote by (x,y,c) the element
((x+ iy,x− iy),c) of Hn . Then the multiplication of Hn can be written as

(x,y,c).(x′,y′,c′) = (x+ x′,y+ y′,c+ c′+ 1
2 (xy′ − x′y)).

We can thus consider the semidirect product G′ := Hn �Sp(n,R) with respect to
the action of Sp(n,R) on Hn given by

k′ · (x,y,c) = (x′,y′,c), where

(
x′
y′

)
= k′

(
x
y

)
.

Let (x,y) ∈ R
n ×R

n and (x′,y′) ∈ R
n ×R

n . Let z = x+ iy and z′ = x′ + iy′ . For
k ∈ S , let k′ = U−1kU . Note that we have(

z′

z′

)
= k

(
z
z

)
⇔U

(
x′
y′

)
= kU

(
x
y

)
⇔
(

x′
y′

)
= k′

(
x
y

)
.

From this, we see that the action of S on Hn corresponds to the action of Sp(n,R) on
R2n .

Recall that the metaplectic representation  ′ of Sp(n,R) can be defined as fol-
lows, see [18, Chapter IV]. For each k′∈Sp(n,R) , we define  ′(k′):=B−1(Uk′U−1)B .
Similarly, we can introduce the extended metaplectic representation of G′ via

 ′((x,y,c),k′) := B−1((x+ iy,x− iy),c,Uk′U−1)B.

Then we have

 ′((x,y,c),k′) = (B−1 ((x+ iy,x− iy),c)B)(B−1(Uk′U−1)B) =  ′
 (x,y,c) ′(k′).

From now on, we take  = 1. We deduce from Section 5 formulas for the classical
Weyl symbol of  ′(g′) for g′ ∈ G′ .

For k′ =
(

A B
C D

)∈ Sp(n,R) , we define c′n(k′) by c′n(k′) = cn(Uk′U−1) . Then, from
the definition of cn , we easily deduce that

c′n(k
′) = 2n(Det(I2n + k′))−1/2 if Det(I2n + k′) > 0;

c′n(k
′) = −i2n|Det(I2n + k′)|−1/2 if Det(I2n + k′) < 0

and Arg(Det(A+D+ i(C−B))) ∈]0, [;

c′n(k
′) = i2n|Det(I2n + k′)|−1/2 if Det(I2n + k′) < 0

and Arg(Det(A+D+ i(C−B))) ∈]− ,0[.
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THEOREM 6.1. Let g′ = ((x0,y0,c0),k′) ∈ G′ such that Det(I2n + k′) �= 0 . Then
we have

W1( ′(g′))(x,y) = c′n(k
′)exp(ic0) exp

(
−i
(
x y
)
J(k′ − I2n)(k′ + I2n)−1

(
x
y

))

× exp

(
−2i

(
x y
)
J(k+ I2n)−1

(
x0

y0

))

× exp

(
− i

4

(
x0 y0

)
J(k′ − I2n)(k′ + I2n)−1

(
x0

y0

))
.

Proof. This is a consequence of (2) of Theorem5.4 since for each g′=((x0,y0,c0),k′)
∈ G′ we have

W1( ′(x0,y0,c0),k′)(x,y) =W1(B−1((x0 + iy0,x0− iy0),c0,Uk′U−1)B)(x,y)

=W0(((x0 + iy0,x0− iy0),c0,Uk′U−1))(x+ iy). �

In particular, for g′ = ((0,0,0),k′) ∈ G′ , we recover some known results, see for
instance [14], [15], [16]. By the same way, from Proposition 5.5 we can deduce a
formula for W1(d ′(X ′)) , X ′ ∈ g′ .

PROPOSITION 6.2. For each X ′ = ((x0,y0,c0),Y ′)∈ g′ with Y ′ =
(

A B
C D

)∈ sp(n,R) ,
we have

W1(d ′(X ′))(x,y) =ic0 + i(x0y− xy0)+ i
2 (2y(Ax)+ y(By)− x(Cx))

=ic0 + i(x0y− xy0)− i
2

(
x y
)
JY ′
(

x
y

)
.

