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SINGLY GENERATED SELFADJOINT–IDEAL OPERATOR SEMIGROUPS:

SPECTRAL DENSITY OF THE GENERATOR AND SIMPLICITY
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Abstract. This extends our new study of the automatic selfadjoint ideal property for B(H) -
operator semigroups introduced to us by Heydar Radjavi (SI semigroups for short). Our inves-
tigation here of singly generated SI semigroups led to unexpected algebraic and analytic phe-
nomena on the simplicity of SI semigroups and on the spectral density of their generators. In
particular: the SI property yields for a hyponormal operator, zero planar area measure of its ap-
proximate point spectrum; the same for the essential spectrum of an essentially normal operator;
and that SI semigroups generated by unilateral weighted shifts with periodic nonzero weights
are simple. We also characterized the simplicity of the SI semigroups generated by certain com-
muting classes of normal operators.

1. Introduction

In [11] we began our investigation of a question posed to us by Heydar Radjavi
in a private communication (2015): Which multiplicative semigroups in B(H) have
all their multiplicative ideals (that is, semigroup-ideals) automatically selfadjoint [11,
Definitions 1.1–1.3]. We call these semigroups selfadjoint-ideal semigroups (SI semi-
groups for short). He pointed out, for instance, that in multiplicative semigroups B(H)
and F(H) , all multiplicative ideals are automatically selfadjoint. We found this SI
property interesting because it turned out to be a unitary invariant for semigroups of
B(H) , which invariant we believe is new; and hence a useful tool in distinguishing be-
tween them up to unitary equivalence, and sometimes in determining their simplicity,
i.e., whether or not they have no nonzero proper multiplicative ideals, a subject of con-
siderable interest in semigroup theory. Herein all ideals of semigroups are meant to be
two-sided, a simple semigroup is always meant to be a semigroup that has no nonzero
proper ideal, and B(H) and F(H) respectively are regarded as the multiplicative semi-
groups of bounded linear operators and bounded finite rank operators on a finite or
infinite-dimensional separable complex Hilbert space H .
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In the study of semigroups, the possibility of general characterizations or any gen-
eral structure of semigroups closed under adjoints seems unexplored, which compli-
cates our investigation of SI semigroups even at the basic level of singly generated
selfadjoint semigroups. Because there is no characterization or investigation of selfad-
joint semigroups in general, so the SI semigroup characterization of singly generated
selfadjoint semigroups generated by an arbitrary operator remains a challenge! And
any strong general result in this study seems difficult to obtain with the very limited
background on this subject of semigroup theory. Hence our main focus here and in
[11]–[12] is on singly generated semigroups generated by special classes of operators.
We hope that our work will induce the interested reader to further investigations in this
new emerging field of selfadjoint semigroup for operators.

An SI semigroup is a multiplicative semigroup S all of whose ideals are selfad-
joint, or equivalently, for each A in the semigroup S , the bilinear operator equation
A∗ = XAY is solvable for some X ,Y ∈ S ∪{I} [11, Lemma 1.9]. Here we investigate
further characterizations of SI for several special fundamental classes of semigroups
and consequences of their possessing the SI property. To our knowledge, the study of
this bilinear operator equation in terms of the existence of solutions in a multiplicative
semigroup in B(H) is new, as well as further potential for finding new simple semi-
groups from our techniques used to study the SI property.

Our study began in [11] with characterizations of SI semigroups inside certain
classes of singly generated selfadjoint semigroups of B(H)-operators. Our main fo-
cus turned out to be on singly generated selfadjoint semigroups S(T,T ∗) generated by
T ∈B(H) (all finite products of T and T ∗ ). Herein a singly generated selfadjoint semi-
group we mean to be the semigroup generated by T and T ∗ , hence the alternate name
for S(T,T ∗) “singly generated selfadjoint semigroup” despite the double generators.

Our aim in [11] and [12], and in part here is twofold: to study the impact of the
SI property of S(T,T ∗) on the structure of and constraints on special important classes
of T and to find characterizations (in terms of properties of T ) of simple and non-
simple ones. At first the investigation of which S(T,T ∗) generated by an arbitrary
T has the SI property seemed intractable. So in [11] we first considered the class of
normal operators and, among the non-normals, the class of rank-one operators. For
these two classes of operators, the SI property implied simplicity of S(T,T ∗) in most
cases and non-simplicity in rare cases – see [11, Section 3 end] for a summary of results
for normal operators and rank-one operators. In [12], we separately investigated the SI
semigroup S(T,T ∗) generated by a finite matrix T ∈ Mn(C) beyond rank-one as we
could not adapt or extend the techniques employed in [11] for rank-one operators.

In this paper, we continue the study of SI semigroups by focusing on singly gen-
erated selfadjoint semigroups S(T,T ∗) generated by operators beyond our work on
normal operators and rank-one operators T . More specifically, among the non-normal
operators we study the special classes of operators: unilateral weighted shifts, hyponor-
mal operators (which include subnormal operators), and essentially normal operators.
We say that T is hyponormal if T ∗T −TT ∗ � 0; an operator T on a Hilbert space H
is subnormal if there is a Hilbert space K containing H and a normal operator S on
K such that SH⊆H and the restriction of S to H is equal to T ; and T is essentially
normal if the image of T in the Calkin algebra B(H)/K(H) is normal. Our study
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led to interesting algebraic and analytic impacts of the SI property for S(T,T ∗) on the
simplicity of these S(T,T ∗) semigroups and the spectral density of their generators T .
And we also study the SI semigroups generated by a set of commuting normals as part
of our study of the SI property of semigroups generated by more than one operator.
Beyond sets of commuting normals, the study of the SI property of semigroups gen-
erated by arbitrary sets (possibly non-normals) remains open for us. In the next four
paragraphs, we summarize the work done in this paper.

In the case of singly generated semigroup S(T,T ∗) generated by a nonselfadjoint
normal operator T , in [11, Theorem 2.1] we proved that simplicity is equivalent to the
SI property. In this paper, we investigate the SI property of semigroups generated by
commuting normals, by first determining necessary and sufficient conditions for the
semigroup to be simple (Corollary 2.4). In this case, semigroups are automatically SI
semigroups because simple semigroups are trivially SI. In an attempt to characterize the
nonsimple SI semigroups generated by a set of commuting normals, we only manage
to determine necessary and sufficient conditions for a nonsimple SI semigroup when
generated by a set of two normals (Corollary 2.5). We could not extend our techniques
even to the 3 generator case, and so it remains to be addressed.

In our investigation of the SI property for S(T,T ∗) generated by unilateral weigh-
ted shifts with weight sequences {n} , we considered two classes of weight sequences:
weight sequences {n} with a zero-gap (that is, for some i � 1 one has i �= 0 and
i+1 = 0) and weight sequences with no zero-gap. For the class of weighted shifts with
a zero-gap, we determined equivalent conditions for S(T,T ∗) to be SI (Theorem 3.2),
and in this case S(T,T ∗) is always nonsimple provided T 2 �= 0 (Corollary 3.6). For the
class of weighted shifts with no zero-gap, we obtained a necessary condition (which is
not sufficient, see Example 3.10) for the SI property for S(T,T ∗) (Theorem 3.8). Nev-
ertheless, we were able to obtain a necessary and sufficient condition for S(T,T ∗) to
be SI when generated by any T from two particular subclasses of weighted shift op-
erators from among those that have no zero-gap, that is, { j} = 0N ⊕{ j} j>N where
 j �= 0 for j > N � 0. Those classes are: those weighted shifts whose nonzero weights
{ j} j>N have periodic absolute value sequence ({| j|} j>N ); and those weighted shifts
whose nonzero weights { j} j>N have eventually constant absolute value sequence
({| j|} j>N ) (Theorem 3.19, Corollary 3.21).

Historically, among the non-normal operators, there has been a continuing interest
in the study of hyponormal operators and essentially normal operators in terms of their
spectral density, i.e., the various kinds of “thinness” of their spectrum, for example in
[13], [15], and [16]. In particular, the topological nature of the spectrum has been im-
portant in distinguishing hyponormal from normal operators in terms of various kinds
of spectral thinness of these operators to force normality from hyponormality. For in-
stance, if T is hyponormal with a single limit point in its spectrum, then T is normal
[15, Theorem 3]; if the spectrum of T is an arc, then T is normal [16, Theorem 4]; if
the planar area, i.e., the Lebesgue area, of its spectrum is zero, then T is normal [13,
Corollary]. And for a special class of hyponormals, namely, subnormal operators, the
essential spectrum has been of interest as it provides a criterion to characterize those
subnormal operators that are also essentially normal. For example, if T is subnormal
and the area of its essential spectrum is zero, then T is essentially normal [4, Corollary
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31.15]; and if the set of rational functions and the set of continuous functions acting
on the essential spectrum of a subnormal operator are the same, then T is essentially
normal [4, Corollary 31.14]. A natural question one might be interested in is: When
does a subnormal or a hyponormal operator have any of the aforementioned spec-
tral properties? We provide some partial answers to this question for singly generated
SI semigroups S(T,T ∗) . More precisely, the SI property for S(T,T ∗) generated by
a nonselfadjoint hyponormal operator implies that the planar area of the approximate
point spectrum of T is zero (Lemma 4.1 and Remark 4.2). As a consequence, when-
ever the boundary of the spectrum of hyponormal T excludes at least one point of the
unit circle, the SI property for S(T,T ∗) implies normality of a hyponormal operator
(Theorem 4.4). The SI property for S(T,T ∗) generated by an essentially normal op-
erator implies that the planar area of the essential spectrum of T is zero (Corollary
4.15); and for a subnormal operator, under the SI property for S(T,T ∗) , the essential
normality of T is equivalent to the planar area measure of the essential spectrum being
zero (Corollary 4.16). So in some cases, the SI property for S(T,T ∗) implies some of
the different topological constraints arising in the citations above. We prove our results
using the notion of characters on singly generated unital C∗ -algebras for hyponormal
operators. The existence of characters on C∗(T ) under various spectral conditions for
hyponormals was investigated by Bunce in [2].

Analysis of the interconnections between the SI semigroup S(T,T ∗) and the spec-
trum of T also reveals an interesting connection to the singly generated unital C∗ -
algebra C∗(T ) . Note that the elements of S(T,T ∗) are words in T and T ∗ which
along with the identity I are the basic building blocks for unital C∗(T ) . For T normal,
it is known that C∗(T ) contains nontrivial projections if and only if the spectrum of T
is disconnected ([8, Theorem 2.1.13] and Corollary 4.14). We prove in Corollary 4.14
that if T is a non-invertible normal operator, then the SI property for S(T,T ∗) implies
that the spectrum of T is disconnected and hence C∗(T ) contains nontrivial projec-
tions. Based on our investigations so far, we anticipate that for an arbitrary operator
T , there may be deep connections between the SI property of S(T,T ∗) , the simplicity
of these semigroups, and the topological (and analytical) nature of the spectrum of T .
The core problem in this investigation is how to solve the bilinear operator equation
mentioned earlier in a multiplicative semigroup in B(H) . And we hope that our work
stimulates further investigation in this subject, which here and along with [11] is at its
early stage of development.

For the convenience of the reader we recall below the definitions and terminology
from [11].

Terminology (Definitions 1.1–1.5)

The terminology given in Definitions 1.1–1.2 is standard. The terminology in
Definition 1.3 on the notion of selfadjoint-ideal semigroups and our focus in [11], we
believe is new and due to Radjavi.

DEFINITION 1.1. A semigroup S in B(H) is a subset closed under multipli-
cation. A selfadjoint semigroup S is a semigroup also closed under adjoints, i.e.,
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S∗ := {T ∗ | T ∈ S} ⊂ S .

DEFINITION 1.2. An ideal J of a semigroup S in B(H) is a subset of S closed
under products of operators in S and J . That is, XT,TY ∈ J for T ∈ J and X ,Y ∈ S .
And so also XTY ∈ J .

DEFINITION 1.3. A selfadjoint-ideal (SI) semigroup S in B(H) is a semigroup
for which every ideal J of S is closed under adjoints, i.e., J∗ := {T ∗ | T ∈ J} ⊂ J.

Because this selfadjoint ideal property in Definition 1.3 concerns selfadjointness
of all ideals in a semigroup, we call these semigroups selfadjoint-ideal semigroups (SI
semigroups for short).

Semigroups generated by A⊂ B(H)

DEFINITION 1.4. The semigroup generated by a set A⊂B(H) , denoted by S(A) ,
is the intersection of all semigroups containing A. Also define A∗ := {A∗|A ∈ A} .

For short we denote by S(T ) the semigroup generated by {T} (called generated
by T for short). It should be clear for the semigroup S(A) that Definition 1.4 is
equivalent to the semigroup consisting of all possible words of the form A1A2 · · ·Ak

where k ∈ N and Ai ∈ A for each 1 � i � k .

DEFINITION 1.5. The selfadjoint semigroup generated by a set A ⊂ B(H) de-
noted by S(A∪A∗) or S(A,A∗) , is the intersection of all selfadjoint semigroups
containing A∪A∗ . Let S(T,T ∗) denote for short S({T},{T ∗}) and call it the singly
generated selfadjoint semigroup generated by T .

It is clear that S(A,A∗) is a selfadjoint semigroup. Moreover, it is clear that
Definition 1.5 conforms to the meaning of S(A∪A∗) in terms of words discussed
above. That is, it consists of all words of the form A1A2 · · ·Ak where k ∈ N and Ai ∈
A∪A∗ for each 1 � i � k .

The focus of this paper is the investigation of the singly generated SI semigroups
S(T,T ∗) . So, we provide a description of the elements of S(T,T ∗) here (see also [11,
Proposition 1.6]).

For T ∈ B(H) , the semigroup S(T,T ∗) generated by the set {T,T ∗} is given by

S(T,T ∗) = {Tn,T ∗n,k
j=1T

njT ∗mj ,(k
j=1T

njT ∗mj )Tnk+1 ,k
j=1T

∗mj Tn j ,

(k
j=1T

∗mjT n j)T ∗mk+1},

where n � 1, k � 1, n j,mj � 1 for 1 � j � k , and nk+1,mk+1 � 1. The product k
j=1

in the semigroup list is meant to denote an ordered product. Indeed, this follows directly
from Definitions 1.4–1.5 and the accompanying word description by taking A = {T} .

Alternatively S(T,T ∗) consists of: words only in T , words only in T ∗ , words
that begin and end in T , words that begin with T and end with T ∗ , and words that
begin with T ∗ and end with T and words that begin and end with T ∗ .
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2. On simplicity of SI semigroups generated by commuting normals

In [11, Section 3] we obtained a complete characterization (i.e., necessary and
sufficient conditions to possess the SI property) of semigroups S(T,T ∗) generated by
a rank-one operator T ; and in some cases the SI property implied the simplicity of
S(T,T ∗) . (A summary of the complete classification is provided in [11, before Re-
mark 3.21].) The various levels of difficulty and limited techniques at our disposal
made us take a complicated approach to obtain the characterization for the SI semi-
group S(T,T ∗) in this simplest case of rank-ones. Further study of the SI semigroups
generated by a finite rank operator beyond the rank-one operators will appear separately
in a later paper.

Among many other results in [11], we characterized SI and simplicity for those
semigroups S(T,T ∗) generated by a single normal operator T . In this section we
focus on SI and simplicity questions for semigroups of commuting normal operators
and singly generated semigroups generated by unilateral weighted shifts. We exploit
the GNS (Gelfand-Naimark-Segal) C∗ -isometric isomorphism for commuting classes
of normal operators to answer those questions.

Before we begin the investigation of SI semigroups generated by commuting nor-
mals starting with those generated by two commuting normal operators and before mov-
ing on to arbitrary numbers of generators, we recall the singly generated SI semigroup
characterization generated by a normal operator [11, Theorem 2.1]. And then investi-
gate singly generated SI semigroups S(T,T ∗) generated by an infinite rank weighted
shift.

THEOREM [11, Theorem 2.1]. For T a normal nonselfadjoint operator, the fol-
lowing are equivalent.

(i) S(T,T ∗) is an SI semigroup.

(ii) T is unitarily equivalent to U ⊕ 0 (or U when kerT = {0} ) with U a unitary
operator.

(iii) S(T,T ∗) is a simple semigroup.

