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THE PEAK MODEL FOR FINITE RANK

SUPERSINGULAR PERTURBATIONS

RYTIS JURŠĖNAS

(Communicated by B. Jacob)

Abstract. In its original form the peak model for rank one supersingular perturbations of class
H−4 or higher of a nonnegative self-adjoint operator requires that the Gram matrix of the model
should be diagonal. Here we remove the restriction on the Gram matrix. In particular we explain
the origin of the Krein Q -function associated with the Gram matrix.

1. Introduction

The theory of higher order singular or else supersingular perturbations of a self-
adjoint operator in a Hilbert space is, in principal, the theory of generalized, that is,
exit space self-adjoint extensions, where perturbations are interpreted by means of gen-
eralized resolvents or, equivalently, generalized Nevanlinna families. For finite rank
perturbations, the exit space H = Hm � K is made by extending a reference Hilbert
space Hm by a disjoint finite-dimensional linear space K . Depending on the precise
definition of K , the cascade (A and B) and the peak models for supersingular pertur-
bations are considered among researchers. Specifically, the cascade models for rank
one supersingular perturbations of a nonnegative self-adjoint operator are developed
in [21], see also references therein. In the B-model H is a Pontryagin space with a
nontrivial index of indefiniteness. In the A-model, whether or not H is a Hilbert space
depends on how one defines the scalar product in the scale of Hilbert spaces [21, The-
orem 3.2]; cf. [30]. For classical, that is, singular perturbations the reader may consult
the monographs [4, 36] and references there.

The peak model, first introduced in [34], is our main object of interest here. In the
present model H is a Hilbert space, because the singular elements that span K form
the Gram matrix, G , which is positive; this is the main motive in [34] for introducing
an alternative to the cascade models. On the other hand, the peak model, as stated, has
limitations in that the elements that generate K must be orthogonal or, equivalently, G
must be diagonal in order to be able to apply the standard theory of operator extensions.
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A quick example of a 6-dimensional Laplace operator with Dirac distribution already
shows that the orthogonality condition does not necessarily hold.

Recall that, for a ν -dimensional (ν � 4) Laplace operator with Dirac distribution
of class H−m−2 �H−m−1 , m = (ν −2)/2 if ν is even and m = (ν −3)/2 if ν is odd.
Two modifications are, for example, as follows. By lowering ν while taking instead the
distributional derivative of Dirac distribution, the perturbation with ν = 3 and m = 1
is considered in [34, Sec. 10]. A two-particle Rashba spin-orbit coupled operator with
point-interaction considered in [31, Example 3.4], [29, Sec. 5] shows m = 2 for ν = 6.

In the present study we remove the restriction on G by considering operator ex-
tensions to a subspace of H rather than to the whole H or, what is the same, by
considering linear relations in H rather than operator extensions; the operator part
of such a linear relation is precisely the operator extension to H1 . The exit space
H1 := Hm �K1 is therefore constructed by taking a suitable subspace K1 ⊆ K . In this
way we still work within the framework of the peak model, because there is the smallest
nontrivial subspace, Kmin , which is disjoint from Hm and such that Kmin ⊆ K1 ⊆ K .
The existence of Kmin , but in the cascade A-model, was first observed in [30].

The characterization of the boundary value space for the operator extensions to
H1 should be considered as our first main result out of the three. The second main
result is that a generalized resolvent corresponding to the operator extension in H1

parametrized by a self-adjoint linear relation Θ is in bijective correspondence with
a Nevanlinna family z �→ (C −1)∗(Q̊(z)−Θ)C−1 . The transfer matrix C serves for
a “scale parameter” depending on how one defines the scalar product in the scale of
Hilbert spaces; this is because we avoid attaching ourselves to a specific (typically
polynomial) definition of scale spaces. The matrix function Q̊ is a Nevanlinna function.
For G diagonal, this Q̊ coincides with that in [34], where it is termed the Q-function
associated with the Gram matrix G . We explain the origin of Q̊ by demonstrating
that it is the Weyl function corresponding to a boundary triple of a certain symmetric
operator in K1 . In the terminology of [23] we present a realization for Q̊ ; it is minimal
iff K1 = Kmin . The latter is our third main result.

After introductory Sections 2, 3, operator extensions to H1 are studied in Sec-
tion 4. Specifically, the characterization of the boundary value space of extensions,
including a realization for Q̊ , is presented in Theorem 1, and a generalized resolvent
corresponding to a self-adjoint operator extension to H1 is presented in Theorem 2. In
Section 5 we study some properties of Q̊ depending on K1 . There is also Appendix A,
where we use the peak model as an example for an isometric boundary triple [20, Defi-
nition 1.9].

Throughout, we present our results using the language of linear relations in Hilbert
spaces and the theory abstract boundary value spaces [7, 11–13, 16, 18–20]. Linear re-
lations are referred to as relations and operators are identified with their graphs (single-
valued relations).
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2. Some background

Consider a closed symmetric relation T in a Hilbert space H , with equal and
finite defect numbers (d,d) . Then (e.g. [8, 16]) T has an (ordinary) boundary triple
ΠΓ = (Cd ,Γ0,Γ1) , where the boundary operator Γ := (Γ0,Γ1) from T ∗ (the adjoint
in H of T ) to C2d is surjective, and moreover the Green identity holds (e.g. [20,
Definition 3.1], [19, Definition 7.11])

〈 f ,g′〉H −〈 f ′,g〉H = 〈Γ0 f̂ ,Γ1ĝ〉Cd −〈Γ1 f̂ ,Γ0ĝ〉Cd

for all f̂ = ( f , f ′) and ĝ = (g,g′) from T ∗ . The scalar product in H is denoted by
〈·, ·〉H . Equivalently, by considering Γ with domain T ∗ as an operator from a Krein
space H2 with fundamental symmetry (IH is the identity in H)

ĴH :=
(

0 −iIH
iIH 0

)
:
H
⊕
H
→

H
⊕
H

and an indefinite metric

[ f̂ , ĝ] := −i〈 f ,g′〉H + i〈 f ′,g〉H
to a Krein space C2d , with the fundamental symmetry ĴCd and an indefinite metric
defined similarly, ΠΓ is said to be a boundary triple for T ∗ if Γ is unitary, i.e. if the
inverse Γ−1 in the sense of relations coincides with the Krein space adjoint Γ+ :=
ĴHΓ∗ĴCd ; Γ∗ is a Hilbert space adjoint. See [7] for Krein spaces.

Associated with ΠΓ is the γ -field γΓ and the matrix valued Weyl function MΓ
defined by

γΓ(z) := π1γ̂Γ(z) , MΓ(z) := Γ1γ̂Γ(z) , z ∈ C�R ,

γ̂Γ := (Γ0 | N̂z(T ∗))
−1 , π1 : H2 → H , f̂ �→ f .

