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DENSE SUBSET OF MATRICES HAVING EIGENVALUES AND

SINGULAR VALUES WITH MINIMUM NUMBER OF REPETITION
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Abstract. In this paper, we introduce a new class of sets namely analytically imaged sets in the
space of m× n matrices. A sufficient condition is obtained for an analytically imaged subset
of the set of all n× n matrices to have a dense subset in terms of algebraic multiplicities of
the eigenvalues. Also, the counterparts of this result have been studied for singular values of
rectangular matrices and it has been shown that all the results hold for convex subsets of matrices.

1. Introduction and preliminaries

Let Ω be a convex subset of n×n matrices and Ω′ be the set of all matrices in Ω
having distinct eigenvalues. In the Corollary 1 of the article [4], the author has shown
that Ω′ is dense in Ω if Ω′ is non-empty. In the article [2], the authors have proved
this result for a larger class of subsets instead of convex subset. The authors have also
proved some analogous results for singular values of rectangular matrices.

Clearly, these results depend on the matrices whose eigenvalues are non-repeated.
Now, two questions arise: Suppose Ω does not contain any matrix with distinct eigen-
values. Is there any dense subset Ω′′ of Ω whose elements satisfy certain conditions
related to the numbers of repeated eigenvalues? Is there a more larger class of subsets
of matrices for which the above stated results hold?

The questions are answered in affirmative in Section 2 and Section 3. We define
a class of subsets of matrices called analytically imaged sets and show the existence of
dense subset Ω′′ of Ω even if Ω does not contain any matrix with distinct eigenvalues.
We also prove some results for rectangular matrices related to the singular values.

Before proceeding to the main results, let us introduce some notations which will
be used in our results. Let C , R , Q and N denote the set of all complex, real, rational
and natural numbers, respectively. Let |A| denote the cardinality of the set A . For two
sets A and B , the product A×B represents the set {(x,y) : x ∈ A and y ∈ B}. We
denote the set of all strictly decreasing sequences in [0,1] converging to 0 by c0[0,1].

Let Cm×n denote the set of all m× n complex matrices and In denote the n× n
identity matrix. We denote an n×n diagonal matrix by diag(a1,a2, . . . ,an) where ai is
the (i, i) th entry. For an n×n matrix A, the characteristic polynomial of A is denoted
and defined by χA(t) = det(tIn −A) (see Definition 8.2.1, [6]). We denote the set of
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all eigenvalues of a given matrix A ∈ Cn×n by ε(A) and for an a ∈ ε(A) , we denote
the algebraic multiplicity of a by αA(a) (see [6]). For a matrix A ∈ Cn×n we define
μ(A) = max{αA(a) : a ∈ ε(A)} .

For an m× n complex matrix A , the Frobenius norm is denoted and defined by

‖A‖ =
√

∑m
i=1 ∑n

j=1 |ai j|2 , where ai j is the (i, j) th entry of A . In this article, we con-

sider Cm×n as a topological space induced by the Frobenius norm. Clearly Cm×n is a
metric space. In a metric space M, a point x ∈M is called isolated point if x is not a
limit point (see Definition 2.18, [7]).

A function f (x) of the form f (x) = ∑∞
n=0 an(x−c)n is called an analytic function,

where x ∈ u ⊂ R , c ∈ R and an ∈ C for all n (see Chapter 8, [7]). Let f (x) and
g(x) be two analytic functions defined on the open interval (−r,r) ⊂ R. If the set
{x : f (x) = g(x)} has a limit point in (−r,r) then {x : f (x) = g(x)} = (−r,r). This
result is known as the Identity theorem for analytic functions (see Theorem 8.5, [7]).

