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CORE INVERSE OF OPERATORS IN HILBERT SPACES

PABITRA KUMAR JENA AND BADAL SAHOO

(Communicated by B. Jacob)

Abstract. This article includes the core inverses of operators on Hilbert spaces. In addition, the
group inverses and Moore-Penrose inverses of these operators are characterised.

1. Introduction

Let H ,K ,L be the Hilbert spaces and B(H ,K ) denotes the algebra of boun-
ded linear operators from H to K . For an operator A∈B(H ,K ), if there exists an
operator B ∈ B(K ,H ) such that ABA = A, then B is called a generalized inverse of
A . Many researchers made efforts to explore different types of generalized inverses of
different operators and established relationships between them. In 2005, Honk-Ke Du
and Chun-Yuan Deng [5] explored the Drazin inverses of operators on a Hilbert space.
In this paper, they showed the existence of Drazin inverse of bounded linear operator
under Hilbert space decomposition and proved its uniqueness. In 2014, Dragana S.
Rakic, Nebojsa C. Dincic, Dragana S. Djordevic [7] defined core and group inverses
for bounded linear operators on H and found the sufficient conditions for existence
of these inverses. V. Pavlovic, D. S. Cvetkovic-IIic [8] studied representations for reg-
ular operators A ∈ B(H ,K ) and B ∈ B(K ,L ). They also established generalized
inverses for theses operators. Recently, J. M. Mwanzia, M. Kavila and J. M. Khalagai
[6] studied Moore-Penrose inverses of closed range linear bounded operators on H . A
good survey of resources for generalized inverses are also found in [2, 9, 10].

These ideas of generalized inverses propelled us to think about the following ques-
tions.

a) Does there exist bounded linear operators on Hilbert space whose core inverses
could be found?

b) If yes, then how are they interlinked with other generalized inverses?
The answers to these questions are validated. Section-1 includes the brief intro-

duction and the literature review associated with this work. In section-2, we introduce
several notations and preliminaries related to this work. In section-3, we introduce the
matrix representations of idempotent operators and closed range normal operators un-
der some Hilbert space decompositions of H and also deduce the core inverse, group
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inverse and Moore-Penrose inverse of these operators. Some relationships between op-
erators and their generalized inverses are established. The existence of core inverse is
explained through the right shift operator on l2(Z). Section-4 includes bounded linear
operators A which has the operator matrix representation under the Hilbert space de-
composition H = M⊕M⊥, where M is the closed invariant subspace of H under
A. Further, the above generalized inverses for posinormal operators are studied. In the
last section, we establish matrix representations and generalized inverses for regular
operators A,B ∈ B(H ,K ).

2. Preliminaries and notations

If H = K , then B(H ,K ) is denoted as B(H ). If A∈B(H ) , then Ran(A) ,
Nul(A) represent the range and null space of A respectively. The set of all idempotent
operators, set of all closed range normal operators are denoted by Sidm and Scn re-
spectively. Sci(A) represents the set of all closed invariant subspaces of H under A,
where A∈B(H ). Here SMi and SM⊥

i
denote the set of all invertible operators on M

and M⊥ respectively.

DEFINITION 2.1. An operator A ∈ B(H ,K ) is said to have core inverse X ∈
B(K ,H ) if the following conditions will hold.

1. AXA = A 2. Ran(A) = Ran(X) 3. Nul(A∗) = Nul(X).
Throughout this paper, we denote core inverse of A as A c©.

DEFINITION 2.2. An operator A� ∈ B(H ,K ) will be the group inverse of A ∈
B(K ,H ) if the following properties are satisfied.

1. AA�A = A 2. A�AA� = A� 3. AA� = A�A.

DEFINITION 2.3. For A∈B(H ,K ) , the Moore-Penrose inverse A† ∈B(K ,H )
of A is an unique generalized inverse which satisfies the following Moore-Penrose
equations.

1. AA†A = A 2. A†AA† = A† 3. (AA†)∗ = AA† 4. (A†A)∗ = A†A. An operator
A ∈ B(H ,K ) having Moore-Penrose inverse is called regular operator.

In this paper, the core, group and Moore-Penrose inverses of operators on the
Hilbert spaces have been studied using the Hilbert space decompositions and differ-
ent properties of these operators are established. In fact, some illustrations have been
demonstrated for the existence of core inverses of some operators.