For N1 and N2 normal operators, we denote by S(N1,N∗
1 ,N2,N∗

2 ) the selfadjoint
semigroup generated by N1 and N2 . When commuting, i.e., N1N2 = N2N1 , it follows
from Putnam-Fuglede theorem ([5, Problem 192]) that NiN∗

j = N∗
j Ni for i, j = 1,2, and

hence S(N1,N∗
1 ,N2,N∗

2 ) is an abelian semigroup. And therefore, the following theorem
reduces the questions on SI and simplicity of S(N1,N∗

1 ,N2,N∗
2 ) to questions on SI and

simplicity of the corresponding semigroup in the C∗ -algebra of continuous functions
which vanish at infinity on locally compact Hausdorff space (A) , the set of characters
(nonzero complex-valued homomorphisms on A) on a nonzero abelian C∗ -algebra A .

THEOREM [8, Theorem 2.1.10 (Gelfand)]. If A is a nonzero abelian C∗ -algebra,
then the Gelfand representation

 : A→C0((A))
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is an isometric ∗ -isomorphism.

We apply this theorem to the case when the C∗ -algebra A is generated by two
commuting normals, N1 and N2 , i.e., A=C∗(N1,N2) , in which case the functions f =
(N1) and g = (N2) form the generators of the corresponding C∗ -algebra C0((A)) .
And, since the SI property and simplicity of S(N1,N∗

1 ,N2,N∗
2 ) ⊂A is preserved under

the isometric ∗ -isomorphism  , so it suffices to study the SI property and simplicity of
S( f ,g, f , g) ⊂ C0((A)) . In Proposition 2.1–Corollary 2.4, we determine necessary
and sufficient conditions for the simplicity of the selfadjoint semigroup S( f ,g, f , g)
and then for the semigroup S( f ,g, f , g) to be a nonsimple SI semigroup.

For brevity denote: X := (A) and for f ∈C0(X) , denote by S f the support set
of f in X for which obviously S f = S f .

PROPOSITION 2.1. (2 generator function simplicity) For 0 �= f ,g ∈ C0(X) , the
semigroup S( f ,g, f , g) is simple if and only if S f = Sg (equivalently, S f = Sg ) and

S f = f gW for some W ∈ S( f ,g, f , g)∪{1} . And the equivalence remains true after
replacing f g in the equation S f = f gW by the conjugate of either f or g or both.

Proof. Suppose S( f ,g, f , g) is simple. Then, in particular, the principal ideal gen-
erated by f g �= 0 coincides with the entire semigroup, i.e., ( f g)S( f ,g, f ,g) =S( f ,g, f , g) .

That f g �= 0 follows from the fact that f g = 0 implies g /∈ ( f )S( f ,g, f ,g) = S( f ,g, f , g) ,

against simplicity (since otherwise g = fW for some W ∈ S( f ,g, f , g)∪{1} , hence
0 �= g2 = g fW = 0, contradiction). Hence,

f = f gW ′ (1)

g = f gW ′′ (2)

for some words W ′ and W ′′ in S( f ,g, f , g)∪{1} . For x∈ S f , it follows from Equation
(1) that g(x) �= 0 implying S f ⊂ Sg . For x ∈ Sg , it follows from Equation (2) that
f (x) �= 0 implying Sg ⊂ S f . Hence S f = Sg . Moreover, by substituting g = f gW ′′ in
Equation (1), one obtains

f = f 2gW ′W ′′.

For x ∈ S f ,
1 = f (x)g(x)W ′(x)W ′′(x)

and for x ∈ Zf (zero set of f ),

0 = f (x)g(x)W ′(x)W ′′(x).

Therefore, for x ∈ S f ∪Zf = X ,

S f = f gW ′W ′′

where S f denotes the characteristic function on S f and W ′W ′′ is a word in S( f ,g, f , g)
∪{1} .
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Conversely, suppose S f = Sg and S f = f gW for some word W ∈ S( f ,g, f , g) .
To prove simplicity of the semigroup S( f ,g, f , g) , it suffices to show that the principal
ideal generated by any word in S( f ,g, f , g) coincides with the semigroup. In order to
do so, it further suffices to show the generators f ,g, f , g are in every given principal
ideal (Y )S( f ,g, f ,g) for Y ∈ S( f ,g, f , g) . And since f = f S f ,g = gSg , so also f =

f S f , g = gSg , and because S f = Sg implies S f = Sg , it suffices to show S f ∈
(Y )S( f ,g, f ,g) .

Since Y ∈S( f ,g, f , g) , Y = f m f
n
gkgl for some m,n,k, l � 0 not all zero (by def-

inition of “generated”). (Here we interpret exponent 0 to mean that variable is absent,
instead of 1, which may not be in the semigroup.) Clearly S f =  r

S f
for all r � 1 and

since S f = f gW , one has S f = f gW and finally S f = f rgr f
r
grWrW

r
. Then choos-

ing r > max(n,m,k, l) , one can factor out Y = f m f
n
gkgl from S f = f rgr f

r
grWrW

r
,

which places the latter in (Y )S( f ,g, f ,g) . �

In the above Proposition 2.1, when S( f ,g, f , g) is simple, then S f = Sg and

S f = f gW and since f gW ∈ S( f ,g, f , g) ⊂ C0(X) , so S f is continuous. Hence
we define the projection P := −1(S f ) , which is in C∗(N1,N2) , and obtain as a
consequence of this theorem the following characterization of simple SI semigroups
S(N1,N2,N∗

1 ,N∗
2 ) .

COROLLARY 2.2. (2 generator operator simplicity) For two commuting normal
operators N1,N2 �= 0 , the semigroup S(N1,N2,N∗

1 ,N∗
2 ) is simple if and only if the

Gelfand transform supports of the operators, i.e., of their functions (N1) and (N2) ,
are the same and the defined above projection P = N1N2W for some word W ∈
S(N1,N2,N∗

1 ,N∗
2 )∪ {I} . And the equivalence remains true after replacing N1,N2 in

the equation P = N1N2W by the adjoint of either N1 or N2 or both.

Proposition 2.1 generalizes nicely to semigroups with an arbitrary collection of
generators.

THEOREM 2.3. (Arbitrary generator function simplicity) Let F ⊂ C0(X) be a
set of nonzero generators for the semigroup S(F) (i.e., the set of all finite words in
elements from F ).

The semigroup S(F) is simple if and only if all functions in F have the same
support S and for each finite subset of F ,{ fi}n

1 , one has S = n
1 fiW for some word

W ∈ S(F)∪{1} .

Proof. Suppose S(F) is simple. Then any two functions f ,g ∈ F must have
the same support, equivalently, all have the same support. Indeed, by simplicity, the
principal ideals ( f )S(F) = S(F) = (g)S(F) , hence f = gW and g = fW ′ for some
W,W ′ ∈ S(F)∪ {1} , which implies as in the proof of Propostion 2.1 that f ,g have
the same zero set and hence the same support. Since all functions in F have the same
support, all finite products of them, n

1 fi , have the same support, call it S . Then
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again by simplicity, f1 ∈ S(F) = ((n
1 fi)2)S(F) , so f1 = (n

1 fi)2W for some W ∈
S(F)∪{1} , and canceling f1 on the support of f1 , one obtains S = (n

1 fi)(n
2 fi)W ,

the desired condition.
Conversely, assume that all functions in F have the same support S and for all

finite subsets of F ,{ fi}n
1 , one has S = n

1 fiW for some word W ∈ S(F)∪{1} . To
show simplicity it clearly suffices to show that every h ∈ S(F) lies in every principal
ideal ( f )S(F) for every f ∈ S(F) . To show this principal ideal claim, for each f ∈
S(F) , one has f = n

1 f ki
i for some finite subset { fi}n

1 ⊂ F and all ki > 0. Choosing
r > max{ki}n

1 and using the hypothesis that S = n
1 fiW for some word W ∈ S(F)∪

{1} , one obtains

S =  r
S = f r

1 · · · f r
nW

r = n
1 f ki

i f r−k1
1 · · · f r−kn

n Wr = f f r−k1
1 · · · f r−kn

n Wr

Hence, S ∈ ( f )S(F) . Moreover, since all functions in F have the same support S , the
functions h and S share the same support. Multiplying both sides by h , we obtain
h = hS = f hW ′ ∈ ( f )S(F) , where W ′ := f r−k1

1 · · · f r−kn
n Wr , which is what was needed

to be shown. �

As with Proposition 2.1–Corollary 2.2, Theorem 2.3 has its normal operator ap-
plication.

COROLLARY 2.4. (Arbitrary generator operator simplicity) For a commuting
family of nonzero normal operators F , the selfadjoint semigroup generated by F ,
S(F ,F∗) , is simple if and only if the Gelfand transform supports of the operators,
i.e., of their functions (N),N ∈ F ∪F∗ , are the same S and for every finite sub-
set of F ∪F∗,{Ni}n

1 , the projection P := −1S satisfies P = n
1NiW for some word

W ∈ S(F ,F∗)∪{I} .

This ends our characterization of simplicity for semigroups in terms of their gener-
ators. We next investigate the relationship between SI semigroups and their generators,
and recall that C0(X) denotes the range of the Gelfand map  .

THEOREM 2.5. (Doubly generated function nonsimple SI) For 0 �= f , g∈C0(X) ,
the semigroup S( f ,g, f , g) is SI and nonsimple if and only if f = fW and g = gW ′ for
some W and W ′ words in f ,g, f , g,1 but if g appears in W (or g appears in W (i.e.,
it is not necessary to check both)), then W ′ must be a word in g, g only; and similarly,
if f appears in W ′ (or f appears in W ′ (i.e., it is not necessary to check both)), then
W must be a word in f , f only. (Of course then, if both W is g free and W ′ is f free,
there is nothing to check.)

Proof. Suppose the semigroup S( f ,g, f , g) is SI and nonsimple. Since S( f ,g, f , g)
is SI, the principal ideals ( f )S( f ,g, f ,g) and (g)S( f ,g, f ,g) are selfadjoint. Hence

f = fW and g = gW ′,
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for some words W,W ′ ∈ S( f ,g, f , g)∪{1} . We next prove that if g appears in W then
W ′ is a word in g, g only; and if f appears in W ′ then W is a word in f , f only.
Suppose that g appears in W and f appears in W ′ , then

f = f gW1 and g = f gW2 for W1,W2 ∈ S( f ,g, f , g)∪{1}. (3)

Then because f = f gW1 one has Sg ⊃ S f and from g = f gW2 one has Sg ⊂ S f , one
then obtains S f = Sg . Then from (3) one has f = f gW1 and g = f gW2 , and thus

f f gg = f gW1 f gW1 f gW2 f gW2 = ( f f gg)2W1W1W2W2.

And because from S f =Sg one has S f =S f f gg , it follows that S f = f g f gW1W1W2W2

with the product W1W1W2W2∈S( f ,g, f , g)∪{1} . Hence, by Proposition 2.1, S( f ,g, f , g)
becomes simple against nonsimplicity of S( f ,g, f , g) . Therefore, if g appears in W
(and also by a symmetric argument if g appears in W ), then W ′ is a word in g, g only.
Similarly it follows that if f appears in W ′ , then W is a word in f , f only.

Conversely, suppose f = fW and g = gW ′ where W and W ′ are words in f ,g, f , g
such that if g appears in W , then W ′ is a word in g, g only; and if f appears in W ′ ,
then W is a word in f , f only. We claim that S( f ,g, f , g) is not simple. Indeed, if it
were simple, then by Proposition 2.1, S f = Sg and S f = f gW ′′ for some word W ′′ ∈
S( f ,g, f , g)∪{1} . This implies that f = f S f = f f gW ′′ and g = gS f = g f gW ′′ ,
contradicting the hypothesis that if f = fW and g = gW ′ , then whenever g appears in
W , then W ′ is a word in g, g only.

We next prove that S( f ,g, f , g) is SI. For this it clearly suffices to show that
the principal ideal generated by any word is selfadjoint. Let X ∈ S( f ,g, f , g) . Then
X = f n f

m
gkgl for some n,m,k, l � 0. For W,W ′ given in the hypothesis, f = fW and

g = gW ′ respectively. We next consider the word WnW
m
W ′kW ′l ∈ S( f ,g, f , g)∪{1} .

By multiplying this word by X , rearranging, and using f
j
= f jW j for j = n,m and

gi = giW ′i for i = k, l , one obtains

WnW
m
W ′kW ′lX = f nWn f

m
W

m
gkW ′kglW ′l = f

n
f mgkgl = X∗.

Therefore, X∗ ∈ (X)S( f ,g, f ,g) . Since X is an arbitrary word in S( f ,g, f , g) , every prin-

cipal ideal of S( f ,g, f , g) is selfadjoint, from which it follows easily that S( f ,g, f , g)
itself is SI. �

COROLLARY 2.6. (Doubly generated nonsimple SI semigroup by a pair of nor-
mal operators) For two commuting normal operators N1,N2 �= 0 , the semigroup
S(N1,N2,N∗

1 ,N∗
2 ) is SI and nonsimple if and only if N∗

1 = N1W and N∗
2 = N2W ′ for

some W and W ′ words in N1,N2,N∗
1 ,N∗

2 such that if N2 appears in W , then W ′ is
a word in N2,N∗

2 only; and if N1 appears in W ′ , then W is a word in N1,N∗
1 only.

Alternatively this equivalence remains true replacing either or both of the operators by
their adjoints.
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Interestingly we see here that S(N1,N2,N∗
1 ,N∗

2 ) cannot be singly generated since
otherwise it would be simple by [11, Theorem 2.1].

The 3 generator case remains open and hence also the arbitrary generator case.

3. SI semigroups S(T,T ∗) for T a unilateral weighted shift

Unilateral weighted shifts are often considered as a litmus test by operator theorists
whenever a new concept is introduced. We next investigate the SI property for S(T,T ∗)
for T a unilateral weighted shift of infinite rank.

As pointed out in [11, second last paragraph of Introduction] that SI semigroups
are mostly simple and rarely nonsimple, construction of nonsimple SI semigroups are,
in general, difficult. But while investigating the SI property for semigroups S(T,T ∗)
generated by weighted shifts T , we found a subclass of weighted shifts T , namely,
those with T 2 �=0 with their weight sequences having zero-gaps, for which each S(T,T ∗)
is a nonsimple semigroup, regardless of being an SI semigroup or not (Proposition
3.3). And as a direct consequence of this, all the SI semigroups S(T,T ∗) generated by
weighted shifts T in this subclass turn out to be nonsimple SI semigroups (Corollary
3.6).

From here on we refer to unilateral weighted shifts simply as weighted shifts. First
recall the definition of a weighted shift T : for {en | n � 1} an orthonormal basis of H
and {n} a bounded sequence of complex scalars not all zero, the operator defined by
Ten = nen+1 for n � 1 and extended by linearity is the weighted shift with weight
sequence {n} .

A few facts used in the later parts of this section are: If T is the weighted shift
with weight sequence {n} , then for i � 1 and m � 1,

Tei = iei+1, T ∗ei+1 =  iei and T ∗e1 = 0. (4)

Equation (4) implies that for k � 1 and m � 1,

Tmek = (k+m−1
j=k  j)ek+m (5)

and

T ∗mek =

{
0 for 1 � k � m

(k−1
k−m j)ek−m for k � m+1

(6)

Furthermore, the matrix representation in the basis {en} of each word in T and T ∗ has
exactly one nonzero diagonal (that is, strictly lower, strictly upper or main diagonal).
Going forward in this paper, it will be clear from Proposition 3.12 that if A,B are any
two diagonal matrices (that is, strictly lower, strictly upper or main diagonal), then their
product AB is a strictly upper, strictly lower or main diagonal matrix. We make a note
here about S(T,T ∗) in the context of graded semigroups which is not related to our
study of the SI property, but could be of independent interest. Specifically, our singly
generated selfadjoint semigroup S(T,T ∗) generated by a (unilateral) weighted shift
T forms a subsemigroup of the semigroup generated by the set of all weighted shift
operators and it forms a strongly Z-graded semigroup [6, Definition 2.9] where Z is
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the additive group; and by taking the set X = Z and the semigroup S = S(T,T ∗) in [6,
first paragraph, Section 2.3], we observe that the set Z is an S -biset, but not pointed.