7. Weyl symbols of the exponential of some operators

In the preceding section, we have seen that for each X ′ ∈ g′ , W1(d ′(X ′)) is a
polynomial on R2n of degree � 2 (Proposition 6.2). Conversely, each polynomial
on R2n of degree � 2 can be written as W1(d ′(X ′)) for some X ′ ∈ g′ . Since we
have  ′(expX ′) = exp(d ′(X ′)) , we can deduce from Theorem 5.4 and Theorem 6.1 a
formula for the Weyl symbol of the exponential of an operator whose Weyl symbol is a
polynomial on R

2n of degree � 2, see Corollary 7.4. Then we recover Theorem 4.7 in
[24]. We begin with a lemma on the exponential map in G .

LEMMA 7.1. Let X = ((z0,z0),c0,Y ) ∈ g . Let Z0 =
( z0

z0

)
. Then, for each t ∈ R ,

we have
exp(tX) = ((z(t),z(t)),c(t),exp(tY ))

where (
z(t)
z(t)

)
=

exp(tY )− In
Y

Z0
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and

c(t) = c0t + 1
2
(

Z0,
sinh(tY )− tY

Y 2 Z0

)
.

Proof. Let X = ((z0,z0),c0,Y ) ∈ g . We can write

exp(tX) = ((z(t),z(t)),c(t),exp(tY ))

for t ∈ R . Let Z(t) :=
(

z(t)
z(t)

)
. Then the relation

exp(t + s)X = exp(tX)exp(sX), s,t ∈ R (7.1)

gives
Z(t + s) = Z(t)+ exp(tY )Z(s), s,t ∈ R.

Taking the derivative, we find Z′(t) = exp(tY )Z0 hence

Z(t) =
exp(tY )− In

Y
Z0.

Equation 7.1 also gives

c(t + s) = c(t)+ c(s)+ 1
2(Z(t),exp(tY )Z(s)).

By differentiating at t = 0, we get

c′(s) = c0 + 1
2(Z0,Z(s)).

Thus

c(t) = c0t + 1
2
(

Z0,
exp(tY )− In− tY

Y 2 Z0

)
.

Noting that (Z0,Y 2kZ0) = 0 for each non-negative integer k , we finally find

c(t) = c0t + 1
2
(

Z0,
sinh(tY )− tY

Y 2 Z0

)
. �

Now we give formulas for W0((expX)) , X ∈ g and W1( ′(expX ′)) , X ′ ∈ g′ .

PROPOSITION 7.2. Let X = ((z0,z0),c0,Y ) ∈ g . Let t ∈ R such that Det(I2n +
exp(tY )) �= 0 . Then for each z ∈ Cn we have

W0((exp(tX)))(z) = exp(itc0) Det(cosh( 1
2 tY ))−1/2

× exp

(
1
2

(
z z
)
J tanh( 1

2 tY )
(

z
z

))

× exp

((
z z
)
J
tanh( 1

2 tY )
Y

(
z0

z0

))

× exp

(
1
2

(
z0 z0

)
J

1
2 tY − tanh( 1

2 tY )
Y 2

(
z0

z0

))
.
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Proof. Let X = ((z0,z0),c0,Y ) ∈ g and t ∈ R . Let Z0 =
( z0

z0

)
. We write as before

exp(tX) = ((z(t),z(t)),c(t),exp(tY )),

and

Z(t) :=
(

z(t)
z(t)

)
=

exp(tY )− In
Y

Z0.

We apply (2) of Theorem 5.4 to g = exp(tX) . We get

W0((exp(tX)))(z) = cn(exp(tY ))exp(ic(t))

× exp

(
1
2

(
z z
)
J(exp(tY )− I2n)(exp(tY )+ I2n)−1

(
z
z

))
× exp

((
z z
)
J(exp(tY )+ I2n)−1Z(t)

)
× exp

(
1
8Z(t)t J(exp(tY )− I2n)(exp(tY )+ I2n)−1Z(t)

)
.