An operator A ∈ B(H ) is called idempotent if A2 = A, normal if AA∗ = A∗A
and posinormal if there exists a positive operator S ∈ B(H ) such that AA∗ = A∗SA.
A closed range operator A ∈B(H ) is termed as equal-projection (EP-operator) if one
of the following conditions is satisfied:

Ran(A) = Ran(A∗) or Nul(A) = Nul(A∗) or AA† = A†A or A† = A�. A ∈B(H )
is posinormal if Ran(A) ⊆ Ran(A∗). If A ∈ B(H ), then σ(A) , σess(A) , σp(A) and
ρ(A) represent spectrum, essential spectrum, point spectrum and resolvent of A re-
spectively. Let D(σ(A)) denotes the set of limit points of the spectrum σ(A).
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Throughout this paper, for any A ∈ B(H ) and H = H1⊕H2, where H1,H2 are
Hilbert subspaces of H , we consider the matrix representation of A as

A =
[

A1 A2

A3 A4

]
:

[
H1

H2

]
→

[
H1

H2

]
,

where
A1 : H1 → H1, A2 : H2 → H1,

A3 : H1 → H2, A4 : H2 → H2.

3. Main results

In this section, we investigate the core inverse, group inverse and Moore-Penrose
inverse of the idempotent operator A ∈ B(H ). Also, we study the equivalent condi-
tions for EP-ness of the idempotent operators.

THEOREM 3.1. If A ∈ B(H ) be the idempotent operator, then the core inverse
of A is the projection operator.

Proof. Let A : H → H be the idempotent operator i.e A2 = A. Now, ∀y ∈
Ran(A),

Ay = A(A(x)) = A2(x) = A(x) = y (∵ A(x) = y)
⇒ Ay = y ∀y ∈ Ran(A)
⇒ A = I on Ran(A).

Now, ker(I −A) = Ran(A) implies Ran(A) is closed, then we have H = Ran(A)⊕
(Ran(A))⊥ = Ran(A)⊕Nul(A∗) . Let A =

[
A1 A2

A3 A4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
, where

A1 : Ran(A) → Ran(A), A2 : Nul(A∗) → Ran(A),

A3 : Ran(A)→ Nul(A∗), A4 : Nul(A∗) → Nul(A∗).
For x ∈ Ran(A) , A3(x) = A|Ran(A)(x) ∈ Ran(A) and A3(x) ∈ Nul(A∗) .

⇒ A3(x) = 0 ∀x ∈ Ran(A) implies A3 = 0. Similarly A4 = 0. So A =
[

I A2

0 0

]
:[

Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
. For the core invertible, AXA = A , Ran(X) = Ran(A) and

Nul(X) = Nul(A∗). Let X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
. Now,

[
I A2

0 0

][
X1 X2

X3 X4

][
I A2

0 0

]
=

[
I A2

0 0

]

⇒
[

X1 +A2X3 (X1 +A2X3)A2

0 0

]
=

[
I A2

0 0

]

⇒ X1 +A2X3 = I and (X1 +A2X3)A2 = A2.
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Again,

Ran(X) = Ran(A)

⇒
{

X

[
h1

h2

]
: h1 ∈ Ran(A), h2 ∈ Nul(A∗)

}
=

{
A

[
k1

k2

]
: k1 ∈ Ran(A),k2 ∈ Nul(A∗)

}

leads to X3h1 + X4h2 = 0 ∀ h1 ∈ Ran(A) , h2 ∈ Nul(A∗) which implies X3 = 0 and
X4 = 0.

So, X =
[

X1 X2

0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

Now,

Nul(A∗) =
{[

k1

k2

]
∈

[
Ran(A)
Nul(A∗)

]
: A∗

[
k1

k2

]
=

[
0
0

]}
=

{[
0
k2

]
: k2 ∈ Nul(A∗)

}
.

From Nul(X) = Nul(A∗) , we get X2k2 = 0 ∀ k2 ∈ Nul(A∗) ⇒ X2 = 0. Since X1 +
A2X3 = I, then X1 = I. Thus the core inverse of the idempotent operator A is A c© =[

I 0
0 0

]
, which is the projection operator on Ran(A). �

THEOREM 3.2. The group inverse of idempotent operator A ∈ B(H ) is itself.