We recall that by [11, Corollary 1.15], if T is a power partial isometry, then
S(T,T ∗) is always SI. The converse need not be true. Indeed one can construct ex-
amples where T is a partial isometry and S(T,T ∗) is SI, but still T is not a power
partial isometry. For example, consider the 2× 2 matrix with the first column 1/

√
2

and the second column zero. Then, by [11, Lemma 3.14], the semigroup generated
by this matrix is SI because the trace is a nonzero real number, but this matrix is not
a power partial isometry by [11, Proposition 3.6] because the trace of this matrix is
1/

√
2 �= 0 and not on the unit circle.
It is proved in the following theorem that if we consider a certain class of weighted

shifts (that is, when their weight sequence has a zero gap as defined in the theo-
rem below), then the converse holds. Note an easy computation tells us that for T
a weighted shift with weight sequence {n} , T is a power partial isometry if and only
if |n| ∈ {0,1} for n � 1. Theorem 3.2 below says that this equivalence is further
equivalent to S(T,T ∗) being SI for a restricted class of weight sequences. (The case
when there are no zero gaps is more difficult in characterizing which semigroups pos-
sess the SI property, even in providing only necessary conditions which will be covered
later in Theorem 3.8.)

But first for extensive use in the proof of the next Theorem 3.2, we prove the
following proposition. We shall refrain from referencing it when we use it.

PROPOSITION 3.1. For D a diagonal operator and T a weighted shift:

ranDTk ⊂ ranTk and ranDT ∗k ⊂ ranT ∗k for all k � 1.

Proof. Let D = diag{dn} relative to the basis {en} , and {i} be the weight se-
quence of weighted shift T . Then Tk and T ∗k respectively are the kth subdiagonal and
supdiagonal with weights i given by Equations (5)–(6). Then for x =xnen ∈H , one
has DTkx = dn+knxnen+k and solving for y in DTkx = Tky = nynen+k , one ob-
tains yn = dn+kxn . Therefore, for each DTkx ∈ ranDTk there exists a y ∈H for which
DTkx = Tky , and so ranDTk ⊂ ranTk for all k � 1.

Similarly, one can prove the other inclusion ranDT ∗k ⊂ ranT ∗k for all k � 1. �

THEOREM 3.2. For T a weighted shift with weight sequence {n} having a zero-
gap (that is, for some i � 1 one has i �= 0 and i+1 = 0 ), then the following are
equivalent.

(i) S(T,T ∗) is an SI semigroup.

(ii) |n| ∈ {0,1} for n � 1 .

(iii) T is a power partial isometry.

Proof. (i)⇒(ii). We first claim that facts useful in this proof that ranT �⊂ ranT ∗
and ranT �⊃ ranT ∗ . Indeed, by hypothesis, for some i � 1, i �= 0 and i+1 = 0, so
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ei+1 ∈ ranT but ei+1 �∈ ranT ∗ (follows from Equation (4)). This implies that ranT �⊂
ranT ∗ . For the reverse non-inclusion, let r be the smallest index such that r �= 0.
If r = 1, then e1 ∈ ranT ∗ but e1 �∈ ranT . If r > 1, then 1 = · · · = r−1 = 0 and
so er ∈ ranT ∗ , but er /∈ ranT (follows below from the case m = 1 in Equation (7)).
Hence, ranT ∗ �⊂ ranT .

We note here some observations (derived from Equations (5)–(6) and from the
fact that T ∗T is the diagonal with weights |n|2 ) that will be used in proving that if
S(T,T ∗) is SI then |n| ∈ {0,1} for n � 1.

For x∈H , x =
j=1 a je j where a j ’s are the Fourier coefficients of x with respect

to the orthonormal basis {e j} and for m � 1, one has

ranTm = {Tmx | x ∈H} = {



j=1

a j j · · ·m+ j−1e j+m | x ∈H}, (7)

ranT ∗2 = {T ∗2x | x ∈H} = {



j�3

a j j−2 j−1e j−2 | x ∈H}, (8)

ranT ∗T 2 = ran(T ∗T )T = {(T ∗T )Tx | x ∈H} = {



j=1

a j j| j+1|2e j+1 | x ∈H}, (9)

ran(T ∗T )mT ∗T 2 = ran(T ∗T )m+1T = {(T ∗T )m+1Tx | x ∈H}
= {




j=1

a j j| j+1|2(m+1)e j+1 | x ∈H}. (10)

Since S(T,T ∗) is SI, the principal ideal (T )S(T,T ∗) is selfadjoint. Therefore, T ∗ =
XTY for some X ,Y ∈ S(T,T ∗)∪ {I} and X ,Y cannot both be the identity operator
(since otherwise T would be selfadjoint but T being a shift, is clearly not selfadjoint).

We next claim that T ∗ = T ∗X ′TY ′T ∗ for some X ′,Y ′ ∈ S(T,T ∗)∪ {I} . As we
proved above, ranT ∗ �⊂ ranT , so from T ∗ = XTY one has X �= I nor can X start with
T , and hence must start with T ∗ . That is, XTY = T ∗mX ′TY for some m � 1 and
X ′ ∈ S(T,T ∗)∪{I} . We now claim that m = 1. Otherwise m � 2 and T ∗ = XTY =
T ∗2T ∗m−2X ′TY (interpreting T ∗0 to mean absence), which implies that ranT ∗ ⊂ ranT ∗2 .
But ranT ∗ �⊂ ranT ∗2 because by hypothesis, i �= 0 and i+1 = 0, so ei ∈ ranT ∗ but
ei �∈ ranT ∗2 (via Equations (4),(8)), a contradiction. Next, XTY must end with T ∗ .
Indeed, if XTY ends with T , then T ∗ = XTY ′T for some Y ′ ∈ S(T,T ∗)∪{I} . Taking
adjoints we obtain T = T ∗Y ′∗T ∗X∗ , which implies that ranT ⊂ ranT ∗ , contradicting
ranT �⊂ ranT ∗ which we proved in the first paragraph of this proof.

We next show that XTY starts with T ∗ then alternates between T and T ∗ and
ends with T ∗ , that is, XTY = (T ∗T )mT ∗ for some m � 1. But first let r be the smallest
index for which r �= 0, so for r > 1, 1 = · · · = r−1 = 0. And note if r = 1, then
e1 ∈ ranT ∗ but by Equation (9), e1 �∈ ranT ∗T 2 .

Now suppose otherwise that XTY is a word in powers of T and T ∗ , beginning
with T ∗T and ending in T ∗ (as proved just above), but with at least one higher power
of T or T ∗ appearing. There are clearly three possiblilities for the beginning terms of
XTY beginning with T ∗T and ending in T ∗ :
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T ∗ = XTY = T ∗TkY ′ for some k � 2 and Y ′ ∈ S(T,T ∗) beginning and ending
with T ∗ ;

(T ∗T )mTkY ′ for some m � 1,k � 1 for some Y ′ ∈ S(T,T ∗) beginning and ending
with T ∗ ;

or (T ∗T )mT ∗kY ′ for some m � 1,k � 1 for some Y ′ ∈ S(T,T ∗)∪{I} but when
Y ′ �= I , then it begins with T and ends with T ∗ .

The first case fails since er ∈ ranT ∗ \ ranT via the first paragraph of proof and
since T ∗T is diagonal, has range (T ∗T )T included in ranT , and together with T ∗ =
(T ∗T )Tk−1Y ′ (with k − 1 � 1) implies ranT ∗ ⊂ ranT , contradicting er ∈ ranT ∗ \
ranT .

The second case fails because for (T ∗T )mTkY ′ , since (T ∗T )m is diagonal, (T ∗T )mT
has range included in ranT , which implies T ∗ = (T ∗T )mTkY ′ has ranT ∗ ⊂ ranT ,
again a contradiction as just before.

And the third case fails for k � 2 but passes for k = 1 or leads naturally, by
increasing m and repeating the process to case 2 or 3 again, towards the concluding
form XTY = (T ∗T )mT ∗ .

To show the third case fails for k � 2, since (T ∗T )m is diagonal, one has

ranT ∗ = ran(T ∗T )mT ∗kY ′ ⊂ ran(T ∗T )mT ∗2 ⊂ ranT ∗2.

Hence it suffices to show ranT ∗ �⊂ ranT ∗2 to obtain a contradiction. But now recall
from the first paragraph of this proof that i �= 0 and i+1 = 0 implies ei ∈ ranT ∗ but
it is easy to see using Equation (8) that ei /∈ ranT ∗2 .

From T ∗ = XTY = (T ∗T )mT ∗ for some m � 1, and since T ∗T = diag(|1|2, |2|2,
|3|2, . . .) , by right multiplying T we get T ∗T = (T ∗T )m+1 . And because T ∗T is di-
agonal, by equating the diagonal entries in this equation, one obtains | j| ∈ {0,1} .

(ii)⇒(iii) Since |n| ∈ {0,1} , T ∗kT k is a projection by computation, and hence
Tk is a partial isometry for each k � 1, that is, T is a power partial isometry.

(iii)⇒(i) By [11, Corollary 1.15], S(T,T ∗) is SI since T is a power partial isom-
etry. �

Among the semigroups S(T,T ∗) generated by weighted shifts T with their weight
sequences having zero-gaps, we next classify simple and nonsimple SI semigroups
S(T,T ∗) (Corollary 3.6). Recall that a simple semigroup is that which has no nonzero
proper ideal. In the next proposition, we prove that all semigroups S(T,T ∗) generated
by weighted shifts with the weight sequence having a zero-gap are always nonsimple
provided T 2 �= 0. In particular, all the SI semigroups S(T,T ∗) provided by the charac-
terization in Theorem 3.2 are nonsimple semigroups for T 2 �= 0 case (Corollary 3.6).

PROPOSITION 3.3. The semigroups S(T,T ∗) generated by weighted shifts T with
the weight sequence {n} that has the gap property (i �= 0,i+1 = 0 for some i � 1 )
are nonsimple provided T 2 �= 0 .

Proof. Since T 2 �= 0, the principal ideal (T 2)S(T,T ∗) is a nonzero ideal. So for
proving nonsimplicity of S(T,T ∗) , it suffices to prove that (T 2)S(T,T ∗) is a proper ideal
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that does not contain T . One can check that the gap (i �= 0,i+1 = 0) ensures that the
subspace M := span{e1,e2, . . . ,ei+1} reduces operator T . Let A := T | M and S :=
T |M⊥ . Then A is a finite weighted shift (with respect to the basis {e1,e2, . . . ,ei+1} ),
which is a nonzero nilpotent matrix (as Tei = iei+1 �= 0), and S is an infinite-rank
weighted shift on M⊥ (with respect to the basis {en}n�i+2 ) with weight sequence
{n}n�i+2 . Therefore T = A⊕S with A a nonzero nilpotent matrix. We next claim that
T /∈ (T 2)S(T,T ∗) . Suppose otherwise T ∈ (T 2)S(T,T ∗) , then T = XT 2Y for some X ,Y ∈
S(T,T ∗)∪{I}. Rewriting the equation T = XT 2Y with respect to the decomposition
H = M⊕M⊥ as A⊕ S = T = X1 ⊕X2(A2 ⊕ S2)Y1 ⊕Y2 = X1A2Y1 ⊕X2S2Y2 , where
X1,Y1 ∈ S(A,A∗)∪{I1} and X2,Y2 ∈ S(S,S∗)∪{I2} and I1, I2 are indentity operators
on M,M⊥ respectively. Then one obtains A = X1A2Y1 . If A2 = 0, then A = X1A2Y1

implies that A = 0 contradicting A being a nonzero nilpotent matrix. Suppose A2 �=
0. Since A,X1,Y1 are finite matrices (as M is finite-dimensional) with A a nonzero
nilpotent matrix, so applying [12, Propositions 2.3–2.4] on A = X1A2Y1 we obtain,

rankA = rankX1A
2Y1 � rankA2 < rankA,

which is absurd. Hence, T /∈ (T 2)S(T,T ∗) and so (T 2)S(T,T ∗) is a nonzero proper ideal
of S(T,T ∗) . Therefore, S(T,T ∗) is a nonsimple semigroup. �

For weighted shifts with their weight sequences having the gap property, we found
in Proposition 3.3 that all semigroups S(T,T ∗) are nonsimple semigroups if T 2 �= 0.
If T 2 = 0, S(T,T ∗) may or may not be simple, which can be seen in Proposition 3.4
and Example 3.5 below.

PROPOSITION 3.4. Let T ∈ B(H) be a nonzero operator with T 2 = 0 . If T is a
partial isometry, then S(T,T ∗) is a simple semigroup.

Proof. First recall the semigroup description for S(T,T ∗) from [11, Proposition
1.6]:

S(T,T ∗) = {Tn,T ∗n,k
j=1T

∗mjT n j ,(k
j=1T

∗mj Tn j )T ∗mk+1 ,k
j=1T

njT ∗mj ,

(k
j=1T

njT ∗mj )Tnk+1 | n � 1, k � 1, n j,mj � 1

for 1 � j � k and nk+1,mk+1 � 1}.
Then using T 2 = 0 reduces this semigroup list to

S(T,T ∗) = {0,T,T∗,(TT ∗)k,(TT ∗)kT,(T ∗T )k,(T ∗T )kT ∗ | k � 1}.
Since T is a partial isometry, or equivalently, T = TT ∗T (or T ∗T is a projection),
further reduces the semigroup list to

S(T,T ∗) = {0,T,T∗,TT ∗,T ∗T}.
Then it is straightforward to check the simplicity of S(T,T ∗) using the semigroup list
in the above display and the relation T = TT ∗T . �

If we drop the condition that T is a partial isometry from the hypothesis of Propo-
sition 3.4, then the result may not hold. See the following example.
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EXAMPLE 3.5. Consider the weighted shift T with weight sequence (1/2,0,1/4,
0,1/6,0, . . .) . Then it is easy to check that T 2 = 0 but T is not a partial isome-
try as ||T || = 1/2 < 1. Also, observe that ||T ∗T || = ||T ||2 = 1/4, and every oper-
ator in S(T,T ∗) has norm strictly less than one because ||T || < 1. Then we prove
that the principal nonzero ideal (T ∗T )S(T,T ∗) does not contain T . Indeed, suppose
T ∈ (T ∗T )S(T,T ∗) , then T = X(T ∗T )Y for some X ,Y ∈ S(T,T ∗)∪{I} . Taking norm
on both sides of the equation T = X(T ∗T )Y , and using the fact that ||X ||, ||Y ||� 1, one
obtains

1/2 = ||T || = ||X(T ∗T )Y || � ||X || ||T ∗T || ||Y || � ||T ∗T || = 1/4,

which is absurd. Hence, T /∈ (T ∗T )S(T,T ∗) and so S(T,T ∗) is a nonsimple semigroup.

Using Propositions 3.3–3.4, we obtained the following simplicity classification of
SI semigroups S(T,T ∗) for weighted shifts with the gap property.

COROLLARY 3.6. The SI semigroups S(T,T ∗) provided by the characterization
in Theorem 3.2 are nonsimple semigroups if and only if T 2 �= 0 .

Proof. Since Tei = iei+1 �= 0, where i is the gap spot, so T is nonzero. If T 2 �=
0, then the nonsimplicity of S(T,T ∗) follows from Proposition 3.3. For proving the
converse part, we prove the contrapositive statement, that is, if T 2 = 0, then S(T,T ∗) is
a simple semigroup. First observe that S(T,T ∗) being an SI semigroup implies that T
must be a power partial isometry by Theorem 3.2. Therefore, T is a partial isometry. It
then follows from Proposition 3.4, together with the assumption T 2 = 0, that S(T,T ∗)
is a simple semigroup. �

Theorem3.2 provides a characterization of SI semigroup S(T,T ∗) for those weigh-
ted shifts whose weight sequence has the gap property that i �= 0, i+1 = 0 for some
i � 1. So to fully characterize the SI semigroups S(T,T ∗) generated by arbitrary
weighted shifts T , the only case remaining to investigate is the case when there are
no gaps, that is, all  j �= 0 for j > N for some N � 0, i.e., { j} = 0N ⊕{ j} j>N and
0N denotes the zero sequence of length N .

Lemma 3.7 below will be used repeatedly in Theorem 3.8, which provides a nec-
essary condition in terms of the weight sequence {n} for S(T,T ∗) to be an SI semi-
group when generated by a weighted shift.

LEMMA 3.7. Let T be the weighted shift with a complex weight sequence {n} .
For m,n � 1 and i � 1 , if T ∗mTnei �= 0 , then

(i) n−m � 1− i , and

(ii) T ∗mTnei = (cii i+n−m)ei+n−m where ci is the product of some  j ’s and  j ’s
with indices j > min{i, i+n−m} .
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Proof. Since T is the weighted shift with a complex weight sequence {k} , for
readers’ convenience we display again Equations (5)–(6) for k � 1 and for m � 1:

Tmek = (k+m−1
j=k  j)ek+m (11)

and

T ∗mek =

{
0 for 1 � k � m

(k−1
k−m j)ek−m for k � m+1

(12)

For n � 1, by (11),
Tnei = (ii+1 . . .i+n−1)ei+n,

and so for m � 1, T ∗mTnei = (ii+1 · · ·i+n−1)T ∗mei+n . Since T ∗mTnei �= 0, T ∗mei+n

�= 0. Therefore from (12), i+n � m+1, that is, n−m � 1− i (which proves (i)) and

T ∗mei+n = ( i+n−m i+n−m+1 · · · i+n−1)ei+n−m.