We call an m× n matrix valued function f : u ⊂ R → Cm×n an m× n analytic
function if each entry of f is an analytic function defined on u. We denote the set of
all m×n analytic functions defined on [0,1] by Cω

m×n[0,1].
Let f (x) = ∑n

k=0 akxk and g(x) = ∑m
k=0 bkxk be two polynomials of degree n and

m , respectively with complex coefficients. The Sylvester matrix of f (x) and g(x) is an
(n+m)× (n+m) matrix, denoted by Syl( f ,g) , defined as

Syl( f ,g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an an−1 . . . a0 0 . . . . .
0 an an−1 . . . a0 0 . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 0 an an−1 . . . . . . a0

bm bm−1 . . b0 0 . . . . . .
0 bm bm−1 . . b0 0 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 0 bm bm−1 . . . . . . b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The resultant of two polynomials f (x) and g(x) is the determinant of the Syl( f ,g) ,
and is denoted by Res( f ,g) . Also f (x) and g(x) have a common factor if and only if
Res( f ,g) = 0 (see [5]).

In the next section, we define a new class of subsets of matrices and prove some
properties.

2. Analytically imaged set

The motivation to define a new class of sets comes from the questions that arise in
the Section 1 and from the proofs of Theorem 1 of article [4] and Theorem 3.5 of article
[2]. It is clear from the proofs that the theorems also hold for a subset Ω ⊂ Cn×n if for
any two points A and B in Ω , there exists an n× n analytic function f on [0,1] and
a strictly decreasing sequence (xn) converging to 0 such that f (0) = A, f (1) = B and
f (xn) is in Ω for each n. So we define the following class of sets called analytically
imaged set.
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DEFINITION 2.1. A set Ω⊂Cm×n is said to be an analytically imaged set if for A
and B (�= A) in Ω , there is an m×n analytic function fAB : [0,1]→Cm×n and a strictly
decreasing sequence (xn) in [0,1] converging to 0, such that fAB(0) = A , fAB(1) = B
and fAB(xn) is in Ω for each n .

Clearly, an analytically imaged set contains at least two elements. Now, we give
some examples of analytically imaged set.

EXAMPLE 2.1. Any convex set Ω ⊂Cm×n is an analytically imaged set. Because
for any two points A and B in Ω , we have an m× n analytic function fAB(t) = (1−
t)A+ tB defined on [0,1] and a strictly decreasing sequence ( 1

n ) in [0,1] converging
to 0, such that fAB(0) = A , fAB(1) = B and fAB( 1

n ) is in Ω for each n ∈ N .

EXAMPLE 2.2. The set of all m×n matrices whose entries are rational numbers
is an analytically imaged set because for any two matrices A and B with rational num-
ber entries if we consider the same function fAB(t) and the sequence ( 1

n ) defined in
Example 2.1, then fAB(0) = A , fAB(1) = B and each matrix fAB( 1

n ) has rational num-
ber entries.

EXAMPLE 2.3. Let A0,A1, . . . ,Ak be m×n complex matrices. Then, the set Ω =
{A(t) = ∑k

i=0 Aiti : t ∈ R} ⊂ Cm×n is an analytically imaged set. Because, for any two
matrices B and C in Ω, there exist two points x and y in R such that B = A(x) and
C = A(y). So we consider the analytic function fBC(t) = A((1− t)x + ty) defined on
[0,1] and the sequence ( 1

n ) which give fBC(0) = B, fBC(1) = C and fBC( 1
n) is in Ω

for all n in N.

EXAMPLE 2.4. The set of all n×n invertible complex matrices is an analytically
imaged set. For if, we consider two invertible complex matrices A and B, and the
function fAB(t) defined in Example 2.1. Now, det( fAB(t)) is a non-constant polynomial
in t so it can be 0 for finitely many t. So, there exists a strictly decreasing sequence
(xn) in [0,1] converging to 0, such that det( fAB(xn)) �= 0 for all n in N. Hence, the
result follows.

We call an n×n complex matrix A, Hermitian if A = A∗, where A∗ denotes the
conjugate transpose of A. The set of all n× n Hermitian matrices is an analytically
imaged set since the set of all n× n Hermitian matrices forms a convex subset which
is an analytically imaged set follows from Example 2.1. Now, we will give another
example of analytically imaged set related to Hermitian matrices.