The defect subspaces

Nz(T ∗) := ker(T ∗ − z) , N̂z(T ∗) := {( f ,z f ) | f ∈ Nz(T ∗)} .

We use the notation domT , kerT , ranT for the domain, kernel, range of T . As a rule
we omit the identity operator. Because T0 := kerΓ0 is a self-adjoint relation in H , by
the von Neumann formula the functions γΓ and MΓ extend to ρ(T0) , the resolvent set
of T0 . If T is densely defined, Γ on T ∗ is identified with Γ on domT ∗ , as well as γ̂Γ
is identified with γΓ .

The Weyl function MΓ corresponding to a boundary triple ΠΓ for T ∗ is both a
Krein Q-function for a pair (T,T0) [6, 14], i.e. it satisfies

MΓ(z)−MΓ(z0)∗ = (z− z0)γΓ(z0)∗γΓ(z) , z,z0 ∈ ρ(T0) (1)

and a Nevanlinna function [22], i.e. it is analytic on C�R and satisfies

MΓ(z)∗ = MΓ(z) , ImMΓ(z)/Imz � 0 .
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Nevanlinna function is a special case of a Nevanlinna family, defined analogously but
for relations. See [16] for various subclasses.

Let T̃ be a self-adjoint extension of T in some possibly larger Hilbert space H̃ ⊇
H . Let PH be an orthogonal projection in H̃ onto H . There is (e.g. [17, Theorems 6.1,
6.2]) a unique d×d relation valued Nevanlinna family τ such that

PH(T̃ − z)−1 |H =(T−τ(z)− z)−1

=(T0− z)−1− γΓ(z)(τ(z)+MΓ(z))−1γΓ(z)∗

for z ∈ ρ(T̃ )∩ρ(T0) . The above generalized Krein–Naimark resolvent formula estab-
lishes a bijective correspondence between the sets of all generalized resolvents PH(T̃ −
z)−1 |H of T and all d×d relation valued Nevanlinna families τ ; [17, 22, 35]. Partic-
ularly, z �→ τ(z) is a matrix function iff T̃ ∩T0 = T , while τ(z) ≡ −Θ is constant iff
T̃ ∈ Ext(T ) , i.e. T ⊆ T̃ ⊆ T ∗ . The Štraus family z �→ T−τ(z) in H corresponding to T̃
is given by z �→ ker(Γ1 + τ(z)Γ0) , see also [9, Theorem 2.7.3].

3. Preparatory statements

Throughout, L is a self-adjoint operator in a (complex and separable) Hilbert space
H0 with scalar product 〈·, ·〉0 and norm ‖·‖0 :=

√〈·, ·〉0 . It is not assumed that L is
semibounded.

DEFINITION 1. A sequence of Hilbert spaces

· · · ⊆ H2 ⊆ H1 ⊆ H0 ⊆ H−1 ⊆ H−2 ⊆ ·· ·
is said to be the scale of Hilbert spaces associated with L , and each Hn taken separately
is termed the scale space, if the following conditions hold for n � 0:
(a) Hn = (dom|L|n/2,〈·, ·〉n) with scalar product

〈 f ,g〉n := 〈Ωn f ,Ωng〉0 , f ,g ∈ Hn ,

the induced norm ‖ f‖n :=
√〈 f , f 〉n , and a unitary operator Ωn from Hn onto

H0 , Ω0 := I (identity), such that:
(a1 ) Ω1(H2) = H1 and Ωn(Hn+2) = H2 ,
(a2 ) LΩn = ΩnL ,
(a3 ) Ωn is self-adjoint in H0 ,
(a4 ) the Ωn ’s are mutually commuting.

(b) The strong dual H−n of Hn is a Hilbert space with the scalar product, 〈·, ·〉−n ,
defined via the duality pairing 〈·, ·〉 : H−n×Hn → C as follows:

〈ψ ,φ 〉−n := 〈Ω̃−1
n ψ ,Ω̃−1

n φ 〉0 , ψ ,φ ∈ H−n

where a unitary operator Ω̃n from H0 onto H−n is defined by

〈Ω̃nu, f 〉 := 〈u,Ωn f 〉0 , u ∈ H0 , f ∈ Hn .
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For n � 0, Ln is the domain restriction to Hn+2 of L . Notice that the range of Ln

is contained in Hn . An operator Ln is self-adjoint in Hn iff Hn is dense in H0 . By
(a1,2 ) and the Riesz representation theorem

〈ψ , f 〉 = 〈Ω̃−1
n ψ ,Ωn f 〉0

Ln is self-adjoint in Hn , so Hn+1 ⊆ Hn densely and continuously. Similarly H−n is
dense in H−n−1 by (b). Moreover, the self-adjointness of Ln in Hn further yields

Ωn(Hn+t) = Ht

for all nonnegative integers t .
The definition of the triplet adjoint, as stated below, will suffice for our study.

DEFINITION 2. (cf. [21, 34]) Consider the triple Hn ⊆ H0 ⊆ H−n from the scale
of Hilbert spaces associated with L , and let L′ ⊆ L be an operator in Hn . The triplet
adjoint of L′ with respect to this triple is a closed relation in H−n defined by

{(ψ ,φ) ∈ H2
−n |(∀ f ∈ domL′) 〈φ , f 〉 = 〈ψ ,L f 〉} .

In particular, the triplet adjoint of Ln is denoted by L−n .

By considering Ωn as an operator in H0 , (a3 ) allows us to view Ω̃n |Hn as Ωn .
Thus, by (a1−4 ) a bounded operator Ln from a Hilbert space Hn+2 to a Hilbert space
Hn has a continuation L−n , which is a self-adjoint operator in H−n with dense domain
H2−n = Ω̃n(H2) .

REMARK 1. A polynomial description of Ωn =
√

Pn(L) falls within our defini-
tion of the scale space; Pn is a positive polynomial in L or |L| , of degree n � 0. Thus:

Pn(L) = (|L|+ I)n in [1–3, 5, 32].
Pn(L) = Ln , 0 ∈ ρ(L) in [15].
Pn(L) = ∏n

j=1(L− z j) , L � 0, and z1, . . . ,zn < 0 in [21, 34].

In these examples Ω̃n =
√

Pn(L−n) .

In view of Definition 2 and the preceding remarks, everywhere else below we omit
the index in Ln ≡ L ≡ L−n if no confusion can arise. With the same meaning Ω̃n ≡ Ωn .