Hence,

T ∗mTnei = (ii+1 · · ·i+n−1)( i+n−m i+n−m+1 · · · i+n−1)ei+n−m.

Note that the index i is the smallest index of  j in the first parenthesis of scalars and
i+n−m is the smallest index of  j in the second parenthesis of scalars in the above
display. So, combining all the scalars  j ’s and  j ’s together except i and  i+n−m ,
we re-write

T ∗mTnei = (cii i+n−m)ei+n−m,

where ci is the product of some  j ’s and  j ’s with indices j > min{i, i+n−m} . This
completes the proof of the lemma. �

The next theorem is a necessary condition for S(T,T ∗) to be SI: Each weight
passed the first has its reciprocal consisting of products of later weights and their con-
jugates (not necessarily strictly later).

THEOREM 3.8. Let T be the weighted shift with complex weights  j �= 0 for all
j � 1 . If S(T,T ∗) is an SI semigroup, then for each i � 2 , the reciprocal 1/i is a
product of some  j ’s and  j ’s with indices j � i .

Proof. Suppose S(T,T ∗) is an SI semigroup. Then the principal ideal (T )S(T,T ∗)
is selfadjoint. So, T ∗ = XTY for some X ,Y ∈S(T,T ∗)∪{I} where either X or Y �= I ,
otherwise T would be selfadjoint contradicting the nonselfadjointness of T . Moreover,
ranT ∗ � ranT (as e1 ∈ ranT ∗ but e1 �∈ ranT ). And hence T ∗ = XTY implies that
X �= I and must start with T ∗ , since otherwise it starts with T implying ranT ∗ ⊆ ranT ,
a contradiction.

Recall the obvious semigroup description for S(T,T ∗) [11, Proposition 1.6]:

S(T,T ∗) = {Tn,T ∗n,k
j=1T

∗mjT n j ,(k
j=1T

∗mj Tn j )T ∗mk+1 ,k
j=1T

njT ∗mj ,

(k
j=1T

njT ∗mj )Tnk+1},
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where n � 1, k � 1, n j,mj � 1 for 1 � j � k and nk+1,mk+1 � 1.
Since XTY is a word in T and T ∗ that starts with T ∗ and has a T in it, observing

this semigroup list, XTY can only have the third or fourth form of the list. Considering
these two cases we obtain the necessary reciprocal condition.

Case 1: Suppose T ∗ = XTY =k
j=1(T

∗mjT n j) for some k � 1 and mj,n j � 1 for

1 � j � k . Therefore, for all i > 1, one has 0 �= T ∗ei =k
j=1(T

∗mjT n j)ei . In particular,
for i � 2, by Equation (4),

0 �=  i−1ei−1 = T ∗ei = k
j=1(T

∗mjT n j)ei. (13)

Since  i−1ei−1 �= 0 for all i � 2, k
j=1(T

∗mj Tn j )ei �= 0 for all i � 2. Hence,
T ∗mkT nkei �= 0 for all i � 2. So, by Lemma 3.7(i), nk −mk � 1− i for all i � 2. In
particular, for i = 2, one obtains nk −mk � −1 and for i � 2, by Lemma 3.7(ii),

0 �= T ∗mkTnkei = (ci,ki i+nk−mk)ei+nk−mk ,

where ci,k depends on ei and k as in the k -product form for T ∗ , and ci,k is a product
of some  j ’s and  j ’s with indices j > min{i, i+nk−mk} . Since nk −mk � −1, one
has these indices j > i−1.

Thus starts a backwards induction. That is, if k > 1, we next consider

(T ∗mk−1Tnk−1)(T ∗mkT nk)ei.

Since k
j=1(T

∗mj Tn j )ei �= 0 for all i � 2, one has

0 �= (T ∗mk−1Tnk−1)(T ∗mkTnk)ei = (ci,ki i+nk−mk )T
∗mk−1Tnk−1ei+nk−mk .

Hence T ∗mk−1Tnk−1ei+nk−mk �= 0. Again by Lemma 3.7(i), for all i � 2, nk−1−mk−1 �
1− (i+ nk −mk) , i.e, (nk −mk)+ (nk−1 −mk−1) � 1− i . In particular, for i = 2, we
get (nk −mk)+ (nk−1−mk−1) � −1. And again by Lemma 3.7(ii), for i � 2,

T ∗mk−1Tnk−1ei+nk−mk = (ci,k−1i+nk−mk i+k
j=k−1(n j−mj)

)ei+k
j=k−1(n j−mj)

,

where ci,k−1 is a product of some  j ’s and  j ’s with indices

j > min{i+(nk−mk), i+(nk −mk)+ (nk−1−mk−1)}.

Since nk −mk � −1 and (nk −mk) + (nk−1 −mk−1) � −1, so we have the indices
j > i−1. Therefore,

(T ∗mk−1Tnk−1)(T ∗mkT nk)ei = (ci,ki i+(nk−mk))(ci,k−1i+(nk−mk) i+k
j=k−1(n j−mj)

)

× ei+k
j=k−1(n j−mj)

= (c′i,k−1i|i+nk−mk |2 i+k
j=k−1(n j−mj)

)ei+k
j=k−1(n j−mj)

,
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where c′i,k−1 := ci,k−1ci,k is a product of some  j ’s and  j ’s with indices j > i−
1. Continuing backwards in this way and applying Lemma 3.7(i)-(ii) repeatedly, one
finally obtains, for i � 2,

k
j=1(T

∗mjT n j)ei = (ii|i+nk−mk |2 · · · |i+k
j=2(n j−mj)

|2 i+k
j=1(n j−mj)

)ei+k
j=1(n j−mj)

,

(14)
where i is a product of some  j ’s and  j ’s with indices j > i− 1. Moreover, for
each 1 � r � k , one has

k


j=r

(n j −mj) � −1.

Recall from Equation (13):

 i−1ei−1 = k
j=1(T

∗mj Tn j )ei

for all i � 2. By replacing the right-hand side with the expression obtained in Equation
(14), for all i � 2 one has

 i−1ei−1 = (ii|i+nk−mk |2 · · · |i+k
j=2(n j−mj)

|2 i+k
j=1(n j−mj)

)ei+k
j=1(n j−mj)

.

Equating subscripts and scalars we obtain i− 1 = i +k
j=1(n j −mj) and hence

k
j=1(n j −mj) = −1, so at least one  i−1 appears in this product; then letting s de-

note the number of  i−1 appearing in this product (so s � 1 and depends only on the
mj.n j ’s, hence is independent of i); so for all i � 2 one obtains,

 i−1 = s
i−1ii and  i = s

ii+1i+1,

where s � 1 and i is the product of  j ’s and  j ’s with j > i− 1. Since  i−1 �= 0,
by considering the cases s = 1 and s > 1 separately, a necessary condition is that 1/i

is a product of  j ’s and  j ’s with indices j > i− 1. Indeed, if s = 1 then the first
identity yields that 1/i as a product of some  j, j, j � i ; and if s � 2, then taking
conjugates on both sides in the second identity yields this fact.

Case 2: Suppose T ∗ = XTY =k
j=1(T

∗mjT n j )T ∗mk+1 for some k � 1, mj,n j � 1
for 1 � j � k , and mk+1 � 1. We first claim that mk+1 = 1. Since T ∗e2 �= 0, one has
(k

j=1T
∗mjT n j)T ∗mk+1e2 �= 0 and so T ∗mk+1e2 �= 0. Then it follows from Equation (12)

that mk+1 = 1. Therefore, T ∗ = k
j=1(T

∗mjT n j )T ∗ . In particular by Equation (4), for
i � 2,

 i−1ei−1 = T ∗ei =  i−1k
j=1(T

∗mjT n j)ei−1. (15)

For i � 2, since  i−1 �= 0, T ∗mkT nkei−1 �= 0 and so, by Lemma 3.7(i) applied to i−1,
one obtains nk −mk � 1− (i−1) . Hence for i = 2 one has nk −mk � 0, and for i � 2
one has by Lemma 3.7(ii)

T ∗mkT nkei−1 = (ci−1,ki−1 i−1+nk−mk)ei−1+nk−mk ,

where ci−1,k is a product of some  j ’s and  j ’s with indices j > min{i−1, i−1+nk−
mk} = i−1, the latter equality since nk −mk � 0, and so indices j > i−1. Following
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the same backwards induction argument as in Case 1 for k
j=1(T

∗mjT n j)ei−1 �= 0,
Equation (14) in this case becomes

k
j=1(T

∗mjT n j)ei−1 = (i−1i−1|i−1+nk−mk |2 · · · |i−1+k
j=2(n j−mj)

|2 i−1+k
j=1(n j−mj)

)

×ei−1+k
j=1(n j−mj)

, (16)

where i−1 is a product of some  j ’s and  j ’s with indices j > i−1. Moreover, for
each 1 � r � k , one has

k


j=r

(n j −mj) � 0.

Substituting in Equation (15) the expression obtained in Equation (16), we obtain

 i−1ei−1 =  i−1(i−1i−1|i−1+nk−mk |2 · · · |i−1+k
j=2(n j−mj)

|2 i−1+k
j=1(n j−mj)

)

×ei−1+k
j=1(n j−mj)

. (17)

Equating subscripts and scalars, we obtain i − 1 = i− 1 +k
j=1(n j −mj) , that is,

k
j=1(n j −mj) = 0, so along with at least one i−1 we have at least two  i−1 appears

in this product; then letting s denote the number of  i−1 appearing in this product (so
s � 2 and depends only on the mj.n j ’s, hence is independent of i); so for all i � 2 one
obtains,

 i−1 = i−1
s
i−1i,

where i is the product of  j ’s and  j ’s with j > i−1 and s � 2. Then since  i−1 �= 0,

1/i−1 =  s−1
i−1 i for all i � 2 or equivalently,

1/i =  i
s−1i+1 for all i � 1,

where i+1 is the product of  j ’s and  j ’s with j > i .
Therefore in each of the only two cases possible, Case 1 and Case 2, we obtained

the necessary condition stated in the theorem. This completes the proof. �

REMARK 3.9. We emphasize here that one cannot infer the reciprocal of the first
weight 1 is a product of its later  j ’s, if S(T,T ∗) is SI. For example, consider T with
the weight sequence (2,1,1, · · ·) . Then by direct computation, T satisfies the equation
(T ∗T )T = T and hence, by Proposition 3.20 (see below), S(T,T ∗) is simple, a special
case of SI. But 1 = 2 clearly cannot not have its inverse as a product of  j ’s with
index j � 1.

Moreover, easy examples of non-SI semigroups S(T,T ∗) , i.e., where the neces-
sary reciprocal condition in Theorem 3.8 fails, abound, as for instance all multiples of
the unilateral shift cS , with |c| �= 1. So also for all weighted shifts with absolute values
of all the weights less than one (or bigger than one).

In [11], we obtained the necessary norm condition ||T || � 1 (as a consequence of
[[11], Remark 1.22 (iii), see also Example 1.23]) for S(T,T ∗) to be an SI semigroup
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for the more general class of nonselfadjoint operators T . And here in Theorem 3.8, we
obtained the necessary reciprocal condition for the class of weighted shift operators T
with all nonzero weights, which is a subclass of nonselfadjoint operators. We next show
that for this class of weighted shift operators, the reciprocal condition is stronger than
the norm condition. For that we need to show the reciprocal condition fails whenever
the norm condition fails. Suppose T is a weighted shift with ||T ||< 1, then 0 < |n|<
1 for all n � 1. Then clearly 1/2 (with 1/|2| > 1) cannot be a product of some
powers of  j ’s and  j ’s with j � 2 because such a product would have absolute value
smaller than 1. Therefore the reciprocal condition fails.

Also one can construct easy examples of weighted shifts where the necessary re-
ciprocal condition fails but the necessary norm condition is satisfied. For instance,
consider weighted shifts T with weight sequences {1−1/n} and {1+1/n} . For both
these weighted shifts, T satisfies the necessary norm condition ||T || � 1, however the
reciprocal condition clearly fails so S(T,T ∗) are not SI by Theorem 3.8. This also
shows that, for the class of weighted shifts, the condition ||T || � 1 is necessary but not
sufficient for S(T,T ∗) to be an SI semigroup.

The necessary reciprocal condition obtained in Theorem 3.8 is also not sufficient
for S(T,T ∗) to be SI as shown in the following example.

EXAMPLE 3.10. The weighted shift T with weight sequence {2,1/
√

2,2,
1/

√
2, . . .} satisfies the necessary reciprocal condition, but the semigroup generated

by T is not SI. Indeed, this weight sequence is periodic with period 2 but T 2 is not an
isometry and hence by Theorem 3.19, S(T,T ∗) is not SI.

Although we could not find a sufficient condition for S(T,T ∗) to be SI, never-
theless we were able to obtain a necessary and sufficient condition for S(T,T ∗) to
be SI when generated by two particular subclasses of weighted shift operators from
among those that have no zero-gap, that is, { j} = 0N ⊕{ j} j>N where  j �= 0 for
j > N � 0 (recalling that for the zero-gap case S(T,T ∗) is already SI characterized
in Theorem 3.2). Those classes are: those weighted shifts whose nonzero weights
{ j} j>N have periodic absolute value sequence ({| j|} j>N ); and those weighted shifts
whose nonzero weights { j} j>N have eventually constant absolute value sequence
({| j|} j>N ) (Theorem 3.19, Corollary 3.21). Observe that the first class properly con-
tains all weighted shifts with periodic weight sequence and the second class properly
contains all weighted shifts with eventually constant weight sequence. For the larger
class of weighted shifts having weight sequences with absolute values almost periodic
(see Definition 3.22), we obtained a necessary condition, which is not sufficient for the
S(T,T ∗) to be SI (Theorem 3.25).

A characterization of SI semigroups S(T,T ∗) generated by weighted shifts with
periodic attributes

We have seen in Theorem 3.2 a characterization of SI semigroups S(T,T ∗) for
those weighted shifts whose weight sequence has the gap property that i �= 0,i+1 = 0
for some i � 1.
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We could not achieve both necessary and sufficient conditions for the class of
weight sequences without a zero-gap (i.e, of the form 0k ⊕{i} where i �= 0 for all
i and k � 0), but among this class we will next determine necessary and sufficient
conditions to ensure the SI property for semigroups S(T,T ∗) generated by weighted
shifts where the sequence {|i|} is periodic. And we will see (in the beginning of
the proof of Theorem 3.17) that this characterization reduces to the case where k = 0
and the weight sequence {i} has strictly positive periodic weights. To obtain this SI
characterization we need some facts about diagonal operators (that is, strictly upper,
strictly lower and main diagonals), which are discussed in the next proposition and two
corollaries.

Preliminaries on diagonal matrices – upper and lower diagonals

Call the set D of all operators with at most one nonzero diagonal. That is, lower
diagonals (include the possibility of main diagonals), upper diagonals (include the pos-
sibility of main diagonals), strictly lower and strictly upper diagonal matrices. More
precisely, for {en} an orthonormal basis of H , by a k -diagonal matrix with complex

weights  = { j} , denoted by D()
k , we mean

D()
k ei =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iei+k, for k � 0

and for k < 0,

0, for 1 � i � −k

i+kei+k, for i > −k

(18)

That is, k > 0,k = 0,k < 0 corresponds respectively to strictly lower, main and strictly
upper diagonal matrices.

DEFINITION 3.11. For a sequence  = { j} , we say  is eventually periodic
with period p , if there exists an N � 0 such that  j+N =  j+N+p for j � 1. In partic-
ular, a periodic sequence with period p is the special sequence with N = 0.

In the next proposition and proof we denote maximum and minimum of integers
by ∨,∧ respectively, and � represents the set of all bounded sequences of complex
numbers. And in Equation (21) the direct sum indicates we start the sequence with that
number of zeros.