EXAMPLE 2.5. The set of all Hermitian matrices whose eigenvalues lie in the in-
terval (x,y) ⊂ R is an analytically imaged set. It is known that for any two Hermitian
matrices A and B, whose eigenvalues lie in (x,y), the eigenvalues of any convex com-
bination of A and B lie in (x,y) (see V.1, [1]). So, we consider the function fAB(t)
defined in Example 2.1 and the sequence ( 1

n ) which give fAB(0) = A, fAB(1) = B and
eigenvalues of fAB( 1

n ) lie in (x,y) for all n in N. Hence the result is proved.
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Next, we prove a property of an analytically imaged set which provides a necessary
condition for a set to be analytically imaged.

COROLLARY 2.1. Let Ω ⊂ Cm×n be an analytically imaged set, then Ω has no
isolated points.

Proof. Let A be in Ω , then for any B in Ω there exists an m×n analytic function
fAB on [0,1] and a strictly decreasing sequence (xn) in [0,1] converging to 0 such that
fAB(0) = A , fAB(1) = B and fAB(xn) is in Ω for all n . Now fAB(xn) may be equal only
for finitely many n , otherwise fAB will be a constant function by the Identity theorem
for analytic functions which is not possible. So there is a sub-sequence (xnk) of (xn)
such that fAB(xni) �= fAB(xn j) if i �= j. Now by continuity of fAB the sequence fAB(xnk)
converges to fAB(0) , that is to A. Hence A is not an isolated point. As A is arbitrary
so Ω has no isolated points. �

Now we prove the following lemmas which can be used to form analytically im-
aged sets. We also provide some examples after proving the lemmas.

LEMMA 2.1. Let u be an open subset of R and f : R → Cm×n be a non-constant
m×n analytic function. Then f (u) is an analytically imaged set.

Proof. Let A and B be two points in f (u). So there are x and y in u such that
f (x) = A and f (y) = B. Now we consider a strictly decreasing or increasing sequence
(xn) in u when x < y or x > y , respectively with x1 = y such that (xn) converges to x.
Such sequences exist as u is open. We consider the analytic function g(t)= x(1−t)+yt
and let yn = xn−x

y−x for all n . So the strictly decreasing sequence (yn) converges to 0
and g(yn) = xn for all n . Hence there is an m× n analytic function h(t) = f (g(t))
defined on [0,1] and a strictly decreasing sequence (yn) in [0,1] converging to 0 such
that h(0) = f (x) = A , h(1) = f (y) = B and h(yn) = f (xn) is in f (u) for each n . So
f (u) is an analytically imaged set. �

REMARK 2.1. From the proof of the above Lemma 2.1, it is clear that the lemma
is also true for a set u ⊂ R if u has the property that: for each x in u there exists a
strictly decreasing sequence (xn) and a strictly increasing sequence (yn) in u converg-
ing to x .

EXAMPLE 2.6. Let A0,A1, . . . ,Ak be m×n matrices. Consider the function f (t)=
∑k

i=0 Aiti defined on R. Then for any open interval (x,y), the set f ((x,y)) is an analyti-
cally imaged set. Also, {diag(sin(t),sin(2t), . . . ,sin(nt)) : t ∈ (x,y)} and {diag(cos(t),
cos(2t), . . . ,cos(nt)) : t ∈ (x,y)∩Q} are analytically imaged sets.

LEMMA 2.2. Let u ⊂ R has no isolated points and f : R → Cm×n be a non-
constant m×n analytic function. Then f (u) is an analytically imaged set.
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Proof. Let A and B are in f (u). So there exist x and y in u such that f (x) = A
and f (y) = B. There must exists a strictly increasing or decreasing sequence (xn) in
u which converges to x . First we assume (xn) is strictly decreasing. We consider the
analytic function g(t) = at2 +(y− x− a)t + x for a < 0. So g(0) = x and g(1) = y.
Now we will show that there exists an a < 0 such that {xn : n∈N}⊂ g([0,1]). We have
g(t) = at2 +(y− x− a)t + x. So for a < 0, g(t) has local maxima at tmax = 1