Proof. If A is the idempotent operator, then from theorem (3.1), A has the repre-
sentation

A =
[

I A2

0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

Let X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

Now,

AXA = A implies X1 +A2X3 = I and (X1 +A2X3)A2 = A2. (3.1)

Again from

XAX = X , we have X3(X2 +A2X4) = X4. (3.2)

From the equation AX = XA, one can deduce the following equations

X3 = 0, X1 +A2X3 = X1, X2 +A2X4 = X1A2. (3.3)

Since X3 = 0, then from equations (3.1) and (3.2), X1 = I , X4 = 0. Also from equation

(3.3), X2 = A2. Hence the group inverse of the idempotent operator A is A� =
[

I A2

0 0

]
:[

Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
, which is A. �
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THEOREM 3.3. The Moore-Penrose inverse of idempotent operator A =
[

I A2

0 0

]
:[

Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
is A† =

[
I−A2X3 0

X3 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
, where

X3A2 , A2X3 are self adjoint and X∗
3 = (I−A2X3)A2.

Proof. The matrix representation of the idempotent operator is

A =
[

I A2

0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

Let X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

Now,
AXA = A ⇒ X1 +A2X3 = I and (X1 +A2X3)A2 = A2. (3.4)

Again
XAX = X ⇒ X3(X2 +A2X4) = X4. (3.5)

From, (AX)∗ = AX ⇒X2+A2X4 = 0. Using this result in equation (3.5), we get X4 = 0
and also X2 = 0. Now from the given conditions, one can get (XA)∗ = XA. Using the
equation (3.4), we get the required result. �

COROLLARY 3.4. If A ∈ B(H ) is an idempotent operator, then the following
conditions are equivalent.

a) A is a Projection.
b) A is EP.
c) A is normal.

Proof. (a) ⇒ (b) Let A is a projection, then

A =
[

I 0
0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

Here Ran(A) = Ran(A∗) ⇒ A is EP.
(b) ⇒ (c) Let A is EP, then A† = A� ⇒ A2 = 0 ⇒ A = PRan(A). So A is normal.
(c) ⇒ (a) If A is normal ⇒ A2 = 0 ⇒ A = PRan(A). �
Now, core inverses of the closed range normal operators are established under a

Hilbert space decomposition. In addition, we study group inverses and Moore-Penrose
inverses of these operators. Also the existence of core inverses of normal Fredholm
operators on the Hilbert space is given.

THEOREM 3.5. If A ∈B(H ) is a closed range normal operator and 0 /∈ σp(A),
then the core inverse of A is

A c© =
[

A−1
1 0
0 0

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
.
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Proof. Let A∈B(H ) . Since A is normal, then Nul(A)= Nul(A∗) and Ran(A)=
Ran(A∗) . As Ran(A) is closed in H , then H = Ran(A)⊕Ran(A)⊥ = Ran(A)⊕
Nul(A∗) = Ran(A)⊕Nul(A).

Let

A =
[

A1 A2

A3 A4

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
,

where
A1 : Ran(A) → Ran(A), A2 : Nul(A) → Ran(A),

A3 : Ran(A)→ Nul(A), A4 : Nul(A) → Nul(A).

For x ∈ Ran(A) , (x) = A|Ran(A)(x) ∈ Ran(A) and A3(x) ∈ Nul(A) leads to A3(x) =
0 ∀x ∈ Ran(A). So A3 = 0. Similarly A4 = 0 and A2 = 0.

Thus, A =
[

A1 0
0 0

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
. Since 0 /∈ σp(A), then ker(A) =

{0}⇒ ker(A1) = 0 and also Ran(A) = Ran(A1), implies A1 is invertible.

If X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
. Now, from AXA = A , we can get

X1 = A−1
1 .

From Ran(X) = Ran(A) , one can compute X3 = 0 and X4 = 0.
If Nul(X) = Nul(A∗), then X2 = 0.

Thus A c© =
[

A−1
1 0
0 0

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
, which is the core inverse of

A. �

EXAMPLE 3.6. Let I : H → H be the identity operator which is closed range
normal operator and 0 /∈ σp(I), , then the core inverse of I is the projection operator
under the Hilbert space decomposition H ⊕{0}.

COROLLARY 3.7. The group inverse and the Moore-Penrose inverse of the closed
range normal operator A ∈ B(H ) with 0 /∈ σp(A), equals its core inverse.

Proof. If A is closed range normal operator and 0 /∈ σp(A), then from theorem
(3.5), A has the representation

A =
[

A1 0
0 0

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
.

Then, the result follows from [7]. �

COROLLARY 3.8. If A ∈ B(H ) is normal and 0 /∈ σess(A), then core inverse of
A exists.