PROPOSITION 3.12. Let D = {D()
k : k ∈ Z, ∈ �} . Then D()

k D( )
l = D()

k+l for
 ∈ � given by:

 = {ii+l}, {i+li+l+k}, {ii+l+k} respectively for k, l � 0, k, l < 0, (19)

and k < 0, l � 0 (20)

and
 = 0k∧−l ⊕{i+li+l}i>−l for k � 0, l < 0 . (21)

Consequently, D forms a multiplicative semigroup.
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Proof. Using Equation (18) to compute D()
k D( )

l one obtains:
For k, l � 0, i � 1,

D()
k D( )

l ei = D()
k (iei+l) = ii+lei+k+l. (22)

For k, l < 0, i > −k− l ,

D()
k D( )

l ei = i+li+l+kei+k+l, and 0 for 1 � i � −k− l . (23)

For k < 0, l � 0, i > (−k− l)∨0,

D()
k D( )

l ei = D()
k (iei+l) = ii+l+kei+l+k, and 0 for 1 � i � −k− l . (24)

For k � 0, l < 0, i > −l,

D()
k D( )

l ei = D()
k (i+lei+l) = i+li+lei+k+l , and 0 for 1 � i � −l. (25)

�

Observe that the sets of upper (lower) diagonals and the sets of strictly upper
(strictly lower) diagonals form subsemigroups of D . Moreover, their subsets with
eventually periodic weight sequences also form subsemigroups of D . Indeed, all this
follows naturally from Equations (22)–(25) focusing on the weight sequence of the
products Equations (19)–(21).

However, regarding the two classes in D with periodic and eventually periodic
weight sequences, the first is not a subsemigroup because of Equation (21). But the
eventually periodic ones are. To see that those elements in D with eventually peri-
odic weights is a multiplicative semigroup, observe that the product of two periodic
sequences has period at least the smallest common multiple of their periods (possibly
smaller).

Then in particular, for a weighted shift operator T with periodic weight sequence,
so a strictly lower diagonal matrix, every word in S(T,T ∗) is eventually periodic with
the same period. To codify,

COROLLARY 3.13. If T is a weighted shift in D with periodic (or eventually
periodic) weight sequence of period p, then any A ∈ S(T,T ∗) (any word, that is, any
finite product of T and/or T ∗ ) is a strictly lower, strictly upper or main diagonal with
eventually periodic weight sequence with the same period p.

So in short, for T a nonzero weighted shift, it is now clear that any A ∈ S(T,T ∗)
(i.e., word in T and T ∗ ) has matrix representation (with respect to a fixed orthonormal
basis) with exactly one nonzero diagonal. Furthermore, if T has a periodic weight
sequence, then the nonzero diagonal of A has an eventually periodic weight sequence
with the same period (possibly having some initial weights zero).

To proceed with our SI characterization, we also need the concept of periodic
mean.
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DEFINITION 3.14. For a sequence  = { j} with period p , we define the peri-
odic mean q := |12 · · ·p|1/p . For an eventually periodic sequence  = { j} with
period p (defined in Definition 3.11), we define its periodic mean q = |N+1N+2 · · ·
N+p|1/p. So the case N = 0 is the periodic case.

For a periodic sequence {n} in C with a period p , we define the periodic mean
q as q := |12 · · ·p|1/p . At first glance this definition may seem not well-defined
because if a sequence has a period, then it has many periods, for instance clearly all
multiples of that period are also periods. So for well definedness it suffices then to
show q is independent of all periods p . Indeed, let r be the smallest period of a periodic
sequence. Then any period p must be a multiple of r because otherwise p = mr + s
for some 0 < s < r , hence for all i � 1, i = i+p = i+mr+s = i+s so s is also a
period, against the minimality of r . It follows that the periodic mean is independent of
the choice of the period p for the sequence because for any period p of the sequence,
p = mr for some m � 1. Therefore,

q = |12 · · ·p|1/p = |12 · · ·mr |1/mr = |(12 · · ·r)m|1/mr = |12 · · ·r|1/r.

Also note that for any two periodic sequences {n},{n} with the same period p
and periodic means q1,q2 respectively, the product sequence {nn} is periodic with
the same period p and periodic mean q1q2 . Clearly, {nn} is periodic with period p
and its periodic mean is given by:

|(11)(22) · · · (pp)|1/p = (|12 · · ·p|)1/p(|12 · · ·p|)1/p = q1q2.

Likewise for eventually periodic sequences.
And once {n} is a periodic (or eventually periodic) sequence with period p and

periodic mean q , so also is its tail sequences ({n+l}l�1 ) p -periodic (or eventually
p -periodic) with periodic mean q . Then from Equations (19) and (21) we obtain:

COROLLARY 3.15. For any D()
k ,D( )

l ∈ D with periodic (or eventually peri-
odic) sequences , with the same period p and periodic means q1,q2 , respectively,

the product diagonal D()
k D( )

l = D()
k+l has  an eventually periodic sequence with

period p and periodic mean q1q2 .

In particular, given a weighted shift T of periodic weight sequence with period
p and periodic mean q , then for any A ∈ S(T,T ∗) , in addition to being an eventually
periodic diagonal with period p (as discussed in Corollary 3.13), its periodic mean is
qs , where s is the sum of the powers of T and T ∗ in the word A . To codify,

PROPOSITION 3.16. Let T be a weighted shift with periodic (or eventually pe-
riodic) weight sequence {n} with period p and periodic mean q. Then for A ∈
S(T,T ∗) , the diagonal of A has eventually periodic weight sequence of period p with
periodic mean qs , where s is the sum of the powers of T and T ∗ in the word A.
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Proof. It follows from Corollary 3.13 that A is a diagonal (that is, a strictly upper
or strictly lower or main) with eventually periodic weight sequence with period p . Also
since both T and T ∗ are diagonals (strictly lower and strictly upper, respectively) with
periodic mean q and A being a word in T and T ∗ , it follows by applying induction on
s and using Corollary 3.15 that A is eventually periodic with period p and has periodic
mean qs . �

In what follows we denote the zero matrix in Mk(C) by 0k , and we use the same
symbol to denote the zero sequence of length k as well depending on the obvious
context.

Before we can give the SI characterzation for S(T,T ∗) generated by a weighted
shift with weight sequence 0k ⊕{n} such that {|n|} is a p -periodic sequence of
nonzero numbers as promised in this periodic subsection, we need the following result
concerning periodic means. Also in its proof we will see how the SI characterization
for the more general class (that is, with weight sequence 0k ⊕{n} where {|n|} is
p -periodic) reduces to the SI chacterization for periodic weight sequences of strictly
positive weights.

THEOREM 3.17. Let T be a weighted shift with weights 0k⊕{n} where {|n|}
is a p-periodic sequence of nonzero numbers with periodic mean q. If S(T,T ∗) is an
SI semigroup, then |12 · · ·p| = 1 , i.e., q = 1 , or equivalently, T p = 0k ⊕U with U
an isometry.

Proof. First we reduce T to the case where all weights are strictly positive. Given
that T has initial k -weights zero, so T = 0k ⊕ T1 where T1 is a weighted shift with
all nonzero weights {n} . Therefore clearly S(T,T ∗) is an SI semigroup if and only
if S(T1,T ∗

1 ) is SI. And T p = 0k ⊕U with U an isometry if and only if T p
1 is an

isometry. Also it is straight forward to check that T p
1 is an isometry if and only if

|12 · · ·p| = 1. Furthermore T1 is unitarily equivalent to a weighted shift S with
p -periodic weight sequence {|n|} (see [5, Problem 89]). Therefore S(T1,T ∗

1 ) is SI
if and only if S(S,S∗) is SI. And the property of being an isometry is preserved under
unitary equivalence. Hence in order to prove that S(T,T ∗) being SI implies T p

1 is an
isometry, it suffices to prove the same for S . That is, without loss of generality we can
assume that T has p -periodic strictly positive weight sequence {n} .

Suppose S(T,T ∗) is an SI semigroup. Then the principal ideal (T )S(T,T ∗) is self-
adjoint. Therefore, T ∗ = XTY for some X ,Y ∈ S(T,T ∗)∪{I} , where X ,Y cannot
both be the identity operator I because T is nonselfadjoint. Since T ∗ is a strictly upper
diagonal matrix with p -periodic weight sequence and T ∗ = XTY , so is XTY . Also,
XTY being a finite product of T,T ∗ , the sum s of the powers of T and T ∗ in XTY
is greater than one as X or Y is not the identity operator. Then it follows from Propo-
sition 3.16 that the periodic weight sequence of XTY in T ∗ = XTY must have the
periodic mean qs , where s � 2. Then because all n are nonzero, q �= 0, and because
T ∗ = XTY , their weighted sequences have the same periodic mean, so q = qs implying
q = 1, which further implies that 12 · · ·p = 1.

To see that the condition 12 · · ·p = 1 is equivalent to T p being an isometry,
observe that in Equations (5)–(6) for m = p , both products remain constant when the
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sequence is p -periodic and observe that T p∗T p = (12 · · ·p)2 · I , which shows T p

is an isometry if and only if 12 · · ·p = 1. �

Next we prove the converse of above Theorem 3.17. That is, for a given weighted
shift T for which T p = 0k ⊕U with U an isometry, S(T,T ∗) is an SI semigroup and
in fact it is simple (see Theorem 3.19). Towards proving this, observe that since T has
initial k -weights zero, we can write T = 0k ⊕T1 , where T1 is a weighted shift with all
nonzero weights. Then clearly the SI property and simplicity of S(T,T ∗) is equivalent
to the SI property and simplicity of S(T1,T ∗

1 ) respectively. Also the condition that
T p = 0k ⊕U with U an isometry is equivalent to T p

1 being an isometry. Therefore in
proving Theorem 3.19,without loss of generality we can assume that T p is an isometry.
In the next proposition, we prove the simplicity (hence the SI property) of the semigroup
S(T,T ∗) generated by a weighted shift T for which T p an isometry.

PROPOSITION 3.18. Let T be a weighted shift for which T p is an isometry for
some p � 1 . Then S(T,T ∗) is simple.

Proof. In order to prove the simplicity of S(T,T ∗) , it suffices to prove that all
its principal ideals coincide with S(T,T ∗) . We do this by showing the principal ideal
generated by each of the six forms of the semigroup list coincide with the semigroup
S(T,T ∗) . Recall the semigroup list for S(T,T ∗) [11, Proposition 1.6]: S(T,T ∗) =
{Tn,T ∗n,k

j=1T
∗mjTn j ,(k

j=1T
∗mjT n j )T ∗mk+1 ,k

j=1T
njT ∗mj , (k

j=1T
njT ∗mj )Tnk+1},

where n � 1, k � 1, n j,mj � 1 for 1 � j � k and nk+1,mk+1 � 1.
First we prove the principal ideals generated by the first and second forms coincide

with S(T,T ∗) . Since T ∗ pT p = I , using induction one also has T ∗mpTmp = I for each
m � 1. So I ∈ (Tm)S(T,T ∗) and I ∈ (T ∗m)S(T,T ∗) for each m � 1 and hence,

(Tm)S(T,T ∗) = (T ∗m)S(T,T ∗) = S(T,T ∗) for all m � 1. (26)

Next we prove that the principal ideal J generated by any of the last four forms in
the above semigroup list contains an operator T ∗m for some m � 1. Then J would
contain the principal ideal (T ∗m)S(T,T ∗) , which is S(T,T ∗) by Equation (26). But first
observe that every principal ideal generated by a fourth or fifth or sixth form contains
an operator of the third form. Because multiplying on the left or right or both sides of
the operator that generates the principal ideal, by T or T ∗ , one can obtain the operator
of the third form. Therefore it suffices to prove that the principal ideals generated by
each of the third form contain T ∗m for some m � 1.

Consider an operator A in the third form. So A := k
j=1T

∗mjT n j for some k �
1,mj,n j � 1. We consider two cases: n1 < p and n1 � p .

Case 1. Suppose n1 < p . Choose m > 1 such that mp−n1 > 0 and mp−m1 >
0. Let us define Y1 := T ∗ pT p−n1T ∗mp−n1 , Y2 := TmpT ∗n1T ∗mp−m1 and Y := Y1Y2 .
Then, by re-writing A = T ∗m1Tn1X where X = k

j=2T
∗mj Tn j for k � 2 and X = I for

k = 1. Note that (TkT ∗k)(T ∗lT l) = (T ∗lT l)(T kT ∗k) , because the operators inside the
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parentheses are diagonal operators and so they commute. We then obtain

YA = Y1Y2A = Y1Y2T
∗m1Tn1X

= Y1(TmpT ∗n1T ∗mp−m1)T ∗m1Tn1X

= Y1T
mp(T ∗n1T ∗mp)Tn1X

= Y1T
mp(T ∗mpT ∗n1)Tn1X

= Y1(TmpT ∗mp)(T ∗n1Tn1)X
= Y1(T ∗n1Tn1)(T mpT ∗mp)X (both are diagonals and so commute)

= Y1(T ∗n1Tmp)(Tn1T ∗mp)X (as Tn1 and Tmp commute)

= (T ∗ pT p−n1T ∗mp−n1(T ∗n1Tmp))T n1T ∗mpX

= (T ∗ pT p−n1T ∗mpTmp)Tn1T ∗mpX

= T ∗mpX (because T ∗mpTmp = I and also T ∗ pT p = I).

This shows that for some Y ∈ S(T,T ∗) and m � 1, YA = T ∗mX .
Before proceeding further with Case 1 (n1 < p ), we need to show that Case 2

(n1 � p ) reduces to the same form as in Case 1 (that YA= T ∗mX for some Y ∈S(T,T ∗)
and m � 1). So, we first start with Case 2 here.

Case 2. Suppose n1 � p . Then n1 = rp+ s for some r � 1, 0 � s < p . By left
multiplying B = T ∗rp and because T ∗rpT rp = I (since T p is an isometry) one obtains

BA = T ∗rpT ∗m1(Tn1)X = T ∗rpT ∗m1(T rpT s)X = T ∗m1(T ∗rpT rp)T sX = T ∗m1T sX .

So, BA = T ∗m1TsX where 0 � s < p . For s = 0,BA = T ∗m1X , the desired form (YA =
T ∗mX for some Y ∈ S(T,T ∗) and m � 1). For 0 < s < p , BA = T ∗m1T sX . Choose Y
as in Case 1 (based on BA , in particular only on m1 and s) to obtain YBA = T ∗mX for
some m � 1 and Y ∈ S(T,T ∗) . Hence for Case 2 we also have the Case 1 conclusion:
YA = T ∗mX for some Y ∈ S(T,T ∗) and m � 1.

Hence in both the cases, YA = T ∗m(k
j=2T

∗mjT n j) or YA = T ∗m depending on
whether k � 2 or k = 1. If YA = T ∗m , then clearly T ∗m ∈ (A)S(T,T ∗) and so as ex-
plained earlier, it follows from Equation (26) that

S(T,T ∗) = (T ∗m)S(T,T ∗) ⊆ (A)S(T,T ∗) ⊆ S(T,T ∗),

hence (A)S(T,T ∗) =S(T,T ∗) . For the case YA = T ∗m(k
j=2T

∗mjT n j) , YA =k
j=2T

∗m′
j T n j

where m′
2 = m2 + m and m′

j = mj for j � 3. Setting Y1 = Y and applying this
same process to Y1A that we initially applied to A obtains Y2 ∈ S(T,T ∗) for which
Y2Y1A = T ∗m(k

j=3T
∗mjT n j) for some m � 1. And continuing obtains Yk · · ·Y1A = T ∗m

for some Yi ’s ∈S(T,T ∗) for 1 � i � k and m � 1. Hence T ∗m ∈ (A)S(T,T ∗) . And again
from Equation (26),

S(T,T ∗) = (T ∗m)S(T,T ∗) ⊆ (A)S(T,T ∗) ⊆ S(T,T ∗),

hence (A)S(T,T ∗) =S(T,T ∗) . This completes the proof that for every A∈S(T,T ∗) , the
principal ideal (A)S(T,T ∗) =S(T,T ∗) , which clearly implies the simplicity of S(T,T ∗) .

�
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Now, as promised in the first paragraph of this periodic subsection, using Proposi-
tion 3.18 and Theorem 3.17 above, we directly obtain the following SI characterization
of S(T,T ∗) for the class of weighted shifts with weight sequence 0k ⊕{i} , where
{|i|} is a periodic sequence with strictly positive weights.

THEOREM 3.19. Let T be a weighted shift with weights 0k⊕{n} where {|n|}
is a p-periodic sequence of nonzero numbers. Then the following are equivalent.

(i) S(T,T ∗) is an SI semigroup.

(ii) T p = 0k ⊕U with U an isometry.

(iii) S(T,T ∗) is simple.