2 + x−y
2a

and the value is x− (a+x−y)2
4a . Hence we can choose a < 0 such that 0 < tmax < 1

and g(tmax) is an upper-bound for {xn : n ∈ N}. Also g(t) is strictly increasing in the
interval [0, tmax). So there exists a strictly decreasing sequence (yn) in [0,1] converging
to 0 such that y1 = 1 and g(yn) = xn for n = 2,3, . . . . Hence there is an m×n analytic
function h(t)= f (g(t)) and a strictly decreasing sequence (yn) such that h(0)= f (x) =
A, h(1) = f (y) = B and h(yn) = f (xn) is in f (u) for each n .

Now if (xn) is strictly increasing then we can consider the function g(t) = at2 +
(y− x−a)t + x for a > 0. So g(t) has local minima at tmin = 1

2 + x−y
2a and the value is

x− (a+x−y)2
4a . Hence we can choose a > 0 such that 0 < tmin < 1 and g(tmin) is a lower

bound for {xn : n ∈ N}. Also g(t) is strictly decreasing in the interval [0, tmin). Hence
by a similar argument as above there is an m×n analytic function h(t) = f (g(t)) and a
strictly decreasing sequence (yn) in [0,1] converging to 0 such that h(0) = f (x) = A,
h(1)= f (y) = B and h(yn) = f (xn) is in f (u) for each n. Hence f (u) is an analytically
imaged set. �

EXAMPLE 2.7. For a closed interval [x,y] ⊂ R , the set {diag(sin(t),sin(2t), . . . ,
sin(nt)) : t ∈ [x,y]∩Q} is an analytically imaged set.

EXAMPLE 2.8. The set {diag(et ,e2t , . . . ,ent) : t ∈ c} is an analytically imaged set
where c denotes the Cantor set (see [7]).

Equivalently, an analytically imaged set may also be described as follows.

PROPOSITION 2.1. A set Ω ⊂ Cm×n is analytically imaged if and only if Ω =
∪( f ,(xn))∈A{ f (x) : x = 0,1,xn for all n} for some A ⊂ Cω

m×n[0,1]× c0[0,1] such that
for any two points A and B in Ω there is an element ( f ,(xn)) in A which satisfies
f (0) = A and f (1) = B.

In the next section, we derive some dense subsets of a given set of n×n matrices
in terms of their eigenvalues. Also, we study the counterpart of these results for singular
values of rectangular matrices.

3. Existence of dense subsets

First, we will provide a sufficient condition for an analytically imaged set Ω so
that the subset Ω′ = {A ∈ Ω : μ(A) = minX∈Ω μ(X)} is dense in Ω . Such subset Ω′
exists since for any set Ω ⊂ Cn×n, μ(A) is an element of the finite set {1,2, . . . ,n},
where A is in Ω. Hence, minX∈Ω μ(X) always exists and is achieved at least at a matrix
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A in Ω which confirms the existence of Ω′. Before proceeding to the result, we give
an example of such subset.

EXAMPLE 3.1. Let us consider the following subset of C3×3

Ω =

⎧⎨
⎩A(t) =

⎡
⎣cost−1 −sin t−1 0

sin t−1 cost−1 0

cost−1 −sin t−1 eit−1

⎤
⎦ : t ∈ (0,1)

⎫⎬
⎭ .

The set Ω is an analytically imaged set which follows from a similar argument given
in the Example 2.3. Now, the eigenvalues of A(t) are eit−1

, eit−1
and e−it−1

. Hence,
μ(A(t)) = 2 when t is in (0,1)\{

1
nπ : n ∈ N

}
and μ(A(t)) = 3 otherwise. Hence, Ω′

is the following set

Ω′ =
{

A(t) ∈ Ω : t ∈ (0,1)\
{

1
nπ

: n ∈ N

}}
.