Symmetric operator Fix an integer m � 1 and consider the family {ϕs}d
s=1 of

linearly independent functionals from H−m−2 �H−m−1 . In the theory of supersingular
perturbations one looks for a generalized resolvent of the symmetric restriction, Lmin ⊆
L , to f ∈Hm+2 such that 〈ϕ , f 〉= 0; 〈ϕ , ·〉 stands for the vector valued functional with
components 〈ϕs, ·〉 . Then Lmin is a closed densely defined symmetric operator in Hm ,
with defect numbers (d,d) , d < ∞ , and defect subspaces

Nz(L∗
min) = Gz(Cd) , Gz(c) := ∑

s
csGs(z) , z ∈ ρ(L) ,

Gs(z) = P(L)−1gs(z) , gs(z) := (L− z)−1ϕs , P(L) := Ω2
m
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and c = (cs) ∈ Cd . The summation indexes s , s′ , . . . always run over {1, . . . ,d} .
The triplet adjoint Lmax of Lmin with respect to Hm ⊆ H0 ⊆ H−m extends L to

H2−m �Nz(Lmax) (direct sum, cf. [34, Definition 3.1]), where the eigenspace

Nz(Lmax) = gz(Cd) , gz(c) := ∑
s

csgs(z) .

Up to this point one may also look at [21] with d = 1.

Exit space Starting from now on, the cascade and the peak models break apart.
In the peak model one considers the restriction, Amax , of Lmax to the model space H ,
Hm ⊆ H ⊆ H−m , which is a Hilbert space defined by

H := (Hm �K,〈·, ·〉H )

with an md -dimensional Hilbert subspace K = (K,〈·, ·〉−m) of H−m defined by (∨ ≡
linear span)

K := ∨{gi := gs(z j)} , i = α(s, j) := m(s−1)+ j .

Clearly the numbers
Z := {z j ∈ ρ(L)}

are assumed distinct. Unless specified otherwise, the summation indexes j , j′ , . . . run
over {1, . . . ,m} .

REMARK 2. An index i = α(s, j) is uniquely determined by s and j , that is, the
Kronecker symbol δi,i′ = δs,s′δ j, j′ for i′ = α(s′, j′) .

The scalar product

〈 f + k, f ′ + k′〉H := 〈 f , f ′〉m + 〈k,k′〉−m

for f , f ′ ∈ Hm and k,k′ ∈ K . A bijective correspondence K � k ↔ d(k) ∈ Cmd is
established via the Gram matrix G as follows:

k = ∑
i

di(k)gi , d(k) = (di(k)) = G −1(〈gi,k〉−m) ,

G = (Gii′ := 〈gi,gi′ 〉−m) .

Thus
〈k,k′〉−m = 〈d(k),G d(k′)〉Cmd

and in this way H is isomorphic to a Hilbert sum Hm ⊕ (Cmd,〈·,G ·〉Cmd ) .
The set K contains a subset, Kmin , which is least possible in order the exit space

extensions should cover the case of defect numbers (d,d) . To see this, consider a
polynomial

P̃(L) := ∏
j
(L− z j) .
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It is a bijective operator from Hm to H−m (with a possible continuation as described
previously), which is seen by using the sum formula for the inverse (cf. [34, Eq. (6.4)],
[33])

P̃(L)−1 = ∑
j

b j(L− z j)−1 , b j := ∏
j �= j′

(z j − z j′)
−1 . (2)

(Clearly b1 := 1 if m = 1.) Thus we have

LEMMA 1. K ⊇ Kmin where

Kmin := K∩Hm−2 = ∨{fs := P̃(L)−1ϕs} .

Proof. ∨{fs} ⊆ Kmin is due to (2). Consider an arbitrary k ∈ Kmin .
Since P̃(L)−1(H−m−2) = Hm−2 , (∃ψ ∈ H−m−2) k = P̃(L)−1ψ , and then by (2)

0 = ∑
j

(L− z j)−1φ j , φ j := b jψ −∑
s

di(k)ϕs .

Then

0 =∑
j

(L− z1)(L− z j)−1φ j

= ∑
j�1

φ j + ∑
j�2

(z j − z1)(L− z2)−1φ j

+ ∑
j�3

(z j − z1)(z j − z2)(L− z2)−1(L− z3)−1φ j

+ · · ·+(zm− z1) · · · (zm − zm−1)(L− z2)−1 · · ·(L− zm)−1φm .

The elements ∑ j�r belong to mutually disjoint sets for different r∈{1, . . . ,m} , namely,
H2r−m−4 � H2r−m−3 , which shows (∀r)∑ j�r = 0, and then (∀ j) φ j = 0. As a result
(∀ j) di(k)/b j ≡ χs and ψ = ∑s χsϕs , i.e. k ∈ ∨{fs} . �

The Gram matrix of Kmin is denoted by

Gmin := (〈fs, fs′ 〉−m)

and an element k = kmin(χ) ∈ Kmin by

kmin(χ) := ∑
s

χsfs , χ = (χs) ∈ Cd .

In this way Kmin ↔ Cd bijectively and moreover

d(k) = b̂χ for k = kmin(χ) ; b̂ := G −1Gb . (3)

The rectangular injective md×d matrix

Gb := (〈gi, fs′ 〉−m) .
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Notice moreover that the matrices Gmin and Gb (or b̂ ) are related by the equality (with
G ∗

b the adjoint of Gb )

Gmin = G ∗
b G −1Gb = G ∗

b b̂ .

The space Kmin can be equivalently represented by using an initially given P(L)
instead of P̃(L) as follows. Let

p(L) := P(L)P̃(L)−1 , es := P(L)−1ϕs

so that

p(L)es = fs = ∑
s′

Cs′ses′ , C = (Css′) := B−1A ,

A := (〈es, fs′ 〉−m) , B := (〈es,es′ 〉−m) (Gram) .

From Gmin = C ∗BC one sees that C (and its adjoint C ∗ ) is nonsingular, and es =
∑s′(C−1)s′sfs′ . Moreover

LEMMA 2. Kmin = ∨{es} . �

Triplet adjoint in exit space In the next lemma (cf. [34, Lemmas 5.1, 5.2], [21,
Theorem 3.1]) we characterize the operator

Amax := Lmax ∩H 2

by considering Amax as an extension of the operator A0 in H defined by the compo-
nentwise sum

A0 := Lm +̂ l , l := {(k,k′) ∈ K2 |d(k′) = Zdd(k)} .

The matrix Zd is the matrix direct sum of d diagonal m×m matrices

Z := diag{z1, . . . ,zm} .

The operator A0 is closed in H with ρ(A0) = ρ(L)∩ρ(l) , ρ(l) = ρ(Zd) = C�Z .

LEMMA 3. For z ∈ ρ(A0):
1)

Amax = A0 +̂N̂z(Amax) , Nz(Amax) = Nz(Lmax) .