Proof. Since 0 /∈ σess(A), then A is Fredholm operator. So Ran(A) is closed. As
A is normal, then H = Ran(A)⊕Nul(A). Then from the theorem, A has the represen-

tation A =
[

A1 0
0 0

]
:

[
Ran(A)
Nul(A)

]
→

[
Ran(A)
Nul(A)

]
.
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Since Nul(A1) = Ran(A)∩Nul(A) = {0} and Ran(A1) = Ran(A). Hence result
follows from the theorem. �

EXAMPLE 3.9. Let H = l2(Z) = {u = (· · ·u−2,u−1,u0,u1,u2, · · ·) :
∞

∑
i=−∞

u2
i <

∞}. The right shift operator on H defined by R(fi) = fi+1 , i ∈ Z, where { fi} is an
orthonormal basis for l2(Z). As R is normal and fredholm, then the core inverse of R

is R c© =
[

A1 0
0 0

]
:

[
Ran(R)
Nul(R)

]
→

[
Ran(R)
Nul(R)

]
, under the decomposition H = H ⊕{0}

and A1 : H → H is any invertible operator.

REMARK 3.10. If A1 : H → H be the identity operator, then the core inverse
of right shift operator is the projection operator.

4. Core inverses of operators associated with invariant subspaces

In this section, we obtain the core inverses, group inverses and Moore-Penrose
inverses of some operators on H = M⊕M⊥, where M is invariant under A.

THEOREM 4.1. If M ∈ Sci(A) , 0 ∈ ρ(A1)∩ρ(A4), then the core inverse of A is

A c© =
[

A−1
1 −A−1

1 A2A
−1
4

0 A−1
4

]
:

[
M
M⊥

]
→

[
M
M⊥

]
,

where Ran(A2) = M.

Proof. Since M is a closed invariant subspace of H under A, then the operator A
has the representation of the form

A =
[

A1 A2

0 A4

]
:

[
M
M⊥

]
→

[
M
M⊥

]
.

Let X =
[

X1 X2

X3 X4

]
:

[
M
M⊥

]
→

[
M
M⊥

]
. From AXA = A, one can deduce the equa-

tions:

(A1X1 +A2X3)A1 = A1, (A1X1 +A2X3)A2 +(A1X2 +A2X4)A4 = A2,

A4X3A1 = 0 and A4X3A2 +A4X4A4 = A4.

As 0 ∈ ρ(A1)∩ρ(A4) ⇒ A1 and A4 are invertible, then X3 = 0, X1 = A−1
1 , X4 = A−1

4
and X2 = −A−1

1 A2A
−1
4 .

Now, X =
[

A−1
1 −A−1

1 A2A
−1
4

0 A−1
4

]
:

[
M
M⊥

]
→

[
M
M⊥

]
.

Here Ran(X) = Ran(A), as Ran(A2) = M. Since 0∈ ρ(A1)∩ρ(A4)⇒ A1 and A4

are invertible, then Nul(A∗) = Nul(X) = {0} . So X is the core inverse of A . Hence
the result follows. �
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COROLLARY 4.2. If A ∈ B(H ) be the closed range posinormal operator, 0 /∈
D(σ(A1)), ‖I −A4‖Nul(A) < 1, then the core inverse of A under the decomposition
H = N(A)⊥⊕Nul(A) is

A c© =
[

A−1
1 −A−1

1 A2A
−1
4

0 A−1
4

]
:

[
Nul(A)⊥
Nul(A)

]
→

[
Nul(A)⊥
Nul(A)

]
.

Proof. Since 0 is not a limit point of spectrum of A1, then from [1], A1 is invert-
ible. As ‖I−A4‖Nul(A) < 1, then A4|Nul(A)⊥ is invertible. Hence result follows. �

COROLLARY 4.3. If M reduces A, A1 ∈ SMi and A4 ∈ SM⊥
i

, then the core in-
verse of A is

A c© =
[

A−1
1 0
0 A−1

4

]
:

[
M
M⊥

]
→

[
M
M⊥

]
.

Proof. Since M reduces A, then A2 = 0. Hence the result follows from the theo-
rem. �

COROLLARY 4.4. If M ∈ Sci(A) , A1 ∈ SMi , A4 ∈ SM⊥
i

, then the group inverse
of A is same as core inverse.