THEOREM 3.1. Let Ω be an analytically imaged subset of Cn×n . Then, Ω′ =
{A ∈ Ω : μ(A) = minX∈Ω μ(X)} is dense in Ω if Ω′ contains a matrix whose each
eigenvalue has algebraic multiplicity minX∈Ω μ(X) .

Proof. Let A ∈ Ω and B be a matrix in Ω′ such that each eigenvalue of B has
algebraic multiplicity minX∈Ω μ(X) . Now, there is an n× n analytic function fAB :
[0,1] → Cn×n and a strictly decreasing sequence (xn) in [0,1] converging to 0 such
that fAB(0)= A , fAB(1)= B and each fAB(xn) is in Ω . Set χx(y) = det(yIn− fAB(x)) =
yn +∑n

i=1 ai(x)yn−i . So χx(y) is a polynomial in y and each ai(x) is analytic. For each
x in [0,1] , the eigenvalues of fAB are the roots of the polynomial χx(y) .

Let minX∈Ω μ(X) = k . Now, Res(χx,χ (k)
x ) , the resultant of the polynomials χx

and χ (k)
x is an analytic function of x on [0,1] as the coefficients of the polynomials χx

and χ (k)
x are analytic functions of x on [0,1] , where χ (k)

x denotes the k -th order deriva-

tive of χx with respect to y . Also, χ1 and χ (k)
1 can not have a common root, hence

Res(χ1,χ (k)
1 ) �= 0. So Res(χx,χ (k)

x ) is 0 for finitely many points in [0,1] . Hence, there

exists a natural number n0 such that Res(χxi ,χ (k)
xi ) �= 0 for all i � n0 . So μ( fAB(xi)) �

minX∈Ω μ(X) for all i � n0 ; also fAB(xi) ∈ Ω . Hence μ( fAB(xi)) = minX∈Ω μ(X) for
all i � n0 and from this we can conclude that fAB(xi) ∈ Ω′ for all i � n0 . Now by the
continuity of fAB , it is easy to see that for any ε > 0, the open ball B(A;ε) : centered
at A and radius ε has a nonempty intersection with Ω′ . As A is arbitrary, hence Ω′ is
dense in Ω . �

It is clear that Theorem 3.1 makes sense if minX∈Ω μ(X) divides n . Also, we see
in Example 3.1 that Ω′ does not contain any matrix whose each eigenvalue has alge-
braic multiplicity 2. Our next theorem shows that we can replace this requirement by
a weaker condition. But before proceeding to the next theorem we provide an example
for Theorem 3.1.
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EXAMPLE 3.2. Let us consider the following subset of C4×4

Ω =

⎧⎪⎪⎨
⎪⎪⎩

A(ai j) =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦ : ai j ∈ C and a33a44−a34a43 �= 0

⎫⎪⎪⎬
⎪⎪⎭

.

By a similar argument given in Example 2.4, we can conclude that Ω is an analytically
imaged set. The eigenvalues of A = A(ai j) are 1,1,e1(A34) and e2(A34) where e1(A34)
and e2(A34) are the eigenvalues of the sub-matrix

A34 =
[
a33 a34

a43 a44

]
.

Now, μ(A) = 2 if e1(A34) = e2(A34) �= 1 or e1(A34) �= e2(A34) �= 1, μ(A) = 3 if
e1(A34) �= e2(A34) = 1 or e2(A34) �= e1(A34) = 1 and μ(A) = 4 if e1(A34) = e2(A34) =
1. Hence,

Ω′ = {A = A(ai j) ∈ Ω : e1(A34) = e2(A34) �= 1 or e1(A34) �= e2(A34) �= 1}.

Also, Ω′ contains matrices whose each eigenvalue has algebraic multiplicity 2. The
following matrix is an example of such matrix

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ .

From the proof of the Theorem 3.1, It is clear that the Theorem 3.1 is also true if Ω
contains a matrix A such that the characteristic polynomial χA(t) and minX∈Ω μ(X)-th
order derivative of χA(t) have no common root. So, we have the following theorem.