2)
Amax = A0 +̂{(G̃z(c),zG̃z(c)+ kmin(c)) |c ∈ Cd}

where
G̃z(·) := p(L)Gz(·) = Gz(C ·) .
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Proof. 1) For the first equality, it suffices to verify A0 ⊆ Lmax . But this follows
from f + k−gz(c) ∈ H2−m for f ∈ Hm+2 , k ∈ K , c = c(k) , where

c(k) = (cs(k)) ∈ Cd , cs(k) := ∑
j

dα(s, j)(k) . (4)

To see the second equality Nz(Amax)= Nz(Lmax) , first note that Nz(Amax)= Nz(Lmax)∩
H . Now gz(Cd) ⊆ H because

P̃(z)−1(L− z)−1 = P̃(L)−1(L− z)−1 +∑
j

b j

z− z j
(L− z j)−1 (5)

by (2); cf. [34, Eq. (4.10)].
2) Straightforward from (5). �
By Lemma 3 the boundary form of Amax reads

〈 f0 + G̃z(c),Amax( f ′0 + G̃z(c′))〉H −〈Amax( f0 + G̃z(c)), f ′0 + G̃z(c′)〉H
= 〈d(k),(GZ −G ∗

Z )d(k′)〉Cmd + 〈Γ̃0( f0 + G̃z(c)), Γ̃1( f ′0 + G̃z(c′))〉Cd

−〈Γ̃1( f0 + G̃z(c)), Γ̃0( f ′0 + G̃z(c′))〉Cd

for f0 = f + k , f ′0 = f ′ + k′ from domA0 and for c,c′ ∈ Cd . The matrix

GZ := GZd

(with G ∗
Z its adjoint), the boundary operator

Γ̃ = (Γ̃0, Γ̃1) : domAmax → C2d ,

Γ̃0( f + k+ G̃z(c)) := c ,

Γ̃1( f + k+ G̃z(c)) := C ∗ 〈ϕ , f 〉+ R̃(z)c−G ∗
b d(k)

(6)

and the matrix valued Nevanlinna function

R̃(z) := C ∗R(z)C , R(z) = (Rss′(z) := 〈ϕs,Gs′(z)〉) .
REMARKS 1. 1. The function R̃ extends to z ∈ ρ(L) .

2. Since Hm+2 ⊆ Hm densely and continuously, and 〈ϕs, ·〉 is bounded on Hm+2 ,
〈ϕs, ·〉 has a continuation to Hm , which we denote by the same symbol in R(z) .
In [4, Definition 3.1.2] R(i) is related to an admissible matrix for functionals of
class H−2 � H−1 , see also [28]. The reason behind all this is that our analysis
in K (or H ) can be transferred by scaling to the subspace of H0 generated by
ĝs(z j) := (L− z j)−1ϕ̂s , with ϕ̂s := P(L)−1/2ϕs ∈ H−2 �H−1 ; see Appendix A for
details. In this way Rss′(z) = 〈ϕ̂s, ĝs′(z)〉 , where 〈ϕ̂s, ·〉 is a continuation to H0 .

3. With the operator Γ = (Γ0,Γ1) : domL∗
min → C2d defined by

Γ0( f +Gz(c)) :=c , f ∈ Hm+2 , c ∈ Cd ,

Γ1( f +Gz(c)) :=〈ϕ , f 〉+R(z)c

the triple ΠΓ = (Cd ,Γ0,Γ1) is a boundary triple for L∗
min with the γ -field z �→

γΓ(z) = Gz(·) and the Weyl function MΓ = R .
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At this point one makes an assumption in [34] that the matrix GZ is Hermitian or,
equivalently:

PROPOSITION 1. The three statements are equivalent:
(i) The matrix GZ is Hermitian.
(ii) The Gram matrix G is diagonal in j , and Z ⊆ R∩ρ(L) .
(iii) The Nevanlinna function R satisfies R(z j) ≡ R = R∗ for all j .

The reason is: For an Hermitian GZ the adjoint in H of Amax , i.e. the operator

Amin := A∗
max

is closed densely defined symmetric in H , and has defect numbers (d,d) . Subse-
quently, one applies standard theory of extensions of symmetric operators, and then
characterizes a generalized resolvent of Lmin associated with a self-adjoint operator A0

in H .

Proof. In order to prove Proposition 1 the easiest way is to use the matrix notation

M = (Msi′ := Rss′(z j′))

and to observe that

(z j − z j′)Gii′ = (G ∗
Z −GZ)ii′ = (M ∗)is′ −Msi′ . � (7)

For later reference we remark that M also appears in

〈d(k),(GZ −G ∗
Z )d(k′)〉Cmd

= 〈c(k),M d(k′)〉Cd −〈M d(k),c(k′)〉Cd
(8)

with c(k) as in (4). Thus M d(k) = Rc(k) if G ∗
Z = GZ .

In our approach we do not assume that GZ is necessarily Hermitian. In this case
define the operator A′

max in H by

A′
max := A∗

0 +̂{(G̃z(c),zG̃z(c)+ kmin(c)) |c ∈ Cd} (9)

and let Amin be as previously. By standard procedure one verifies that the adjoint A∗
0 in

H of A0 is given by

A∗
0 = Lm +̂ l∗ , l∗ = {(k,k′) ∈ K2 |d(k′) = G −1G ∗

Z d(k)}
where l∗ is the adjoint in K of l . Moreover

LEMMA 4. 1) Consider Γ̃ as an operator from a ĴH -space to a ĴCd -space,
with domain Amax , and let Γ̃+ be its Krein space adjoint. Then the operator
(Γ̃+)−1 = (Γ̃0, Γ̃1) but now with domain A′

max .
2) In particular, Amin is the domain restriction to ker Γ̃ of A′

max . �

Instead of requiring GZ to be Hermitian, in the next section we consider subspaces
from the scale Kmin ⊆K such that (8) vanishes. Without making any additional assump-
tions, such subspaces always exist if m � 2; notice that k ∈ Kmin satisfies c(k) = 0. If
m = 1 then Kmin = K and (8) vanishes iff z1 ∈ R∩ρ(L) , cf. Proposition 1; hence L
should be semibounded.
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4. Generalized resolvent

Maximal exit subspace Fix m � 2 and define a subspace Kmax of K by

Kmax := {k ∈ K | Im 〈c(k),M d(k)〉Cd = 0} .

In order to characterize Kmax it is convenient to interpret d(Kmax) as a neutral subspace
of a W -space [7, 25] as follows. Define an Hermitian matrix

W := i(GZ −G ∗
Z ) .

Then (Cmd , [·, ·]) is a W -space with an indefinite inner product

[ξ ,ξ ′] := 〈ξ ,Wξ ′〉Cmd , ξ ,ξ ′ ∈ Cmd .

