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ON LIE TRIPLE CENTRALIZERS OF VON NEUMANN ALGEBRAS

BEHROOZ FADAEE AND HOGER GHAHRAMANI ∗

(Communicated by S. McCullough)

Abstract. Let U be a von Neumann algebra endowed with the Lie product [A,B] = AB−BA
(A,B ∈ U ). In this article, we consider the subsequent condition on an additive mapping φ on
the von Neumann algebra U with a suitable projection P ∈ U :

φ([[A,B],C]) = [[φ(A),B],C] = [[A,φ(B)],C]

for all A,B,C ∈ U with AB = P and we show that φ(A) = WA+ ξ (A) for all A ∈ U , where
W ∈ Z(U ) , and ξ : U → Z(U ) (Z(U ) is the center of U ) is an additive map in which
ξ ([[A,B],C]) = 0 for any A,B,C ∈U with AB = P . We also give some results of the conclusion.

1. Introduction

Let U be an associative algebra. The additive map φ : U → U is called a Lie
centralizer if φ([a,b]) = [φ(a),b] for all a,b ∈ U and it is called a Lie triple central-
izer if φ([[a,b],c]) = [[φ(a),b],c] for all a,b,c ∈ U , where [a,b] = ab−ba is the Lie
product of a and b in U . It is easily checked that φ is a Lie triple centralizer (Lie cen-
tralizer) on U if and only if φ([[a,b],c]) = [[a,φ(b)],c] (φ([a,b]) = [a,φ(b)]) for all
a,b,c ∈ U . Obviously every Lie centralizer is a Lie triple centralizer but the converse
is not necessarily true. Lie centralizers and Lie triple centralizers are important classes
of mappings related to the Lie structure of algebras that have recently been widely stud-
ied from different perspectives on algebras. These studies are aimed at determining the
structure of Lie centralizers and Lie triple centralizers or characterizing mappings that
act in certain products such as Lie centralizers or Lie triple centralizers. In the follow-
ing, we will refer to some of the results obtained for the Lie centralizers or Lie triple
centralizers. Fošner and Jing in [6] have studied non-additive Lie centralizers on trian-
gular rings, and in [15] non-linear Lie centralizers on generalized matrix algebra have
been checked. Jabeen in [13] has described the structure of linear Lie centralizers on a
generalized matrix algebra under some conditions. In [5] it has been shown that under
some conditions on a unital generalized matrix algebra U , if φ : U → U is a linear
Lie triple centralizer, then φ(a) = λa+ξ (a) in which λ ∈ Z(U ) and ξ is a linear map
from U into Z(U ) vanishing at every second commutator [[a,b],c] for alla,b,c∈U ,
where Z(U ) is the center of U . In [17], Lie n-centralizers of generalized matrix al-
gebras have been examined. The authors in [2] have studied the characterization of Lie
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centralizers on non-unital triangular algebras through zero products. In [8], linear Lie
centralizers at the zero products on some operator algebras are studied, and in [4], linear
Lie centralizers through zero products on a 2-torsion free unital generalized matrix al-
gebra under some mild conditions, are described. In [3], the problem of characterizing
linear maps behaving like Lie centralizers at idempotent products on triangular alge-
bras is considered, and in [12], additive Lie centralizers through idempotent-products
on a 2-torsion free unital prime ring are determined. To find more results in this re-
gard, we refer to [1, 7, 9, 10, 11, 16] and and the references therein. Motivated by
these developments, in the present article, we study the additive Lie triple centralizers
at idempotent-products on von Neumann algebras. In fact, the following theorem is the
main result of the article.

THEOREM 1.1. Let U be a von Neumann algebra with unit element I , and E1 +
E2 = I , where E1 and E2 are two orthogonal central projections such that U E1 is
of type I1 and U E2 is a von Neumann algebra with no central summands of type I1 .
Suppose that P ∈ U E2 is a core-free projection with central carrier E2 . Let φ : U →
U be an additive map. Then φ satisfies

φ([[A,B],C]) = [[φ(A),B],C] = [[A,φ(B)],C] (P)

for all A,B,C ∈ U with AB = P if and only if φ(A) = WA+ ξ (A) (A ∈ U ) , where
W ∈ Z(U ) , ξ : U → Z(U ) is an additive map in which ξ ([A,B],C]) = 0 for any
A,B,C ∈ U with AB = P.