THEOREM 3.2. Let Ω be an analytically imaged subset of Cn×n . Then, Ω′ =
{A ∈ Ω : μ(A) = minX∈Ω μ(X)} is dense in Ω if Ω contains a matrix A such that
χA(t) and minX∈Ω μ(X)-th order derivative of χA(t) have no common root.

Proof. Let A and B be two matrices in Ω such that χB(t) and minX∈Ω μ(X)-
th order derivative χB(t) have no common root. So, μ(B) � minX∈Ω μ(X) and the
minimality condition implies μ(B) = minX∈Ω μ(X). Hence, B is in Ω′. Rest of the
proof is similar to that of Theorem 3.1. �

REMARK 3.1. If Ω has a nonempty interior then minX∈Ω μ(X) = 1 as Ω con-
tains matrices with distinct eigenvalues but this is not a necessary condition for
minX∈Ω μ(X) = 1. It is notable that Ω′ is the set of all matrices in Ω having distinct
eigenvalues when minX∈Ω μ(X) = 1.
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We have the following theorem which follows from Theorem 3.1 for minX∈Ω μ(X)
= 1. This theorem becomes the Corollary 1 of the article [4] if we consider that Ω is a
convex set.

THEOREM 3.3. Let Ω be an analytically imaged subset of Cn×n and Ω′ be the
set of all matrices in Ω having distinct eigenvalues. Then, Ω′ is dense in Ω if and only
if Ω′ is nonempty.

For our next Theorem, we consider a subset Σ of Cn×n satisfying the following
two properties:

1. Each element in Σ has real eigenvalues,

2. For any two elements A and B in Σ there exists an n×n analytic function fAB :
[0,1] → Cn×n and a strictly decreasing sequence (xn) in [0,1] converging to 0
such that fAB(0) = A , fAB(1) = B , fAB(xn) is in Σ and each matrix in fAB([0,1])
has real eigenvalues.

Example 2.6 (except the first example), 2.7 and 2.8 of Section 2 are some examples
of Σ defined above. Now, in the next theorem we show that the set of all matrices in Σ
having the maximum number of distinct eigenvalues is dense in Σ . But, before going
to the next theorem, we state a result from the article [3] which will be used to prove
the theorem.

THEOREM. (Theorem 1.1, [3]) Let A(x) be an n×n matrix function with analytic
entries on [a,b] , where −∞ � a < b � ∞ . Assume that every eigenvalue of A(x) is
real on [a,b] . Then there exists a unitary matrix U(x) analytic on [a,b] such that
Q(x) = U−1(x)A(x)U(x), where Q(x) is a upper triangular matrix whose entries are
analytic in x on [a,b] .

THEOREM 3.4. The subset Σ′ = {A ∈ Σ : |ε(A)|= maxX∈Σ |ε(X)|} is dense in Σ .

Proof. The subset Σ′ is non-empty since |ε(A)| is an element of {1,2, . . . ,n} for
any A in Σ. Hence, maxX∈Σ |ε(X)| always exists and is achieved at least at a matrix B
in Σ. Let A∈ Σ and B∈ Σ′ . Now there is an n×n analytic function fAB : [0,1]→Cn×n