But we have the following relations

cn(exp(tY )) = 2n Det(exp(tY )+ I2n)−1/2 = Det(cosh( 1
2 tY ))−1/2;

ic(t) = ic0t + i
2
(

Z0,
sinh(tY )− tY

Y 2 Z0

)
;

(exp(tY )− I2n)(exp(tY )+ I2n)−1 = tanh( 1
2 tY )

and also (
z z
)
J(exp(tY )+ I2n)−1Z(t) =

(
z z
)
J
tanh( 1

2 tY )
Y

Z0.

Note that for each Z = (z,w),Z′ = (z′,w′) ∈ C2n , we have

Z(JZ′) = zw′ − z′w = 2
i(Z,Z′)

and, for each Y ∈ s , we have (YZ,Z′) = −(Z,YZ′) . Then we can write

1
8Z(t)t J(exp(tY )− I2n)(exp(tY )+ I2n)−1Z(t)

= 1
4i(Z(t),(exp(tY )− I2n)(exp(tY )+ I2n)−1Z(t))

= − i
4
(

exp(tY )− I2n

Y
Z0,(exp(tY )− I2n)(exp(tY )+ I2n)−1 exp(tY )− I2n

Y
Z0

)

= − i
4
(

Z0,
I2n− exp(−tY )

Y
(exp(tY )− I2n)(exp(tY )+ I2n)−1 exp(tY )− I2n

Y
Z0

)

= − i
2

(
Z0,

sinh(tY )−2tanh( 1
2 tY )

Y 2 Z0

)
.

The result follows. �
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PROPOSITION 7.3. Let X ′ = ((x0,y0,c0),Y ′) ∈ g′ . Let t ∈ R such that Det(I2n +
exp(tY ′)) �= 0 . Then, for each (x,y) ∈ R2n , we have

W1( ′(exp(tX ′)))(x,y) = exp(itc0)Det(cosh( 1
2 tY ′))−1/2

× exp

(
−i
(
x y
)
J tanh( 1

2 tY ′)
(

x
y

))

× exp

(
−2i

(
x y
)
J
tanh( 1

2 tY
′)

Y ′

(
x0

y0

))

× exp

(
−i
(
x0 y0

)
J

1
2 tY

′ − tanh( 1
2 tY ′)

Y ′2

(
x0

y0

))
.

Proof. Let z0 = x0 + iy0 , Y = UY ′U−1 and X = ((z0,z0),c0,Y ) ∈ g . Then we
have

W1( ′(exp(tX ′)))(x,y) = W1(B−1(exp(tX))B)(x,y) = W0((exp(tX)))(z)

and the result follows from Proposition 7.2. �

COROLLARY 7.4. Let M be a real symmetric (2n)× (2n)-matrix, a,b ∈ Rn and
c∈R . Let A be the differential operator on R

n of classical Weyl symbol ip(x,y) where

p(x,y) := ax+by+ c− (x y
)
M

(
x
y

)
.

Assume that Det(I2n + exp(2JM)) �= 0 . Then the classical Weyl symbol of exp(A) is
given by

W1(exp(A))(x,y) = exp(ic)Det(cosh(JM))−1/2

× exp

(
i
(
x y
)
J tanh(JM)

(
x
y

))

× exp

(
−i
(
x y
)
J
tanh(JM)

JM

(
b
−a

))

× exp

(
i
4

(
b −a

)
J
JM− tanh(JM)

(JM)2

(
b
−a

))
.