By definition, a neutral subspace consists of those ξ ∈ Cmd such that [ξ ,ξ ] = 0; it is
maximal if it is not contained properly in a neutral subspace. Using K ↔ Cmd and (8),
by polarization therefore d(Kmax) is maximal neutral. By [25, Theorem 2.3.4], the di-
mension, d′ , of Kmax satisfies d′ � min{π(W),ν(W )}+dimkerW , where the number
of positive (resp. negative) eigenvalues of W , counting multiplicities, is denoted by
π(W ) (resp. ν(W )).

PROPOSITION 2. One has the direct sum decomposition

d(Kmax) = d(K∩H2−m)�kerW

where K∩H2−m , of dimension (m−1)d , is the set of those k ∈ K such that c(k) = 0 .
In particular, Kmax = K∩H2−m if d = 1 and W �= 0 .

Proof. Step 1. For k ∈ K

Lk = lk+∑
s

cs(k)ϕs .

If k ∈ K∩H1−m then Lk ∈ H−1−m . Since lk ∈ K and ϕs ∈ H−m−2 �H−m−1 we have
c(k) = 0, i.e.

K∩H1−m ⊆ K∗ := {k ∈ K |c(k) = 0} .

Since K∗ ⊆ Kmax ⊆ K , this shows

K∩H1−m = K∗ ∩H1−m = Kmax ∩H1−m .

On the other hand
K∗ = ∨{(L− zm)−1gi | j � m−1}

i.e. K∗ ⊆ H2−m . Therefore

K∗ = K∩H2−m = Kmax ∩H2−m .
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Step 2. To show the direct sum decomposition of Kmax , consider

K0 := K∗ � (Kmax �K∗) .

Clearly K0 ⊆ Kmax . For the converse use that Kmax ∩K⊥∗ ⊆ Kmax � K∗ . Thus K0 =
Kmax .

Since
kerW ⊆ d(Kmax) = {ξ | [ξ ,ξ ] = 0}

and (∃(ξi) ∈ kerW ) (∃s) ∑i ξi �= 0, we have kerW ⊆ d(Kmax �K∗) . For the converse,
we apply the dimension argument. We have

π(W )+ ν(W)+d0 = md , d0 := dimkerW

and
d′ � d∗ +d0 , d∗ := min{π(W),ν(W )} .

Since
(m−1)d +d0 � d′ � d∗ +d0

it therefore suffices to show (m−1)d = d∗ .
Suppose π(W ) � ν(W ) . Then

d∗ = π(W ) � md− (d0 + π(W)) .

Now d0 + π(W) � d′ � d (the last � uses Kmin ⊆ Kmax ), so d∗ � md − d . The case
π(W ) � ν(W ) is treated analogously.

Step 3. If d = 1 then d′ � dimK∗ = m−1. Since moreover W �= 0, d′ � m−1.
This accomplishes the proof of the proposition. �

REMARKS 2. 1. c(k) = 0 for k ∈ Kmin is seen directly from d(Kmin) = ran b̂
and ∑ j b j = 0; recall (2), (3). Moreover, by (7)

{0} = ran b̂∩kerM = ran b̂∩kerW .

If e.g. m = 2 then K∗ = Kmin , i.e. d(Kmax) = d(Kmin)�kerW .
2. In the course of proving Proposition 2 we have on the way established that

K∩H1−m = K∩H2−m .

Triplet adjoint in exit subspace Let K1 = (K1,〈·, ·〉−m) be an arbitrary sub-
space from the scale Kmin ⊆ Kmax . The orthogonal complement in K of K1 is denoted
by

H⊥ := K�K1 .

The corresponding Hilbert subspace of H is defined by

H1 := (Hm �K1,〈·, ·〉H ) .
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Notice that the orthogonal complement in H of H1 is H⊥ .
Define a relation Bmax in H by

Bmax := Amax |H1 +̂({0}×H⊥) .

By Lemma 3 and (9)
ran((Amax −A′

max) |H1) ⊆ H⊥

and then the proof of the next lemma is accomplished by standard arguments.

LEMMA 5. Let Bmin := B∗
max be the adjoint in H of Bmax . Then

Bmin = Amin |H1 +̂({0}×H⊥)

is a closed symmetric relation in H with defect numbers (d,d) . The adjoint in H is
given by

B∗
min = Bmax = B0 +̂N̂z(Bmax) , z ∈ ρ(B0) .

The self-adjoint relation B0 in H admits a canonical form

B0 := B̊0 ⊕̂({0}×H⊥) , B̊0 := Lm +̂ l1

where (with PK1 an orthogonal projection in K onto K1 )

l1 := PK1 l |K1

is the self-adjoint operator in K1 . The defect subspace

Nz(Bmax) = [(L− z)−1− (l1− z)−1](Kmin) .

Moreover, if B̊min denotes the operator part of Bmin , i.e.

B̊min = PH1Amin |H1

(PH1 is an orthogonal projection in H onto H1 ), then B̊min is a closed densely de-
fined symmetric operator in H1 , with equal defect numbers (d,d) . The adjoint in H1 ,
B̊max := B̊∗

min , is the operator part of Bmax , i.e.

B̊max = B̊0 +̂N̂z(B̊max) , Nz(B̊max) = Nz(Bmax) , z ∈ ρ(B0) . �

The boundary value space of Bmax in H is therefore completely determined by
the boundary value space of B̊max in H1 . Recall Γ̃ in (6).

THEOREM 1. 1) Consider Γ̃ as an operator Amax → C2d . With an operator

Γ̊ := (Γ̃ |H1×H )+̂ (({0}×H⊥)×{0}) := (Γ̊0, Γ̊1)
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from Bmax to C2d , the triple ΠΓ̊ = (Cd , Γ̊0, Γ̊1) is a boundary triple for Bmax with
the γ -field γΓ̊ and the Weyl function MΓ̊ given on Cd by

γΓ̊(z) =[(L− z)−1− (l1− z)−1]kmin(·) ,
MΓ̊(z) =R̃(z)+ Q̊(z) , z ∈ ρ(B̊0)

where the Nevanlinna function

Q̊(z) := (〈fs,(l1 − z)−1fs′ 〉−m) , z ∈ ρ(l1) .

2) With an operator
Γ̊ := Γ̃ |H1

:= (Γ̊0, Γ̊1)

from dom B̊max to C2d , the triple ΠΓ̊ = (Cd , Γ̊0, Γ̊1) is a boundary triple for B̊max

with the γ -field γΓ̊ and the Weyl function MΓ̊ .
3) Consider a closed symmetric operator

l̊1 := l1 |K1�Kmin

in K1 , with defect numbers (d,d); the adjoint in K1 is characterized by

l̊∗1 = l1 +̂({0}×Kmin) ,

Nz(l̊∗1) = (l1 − z)−1(Kmin) , z ∈ ρ(l1) .