and a strictly decreasing sequence (xn) in [0,1] converging to 0 such that fAB(0) =
A , fAB(1) = B and each fAB(xn) is in Σ . Also fAB(x) has real eigenvalues for each
x ∈ [0,1] . Hence there exists an n× n unitary matrix g(x) whose entries are analytic
functions on [0,1] such that g−1(x) fAB(x)g(x) = h(x) , where h(x) is an n× n upper
triangular matrix whose entries are analytic functions on [0,1] and g−1(x) is the inverse
matrix of g(x) . Let e1(x),e2(x), . . . ,en(x) be the eigenvalues of fAB , so each ei(x) is
analytic on [0,1] as these are the diagonal elements of h(x) . Let maxX∈Σ |ε(X)| =
k . Now, fAB(1) = B has k distinct eigenvalues. Hence there are k natural numbers
i1, i2, . . . , ik such that ei1(1),ei2(1), . . . ,eik(1) are the k distinct eigenvalues of B . Hence
ei1 ,ei2 , . . . ,eik are k distinct numbers for each x ∈ [0,1] \ s , where s is a finite subset
of [0,1] . So there exists a natural number n0 such that fAB(xn) has at least k distinct
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eigenvalues for all n � n0 , also fAB(xn) is in Σ . Hence, |ε( fAB(xn))|= k for all n � n0 .
So fAB(xn) ∈ Σ′ for all n � n0 . Now it is easily seen that for any ε > 0, the open ball
B(A;ε) has nonempty intersection with Σ′ and as A is arbitrary hence Σ′ is dense in
Σ . �

It is natural to ask whether the counterpart of the above results are true for the
singular values. The answer is affirmative.

Let m � n. It is a known result that the singular values of an m×n matrix A are
the positive square root of the eigenvalues of A∗A , where A∗ denotes the conjugate
transpose of A (see III.7, [1]). We will use this result to prove our next theorems. The
notations what we have defined earlier for Cn×n are not well-defined for Cm×n. So we
introduce some new notations. In this section, we restrict ourselves for the case m � n.

The set of all singular values for a given matrix A ∈ Cm×n is denoted by s(A) and
if a∈ s(A) is a repeated singular value of A , then we denote the number of repetitions of
a by α◦

A(a) . For a non-repeated singular value a , α◦
A(a) = 1. For a matrix A ∈ Cm×n ,

let us define μ◦(A) = max{α◦
A(a) : a ∈ s(A)} . Clearly μ◦(A) = μ(A∗A).

The following theorem is a counterpart of Theorem 3.1 for the rectangular matri-
ces.

THEOREM 3.5. Let Ω be an analytically imaged subset of Cm×n. Then, Ω′ =
{A ∈ Ω : μ◦(A) = minX∈Ω μ◦(X)} is dense in Ω if Ω′ contains a matrix whose each
singular value repeats minX∈Ω μ◦(X) times.

Proof. Let A ∈ Ω and B ∈ Ω′ such that each singular value of B repeats k times,
where k =minX∈Ω μ◦(X) . Then, there is an m×n analytic function fAB : [0,1]→Cm×n

and a strictly decreasing sequence (xn) in [0,1] converging to 0 such that fAB(0) = A ,
fAB(1) = B and each fAB(xn) is in Ω . Clearly f ∗AB fAB is an n × n matrix func-
tion with analytic function entries such that f ∗AB(0) fAB(0) = A∗A and f ∗AB(1) fAB(1) =
B∗B . Also each eigenvalue of B∗B has algebraic multiplicity k . Now we can mimic
the proof of Theorem 3.1 to show that there exists a natural number n0 such that
μ( f ∗AB(xn) fAB(xn)) = k for all n � n0 . Hence fAB(xn) are in Ω′ for all n � n0 . Rest of
the proof is similar to that of Theorem 3.1. �

We state our next theorem without proof which is an analogous result of Theorem
3.2 for rectangular matrices. The proof follows from the proof of Theorem 3.2 and
Theorem 3.5.

THEOREM 3.6. Let Ω be an analytically imaged subset of Cm×n. Then, Ω′ =
{A ∈ Ω : μ◦(A) = minX∈Ω μ◦(X)} is dense in Ω if Ω contains a matrix A such that
χA∗A(t) and minX∈Ω μ◦(X)-th order derivative of χA∗A(t) have no common root.