The following result is obtained from Theorem 1.1 which is a generalization of the
obtained result in [5, Remark 4.4] for factors von Neumann algebras.

COROLLARY 1.2. Let U be an arbitrary von Neumann algebra, and φ : U →U
be an additive map. Then φ is a Lie triple centralizer if and only if there exist an
element W ∈ Z(U ) and an additive map ξ : U → Z(U ) such that φ(A) =WA+ξ (A)
for any A ∈ U and ξ ([[A,B],C]) = 0 for any A,B,C ∈ U .

Also, we obtain the following corollary which is a generalization of [4, Corollary
5.2-(iv)] and [7, Corollary 4.3-(ii)].

COROLLARY 1.3. Let U be an arbitrary von Neumann algebra, and φ : U →U
be an additive map. Then φ is a Lie centralizer if and only if there exist an element
W ∈ Z(U ) and an additive map ξ : U → Z(U ) such that φ(A) =WA+ξ (A) for any
A ∈ U and ξ ([A,B]) = 0 for any A,B ∈ U .

It should be noted that most of the previous results about von Neumann algebras
are on factor von Neumann algebras or von Neumann algebras without central sum-
mands of type I1 , but our results are on a wider class of von Neumann algebras, and
some of our results are generalizations of some previous results, and it is worth not-
ing that by using the obtained results, it is possible to characterize generalized Lie
triple derivations, generalized Lie derivations, Jordan centralizers and Jordan general-
ized derivations on von Neumann algebras.
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Section 2, some preliminaries about von Neumann algebras are provided, and in
Section 3, we give the proof of Theorem 1.1 and Corollaries 1.2, 1.3.

2. Preliminaries

A von Neumann algebra U is a weakly closed, self-adjoint algebra of operators on
a complex Hilbert space H containing the identity operator I . If P∈U is idempotent
(i. e. P2 = P) and self-adjoint (P∗ = P), then P is called a projection. A projection
P ∈ U is said to be a central abelian projection if P ∈ Z(U ) and PU P is abelian.
The central carrier of T ∈ U is the smallest central projection P satisfying PT = T ,
and denoted by T . It is well known that T is the projection whose range is the closed
linear span of {AT (h) : A ∈ U ,h ∈ H } . For each self-adjoint operator S ∈ U , the
core of S , denoted by S , is sup{W ∈ Z(U ) : W = W ∗,W � S} . The projection P is a
core-free projection, if P ∈U is a projection and P = 0. A routine verifications shows
that P = 0 if and only if I−P = I . Note that U is a von Neumann algebra with no
central summands of type I1 if and only if it has a projection P such that P = 0 and
P = I . If U is an arbitrary von Neumann algebra, the unit element I of U is the sum
of two orthogonal central projections E1 and E2 such that U = U E1⊕U E2 , U E1 is
of type I1 and U E2 is a von Neumann algebra with no central summands of type I1 .
So U E2 contains a core-free projection with central carrier E2 . We refer the reader to
[14] for the theory of von Neumann algebras.

REMARK 2.1. Let U be a von Neumann algebra with no central summands of
type I1 , and P ∈U be a projection such that P = 0 and P = I . We have I−P = 0 and
I−P = I .

(i) By [14, Corollary 5.5.7] we have

Z(PU P) = PZ(U ) and Z((I−P)U (I−P)) = (I−P)Z(U ).

(ii) It follows from the definition of the central carrier that both span{AP(h) : A ∈
U ,h ∈ H } and span{A(I−P)(h) : A ∈ U ,h ∈ H } are dense in H . So A ∈
U , AU P = {0} implies A = 0 and AU (I−P) = {0} implies P = 0.

3. Proving the main results

First, we show the main result for von Neumann algebras with no central sum-
mands of type I1 in the following proposition.

PROPOSITION 3.1. Let U be a von Neumann algebra with no central summands
of type I1 , and P be a core-free projection with central carrier. Let φ : U → U be
an additive map. Then φ satisfies (P) if and only if φ(A) = WA + ξ (A) (A ∈ U ) ,
where W ∈ Z(U ) , ξ : U → Z(U ) is an additive map in which ξ ([A,B],C]) = 0 for
any A,B,C ∈ U with AB = P.
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Proof. Assume that φ satisfies (P) . Set P1 := P and P2 := I−P1 . By Remark 2.1
P2 is also core free and P2 = I . Set Ui j = PiU Pj ( i, j = 1,2), then U = U11 +U12 +
U21 +U22 . So any element A of U is of the form A = A11 +A12 +A21 +A22 for some
Ai j ∈ Ui j ( i, j = 1,2). The continuation of the proof in this case is done through the
following lemmas.