As mentioned earlier after Example 3.10, we have obtained a characterization
of SI semigroups S(T,T ∗) generated by those weighted shifts with weight sequence
0k ⊕{n} where {|n|} is a p -periodic sequence of nonzero weights (and in partic-
ular, for those SI semigroups S(T,T ∗) generated by a weighted shift T with periodic
nonzero weights). We next obtain a characterization of SI semigroups S(T,T ∗) gen-
erated by those weighted shifts with weights 0k ⊕{n} where {|n|} is an eventually
constant sequence of nonzero weights. (By an eventually constant weight sequence
{n} , we mean for some N � 1 and  ∈ C for which  j =  for all j � N .) For that
we need to prove simplicity of S(T,T ∗) for a subclass of quasi-isometries in Propo-
sition 3.20. Recall that in [11, Remark 1.22(v)] we proved that for T an isometry,
S(T,T ∗) is always simple. Under the slightly weaker assumption that T ∗T = I on
ranT (equivalently, (T ∗T )T = T ), we prove next that S(T,T ∗) is simple. This class
of operators T that satisfy (T ∗T )T = T belong to the class of quasi-isometries (i.e.,
T ∗2T 2 = T ∗T ) introduced by Patel [10].

PROPOSITION 3.20. For T ∈ B(H) where T satisfies (T ∗T )T = T , S(T,T ∗) is
simple.

Proof. Since (T ∗T )T = T , by a straightforward induction argument one obtains
for all n � 1,

T ∗nTn+1 = T. (27)

Hence also, for all n � 1,
T ∗n+1Tn = T ∗. (28)

Recall the semigroup list [11, Proposition 1.6]:

S(T,T ∗) = {Tn,T ∗n,k
j=1T

∗mjT n j ,(k
j=1T

∗mj Tn j )T ∗mk+1 ,k
j=1T

njT ∗mj ,

(k
j=1T

njT ∗mj )Tnk+1}

where n � 1, k � 1, n j,mj � 1 for 1 � j � k and nk+1,mk+1 � 1. To prove S(T,T ∗)
is simple, it suffices to show that the principal ideal generated by each form in the
semigroup list coincides with the entire semigroup S(T,T ∗) . Furthermore, it suffices to
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show that the principal ideals generated by all the fourth and sixth forms coincide with
S(T,T ∗) because each principal ideal generated by each of the other forms contains a
fourth and a sixth form.

Consider an operator A in the fourth form. So A = (k
j=1T

∗mjTn j )T ∗mk+1 for

some mj,n j � 1 and mk+1 � 1. Let s = k
j=1 n j and r = k+1

j=1 mj . Then,

T ∗sA = T ∗s(T ∗m1Tn1)(k
j=2T

∗mjT n j)T ∗mk+1

= T ∗s+m1−n1−1(T ∗n1+1Tn1)(k
j=2T

∗mjT n j)T ∗mk+1

(add and substract n1 +1 from the power s of T ∗)

= T ∗s+m1−n1(k
j=2T

∗mj Tn j )T ∗mk+1

(from Equation (28) above T ∗n1+1Tn1 = T ∗)

= T ∗s+(m1−n1)+(m2−n2−1)(T ∗n2+1Tn2)(k
j=3T

∗mjT n j)T ∗mk+1

= T ∗s+(m1−n1)+(m2−n2)(k
j=3T

∗mj Tn j )T ∗mk+1 (again from Equation (28))
...

= T ∗k
j=1 mjT ∗mk+1

= T ∗r (from Equation (27) above).

Since T ∗s+1ATr ∈ (A)S(T,T ∗) and T ∗s+1ATr = T ∗(T ∗sA)Tr = T ∗r+1T r = T ∗ (from
Equation 28), one obtains T ∗ ∈ (A)S(T,T ∗) . Also note that (T ∗sA)T r+1 = T ∗rT r+1 = T
(from Equation (27)), so T ∈ (A)S(T,T ∗) . And since T,T ∗ ∈ (A)S(T,T ∗) , (A)S(T,T ∗) =
S(T,T ∗) .

We next consider the sixth form. So A = (k
j=1T

njT ∗mj )Tnk+1 for some n j,mj �
1, 1 � j � k , and nk+1 � 1. The operator T ∗n1AT ∗nk+1 ∈ (A)S(T,T ∗) . Note that
T ∗n1AT ∗nk+1 is back in the fourth form. Hence (T ∗n1AT ∗nk+1)S(T,T ∗) = S(T,T ∗) . But
(T ∗n1AT ∗nk+1)S(T,T ∗) ⊂ (A)S(T,T ∗) and so, it follows that (A)S(T,T ∗) = S(T,T ∗) . �

Now we can give a characterization of SI semigroups S(T,T ∗) generated by those
weighted shifts with weights 0k ⊕{n} where {|n|} is an eventually constant se-
quence of nonzero weights. Early on we noticed that the weighted shift operator T with
weight sequence (a,1,1, . . .) where a∈C are examples of quasi-isometries, which fur-
ther statisfy (T ∗T )T = T . So we first studied the impact of the SI property for S(T,T ∗)
on this subclass of quasi-isometries but found the stronger condition of simplicity in
Proposition 3.20.

In Theorem 3.8, we provided a necessary condition on the weight sequence of T
for S(T,T ∗) to be SI. And Example 3.10 showed that that necessary condition is not
sufficient. But in this rather restrictive class of weighted shifts, we obtain in the follow-
ing corollary, a necessary and sufficient condition for S(T,T ∗) to be SI, as mentioned
in the first paragraph of this periodic subsection.

COROLLARY 3.21. Let T be a weighted shift with weights 0k ⊕ {n} where
{|n|} is an eventually constant sequence of nonzero weights. Then S(T,T ∗) is an
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SI semigroup if and only if {|n|} has the form (a,1,1, . . .) . Moreover in this situation,
S(T,T ∗) is simple.

Proof. Similar to the discussion in the beginning of the proof of Theorem 3.17, we
can write T = 0k ⊕T1 where T1 is a weighted shift with nonzero weights {n} . Then
the SI property of S(T,T ∗) is equivalent to the SI property of S(T1,T ∗

1 ) . Furthermore,
T1 is unitarily equivalent to a weighted shift S with strictly positive weights {|n|} .
And SI being a unitarily invariant property, so S(T1,T ∗

1 ) is SI if and only if S(S,S∗)
is SI. Therefore without loss of generality we can assume that T has strictly positive
eventually constant weight sequence {n} .

Given that T has an eventually constant weight sequence {n} , then there is an
 > 0 (because all n are strictly positive) and a least m � 1 for which n =  for
n � m (and m−1 �=  when m � 2) . Suppose S(T,T ∗) is an SI semigroup. First
we will show that  = 1 irrespective of the value of m and then we will show that
m � 2. Both these together will yield the required form for the weight sequence. Let
r := max{m,2} , then by Theorem 3.8, rr = 1, where r is a product of powers
of i ’s with the index i � r � 2. Also since r � m, i =  for all i � r , therefore
rr = 1 implies that k = 1 for some k � 2, which further implies that  = 1. Hence
we obtain n = 1 for all n � m. Next we prove that m � 2. Suppose not. Then m � 3
and so m−1 �= 1. The latter is not possible because, again by Theorem 3.8, 1/m−1 is
a product of some i ’s with i � m−1 � 2. Therefore 1/m−1 =s

m−1 for some s � 1,
so m−1 = 1 against m−1 �= 1.

This completes the proof for one direction of the result, that is, S(T,T ∗) SI im-
plies that the weight sequence must be of the form (a,1,1, . . .) . And when the weight
sequence has this form one can easily verify that T satisfies (T ∗T )T = T . Then by
Proposition 3.20 S(T,T ∗) is simple and hence SI. �

Finally in this periodic subsection, we investigate the larger class of weight se-
quences with their absolute values almost periodic (see Definition 3.22 below), which
properly contains the classes of weight sequences we considered in Theorem 3.17 and
Corollary 3.21 and also contains all the eventually periodic weight sequences. For the
weighted shifts T with weight sequence in this class, we generalize Theorem 3.17 by
obtaining a necessary condition in Theorem 3.25 below for the SI property of the semi-
group S(T,T ∗) . We first need the following definition and observations:

We define the complex analogue of [14, Definition] as follows:

DEFINITION 3.22. A sequence {n} is almost p-periodic if there is a periodic
sequence {cn} with period p for which limn(n−cn) = 0. If {cn} has period p , as in
[14, Definition], we define the periodic mean to be q := |c1c2 · · ·cp|1/p .

That is, we define the periodic mean of an almost periodic sequence {n} to be
the periodic mean of its approximating sequence {cn} . And it is easy to show that this
definition is well-defined, that is, if {c′n} is another approximating periodic sequence,
then clearly {cn} = {c′n} .
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REMARK 3.23. Observe that almost periodic sequences are automatically boun-
ded and their periodic means are independent of the choice of period p (see para-
graph after Definition 3.14). Also, clearly the product of any two almost p -periodic
sequences is almost p -periodic. Indeed, if {n} and {n} are any two almost p -
periodic sequences with their respective approximating sequences {cn} and {bn} , then
the product sequence {nn} is approximated by the sequence {cnbn} . Therefore, if
{n} and {n} have their respective periodic means q1 and q2 , then {nn} has peri-
odic mean q1q2 (because the periodic mean of the approximating sequence {cnbn} is
q1q2 , see discussion prior to Corollary 3.15).

Once {n} is almost p -periodic with periodic mean q , so also are its tail se-
quences ({n+l}l�1 ) and the sequences 0k ⊕{n} almost p -periodic with periodic
mean q .

From this Remark 3.23 and Proposition 3.12 we obtain:

COROLLARY 3.24. For any D()
k ,D( )

l ∈ D with almost p-periodic sequences

, with periodic means q1 , q2 , respectively, the product diagonal D()
k D( )

l = D()
k+l

has sequence  almost p-periodic with periodic mean q1q2 .

Now we give a necessary condition in terms of the periodic mean for S(T,T ∗)
to be an SI semigroup when generated by a weighted shift with absolute values of its
weight sequence almost periodic.

THEOREM 3.25. Let T be a nonzero weighted shift with weights {n} where
{|n|} is an almost periodic sequence with periodic mean q. If S(T,T ∗) is an SI
semigroup, then either q = 1 or q = 0 .

Note that the proof of this Theorem 3.25 is similar to the proof of Theorem 3.17
except that q = 0 could be a possibility.

The converse of above Theorem 3.25 does not hold, in general, see Example 3.26
for q = 1 and Example 3.27 for q = 0 below:

EXAMPLE 3.26. The weighted shifts T with weight sequences {1− 1/n} and
{1+ 1/n} are almost periodic where the approximating periodic sequence for both is
the constant sequence 1 with periodic mean 1. Yet we discussed earlier as well in
the paragraph before Example 3.10 that for both these weight sequences, the necessary
reciprocal condition in Theorem 3.8 fails, so S(T,T ∗) are not SI.

EXAMPLE 3.27. The weighted shift T with weight sequence {n} where

n :=

{
1/n, for n odd

1, for n even

is almost periodic with the approximating periodic sequence (0,1,0,1, . . .) , which has
periodic mean 0. Again clearly for {n} the necessary reciprocal condition in Theorem
3.8 fails, so S(T,T ∗) is not SI.
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REMARK 3.28. (Impact of SI on the spectrum): Note that for the SI semigroups
S(T,T ∗) generated by weighted shifts T with their absolute value weight sequences
almost periodic, the spectrum of T is contained in D , indeed even more, (T ) = {0}
or (T ) = D . That is, for T a weighted shift with weights {n} where {|n|} is an
almost periodic sequence with periodic mean q , it follows from [14, Theorem 2] that
(T ) = {z ∈ C| |z|� q} . Also since S(T,T ∗) is SI, by Theorem 3.25, q = 0 or q = 1.
Hence, (T ) = {0} or (T ) = D .

In particular, for the subclasses of weighted shift operators T in Theorem 3.19
and Corollary 3.21 (with the weight sequences 0k⊕{n} where {|n|} is a p -periodic
sequence of nonzero numbers and {|n|} is an eventually constant sequence of nonzero
numbers), under the assumption of the SI property for S(T,T ∗) , we obtain (T ) = D .
Because for both these subclasses of weighted shift operators T , the SI property for
S(T,T ∗) implies that the periodic mean q of the absolute value weight sequence is 1
(which follows from Theorem 3.17 and Corollary 3.21).

4. The impact of the SI property of S(T,T ∗) on the spectral density for T :
hyponormal, essentially normal, and weighted shifts

Earlier we obtained a complete characterization of SI semigroups S(T,T ∗) for
normal operators T in [11, Remark 1.13 and Theorem 2.1]. In this section, we consider
the broader class of hyponormal operators for our SI investigation of S(T,T ∗) , We
also make a note of the proper inclusions that hold in general: normal operators �
subnormal operators � hyponormal operators [16, Remark]; and generalize our study
of SI semigroups to unital C∗ -algebras in Subsection 4.1. As a consequence, under the
SI assumption, we obtain nontrivial projections in singly generated unital C∗ -algebra
generated by a non-invertible normal element (Corollary 4.14).

We also found deep connections between the study of the SI property of S(T,T ∗)
and the spectral density of T for hyponormal operators and essentially normal operators
(Proposition 4.6, Corollary 4.15, and Theorem 4.18). Recall that an essentially normal
operator is an operator for which (T ) is a normal element in the Calkin algebra,
equivalently, whose self-commutator T ∗T −TT ∗ is a compact operator.

The most prominent example of a hyponormal operator is the infinite unilateral
shift. Note that the approximate point spectrum of the unilateral shift is the unit circle
S1 (see [5, Solution 82]). Interestingly, it turns out that for any hyponormal operator T ,
under the assumption of the SI property for S(T,T ∗) , the approximate point spectrum
of T is a subset of S1 ∪{0} , which is proved in the following lemma. We use ap(T )
to denote the approximate point spectrum of T .

LEMMA 4.1. For T ∈ B(H) a nonselfadjoint hyponormal operator, if S(T,T ∗)
is an SI semigroup, then

{0} �= ap(T ) ⊂ S1∪{0}.

Proof. Since T is a nonselfadjoint operator, T �= 0. We first claim ap(T ) con-
tains a nonzero value. For T a nonzero hyponormal operator, by [15, Theorem 1], its
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spectral radius r(T ) = ||T ||> 0. Therefore because the spectrum (T ) is compact and
hence closed, it contains a nonzero boundary point with modulus the spectral radius.
And since its boundary  ((T )) ⊂ ap(T ) [5, Problem 78], one has the claim.

Since S(T,T ∗) is an SI semigroup, the principal ideal (T )S(T,T ∗) is a selfadjoint
ideal. Therefore, T ∗ = XTY for some X ,Y ∈ S(T,T ∗)∪{I} , where X ,Y cannot both
be the identity operator, otherwise T would be selfadjoint. Since T is hyponormal, by
[2, Corollary 10], for each 0 �=  ∈ ap(T ) , there exists a character  on the unital C∗
algebra generated by T , C∗(T ) , such that (T ) =  . Since characters are multiplica-
tive ∗ -preserving linear functionals, and X ,Y when not the identity are words in T,T ∗ ,
by applying  to T ∗ = XTY , we obtain

(T ) = (X)(T )(Y ) = (T )n(T )m,

where n � 1, but additionally n,m must satisfy, for some m = 0, n � 2 or n � 1,
m � 1. In the former case, for m = 0, one has n � 2 because both X and Y cannot be
the identity operator and T is not selfadjoint. And in the latter case, if n = 1, m �= 0
again since T is nonselfadjoint. Therefore, since (T ) =  �= 0, taking absolute values,
one obtains

| | = | |n+m

where n+m � 2. This implies that 0 �=  ∈ S1 . Hence ap(T ) ⊂ S1∪{0} . �

REMARK 4.2. (i). We note that under the hypothesis of Lemma 4.1, (T ) ⊂ D .
Indeed, combining the general fact that  ((T )) ⊂ ap(T ) [5, Problem 78] and the
inclusion ap(T ) ⊂ S1 ∪{0} in Lemma 4.1, we get  ((T )) ⊂ S1 ∪{0} . Moreover,
 ((T )) �= {0} , otherwise r(T ) = ||T ||= 0 implying T = 0, which contradicts T �= 0.
Therefore, /0 �=  ((T )) \ {0} ⊂ S1 . Hence, r(T ) = 1 (so ||T || = 1) and because the
spectral radius is 1, one concludes that (T ) ⊂ D .

(ii) Lemma 4.1 implies that the planar area measure of ap(T ) = 0, if S(T,T ∗) is
SI.