Then the triple Π˚̊Γ = (Cd , ˚̊Γ0, ˚̊Γ1) , where

˚̊Γ = (˚̊Γ0, ˚̊Γ1) : l̊∗1 → C2d ,

˚̊Γ0(k, l1k+ kmin(χ)) := χ ,

˚̊Γ1(k, l1k+ kmin(χ)) := −G ∗
b d(k)

is a boundary triple for l̊∗1 with the γ -field γ˚̊Γ and the Weyl function M˚̊Γ given on
Cd by

γ˚̊Γ(z) = −(l1− z)−1kmin(·) , M˚̊Γ(z) = Q̊(z) , z ∈ ρ(l1) .

Proof. 1) Γ̊ can be given the form

Γ̊ = (Γ̃∩M)+̂N

where the closed relations M and N from H 2 to C2d are defined by

M := (H1 ×H )×C2d , N := ({0}×H⊥)×{0} .

In order that ΠΓ̊ should be the boundary triple for Bmax it is necessary and sufficient
that the operator Γ̊ should be unitary from a ĴH -space to a ĴCd -space. Since the Krein
space adjoints N+ = M−1 and M+ = N−1 , the Krein space adjoint of Γ̊ is given by

Γ̊+ = (Γ̃∩M)+ ∩N+ = (((Γ̃+)−1 +̂N)∩M)−1 .
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By Lemma 4
(Γ̃+)−1 +̂N = Γ̃+̂N .

Because the relation Γ̃+̂N is closed and N ⊆ M , one therefore gets Γ̊+ = Γ̊−1 as
required.

The computation of γΓ̊ , MΓ̊ is standard by applying Lemma 5. Note moreover
that Q̊(z) , as stated, follows from

Q̊(z) = G ∗
b d((l1 − z)−1kmin(·)) .

2) With Γ̃ : Amax → C2d as previously, one needs to verify that the operator

Γ̊ := ((Γ̃∩M)+̂N) |H 2
1

is unitary from a ĴH1 -space to a ĴCd -space; observe that the above Γ̊ coincides with
Γ̃ |H1 if considered as an operator dom B̊max → C2d . Thus, the inverse of the Krein
space adjoint

(Γ̊+)−1 =(Γ̊+̂(H 2
⊥ ×{0})) |H 2

1

=(Γ̊+̂(H 2
⊥ ×{0})) |H 2

1

=((Γ̃∩M)+̂N) |H 2
1

= Γ̊

as required.
3) Once l̊1 has been established, the rest is straightforward. �

REMARK 3. With Γ̊ as in 1), ˚̊Γ � Γ̊ |K2
1
; in fact

˚̊Γ = Γ̊ |K2
1
+̂{((0,kmin(χ)),(χ ,0)) |χ ∈ Cd} .

The subsequent results are presented only for B̊max .

Generalized resolvent A closed operator B̊ ∈ Ext(B̊min) is in bijective corre-
spondence with a closed relation Θ in Cd via B̊ = B̊Θ := Γ̊−1(Θ) . We have

B̊Θ ⊆ B̊max , dom B̊Θ := { f ∈ dom B̊max |(Γ̊0 f , Γ̊1 f ) ∈ Θ}
and in particular B̊min = B̊Θ={0} and B̊0 = B̊Θ={0}×Cd .

In the next theorem U : f + k �→ ( f ,k) is a unitary operator from a Hilbert space
H1 to an (external) Hilbert sum Hm ⊕K1 .

THEOREM 2. 1) Let Θ be a closed relation in Cd . The resolvent of a closed
operator B̊Θ is given by

U(B̊Θ − z)−1U∗ =
(

R̊11(z) R̊12(z)
R̊21(z) R̊22(z)

)
:
Hm

⊕
K1

→
Hm

⊕
K1
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for z ∈ ρ(B̊Θ)∩ρ(B̊0); the entries

R̊11(z) :=(L− z)−1 +Gz
(
C (Θ−MΓ̊(z))−1C ∗ 〈ϕ ,(L− z)−1·〉) ,

R̊12(z) :=−Gz
(
C (Θ−MΓ̊(z))−1G ∗

b d((l1− z)−1·)) ,

R̊21(z) :=− (l1− z)−1kmin
(
(Θ−MΓ̊(z))−1C ∗ 〈ϕ ,(L− z)−1·〉) ,

R̊22(z) :=(l1 − z)−1 +(l1− z)−1kmin
(
(Θ−MΓ̊(z))−1G ∗

b d((l1− z)−1·)) .

2) Let Θ be a self-adjoint relation in Cd . To a generalized resolvent PHm(B̊Θ −
z)−1 |Hm there corresponds, via the generalized Krein–Naimark resolvent formula,
a Nevanlinna family

τ : z �→ (C−1)∗(Q̊(z)−Θ)C−1 .

Proof. 1) This part is due to Lemma 5, Theorem 1, and the Krein–Naimark resol-
vent formula.

2) We need to verify that the only solution τ(z) to

R̊11(z) = (L− z)−1− γΓ(z)(τ(z)+MΓ(z))γΓ(z)∗

is as stated; see Remark 1-3. The above equation reads

Gz(C (Θ−MΓ̊(z))−1C ∗ 〈ϕ ,(L− z)−1·〉)
= −Gz((τ(z)+MΓ(z))−1 〈ϕ ,(L− z)−1·〉)

and then
C (Θ−MΓ̊(z))−1C ∗ = −(τ(z)+R(z))−1

and
C ∗−1(Θ−MΓ̊(z))C −1 = −(τ(z)+R(z))

with both sides considered as relations. Subsequently, a relation τ(z) is the operator-
wise sum of relations

C ∗−1MΓ̊(z)C −1−R(z) = C ∗−1Q̊(z)C −1

and −C ∗−1ΘC−1 . �

REMARK 4. If d = 1, L � 0, Z = Z ∩(−∞,0) , G is diagonal, then an operator
B̊Θ = BΘ in H , and then the resolvent in Theorem 2 is unitarily equivalent to that
in [34, Theorem 6.1]. The scalar Q-function of the symmetric operator l̊1 = l |K�Kmin

in K with defect numbers (1,1) is

Q̊(z) = 〈b,G (Z− z)−1b〉Cm , b := (b j) ∈ Cm .

To compare with, the Q-function of the symmetric operator l̊1 = {0} in Kmin (i.e. K1 =
Kmin ) is given by

Q̊(z) = 〈b,G b〉2Cm /〈b,G (Z− z)b〉Cm .