LEMMA 1. φ(I),φ(P1) ∈ U11 +U22 .

Proof. Since IP1 = P1 and P1P1 = P1 , we get 0 = φ([[I,P1],P1]) = [[φ(I),P1],P1]
and 0 = φ([[P1,P1],P1]) = [[φ(P1),P1],P1] , and hence

φ(I)P1 +P1φ(I)−2P1φ(I)P1 = 0,

and
φ(P1)P1 +P1φ(P1)−2P1φ(P1)P1 = 0.

Multiplying the above equation once from left to P2 and, once from right to P2 , we
arrive at P2φ(I)P1 = P1φ(I)P2 = 0 and P2φ(P1)P1 = P1φ(P1)P2 = 0, so φ(I),φ(P1) ∈
U11 +U22 . �

LEMMA 2. φ(Ui j) ⊆ Ui j , where 1 � i �= j � 2 .

Proof. For any A12 ∈ U12 , since (I +A12)P1 = P1 , by assumption, we see that

φ(A12) = φ([[I +A12,P1],P1])
= [[I +A12,φ(P1)],P1]
= [[I,φ(P1)],P1]+ [[A12,φ(P1)],P1]
= [[A12,φ(P1)],P1]
= [[A12φ(P1)−φ(P1)A12,P1]
= A12φ(P1)P1−A12φ(P1)+P1φ(P1)A12

Multiplying the above equation once from left and right to P1 , once from left and right
to P2 , and once from left to P2 and from right to P1 , we conclude that P1φ(A12)P1 = 0,
P2φ(A12)P2 = 0 and P2φ(A12)P1 = 0. Therefore φ(A12) = P1φ(A12)P2 ∈ U12 .

For any A21 ∈ U21 , since P1(I +A21) = P1 , we have

φ(A21) = φ([[P1, I +A12],P2])
= [[φ(P1), I +A21)],P2]
= [[φ(P1), I)],P2]+ [[φ(P1),A21)],P2]
= [[φ(P1),A21)],P2]
= [φ(P1)A21−A21φ(P1),P2]
= −A21φ(P1)P2−P2φ(P1)A21 +A21φ(P1)

Multiplying the above equation once from left and right to P1 , once from left and
right to P2 , and once from left to P2 and from right to P1 , and we arrive at φ(A21) ∈
U21 . �
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LEMMA 3. φ(Uii) ⊆ U11 +U22 , for i ∈ {1,2} .

Proof. For any invertible A11 ∈ U11 , since A11A
−1
11 = P1 , we have

0 = φ([[A11,A
−1
11 ],P1]) = [[φ(A11),A−1

11 ],P1]

= φ(A11)A−1
11 −A−1

11 φ(A11)P1−P1φ(A11)A−1
11 +A−1

11 φ(A11).

Write φ(A11) = ∑2
i, j=1 Ti j . It follows from above equation that T12 = T21 = 0. Con-

sequently, φ(A11) ∈ U11 +U22 , for any invertible A11 ∈ U11 . For any A11 ∈ U11 , we
may find a sufficiently big number n such that nP1 −A11 is invertible. Thus, by the
above and Lemma 1, we have

φ(A11) = nφ(P1)−φ(nP1−A11) ∈ U11 +U22.

For any B22 ∈ U22 , write φ(B22) = ∑2
i, j=1 Si j . By the equation (P1 +B22)P1 = P1

and Lemma 1, we have

0 = φ([[P1 +B22,P1],P1]) = [[φ(P1 +B22),P1],P1]
= [[φ(P1),P1],P1]+ [[φ(B22),P1],P1]
= [[φ(B22),P1],P1]
= φ(B22)P1 +P1φ(B22)−2P1φ(B22)P1

It follows that S12 = S21 = 0. Therefore φ(B22) ∈ U11 +U22 . �

LEMMA 4. For i = 1,2 , there exists an additive map hi : Uii → Z(U ) such that
Pjφ(Aii)Pj = hi(Aii)Pj for any Aii ∈ Uii , where 1 � i �= j � 2 .