(iii) The converse of Lemma 4.1 does not hold, in general. For example, consider
the nonzero hyponormal weighted shift T with weights {n}= {1−1/(n+1)} . Since
0 �= n → 1, it follows that T is injective allowing us to apply [14, Corollary 1] to con-
clude that (T ) = D and ap(T ) ⊂ S1 . And as proved in the first paragraph of the
proof of Lemma 4.1, nonzero hyponormal operators have nonzero approximate point
spectra, so we have {0} �= ap(T ) ⊂ S1 ∪{0} . However S(T,T ∗) is a non-SI semi-
group. Indeed, if S(T,T ∗) were an SI semigroup, then 2 = 2/3 must have its inverse
as the product of certain scalars  j ’s (possibly including repetition) where j � 2 by
Theorem 3.8. But the product of any powers of  j ’s for j � 2 is a number strictly less
than 1 so it cannot be the inverse of 2/3. Therefore S(T,T ∗) is not an SI semigroup.

Note that every normal operator is a hyponormal operator so using Lemma 4.1, we
provide an alternate short proof of [11, Theorem 2.1] in the corollary below.

COROLLARY 4.3. [11, Theorem 2.1] If T is a nonselfadjoint normal operator
and S(T,T ∗) is an SI semigroup, then T is unitarily equivalent to U ⊕ 0 for some
unitary operator U (the zero summand may be absent).
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Proof. T is nonselfadjoint so T �= 0. Since a normal operator is also a hyponor-
mal operator, so by Lemma 4.1, ap(T ) ⊂ S1∪{0} . Moreover, for a normal operator,
(T ) = ap(T ) [5, Problem 79]. It then follows that (T ) ⊂ S1∪{0} . If T is invert-
ible, then (T ) ⊂ S1 . This implies that T is a unitary operator [9, Chapter 1, Section
1.3]. If T is not invertible, then 0 is an isolated point in (T ) . And hence, 0 is an
eigenvalue of T by [15, Theorem 2] and the eigenspace corresponding to the eigenvalue
0 is a reducing subspace for T [15, Lemma 6]. Therefore, T is unitarily equivalent to
U ⊕0 where U is a unitary operator on (kerT )⊥ with respect to the decomposition of
the Hilbert space H = (kerT )⊥⊕kerT . �

Hyponormality versus normality. We are now ready to explore for hyponormality,
the relationship between the SI property for S(T,T ∗) and the spectrum of T in terms of
spectral density as described in the Introduction concerning Section 4. The next theo-
rem asserts that in addition to the hyponormality of T and the SI property of S(T,T ∗) ,
if we further assume that the boundary of the spectrum of T excludes at least one point
of the unit circle, then we have normality of T .

THEOREM 4.4. Suppose T ∈ B(H) is a hyponormal operator and boundary of
the spectrum of T excludes at least one point of the unit circle. If S(T,T ∗) is an SI
semigroup, then T is normal.

Proof. Since S(T,T ∗) is an SI semigroup, every ideal in S(T,T ∗) is selfadjoint.
In particular, the principal ideal, (T )S(T,T ∗) is selfadjoint. So T ∗ ∈ (T )S(T,T ∗) . There-
fore,

T ∗ = XTY (29)

for some X ,Y ∈ S(T,T ∗)∪{I} . If X = Y = I , then T ∗ = T , hence the normality of
T . So we may assume that T is nonselfadjoint, in which case either X �= I or Y �= I .
To show that T is normal, we will prove that (T ) ⊂ S1 ∪{0} , which has Lebesgue
measure zero, and hence so also (T ) , implying normality of T by [13, Corollary].

Since T is a nonselfadjoint hyponormal operator and S(T,T ∗) is an SI semigroup,
by Lemma 4.1, {0} �= ap(T ) ⊂ S1 ∪{0} . To prove (T ) ⊂ S1 ∪{0} , we will show
that (T ) =  ((T )) , the latter of which is a subset of ap(T ) [5, Problem 78]. We
will first show that (T ) ⊂ D . Since always  ((T )) ⊂ ap(T ) as stated above, this
implies that  ((T )) ⊂ S1 ∪ {0} . It follows that (T ) ⊂ D . Indeed, if  ∈ (T )
is a point outside D , since (T ) =  ((T ))∪ int((T )) and  ((T )) ⊂ S1 ∪ {0} ,
then  lies in an open ball inside int((T )) and outside D . Then the ray {t | t � 0}
from 0 through  must exit the bounded set (T ) in a boundary point t0 because
1 < t0 := sup{t � 0 | t ∈ (T )}< (due to the compactness of the spectrum and that
for t = 1, t =  ∈ int((T ))\D). Then it is clear that t0 ∈  ((T )) , contradicting
the inclusion  ((T )) ⊂ S1∪{0} . This completes the proof that (T ) ⊂ D .

From (T )⊂D we claim further that (T )⊂ S1∪{0} . Since (T ) =  ((T ))∪
int((T )) and as shown above  ((T ))⊂ S1∪{0} , it suffices to show that int((T ))=
/0 . Suppose otherwise that int((T )) �= /0 . Since (T ) ⊂ D and the interior is open,
one can chose a 0 �= z ∈ int((T )) ⊂ D . And as by the hypothesis that boundary of
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the spectrum of T excludes at least one point of the unit circle, choose a w on the unit
circle with w∈ (T ) , the open resolvent set of T , and hence the resolvent also contains
an open ball around w . So z,w are respectively in the disjoint open sets int((T )) and
(T ) . Since z ∈ D and w ∈ S1 , the line segment [z,w) lies entirely in D and by vary-
ing slightly either z or w we can assume further from a simple geometric argument that
[z,w) lies entirely in D\ {0} . Then representing [z,w) := {(1− t)z+ tw | 0 � t < 1} ,
set to = sup{0 � t < 1 | (1− t)z+ tw ∈ (T )} . Because int((T )) and (T ) are open
and disjoint, it is clear that 0 � to < 1 (as z ∈ int((T )) and w ∈ (T ) as well as the
whole segment ((1− to)z+ tow,w] := {(1− t)z+ tw | to < t � 1} ⊂ (T ) . It is clear
by construction that (1− to)z + tow is a boundary point of the spectrum and that this
boundary point lies inside the line segment [z,w) , hence inside the open disk D\ {0} .
That is, (1− to)z+ tow is a boundary point of (T ) that lies in D\ {0} , against what
we showed earlier that the boundary of the spectrum lies entirely in S1∪{0} . Thus we
have showed that (T ) ⊂ S1∪{0} . Since the latter set has area zero, so (T ) has area
zero and hence T is normal, as mentioned above, by [13, Corollary]. �

REMARK 4.5. (i). The assumption in Theorem 4.4 on the boundary of the spec-
trum is necessary for the conclusion to hold because if we consider T to be the unilat-
eral shift, then T is hyponormal as T ∗T −TT ∗ is a rank-one projection operator and
T being an isometry, S(T,T ∗) is an SI semigroup [11, Remark 1.22(v)]. But T is not
normal. Yet (T ) = D whose boundary is the entire unit circle.

(ii). For T a nonselfadjoint hyponormal operator, if S(T,T ∗) is an SI semigroup
and (T ) excludes at least one point of S1 , then by Theorem 4.4, T is normal. And
consequently by [11, Theorem 2.1], T is unitarily equivalent to U ⊕ 0 (0 may be
absent), which is further equivalent to simplicity of S(T,T ∗) .

Under the assumption of the SI property for S(T,T ∗) , we prove next that the
normality of a hyponormal operator is equivalent to Area((T )) = 0; and (denoting
the essential spectrum by e(T )) the essential normality of a subnormal operator is
equivalent to Area(e(T )) = 0 (Proposition 4.6 and Corollary 4.16 below).

PROPOSITION 4.6. Let T ∈ B(H) be a hyponormal operator. Suppose S(T,T ∗)
is an SI semigroup. Then, T is normal if and only if Area((T )) = 0 .

Proof. For T a hyponormal operator, Putnam’s Inequality [13, Theorem 1] is
given by

 ||T ∗T −TT ∗|| � Area((T )).

Hence Area((T )) = 0 implies that T is normal. Conversely, let T be a normal oper-
ator. When T is selfadjoint, its spectrum is on the line and so has zero area. And when
T is nonselfadjoint, the SI property of S(T,T ∗) implies that T is unitarily equivalent
to U⊕0 (the zero summand may be absent) with U a unitary operator by [11, Theorem
2.1]. Therefore, (T ) ⊂ S1∪{0} , and hence Area((T )) = 0. �

Without the assumption of the SI property for S(T,T ∗) , generated by a hyponor-
mal operator, the equivalence in Proposition 4.6 may not hold. The following example
illustrates this.
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EXAMPLE 4.7. Consider the measure space (X ,) , where X is the closed unit
disk centered at the origin in the complex plane and  is the Lebesgue measure on
X . For z ∈ X , the multiplication operator Mz : L2(X ,) −→ L2(X ,) is a normal
nonselfadjoint operator, but S(Mz,Mz) is not SI by [11, Theorem 2.1] because Mz is
not a unitary operator (as M is unitary if and only if | | = 1 a.e.), nor is it of the
form U ⊕0 (compare their spectra). But the spectrum (Mz) is the essential range of
(z) = z , which is equal to the closed unit disk as it is a continuous function, and hence
has nonzero area. This example shows that if we drop the hypothesis from Proposition
4.6 that S(T,T ∗) is an SI semigroup, then normality of T may no longer guarantee
that Area((T )) = 0.

So far we have observed that in the case of normal nonselfadjoint operators and in
the case of nonselfadjoint hyponormal operators for which the boundary of the spectrum
excludes at least one point of the unit circle, the SI property of the semigroup S(T,T ∗)
yields its simplicity (see [11, Theorem 2.1] and Remark 4.5 (ii)). In light of this, it is of
interest to us to ask the following question.

QUESTION 1. Does there exist T ∈ B(H) , a hyponormal non-normal operator
such that S(T,T ∗) is a non-simple SI semigroup?

4.1. SI semigroups in a unital C∗ -algebra

In [11] we studied the SI selfadjoint semigroups S(T,T ∗) in the unital C∗ -algebra
B(H) . We generalize this notion of SI semigroup in a natural way to an arbitrary ∗ -
algebra, in particular, to an arbitrary C∗ -algebra.

DEFINITION 4.8. A ∗ -algebra is an algebra A together with an involution map

∗ : A→A

defined by
a �−→ a∗

where ∗ is a conjugate-linear map such that a∗∗ = a and (ab)∗ = b∗a∗ for all a,b∈A.

DEFINITION 4.9. A is a C∗ -algebra if it is a ∗ -algebra together with a submul-
tiplicative norm such that ||a∗a||= ||a||2 for all a ∈A and A is complete with respect
to that norm. Furthermore, if A has a unit, then we call A a unital C∗ -algebra.

The definitions of a semigroup, selfadjoint semigroup, and SI semigroup are easily
generalized to a ∗ -algebra A as mentioned below.

DEFINITION 4.10. A semigroup S in A is a subset closed under multiplication.
A selfadjoint semigroup S is a semigroup that is also closed under the involution map,
i.e., S∗ := {a∗ | a ∈ S} ⊂ S.
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DEFINITION 4.11. An ideal J of a semigroup S in A is a subset of S closed
under products of elements in S and J , i.e., xa,ay ∈ J for a ∈ J and x,y ∈ S. And so
also xay ∈ J.

DEFINITION 4.12. A selfadjoint-ideal (SI) semigroup S in A is a semigroup for
which every ideal J of S is closed under involution, i.e., J∗ := {a∗ | a ∈ J} ⊂ J.

For a unital C∗ -algebra A and a ∈ A , consider the singly generated selfadjoint
semigroup S(a,a∗) generated by a . Then, note that S(a,a∗)⊂C∗(a) , the singly gener-
ated unital C∗ -algebra generated by a . A complete description of elements of S(a,a∗)
can be obtained exactly similar to that of S(T,T ∗) , described prior to section 2, just by
replacing T with a . Precisely,

S(a,a∗) = {an,a∗n,k
j=1a

nja∗mj ,(k
j=1a

nja∗mj )ank+1 ,k
j=1a

∗mjan j ,

(k
j=1a

∗mjan j)a∗mk+1},

where n � 1, k � 1, n j,mj � 1 for 1 � j � k , and nk+1,mk+1 � 1.
We begin with showing that S(a,a∗) possessing the SI property, for a non-invertible

normal element a ∈ A , we obtain nontrivial projections in C∗(a) (Corollary 4.14).
Here we note that for a normal element a ∈ A , C∗(a) has no nontrivial projections if
and only if (a) (the spectrum of a ) is connected. This follows from [8, Theorem
2.1.13], which says that there exists a unique isometric ∗ -algebra isomorphism  from
the C∗ -algebra of all complex-valued continuous functions on (a) onto C∗(a) . And a
direct calculation shows that in the C∗ -algebra of all complex-valued continuous func-
tions on (a) , there are no nontrivial projections if and only if (a) is a connected
set. In Corollary 4.14, we prove that under the SI property of S(a,a∗) for a normal
non-invertible element a , the spectrum of a is disconnected; thereby implying the ex-
istence of nontrivial projections in C∗(a) . Also, for a non-normal idempotent element
a in a C∗ -algebra A , the SI property of S(a,a∗) implies the existence of nontrivial
projections in the singly generated C∗ -algebra, C∗(a) (see Remark 4.22), which is a
consequence of Theorem 4.21 where we proved that for a non-normal idempotent ele-
ment a∈A , the SI property of S(a,a∗) is equivalent to a being a partial isometry. (For
more general C∗ -algebras, certain necessary and sufficient conditions for a C∗ -algebra
to be projectionless are stated in [1, Proposition 3.3].)

Towards proving the existence of nontrivial projections in C∗(a) for a non-invertible
normal element a (Corollary 4.14), we first prove the following theorem.

THEOREM 4.13. For a normal nonselfadjoint element a∈A , a unital C*-algebra,
the following are equivalent.

(i) S(a,a∗) is an SI semigroup.

(ii) (a) ⊂ S1∪{0} .

(iii) S(a,a∗) is simple.
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Proof. Since a is a normal element in a unital C*-algebra A , it follows from [8,
Theorem 2.1.13] that there exists a unique isometric ∗ -algebra isomorphism  from
the C∗ -algebra of all complex-valued continuous functions on (a) onto C∗(a) , i.e.,

 : C((a)) →C∗(a), (30)

where C∗(a) is the C*-algebra generated by 1 and a for which ( f ) = a where f is the
identity function on (a) , i.e, f (z) = z for all z ∈ (a) . Since  is a ∗ -isomorphism,
( f ) = a∗ . Moreover, a �= a∗ because a is a nonselfadjoint element.

(i)⇒(ii). Supposing S(a,a∗) is an SI semigroup, then every ideal of S(a,a∗)
is selfadjoint. In particular, the principal ideal (a)S(a,a∗) is selfadjoint. Therefore,
a∗ = xay for some x,y ∈ S(a,a∗)∪{1} but where x and y are not both equal to 1,
otherwise a would be selfadjoint against the hypothesized nonselfadjointness of a .
Since  is a ∗ -preserving isometric isomorphism, so also is −1 . So a∗ = xay implies
that

−1(a∗) = −1(x)−1(a)−1(y),

that is, besides being the identity function on the spectrum of a , f must also satisfy

f = f n f
m
, for n � 1, m � 0,

but additionally where either n > 1, m = 0 or m � 1, n � 1. The case m = 0, n = 1
does not occur because in that case f = f implying a∗ = a against the nonselfadjoint-
ness of a . Furthermore, since f (z) = z for z ∈ (a) , evaluating the function equation
in the above display at z and then taking the absolute value, one obtains: for some
k � 2,

|z| = |z|k for all z ∈ (a).

Therefore for each z ∈ (a) , either z = 0 or |z| = 1. Hence (a) ⊂ S1∪{0} .
(ii)⇒(iii). Suppose (a) ⊂ S1∪{0} . If 0 ∈ (a) , then 0 is an isolated point in

(a) . This further implies that the function e defined on (a) , e(z) := 1 for z ∈ S1

and e(0) := 0, is a continuous function. Also, note that e is the unit element in the
singly generated semigroup S( f , f ) . And each function g ∈ S( f , f ) has its inverse
g ∈ S( f , f ) , since it satisfies gg = e = gg . Then, S( f , f ) becomes a group and hence
simple. Since  is a ∗ -algebra isomorphism, so S(a,a∗) is also simple.

If 0 /∈ (a) , i.e., (a) ⊂ S1 , then f f = 1 = f f , where 1 is the constant function
on (a) . Applying  to the equation f f = 1 = f f we obtain, aa∗ = 1 = a∗a and so
a is a unitary element. Then S(a,a∗) forms a group and hence simple.