Proof. By Proposition 6.2, we see that A = d ′(X ′) where X ′ = ((b,−a),c,−2JM) .
Then exp(A) =  ′(exp(X ′)) and the result follows from Proposition 7.3. �

EXAMPLE. We take p(x,y) = ax+by+c− s(x2 +y2) where a,b∈ Rn and c,s ∈
R . Then JM = sJ , cosh(JM) = cos(s)I2n , tanh(JM) = tan(s)J and

tanh(JM)
JM

=
tan(s)

s
I2n,

JM− tanh(JM)
(JM)2 =

tan(s)− s
s2 J.
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The exponential of the operator A with Weyl symbol ip(x,y) is then given by

W1(exp(A))(x,y) = exp(ic)(coss)−n exp
(−i tan(s)(x2 + y2)

)
× exp

(
i tan(s)

s (ax+by)
)

exp
(
− i

4
tan(s)−s

s2
(a2 +b2)

)
.

8. Star exponentials

Here we give a reformulation of Corollary 7.4 in terms of star exponential for the
Moyal star product. The Moyal star product on R2n is defined as follows.

Take coordinates x = (p,q) on R2n ∼= Rn ×Rn . We have xi = pi for 1 � i � n
and xi = qi−n for n+1 � i � 2n . For u,v ∈C(R2n) , let P0(u,v) := uv ,

P1(u,v) :=
n


k=1

(
u
 pk

v
qk

− u
qk

v
 pk

)
= 

1�i, j�n

i jxiux j v

(the Poisson brackets) and, more generally, for l � 2,

Pl(u,v) := 
1�i1,...,il , j1,..., jl�n

i1 j1i2 j2 · · ·il jl l
xi1

...xil
u l

x j1
...x jl

v.

Then the Moyal product ∗ is the following formal deformation of the pointwise
multiplication of C(R2n)

u ∗ v := 
l�0

tl

l!
Pl(u,v),

t being a formal parameter.
An important problem is the computation of the star exponential exp∗( f ) :=

l�0
1
l! f ∗,l for some functions f . Such computations are usually done by solving some

differential systems, see [3], [4].
We can restrict ∗ to polynomials on R

2n and take t = −i/2. Then ∗ induces an
associative product on the polynomials which we also denote by ∗ .

The classical Weyl correspondence W (Equation 3.2) can be extended to polyno-
mials as follows. For each function f (p,q) = u(p)q where u is a polynomial on Rn ,
we have

(W ( f ))(p) =
(

i

 s

) (
u(p+ 1

2 s)(p+ s)
)∣∣∣

s=0
,

see [23], [30] for instance. Then, for each polynomial f , W ( f ) is a differential op-
erator with polynomial coefficients and ∗ corresponds to the composition of opera-
tors in the Weyl quantization, that is, for each polynomials f1, f2 on R

2n , we have
W ( f1 ∗ f2) = W ( f1)W ( f2) or, equivalently, for each differential operators A1,A2 with
polynomial coefficients, we have W1(A1)∗W1(A2) = W1(A1A2) .

PROPOSITION 8.1. Let M be a real symmetric (2n)×(2n)-matrix, a,b∈Rn and
c ∈ R . Let

p(x,y) := ax+by+ c− (x y
)
M

(
x
y

)
.
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Assume that Det(I2n + exp(2JM)) �= 0 . Then we have

exp∗(ip)(x,y) = exp(itc)Det(cosh(JM))−1/2

× exp

(
i
(
x y
)
J tanh(JM)

(
x
y

))

× exp

(
−i
(
x y
)
J
tanh(JM)

JM

(
b
−a

))

× exp

(
i
4

(
b −a

)
J
JM− tanh(JM)

(JM)2

(
b
−a

))
.

Proof. Let X ′ = ((b,−a),c),−2JM)∈g′ . Then we have ip(x,y)=W1(d ′(X ′))(x,y)
hence

exp∗(ip) = exp∗(W1(d ′(X ′))) = W1(exp(d ′(X ′))) = W1( ′(exp(X ′)))

and the result follows from Corollary 7.4. �

Note that a similar formula can be found in [4].
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