Proof. For any invertible element A11 ∈U11 , and each B22 ∈U22 we have A11(A−1
11

+B22) = P1 , and (A11 +B22)A−1
11 = P1 . So for each Ci j ∈ Ui j , where (1 � i �= j � 2) ,

we get

0 = φ([[A11,A
−1
11 +B22],C21])

= [[φ(A11),A−1
11 +B22],C21]

= [[φ(A11),A−1
11 ],C21]+ [[φ(A11),B22],C21]

= φ([[A11,A
−1
11 ],C21])+ [[φ(A11),B22],C21]

= [[φ(A11),B22],C21]

and

0 = φ([[A−1
11 +B22,A11],C12])

= [[φ(A−1
11 +B22),A11],C12]

= [[φ(A−1
11 )+ φ(B22),A11],C12]

= [[φ(A−1
11 ),A11],C21]+ [[φ(B22),A11],C12]

= φ([[A−1
11 ,A11],C21])+ [[φ(B22),A11],C12]

= [[φ(B22),A11],C21].
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Considering above equations, and using Lemma 3, we arrive at

(P2φ(A11)P2B22−B22P2φ(A11)P2)CP1 = 0

and
(P1φ(B22)P1A11−A11P1φ(B22)P1)CP2 = 0

for any C ∈U and any invertible element A11 ∈U11 . For any A11 ∈U11 , we may find
a sufficiently big number n such that nP1−A11 is invertible. So,

(P2φ(A11)P2B22−B22P2φ(A11)P2)CP1 = 0

and
(P1φ(B22)P1A11−A11P1φ(B22)P1)CP2 = 0

for all C ∈ U , A11 ∈ U11 , and B22 ∈ U22 . From Remark 2.1, we conclude that
P2φ(A11)P2 ∈ Z(U22) and P1φ(B22)P1 ∈ Z(U11) , and by fact that Z(U22) = Z(U )P2

and Z(U11) = Z(U )P1 we have P2φ(A11)P2 ∈ Z(U )P2 and P1φ(B22)P1 ∈ Z(U )P1 .
Therefore, for any A11 ∈ U11 and B22 ∈ U22 , there are Z1,Z2 ∈ Z(U ) such that

P2φ(A11)P2 = Z1P2 and P1φ(B22)P1 = Z2P1.

So we can define the maps h1 : U11 → Z(U ) by h1(A11) = Z1 for any A11 ∈ U11 and
h2 : U22 → Z(U ) by h2(B22) = Z2 for any B22 ∈ U22 . Suppose that h1(A11) = Z1 ∈
Z(U ) and h1(A11) = Z′

1 ∈ Z(U ) . Then we have φ(A11)−Z1 ∈U11 and φ(A11)−Z′
1 ∈

U11 . It follows that Z′
1−Z1 = (φ(A11)−Z1)−(φ(A11)−Z′

1)∈U11∩Z(U ) = {0} . So
Z1 = Z′

1 . In a similar way it is proved that Z2 is unique. By the uniqueness of Z1 and
Z2 the maps h1 and h2 are well-defined. Moreover, from the uniqueness of Z1 and Z2

and additivity of φ it follows that h1 and h2 are additive. Also,

P2φ(A11)P2 = h1(A11)P2 and P1φ(B22)P1 = h2(B22)P1. �

Now, for any A = A11 +A12 +A21 +A22 ∈ U , we define two additive maps ξ :
U → Z(U ) and ψ : U → U by

ξ (A) = h1(A11)+h2(A22) and ψ(A) = φ(A)− ξ (A).

By Lemmas 1-3, it is clear that ψ(Uii) ⊆ Uii for i = 1,2, and ψ(Ui j) = φ(Ui j) ⊆ Ui j

for 1 � i �= j � 2.

LEMMA 5. There is an element W ∈ Z(U ) such that ψ(A) =WA for all A∈U .