(ii)⇒(iii). Simple semigroups are automatically SI semigroups. �

COROLLARY 4.14. For a ∈ A a normal nonselfadjoint non-invertible element
in a unital C*-algebra A , if S(a,a∗) is an SI semigroup, then C∗(a) has nontrivial
projections.

Proof. From Theorem 4.13, (a)⊂ S1∪{0} . Since a is not invertible, 0∈ (a) .
Moreover, (a) �= {0} . Indeed, otherwise the spectral radius r(a) = 0. But since a is
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normal, r(a) = ||a|| [7, Lemma 1.2.7] and since a is also nonzero, r(a) = ||a|| > 0, a
contradiction.

Let A = (a)∩S1 and B = {0} . Since (a) ⊂ S1∪{0} and (a) �= {0} , the set
A �= /0 . Moreover, A and B are disjoint compact sets and (a) = A∪B . Therefore,
the characteristic functions A and B are continuous on (a) . Moreover, A satisfies
the equations 2

A = A and ∗
A = A , so also B . Hence, A and B are projection

functions. Since A and B are non-empty proper subsets of (a) , so A and B are
neither equal to the 0 function nor equal to the constant function 1. And hence A and
B are nontrivial projection functions in C((a)) . Since  from the proof of Theorem
4.13 is a ∗ -isomorphism, p := (A) and q := (B) are nontrivial projections in
C∗(a) . This completes the proof of the theorem. However, we can say more.

Additionally, since A +B = 1, p+q = 1 where 1 is the unit element of C∗(a) .
Since C((a)) is abelian, denoting the identity function on the spectrum by f (z) = z
and using the fact from Theorem 4.13 that ( f ) = a , one has

f f A = A = f f A.

Applying  to this equation, one obtains

a∗ap = p = aa∗p.

Also f B = 0, so aq = a(1− p) = 0, and hence a = ap . �
Another such application of the SI property, which guarantees the existence of

nontrivial projection is given later in Remark 4.22(i).
As an application of Subsection 4.1, Theorem 4.13, consider the Calkin alge-

bra B(H)/K(H) , which is a unital C∗ -algebra and the quotient map  : B(H) →
B(H)/K(H) . For T ∈ B(H) , e(T ) is called the essential spectrum of T , which is
defined as the spectrum of (T ) in the Calkin algebra, i.e., ((T )) := e(T ) . We
found that the SI property of S(T,T ∗) generated by an essentially normal operator de-
termines the spectral thinness of the essential spectrum of T in Corollary 4.15 below.
And given the SI property for S(T,T ∗) , we also obtain in Corollary 4.16 a charac-
terization of which subnormal operators T are essentially normal (i.e., when (T ) is
normal in the Calkin algebra) in terms of the area of the essential spectrum.

COROLLARY 4.15. For T ∈ B(H) an essentially normal operator, if S(T,T ∗) is
an SI semigroup, then either

e(T ) ⊂ R or e(T ) ⊂ S1∪{0}.

Proof. Suppose S(T,T ∗) is an SI semigroup. Then, using the ∗ -homomorphism
 , note that the semigroup S((T ),(T )∗) is also an SI semigroup in B(H)/K(H) .
That  preserves the SI property for singly generated semigroups is a straightforward
computation using the easily proved fact that S(T,T ∗) is an SI semigroup if and only
if for each A ∈ S(T,T ∗) , A∗ = XAY for some X ,Y ∈ S(T,T ∗)∪{I} . Moreover, nor-
mality of (T ) implies one of the two possibilities: either (T ) is selfadjoint or (T )
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is a nonselfadjoint normal element. In the former case, ((T )) = e(T ) ⊂ R , and in
the latter case, by Theorem 4.13, e(T ) = ((T )) ⊂ S1∪{0}. �

It follows from [4, Corollary 31.15] that for a subnormal operator T , if Area(e(T ))
= 0, then T is essentially normal. The converse does not hold in general (see ex-
ample in Remark 4.17 below). If we assume that S(T,T ∗) is an SI semigroup, then
the converse holds for a subnormal operator T , i.e., if T is essentially normal, then
Area(e(T )) = 0. Indeed, either e(T ) ⊂ R or e(T ) ⊂ S1 ∪{0} by Corollary 4.15,
and hence Area(e(T )) = 0. We summarize these results in the corollary below.

COROLLARY 4.16. Let T ∈ B(H) be a subnormal operator. Suppose S(T,T ∗)
is an SI semigroup. Then,

T is essentially normal if and only if Area(e(T )) = 0.

REMARK 4.17. The conclusion in Corollary 4.16 does not hold if we drop the
hypothesis that S(T,T ∗) is an SI semigroup. For instance, the multiplication operator
Mz considered in Example 4.7 is normal and so is essentially normal. And from there
recall that S(Mz,Mz) is not SI. It follows from [3, Chapter XI, Section 4, Proposition
4.6] that for a normal operator N ,

(N)\e(N) = { ∈ (N) :  is an isolated point of (N) that is an eigenvalue

of finite multiplicity}.

Since (Mz) has no isolated point (as (Mz)= D , see Example 4.7), (Mz)\e(Mz) =
/0 . Hence, e(Mz) = (Mz) . This implies that Area(e(Mz)) �= 0.

For an essentially normal operator, the SI property of S(T,T ∗) bears on the thin-
ness of the essential spectrum in that the area of the essential spectrum must be zero.
But the full spectrum of an essentially normal operator under the SI property need not
be thin, in fact, the spectrum could be the closed unit disc as proved in Theorem 4.18
below.

We recall here a few definitions that are used in the proof of Theorem 4.18. For
A∈ B(H) , the left essential spectrum of A and the right essential spectrum of A are de-
fined as le(A) = l((A)) and re(A) = r((A)) respectively, where l((A)) and
r((A)) denote the left and the right spectrum of (A) respectively (see [3, Chapter
XI, Definition 4.1]).

THEOREM 4.18. Let W be a weighted shift with all nonzero complex weights
{n} . If W is essentially normal and S(W,W ∗) is SI, then e(W ) ⊆ S1 ∪ {0} and
(W ) = D . Moreover, in this case, liminfn(|12 . . .n|)1/n = 1 .

Proof. Since S(W,W ∗) is SI and W is an infinite-rank nonselfadjoint operator
(as n �= 0 for n � 1), it follows by contrapositive from [11, Theorem 1.17] that W /∈
K(H) . Furthermore, by Corollary 4.15, the SI property of S(W,W ∗) for an essentially
normal nonselfadjoint operator W implies that either e(W ) ⊂ R or e(W ) ⊆ S1 ∪
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{0} . But note that e(W ) �⊂ R . Indeed if e(W ) ⊂ R then (W ) is selfadjoint in
B(H)/K(H) . Hence, (W ) = (W ∗) , which is equivalent to W −W ∗ ∈ K(H) , since
W is a weighted shift, which further implies that W ∈ K(H) , contradicting the non-
compactness of W . Therefore, e(W ) �⊂ R .

We next prove that (W ) = D . Firstly one has that (W ) �= {0} . Indeed, if
(W ) = {0} , then e(W ) = {0} as e(W ) ⊆ (W ) = {0} . Moreover, when W is
essentially normal, (W) is normal in B(H)/K(H) and hence the spectral radius of
(W ) is equal to its norm ([7, Lemma 1.2.7]). The spectral radius of (W) is equal to
max{| | |  ∈ e(W ) = ((W ))} . Since e(W ) = {0} , the norm of (W ) is equal to
zero, which further implies that (W) = 0, or equivalently, W ∈ K(H) , contradicting
W /∈ K(H) . Therefore, (W ) �= {0} . Then since weighted shifts have spectra that
must be closed disks centered at the origin [14, Corollary (Kelley)] and this spectrum
is nonzero, it must be a nonzero closed disk with center at the origin, which in fact has
no isolated points. From this and [3, Chapter XI, Proposition 4.2(a) and Theorem 6.8]
it follows that  ((W )) ⊆ e(W ) . And as we have proven e(W ) ⊆ S1 ∪ {0} , one
has  ((W )) ⊆ S1 ∪ {0} . Then because the disk (W ) �= {0} and has boundary in
S1∪{0} , that disk must be (W ) = D .

We next prove that liminfn(|12 . . .n|)1/n = 1. For A ∈ B(H) ,

ap(A) = le(A)∪{ ∈ p(A) | dim ker(A− ) < },
where ap(A) denotes the approximate point spectrum of A and le(A) denotes the
left-essential spectrum of A (see [3, Chapter XI, Proposition 4.4]). In the case of a
weighted shift W , the point spectrum p(W ) =  as n �= 0 for n � 1 [5, Solution 93]
(also easy direct computation). Therefore,

ap(W ) = le(W ) ⊆ e(W ).

Since e(W ) ⊆ S1 ∪{0} , one has ap(W ) ⊆ S1 ∪{0} . Since (W ) = D and so the
boundary of the spectrum S1 = (W ) ⊂ ap(W ) [5, Problem 78], therefore S1 ⊆
ap(W ) ⊆ S1 ∪ {0} . Also we have the disjoint union ap(W )∪(W ) = (W ) = D
where (W ) is the residual spectrum of W . Since ap(W )∩(W ) = /0 , so D\ {0} ⊆
(W ) . Using the fact that for a weighted shift with nonzero weights {n} , p(W ∗)
is a disc with center 0 and radius liminfn(|12 . . .n|)1/n (see [5, Solution 93]), and
that for any weighted shift with weights {n} , p(W ∗) = (W )∗ [5, Solution 73], one
has D\{0} ⊆ p(W ∗) . And then from D\{0} ⊆ p(W ∗) ⊆ (W ∗) = (W ) = D , we
obtain liminfn(|12 . . .n|)1/n = 1. �

COROLLARY 4.19. Let W be a weighted shift with the weight sequence {n} of
nonzero numbers and |n| −→  for some  ∈ R+∪{0}as n→ . If S(W,W ∗) is SI,
then  = 1 .

Proof. Since{|n|} is convergent, an elementary computation shows that W is
essentially normal. Therefore, by Theorem 4.18, (W ) = D . On the other hand, af-
ter verifying W is injective, |n| −→  implies that (W ) = {z ∈ C | |z| � } [14,
Corollary 1]. Therefore  = 1. �
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As promised earlier, we next characterize the SI semigroup S(a,a∗) generated by
a non-normal idempotent element a in a C∗ -algebra (Theorem 4.21). And as a byprod-
uct, we obtain nontrivial projections in C∗(a) under the SI assumption on S(a,a∗)
(Remark 4.22). We first recall the definition of a partial isometry for an abstract C∗ -
algebra.

DEFINITION 4.20. [9, Definition 5.1.4] An element a in a C∗ -algebra A is called
a partial isometry when a∗a is a projection.

The familiar equivalent statements about partial isometry in B(H) also hold for
any C∗ -algebra, that is, a is a partial isometry if and only if a∗a is a projection if and
only if a = aa∗a (see [9, Exercise 5.A(d)]).

If a is the unit element of A , then S(a,a∗) = C∗(a) = {1} , and so there is no
nontrivial projection. So, we assume that a �= 1 henceforth in this discussion. Note that
if a is a nonzero selfadjoint idempotent, i.e., a2 = a = a∗ , then a itself is a projection,
which is clearly a partial isometry. And since a is selfadjoint, S(a,a∗) is automatically
SI. So in this case, C∗(a) has a nontrivial projection, namely a itself (as 0 �= a �= 1).

If a is normal nonselfadjoint and idempotent, the relations a∗a = aa∗ and a2 = a
imply that a∗a is a projection and so also aa∗ is a projection. Moreover, if a∗a =
1 then multiplying both sides with a and using a = a2 implies selfadjointness of a
contradicting the nonselfadjointness of a . So, 0 �= a∗a �= 1, which implies that a∗a
is a nontrivial projection. Observe that the SI property does not play any role in the
existence of nontrivial projections in C∗(a) when generated by a normal nonselfadjoint
idempotent. So the interesting case for us is when a is a non-normal idempotent, which
is addressed in the following theorem.

THEOREM 4.21. For a non-normal idempotent element a ∈ A in a unital C∗ -
algebra, the following are equivalent.

(i) S(a,a∗) is an SI semigroup.

(ii) a is a partial isometry.

(iii) S(a,a∗) is simple.

Proof. Since a is a non-normal idempotent, a is not equal to the unit element in
A and the semigroup list for S(a,a∗) described in the introduction of this subsection
prior to Theorem 4.13) reduces to the following list:

S(a,a∗) = {a,a∗,(aa∗)k,(aa∗)ka,(a∗a)k,(a∗a)ka∗ : k � 1}. (31)

(i) ⇒ (ii): Suppose S(a,a∗) is an SI semigroup. To show that a is a partial isometry,
we prove that a∗a is a projection. Indeed, the SI property of S(a,a∗) implies that the
principal ideal (a)S(a,a∗) is selfadjoint. Therefore, a∗ = xay for some x,y ∈ S(a,a∗)∪
{1} ; where both x,y are not equal to 1 because a is nonselfadjoint. Since a is not
normal, it is not selfadjoint and a∗ = xay implies that xay is not selfadjoint and so xay
cannot be in first, third and fifth form in display (31). Moreover, since xay contains
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an a in it, xay must be either in fourth or sixth form. If xay has fourth form. Then
xay = (aa∗)ka for some k � 1. Since a∗ = xay so a∗ = (aa∗)ka . Multiplying by a∗ on
both sides we obtain, a∗2 = (aa∗)k+1 , which implies that a∗ = (aa∗)k+1 , contradicting
the nonselfadjointness of a∗ . Therefore, xay must be in sixth form, i.e., xay = (a∗a)ka∗
for some k � 1. Then using a∗ = xay we have a∗ = (a∗a)ka∗ . We then multiply by a
on both sides which further implies that a∗a = (a∗a)k+1 . Since a∗a is normal, by [8,
Theorem 2.1.13], it follows that (a∗a) ⊂ {0,1} and that a∗a is idempotent. So a∗a
is a projection.

(ii) ⇒ (iii): Suppose a is a partial isometry. Then a∗a is a projection and a =
aa∗a . Therefore, the semigroup list in (31) reduces to the following list:

S(a,a∗) = {a,a∗,aa∗,a∗a}.
Using the relation a = aa∗a , one can easily check that S(a,a∗) is simple.

(iii) ⇒ (i): Simple semigroups are automatically SI. �
An immediate consequence under the hypothesis of the above theorem is high-

lighted in the remark below.

REMARK 4.22. (i) For a non-normal idempotent, in the proof of Theorem 4.21(i)
⇒(ii), we showed that if S(a,a∗) is SI, then (a∗a) ⊂ {0,1} and a∗a is a projection.
We further conclude the existence of a nontrivial projection in C∗(a) . Indeed, suppose
(a∗a) is a singleton set, namely, (a∗a) = {1} (since (a∗a) = 0 implies a = 0
contradicting non-normality of a ). Since (a∗a) = {1} , a∗a is invertible. Also a∗a =
(a∗a)2 , so multiplying (a∗a)−1 on both sides, we obtain 1 = a∗a . Multiplying by a on
both sides to 1 = a∗a and using a = a2 , we obtain a = a∗a , which contradicts the non-
normality of a . Therefore, (a∗a) = {0,1} , which is disconnected. Hence, C∗(a∗a)
has nontrivial projections. Since C∗(a∗a)⊂C∗(a) , it follows that C∗(a) has nontrivial
projections.

(ii) We summarize the SI characterization of S(a,a∗) generated by an idempo-
tent. For a normal idempotent, S(a,a∗) is automatically SI. Indeed, as discussed in the
paragraph preceding Theorem 4.21, a∗a is a projection and so a is a partial isometry.
It follows from Theorem 4.21(ii)⇒(iii) that S(a,a∗) is simple, and hence SI. For a
non-normal idempotent, S(a,a∗) is SI if and only if a is a partial isometry if and only
if S(a,a∗) is simple (Theorem 4.21).

Based on the evidences found so far on the impact of the SI property of S(T,T ∗)
on the spectrum of T for special classes of operators, for instance, in Theorem 3.2,
Remark 3.28, Remark 4.2, Theorem 4.13, and Theorem 4.18, we have (T ) ⊂ D for
S(T,T ∗) semigroup to be SI.

CONJECTURE. If S(T,T ∗) is an SI semigroup generated by a nonselfadjoint op-
erator T , then the spectrum of T is a subset of the closed unit disk.
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