Existence of the subset Ω′ used in Theorem 3.5 and 3.6 can be verified by a similar
argument given in Section 3. Also, the above Theorem 3.5 holds if minx∈Ω μ◦(X)
divides n which is relaxed in Theorem 3.6. Now, we will give an example of a set Ω
and its subset Ω′ used in Theorem 3.5 and 3.6.
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EXAMPLE 3.3. Let us consider the following subset of C5×4

Ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(t,ai j) =

⎡
⎢⎢⎢⎢⎣

cost −sin t 0 0
sin t cost 0 0
0 0 a33 a34

0 0 a43 a44

0 0 a53 a54

⎤
⎥⎥⎥⎥⎦ : t ∈ R,ai j ∈ C and Rank(A(t,ai j)) = 4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Let B = A(x,bi j) and C = A(y,ci j) be two matrices in Ω. We consider a function fBC :
[0,1]→ C5×4 defined by fBC(t) = A((1− t)x+ ty,(1− t)bi j + tci j) . More explicitly,

fBC(t) =

⎡
⎢⎢⎢⎢⎣

cos((1− t)x+ ty) −sin((1− t)x+ ty) 0 0
sin((1− t)x+ ty) cos((1− t)x+ ty) 0 0

0 0 (1− t)b33 + tc33 (1− t)b34 + tc34

0 0 (1− t)b43 + tc43 (1− t)b44 + tc44

0 0 (1− t)b53 + tc53 (1− t)b54 + tc54

⎤
⎥⎥⎥⎥⎦ .

Clearly, fBC(0) = B and fBC(1) = C. Now, det( f ∗BC(t) fBC(t)) is a polynomial in t so
it can be 0 only for finitely many values of t since, det(B∗B) and det(C∗C) are non-
zero. Hence, there exists a decreasing sequence (xn) in [0,1] converging to 0 such that
det( f ∗BC(xn) fBC(xn)) �= 0 for all n in N. That is, Rank( fBC(xn)) is 4 for all n in N.
Thus, the set Ω is an analytically imaged set.

Now, the singular values of A = A(t,ai j) are 1,1,s1(A5
34) and s2(A5

34). Here
s1(A5

34) and s2(A5
34) are the positive square root of the eigenvalues of A5

34
∗
A5

34, where
A5

34 is the following sub-matrix

A5
34 =

⎡
⎣a33 a34

a43 a44

a53 a54

⎤
⎦ .

So, μ◦(A) = 2 if s1(A5
34) = s2(A5

34) �= 1 or s1(A5
34) �= s2(A5

34) �= 1, μ◦(A) = 3 if
s1(A5

34) �= s2(A5
34) = 1 or s2(A5

34) �= s1(A5
34) = 1 and μ◦(A) = 4 if s1(A5

34) = s2(A5
34) =

1. Hence,

Ω′ = {A = A(t,ai j) ∈ Ω : s1(A5
34) = s2(A5

34) �= 1 or s1(A5
34) �= s2(A5

34) �= 1}.
Also, Ω′ contains matrices whose each singular value repeats 2 times. The following
matrix is an example of such matrix

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2
0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

The next theorem is a consequence of the Theorem 3.5. This theorem becomes
Theorem 3.8 in the article [2] when we consider that Ω is a convex set.
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THEOREM 3.7. Let Ω be an analytically imaged subset of Cm×n . Then Ω′ , the
set of all matrices in Ω having distinct singular values is dense in Ω if and only if Ω′
is nonempty.

Proof. The proof follows from Theorem 3.3 and Theorem 3.5. �
We complete our article with the following theorem which shows that the set of

all matrices in Ω having maximum number of distinct singular values is dense in Ω ,
which is similar to the Theorem 3.4.

THEOREM 3.8. Let Ω be an analytically imaged subset of Cm×n .Then the set
Ω′ = {A ∈ Ω : |s(A)| = maxX∈Ω |s(X)|} is dense in Ω .

Proof. For any two matrices A and B from Ω , we have an m×n analytic function
fAB defined on [0,1] such that fAB(0) = A and fAB(1) = B . So the function f ∗AB fAB

has analytic function entries and for each x in [0,1] , the matrix f ∗AB(x) fAB(x) has real
eigenvalues. So we can prove this theorem with the help of above stated Theorem 1.1
from the article [3] and the proofs of Theorem 3.4 and Theorem 3.5. �
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