Notice that (G Z−Z∗G )b⊥b , and G Z �= Z∗G is allowed in this case.
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5. Final remarks

Minimal realization The Nevanlinna function Q̊ can be given a standard form
(cf. (1))

Q̊(z) = Q̊(z0)+ (z− z0)γ˚̊Γ(z0)∗(I +(z− z0)(l1 − z)−1)γ˚̊Γ(z0)

for z , z0 ∈ ρ(l1) . One says in [23, 27] the pair (l1,γ˚̊Γ) realizes Q̊ , and a realization is
minimal if (∨ ≡ closed linear span)

K1 = ∨{(I +(z− z0)(l1 − z)−1)γ˚̊Γ(z0)χ |χ ∈ Cd ; z ∈ ρ(l1)} .

Since the right-hand side = ∨{Nz(l̊∗1) |z ∈ ρ(l1)} , this means l̊1 should be simple,
i.e. l̊1 should not admit orthogonal decompositions with a self-adjoint summand.

PROPOSITION 3. l̊1 is simple iff K1 = Kmin .

Proof. Sufficiency is clear, so we prove necessity. Consider K1 as a set generated
by elements {hμ}d1

μ=1 , with the corresponding Gram matrix

G1 := (〈hμ ,hμ ′ 〉−m)

and d1 := dimK1 . An element k from K1 is of the form

k = k(η) := ∑
μ

ημhμ , η = (ημ) = G −1
1 W ∗d(k)

with d(K1) = G −1(ranW ) . The transfer matrix

W := (〈gi,hμ〉−m) .

Subsequently, l1 maps k(η) to k(Z̊d1η) , where the matrix

Z̊d1
:= G −1

1 W ∗ZdG
−1W (10)

is similar to an Hermitian matrix: By recalling that d(K1) is a neutral subspace of a
W -space it holds (with Z̊∗

d1
the adjoint of Z̊d1 )

Z̊∗
d1

G1 = G1Z̊d1 . (11)

Let {λμ} be the eigenvalues of Z̊d1 . By the spectral decomposition

Z̊d1 = V−1
1 diag{λμ}V1 , V1 := U1G

1/2
1

with a d1 × d1 unitary matrix U1 , the eigenspace Nλ (l̊1) , for some λ ∈ R , consists
of k(η) ∈ K1 �Kmin such that (∀μ) (λμ −λ )(V1η)μ = 0. Now, a simple l̊1 has no
eigenvalues, so that necessarily K1 = Kmin . �

REMARK 5. With the notation as in Proposition 3 Q̊ can be given a yet another
form

Q̊(z) = (b̂∗W )(Z̊d1 − z)−1G −1
1 (b̂∗W )∗ .
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Invariance In order to emphasize that Q̊ is associated to (l̊1, l1) in K1 , we use
the notation

Q̊ ≡ Q̊K1 .

Because the diagonal entry [24, Lemma 2.3]

(Q̊K1(λ ))ss = sup
k∈K1

|〈k, fs〉−m|2
〈k,(l−λ )k〉−m

, λ < minσ(l1)

(as usual the spectrum σ(·) := C � ρ(·)) and (e.g. [10]) a scalar valued Nevanlinna
function is monotonically nondecreasing on any interval of R where it is analytic, one
concludes that (cf. Remark 4)

(Q̊K′
1
(λ ))ss � (Q̊K1(λ ))ss if K′

1 ⊆ K1 (12)

where K′
1 is some other subspace from the scale Kmin ⊆ Kmax . By the min-max princi-

ple minσ(l′1) � minσ(l1) , l′1 := PK′
1
l |K′

1
. The preceding remarks imply the following,

for d = 1: The points {λ |Q̊K1(λ ) = Θ− R̃(λ )} in ρ(L)∩ (−∞,minσ(l1)) from the
spectrum of a self-adjoint operator B̊Θ in H1 , |Θ| < ∞ , are nondecreasing whenever
K1 gets smaller.

These points need not increase, as K1 gets smaller, if K1 is invariant for l , i.e. if
l(K1) ⊆ K1 . In this case l = l1 ⊕ (l |H⊥) , and a generalized resolvent PK1(l− z)−1 |K1

coincides with (l1−z)−1 (and is called orthogonal in [4, Chapter 2]); hence Q̊K1 = Q̊K .
However

PROPOSITION 4. K1 is an invariant subspace for l iff K1 = K .

Proof. If l(K1) ⊆ K1 or, equivalently, Zdd(K1) ⊆ d(K1) , then by Halmos [26,
Theorem 3] there is an md×md matrix C = (Cii′) that commutes with Zd and satisfies
d(K1) = kerC . The commutation criterion shows that C is diagonal in j (as previously,
i = α(s, j) , i′ = α(s′, j′)). On the other hand

kerC ⊇ ran b̂ = ∨{
m−1

∑
j=1

b j(esm−m+ j − esm)}

where {ei}md
i=1 is a standard basis of Cmd ; hence ∑ j b jCei = 0. But Cei = (C1,i, . . . ,Cmd,i)

and C1,i = δ j,1C1,i, . . . ,Cmd,i = δ j,mCmd,1 , thus (∀i) b jCei = 0, i.e. C = 0. �

Generalized resolvent of l1 We present a (unique) Nevanlinna family τ1 corre-
sponding to PKmin(l1− z)−1 |Kmin in terms of Q̊K1 . Below we use

Z̊d = G −1
minG

∗
b Zdb̂

as in (10) for K1 = Kmin .
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PROPOSITION 5. To a generalized resolvent PKmin(l1 − z)−1 |Kmin there corre-
sponds, via the generalized Krein–Naimark resolvent formula, a matrix valued Nevan-
linna function

τ1 : z �→ −Gmin(Q̊K1(z)
−1Gmin + z) .

If K1 = Kmin then τ1(z) = −GminZ̊d is an Hermitian matrix.

Proof. Consider a simple symmetric operator {0} in Kmin . The boundary triple
(Cd ,Γmin

0 ,Γmin
1 ) for K2

min is given by (χ ,χ ′ ∈ Cd )

Γmin
0 (kmin(χ),kmin(χ ′)) :=χ ,

Γmin
1 (kmin(χ),kmin(χ ′)) :=Gminχ ′ .

The γ -field and the Weyl function corresponding to the triple are given by kmin(·) and
zGmin , respectively. Subsequently, by using kerΓmin

0 = {0}×Kmin and by applying the
generalized Krein–Naimark formula

Q̊K1(z) = −Gmin(τ1(z)+ zGmin)−1Gmin

for z ∈ ρ(l1) . Now Q̊K1(z) , as the Weyl family corresponding to Π˚̊Γ , is nonsingular
(or use that l1 and {0}×Kmin are disjoint), so τ1(z) is the matrix as stated.