Proof. We divide the proof into the following steps.
Step 1. The following statements hold:

(i) ψ(AiiBi j) = ψ(Aii)Bi j = Aiiψ(Bi j) for all Aii ∈ Uii and Bi j ∈ Ui j , where 1 �
i �= j � 2;
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(ii) ψ(Bi jA j j) = ψ(Bi j)Aj j = Bi jψ(Aj j) for all Bi j ∈ Ui j and Aj j ∈ U j j , where
1 � i �= j � 2

For any invertible element A11 ∈ U11 and any B12 ∈ U12 , since (A−1
11 +B12)A11 = P1 ,

by Lemma 2, we have

ψ(A11B12) = φ(A11B12)

= φ([[A−1
11 +B12,A11],P1])

= [[φ(A−1
11 +B12),A11],P1]

= [[φ(A−1
11 )+ φ(B12),A11],P1]

= [[φ(A−1
11 ),A11],P1]+ [[φ(B12),A11],P1]

= φ([[A−1
11 ,A11],P1])+ [[φ(B12),A11],P1]

= [[φ(B12),A11],P1]
= [φ(B12)A11−A11φ(B12),P1]
= A11ψ(B12)

and

ψ(A11B12) = φ(A11B12)

= φ([[A−1
11 +B12,A11],P1])

= [[A−1
11 +B12,φ(A11)],P1]

= [[B12,φ(A11)],P1]
= P1φ(A11)P1B12−B12P2φ(A11)P2

= P1φ(A11)P1B12−h1(A11)P1B12

= (P1φ(A11)P1 +P2φ(A11)P2−h1(A11)P1−h1(A11)P2)B12

= φ(A11)−h1(A11)
= ψ(A11)B12

For any A11 ∈U11 , there exists an integer n such that nP1−A11 is invertible. Note that
nP1 is also invertible. By above results we have ψ(nP1B12) = nP1ψ(B12) = nψ(P1)B12

and ψ((nP1−A11)B12) = (nP1−A11)ψ(B12) = ψ(nP1−A11)B12 . Thus, ψ(A11B12) =
A11ψ(B12) = ψ(A11)B12 , for any A11 ∈ U11 and any B22 ∈ U22 .

For any invertible element A11 ∈U11 and any B21 ∈U21 , since A11(A−1
11 +B21) =

P1 and [[A11,A
−1
11 + B12],P1] = −B21A11 , and with the similar arguments as above, it

can be checked that

ψ(B21A11) = B21ψ(A11) = ψ(B21)A11

for any A11 ∈ U11 and B21 ∈ U21 . For any A22 ∈ U22 and B21 ∈ U21 , we have (P1 +
A22−A22B21)(P1 +B21) = P1 . By properties of ψ and ξ , we see that

−ψ(B21) = −φ(B21)
= φ([[P1 +A22−A22B21,P1 +B21],P1])
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= [[φ(P1)+ φ(A22)−φ(A22B21),P1 +B21],P1]
= [[φ(P1),P1 +B21],P1]+ [[φ(A22)−φ(A22B21),P1 +B21],P1]
= [[φ(P1),P1],P1]+ [[φ(P1),B21],P1]

+ [[φ(A22)−φ(A22B21),P1],P1]+ [[φ(A22)−φ(A22B21),B21],P1]
= [[ψ(P1)+ ξ (P1),B21],P1]+ [[ψ(A22)+ ξ (A22),P1],P1]
− [[ψ(A22B21),P1],P1]+ [[ψ(A22)+ ξ (A22),B21],P1]
− [[ψ(A22B21),B21],P1]

= [[ψ(P1),B21],P1]− [[ψ(A22B21),P1],P1]+ [[ψ(A22),B21],P1]
= −B21ψ(P1)−ψ(A22B21)+ ψ(A22)B21)

So we have
ψ(A22B21) = ψ(A22)B21

for all A22 ∈ U22 and B21 ∈ U21 , because ψ(B21) = ψ(B21P1) = B21ψ(P1) . Also,

ψ(A22B21) = ψ(A22B21P1) = A22B21ψ(P1) = A22ψ(B21),

for any A22 ∈ U22 and B21 ∈ U21 .
For any A22 ∈ U22 and B12 ∈ U12 , since (P1 +B12)(P1 +A22−B12A22) = P1 and

[[(P1 +B12),(P1 +A22−B12A22)],P2] =−B12 , and with the similar arguments as above,
it can be checked that

ψ(B12A22) = B12ψ(A22) = ψ(B12)A22.