Proof. From the theorem, if AXA = A , then X has the form

X =
[

A−1
1 −A−1

1 A2A
−1
4

0 A−1
4

]
:

[
M
M⊥

]
→

[
M
M⊥

]
.

Since XA = I, then XAX = X and XA = AX . Hence the result follows. �

COROLLARY 4.5. If A,B ∈ B(H) with AB = BA and Nul(B) reduces B, then

a) The representation of A is A =
[

A1 0
A3 A4

]
:

[
Ran(B∗)
Nul(B)

]
→

[
Ran(B∗)
Nul(B)

]
.

b) If A1 and A4 are invertible, then the core inverse of A is

A c© =
[

A−1
1 0

−A−1
4 A3A

−1
1 A−1

4

]
:

[
Ran(B∗)
Nul(B)

]
→

[
Ran(B∗)
Nul(B)

]
,

where Ran(A3) = Nul(A) .

Proof. a) Since A is an operator in the commutant of B and N(B) reduces B, then
from [1], the result follows.

b) As A1 and A4 are invertible with Ran(A3) = Nul(A), the result emanates from
the theorem. �
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COROLLARY 4.6. If A,B ∈ B(H) with AB = BA and B is posinormal, then the
core inverse of A is

A c© =
[

A−1
1 0

−A−1
4 A3A

−1
1 A−1

4

]
:

[
Ran(B∗)
Nul(B)

]
→

[
Ran(B∗)
Nul(B)

]
,

where Ran(A3) = Nul(A) .

Proof. Since B is posinormal, then Ran(B) reduces B. Hence the result follows
from the theorem. �

5. Core inverses of regular operators

In this section, we establish the core inverses, group inverses and Moore-Penrose
inverses of regular operators on the Hilbert space.

THEOREM 5.1. If A,B ∈ B(H,K) be the two regular operators with Ran(B) =
Ran(A), then

a) The representation of A is A =
[

A1 A2

0 0

]
:

[
Ran(B)
Nul(B∗)

]
→

[
Ran(A)
Nul(A∗)

]
.

b) If A2 is invertible, then the core inverse of A is A c© =
[
C1 0
0 0

]
:

[
Ran(A)
Nul(A∗)

]
→[

Ran(B)
Nul(B∗)

]
, where Ran(C1−A1) = Ran(A) , A1C1 = I.

Proof. a) Since A,B are regular, then AX and BX are projectors and Ran(AX) =
Ran(A) , Ran(BX) = (B) ⇒ Ran(A) and Ran(B) are closed. Then H = Ran(B)⊕
Nul(B∗) , K = Ran(A)⊕Nul(A∗). Hence the result follows.

b) Let X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
. From AXA = A, we get

(A1X1 +A2X3)A1 = A1 and (A1X1 +A2X3)A2 = A2. (5.1)

As Ran(B) = Ran(A) and Nul(B∗) = Nul(A∗), then from Ran(X) = Ran(A), one can
deduce X3 = 0 and X4 = 0. Similarly from invertibility of A2 and Nul(X) = Nul(A∗) ,

X2 = 0. Then, X =
[

X1 0
0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
.

Now, since Ran(X1−A1) = Ran(A) and A1X1 = I for any X1 : Ran(A)→ Ran(B),
then the result follows. �

COROLLARY 5.2. If A1X1 = X1A1 = I, then the core inverse of A is

A c© =
[

A−1
1 0
0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
,

where A2 is surjective.
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THEOREM 5.3. If A,B are two regular operators with Ran(B) = Ran(A), then

A† =
[

A−1
1 (I−A2X3) 0

X3 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
,

where 0 /∈ σ(A1) , A−1
1 (I−A2X3)A1 , X3A2 are self adjoint and (X3A1)∗ = X3A2.

Proof. Let X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
, be the Moore-Penrose in-

verse of A. Then from AXA = A we will have

(A1X1 +A2X3)A1 = A1 and A1X2 +A2X4 = A2. (5.2)

As XAX = X , then will get the equations

X1(A1X1 +A2X3) = X1, X1(A1X2 +A2X4) = X2

X3(A1X1 +A2X3) = X3, X3(A1X2 +A2X4) = X4.
(5.3)

Now (AX)∗ = AX implies

(A1X1 +A2X3)∗ = A1X1 +A2X3, (A1X2 +A2X4) = 0. (5.4)

Substituting equation (5.4) in equation (5.3), we get X4 = 0 and also from equation
(5.4), X2 = 0. Again as 0 /∈ σ(A), then from (5.2), X1 = A−1

1 (I −A2X3). Finally, the
conditions X1A1 , X3A2 are self adjoint and (X3A1)∗ = X3A2, lead to (XA)∗ = XA. So

A† =
[

A−1
1 (I−A2X3) 0

X3 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
. �

THEOREM 5.4. If A,B∈B(H,K) be the regular operators with Ran(B)= Ran(A)
and A1 is invertible, then the group inverse of A is

A� =
[

A−1
1 (A−1

1 )2A2

0 0

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
.