If K1 = Kmin then use that

Q̊Kmin(z) = Gmin(Z̊d − z)−1

for z ∈ ρ(Z̊d) , cf. Remark 5, and recall from (11) that GminZ̊d is Hermitian. �

REMARK 6. If d = 1 then

Q̊K1(z) =
z‖f‖2−m−〈f,Lf〉−m

z‖f‖2−m + τ1(z)
Q̊Kmin(z) .

As already pointed out in Remark 4 〈b,G Zb〉Cm is real valued; actually it equals
〈f,Lf〉−m (with f ≡ fs for d = 1). Similarly 〈b,G b〉Cm = ‖f‖2−m . The scalar τ1(z) =
−〈f,Lf〉−m iff K1 = Kmin ; otherwise, by (12) τ1(λ ) � −〈f,Lf〉−m for λ < minσ(l1) .

A. Appendix. The peak model in the reference space

We are given a linearly independent system {ϕ̂s ∈ H−2 � H−1} and a closed
densely defined symmetric restriction L̂0 of L subject to the boundary condition 〈ϕ̂ ,u〉
= 0, u∈H2 ; 〈ϕ̂ , ·〉 is the vector valued functional with components 〈ϕ̂s, ·〉 . The adjoint
L̂∗

0 in H0 of L̂0 extends L to H2 �Nz(L̂∗
0) , z ∈ ρ(L) , where the defect subspace

Nz(L̂∗
0) = ĝz(Cd) , ĝz(c) := ∑

s
csĝs(z) , ĝs(z) := (L− z)−1ϕ̂s

and c = (cs) ∈ Cd .



554 R. JURŠĖNAS

Here we analyze the peak model transformed to H0 by using a unitary operator
P(L)−1/2 from H−n onto Hm+n ; n � 0. Thus, we view ϕ̂s as

ϕ̂s := P(L)−1/2ϕs , ϕs ∈ H−m−2 �H−m−1

for some fixed integer m � 1. Then

L̂0 = P(L)1/2LminP(L)−1/2 , L̂∗
0 = P(L)1/2L∗

minP(L)−1/2 .

The triple ΠΓ̂ = (Cd , Γ̂0, Γ̂1) with (recall Remark 1)

Γ̂ = (Γ̂0, Γ̂1) := ΓP(L)−1/2 , dom Γ̂ = dom L̂∗
0

is a boundary triple for L̂∗
0 with the γ -field ρ(L) � z �→ γΓ̂(z) = ĝz(·) and the Weyl

function MΓ̂ = R . In this way R is the Q-function for both (Lmin,Lm) and (L̂0,L) .
What we really want to show is that the scaled boundary operator Γ̃ in (6) de-

fines an essentially unitary boundary triple ΠΓ̂′ = (Cd , Γ̂′
0, Γ̂′

1) for L̂∗
0 . This means the

operator Γ̂′ := (Γ̂′
0, Γ̂′

1) , with domain

Âmax := P(L)−1/2AmaxP(L)1/2

dense in L̂∗
0 , is an isometry from a ĴH0 -space to a ĴCd -space, Γ̂′−1 ⊆ Γ̂′+ , and more-

over the closure clo Γ̂′ = Γ̂ . As usual, we consider Γ̂′ also as an operator dom Âmax →
C2d . An essentially unitary boundary triple is a special case of an isometric boundary
triple studied in [20]. The γ -field and the Weyl function are defined identically as in
the case of an (ordinary) boundary triple.

To make our statement precise, define a subset K̂ of H0 by

K̂ := ∨{ĝi := ĝs(z j)} , i = α(s, j) .

Note K̂∩H2m−1 = {0} . Every k̂ ∈ K̂ is in bijective correspondencewith d(k̂) = (di(k̂))
via the Gram matrix G = (〈ĝi, ĝi′ 〉0) ; let (cf. (4))

c(k̂) = (cs(k̂)) ∈ Cd , cs(k̂) := ∑
j

di(k̂) , d(k̂) = G−1(〈ĝi, k̂〉0) .

Then c(K̂) = Cd and moreover c(k̂) = 0 iff k̂ ∈ K̂∩H2 . Let

L := H2m+2 � P̃(L)−1(Nz(L̂∗
0)) .

Then L is dense in H0 : H2m+2 ⊆ L ⊆ H2m ⊆ H2 .

THEOREM 3. Define an operator Γ̂′ := (Γ̂′
0, Γ̂

′
1) where

Γ̂′
0 : L� K̂ � u+ k̂ �→ c(k̂) ,

Γ̂′
1 : L� K̂ � u+ k̂ �→ 〈ϕ̂ ,u〉+M d(k̂) .
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The triple ΠΓ̂′ = (Cd , Γ̂′
0, Γ̂

′
1) is an isometric boundary triple for L̂∗

0 such that

clo Γ̂′ = Γ̂ , ran Γ̂′
0 = Cd , T0 � T0 = L .

Here an essentially self-adjoint operator

T0 := L̂∗
0 |ker Γ̂′

0
= L |

L�(K̂∩H2)
.

The γ -field and the Weyl function corresponding to ΠΓ̂′ are z �→ ĝz(·) and R.

Proof. It is rather straightforward that

Âmax(u+ k̂) = Lu+∑
i
(Zdd(k̂))iĝi

and then the boundary form

〈u+ k̂, Âmax(u′ + k̂′)〉0−〈Âmax(u+ k̂),u′ + k̂′〉0
= 〈Γ̂′

0(u+ k̂), Γ̂′
1(u

′ + k̂′)〉Cd −〈Γ̂′
1(u+ k̂), Γ̂′

0(u
′ + k̂′)〉Cd

for u,u′ ∈ L and k̂, k̂′ ∈ K̂ . That Âmax ⊆ L̂∗
0 densely follows from

Amax ⊆ Lmax = P(L)1/2L̂∗
0P(L)−1/2

so ΠΓ̂′ is an isometric boundary triple for L̂∗
0 . Since u+ k̂ is the sum of a H2 -function

u+ k̂− ĝz(c) , c = c(k̂) , and an eigenvector ĝz(c) of L̂∗
0 , it follows that Γ̂′

0 ⊆ Γ̂0 and
Γ̂′

1 ⊆ Γ̂1 . Since moreover L� K̂ is a core for L̂∗
0 , this shows clo Γ̂′ = Γ̂ .

The last statement of the theorem uses Nz(Âmax) = Nz(L̂∗
0) . �

REMARKS 3. 1. GZ need not be Hermitian.
2. Since T0 is only essentially self-adjoint, ΠΓ̂′ is not a B-generalized boundary

triple for L̂∗
0 [20, Definition 1.5]. (In [16, Lemma 5.5(ii)] A0 must be self-adjoint.)
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