Step 2. ψ(AiiBii) = ψ(Aii)Bii = Aiiψ(Bii) for all Aii,Bii ∈ Uii , where i ∈ {1,2} .
For any Aii,Bii ∈ Uii and any Si j ∈ Ui j (1 � i �= j � 2), by Step 1, we have

ψ(AiiBiiSi j) = ψ(AiiBii)Si j,

and on other hand

ψ(AiiBiiSi j) = Aiiψ(BiiSi j) = Aiiψ(Bii)Si j,

Comparing the above two equations, we see that ψ(AiiBii)Si j = Aiiψ(Bii)Si j holds for
all Si j ∈ Ui j . From Remark 2.1, it follows that ψ(AiiBii) = Aiiψ(Bii) for any Aii,Bii ∈
Uii , where i = 1,2. Also, for any Aii,Bii ∈ Uii and any S ji ∈ U ji (1 � i �= j � 2), by
Step 1, we get

ψ(S jiAiiBii) = S jiψ(AiiBii),

and on other hand

ψ(S jiAiiBii) = ψ(S jiAii)Bii = S jiψ(Aii)Bii,

Comparing the above two equations and by Remark 2.1, we see that ψ(AiiBii) =
ψ(Aii)Bii for any Aii,Bii ∈ Uii , where i ∈ {1,2} .

Step 3. ψ(Ai jB ji) = ψ(Ai j)Bji = Ai jψ(Bji) for all Ai j ∈Ui j and Bji ∈U ji , where
1 � i �= j � 2.
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Assume that Ai j ∈ Ui j and Bji ∈ U ji , 1 � i �= j � 2. It follows from Steps 1 and
2 that

ψ(Ai jB ji) = ψ(PiAi jB ji) = ψ(Pi)Ai jB ji = ψ(Ai j)Bji,

and
ψ(Ai jB ji) = ψ(Ai jB jiPi) = Ai jB jiψ(Pi) = Ai jψ(Bji).

Step 4. The desired result in Lemma 5 is valid.
From Steps 1-3 and the fact that each Ui j is a invariant subspace for ψ , it follows

that
ψ(AB) = Aψ(B) = ψ(A)B

for all A,B ∈ U . Set W := ψ(I) . So

ψ(A) = ψ(AI) = Aψ(I) = AW and ψ(A) = ψ(IA) = ψ(I)A = WA

for all A,B ∈ U , and W ∈ Z(U ) . �

LEMMA 6. ξ ([[A,B],C]) = 0 for all A,B,C ∈ U with AB = P.

Proof. For any A,B,C ∈ U with AB = P , by Lemma 5 we have

ξ ([[A,B],C]) = φ([[A,B],C])−ψ([[A,B],C])
= [[φ(A),B],C]−ψ([[A,B],C])
= [[ψ(A)+ ξ (A),B],C]−ψ([[A,B],C])
= [[ψ(A),B],C]−ψ([[A,B],C])
= W [[A,B],C]−W [[A,B],C]
= 0,

since W ∈ Z(U ) . �
Now, by the definition of ψ and Lemma 5, we get φ(A) = WA + ξ (A) for any

A ∈ U , where W ∈ Z(U ) . From Lemma 6, it follows that ξ : U → Z(U ) is an
additive mapping in which ξ ([[A,B],C]) = 0 for any A,B,C ∈ U with AB = P . So the
desired result is valid.

The converse is clear. �
Now we are ready to present the proof of the main theorem.

Proof of Theorem 1.1. Let φ satisfies (P) . Suppose that A,B,C,Y ∈ U such
that BYE2 = P . Put X := AE1 +BE2 . Since U E1 ⊆ Z(U ) , it follows that [X ,YE2] =
[BE2,YE2] = [B,Y ]E2 . From our assumption XYE2 = P , and we have φ([[X ,YE2],C])=
[[φ(X),YE2],C] = [[X ,φ(YE2)],C] . So

φ([[BE2,YE2],C]) = [[φ(X),YE2],C]
= [[φ(X)E2,YE2],C]
= [[φ(AE1)E2,YE2],C]+ [[φ(BE2)E2,YE2],C].
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We multiply the sides of the above identity by E2 . Consequently

φ([[BE2,YE2],C])E2 = [[φ(AE1)E2,YE2],C]+ [[φ(BE2)E2,YE2],C]. (1)

By setting A = 0 in (1) we see that

φ([[BE2,YE2],C])E2 = [[φ(BE2)E2,YE2],C]. (2)

for all B,Y ∈ U E2 with BYE2 = P . Also, we have

φ([[BE2,YE2],C])E2 = [[X ,φ(YE2)],C]
= [[AE1,φ(YE2)],C]+ [[BE2,φ(YE2)],C].