Proof. If X =
[

X1 X2

X3 X4

]
:

[
Ran(A)
Nul(A∗)

]
→

[
Ran(B)
Nul(B∗)

]
. From AXA = A, we get

(A1X1 +A2X3)A1 = A1 and (A1X1 +A2X3)A2 = A2. (5.5)

Again, from XAX = X ,

X1(A1X1 +A2X3) = X1, X1(A1X2 +A2X4) = X2

X3(A1X1 +A2X3) = X3, X3(A1X2 +A2X4) = X4.
(5.6)

From, AX = XA ,

(A1X1 +A2X3) = X1A1, (A1X2 +A2X4) = X1A2

X3A1 = 0, X3A2 = 0.
(5.7)

As A1 is invertible, then from (5.7), X3 = 0 and form (5.5), X1 = A−1
1 . Now from

(5.6), X4 = 0. Also from (5.7), X2 = (A−1
1 )2A2. Hence the result follows. �
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THEOREM 5.5. If A ∈ B(H1 ⊕H⊥
1 ) with A =

[
0 0
A3 A4

]
, where H1 is a Hilbert

space, then

a)A c© =
[

0 0
0 A−1

4

]
:

[
H1

H⊥
1

]
→

[
H1

H⊥
1

]
, where ‖I−A4‖H⊥

1
< 1 and Ran[A3,A4] = H⊥

1 .

b) If C ∈ B(H⊥
1 ) and 0 /∈ σp(C), then

A c© =
[

0 0
0 C

]
:

[
H1

H⊥
1

]
→

[
H1

H⊥
1

]
,

where ‖I−A3‖ < 1 , A4C = I and Ran[A3,A4] = Ran(C).

Proof. a) Let X =
[

X1 X2

X3 X4

]
:

[
H1

H⊥
1

]
→

[
H1

H⊥
1

]
, be the core inverse of A. Then

from AXA = A, we have

(A3X2 +A4X4)A3 = A3 and (A3X2 +A4X4)A4 = A4. (5.8)

If Ran(X) = Ran(A) , then one can deduce

X1h1 +X2h2 = 0 and X3h1 +X4h2 = A3h1 +A4h2 ∀h1 ∈ H1, h2 ∈ H⊥
1 (5.9)

implies X1 = X2 = 0. Now X =
[

0 0
X3 X4

]
:

[
H1

H⊥
1

]
→

[
H1

H⊥
1

]
.

As ‖I − A4‖H⊥
1

< 1, then A4 is invertible. So Nul(A∗) =
{[

k1

0

]
: k1 ∈ H1

}
.

If Nul(X) = Nul(A∗), then we get X3 = 0. As A4 is invertible, then from equation
(5.8) , we have X4 = A−1

4 . Since Ran[A3,A4] = H⊥
1 , then equation (5.9) holds, implies

Ran(X) = Ran(A). Hence A c© =
[

0 0
0 A−1

4

]
:

[
H1

H⊥
1

]
→

[
H1

H⊥
1

]
.

b) If X =
[

0 0
0 C

]
:

[
H1

H⊥
1

]
→

[
H1

H⊥
1

]
. As A4C = I, then AXA = A. Again from

‖I − A3‖ < 1, A3 is invertible implies Nul(A∗) =
{[

k1

0

]
: k1 ∈ H1

}
. Since 0 /∈

σp(C), then Nul(X) = Nul(A∗). Finally, given condition Ran[A3,A4] = Ran(C) im-
plies Ran(X) = Ran(A). Thus X is the core inverse of A. �

6. Conclusion

In this work, we have focused on the generalized inverses of operators which have
the different operator matrix representations with respect to the several Hilbert space
decompositions. The core inverses of operators are used to solve the linear system of
equations, signal processing such as image restoration, noise reduction and deconvolu-
tion. In addition, core inverse techniques are applied for regularization and constrained
optimization tasks in optimization problems.
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