So by the fact that U E1 ⊆ Z(U ) we arrive at

φ([[BE2,YE2],C])E2 = [[BE2,φ(YE2)],C] (3)

for all B,Y ∈ U E2 with BYE2 = P . Equations (2) and (3) show that the additive
mapping ϕ : U E2 →U E2 defined by ϕ(AE2) = φ(AE2)E2 , on U E2 satisfies (P) . By
our assumption U E2 is a von Neumann algebra with no central summands of type I1 ,
and P ∈ U E2 is a projection such that P = 0 and P = E2 . So by Proposition 3.1, there
are W1 ∈ Z(U E2) ⊆ Z(U ) and an additive mapping ξ1 : U E2 → Z(U E2) ⊆ Z(U )
such that

φ(AE2)E2 = ϕ(AE2) = W1AE2 + ξ1(AE2) (4)

for all A ∈ U and ξ1([[AE2,BE2],CE2]) = 0 for all A,B,C ∈ U with ABE2 = P .
Assume that for Y ∈U the element YE2 is invertible in U E2 (i.e., YE2 ∈ Inv(U E2 )).
Taking B := P(YE2)−1 and X = AE1 +BE2 for A ∈ U . So BYE2 = P , and from (1)
and (2), for any C ∈U it follows that [[φ(AE1)E2,YE2],C] = 0. Since each element of
U E2 is a sum of two invertible elements of U E2 , it results that [[φ(AE1)E2,YE2],C] =
0 for all A,C,Y ∈ U . However, by Kleinecke-Shirokov and the fact that the spectral
radius is submultiplicative on commuting elements, it results that [φ(AE1)E2,YE2] = 0
for all A,Y ∈ U . So

φ(AE1)E2 ∈ Z(U E2) ⊆ Z(U )

for all A ∈ U . Also
ϕ(A)E1 ∈ U E1 ⊆ Z(U )

for all A ∈ U . Now by (4) we have

φ(A) = φ(A)E1 + φ(AE1)E2 + φ(AE2)E2

= φ(A)E1 + φ(AE1)E2 +W1AE2 + ξ1(AE2)
= WA+ ξ (A),

for all A ∈ U , where W :=W1E2 ∈ Z(U ) and ξ : U →U is an additive map defined
by ξ (A) = φ(A)E1 +φ(AE1)E2 +ξ1(AE2) . By above all three summands lie in Z(U ) ,
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thus ξ maps U into Z(U ) . Finally according to these results for A,B,C ∈ U where
AB = P we have

ξ ([[A,B],C]) = φ([[A,B],C])−W [[A,B],C]
= [[φ(A),B],C]− [[WA,B],C]
= [ξ (A),B],C] = 0.

The converse is clear. �

Proof of Corollary 1.2. Let φ be a Lie triple centralizer. If U is an abelian von
Neumann algebra, then φ maps U into Z(U ) = U . Also, from the fact that φ is
a Lie triple centralizer, it follows that φ([[A,B],C]) = 0 for any A,B,C ∈ U . So in
this case the result is valid. Now let’s assume that U is non-abelian. In this case the
unit element I of U is the sum of two orthogonal central projections E1 and E2 such
that U = U E1 ⊕U E2 , U E1 is of type I1 and U E2 is a von Neumann algebra with
no central summands of type I1 . So there exist a core-free projection P ∈ U E2 with
central carrier E2 . Because φ is a Lie triple centralizer, it satisfies the condition (P)
on U . Hence by Theorem 1.1, φ(A) =WA+ξ (A) for all A ∈ U , where W ∈ Z(U ) ,
ξ : U → Z(U ) is an additive map. It is sufficient to prove that for any A,B,C ∈ U
we have ξ ([[A,B],C]) = 0. This part can be proved in similar manner with the proof of
Theorem 1.1.

The converse is clear. �

Proof of Corollary 1.3. Let φ be a Lie centralizer. It is easily checked that φ is a
Lie triple centralizer. According to this point, the result is obtained from Corollary 1.2.
It should be noted that for A,B ∈ U we have

ξ ([A,B]) = φ([A,B])−W [A,B]
= [φ(A),B]− [WA,B]
= [ξ (A),B] = 0,

The converse is clear. �
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