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A SPECIAL PROPERTY OF RESISTANCE MATRICES
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Abstract. We deduce a new property exhibited by the resistance matrices of connected graphs.
Specifically, we show that if R = (r;;) is the resistance matrix of a connected graph on n vertices,
then every off-diagonal entry in the Moore-Penrose inverse of

n n
Diag(z Tljyeees 2 rnj) =R
=1

J=1

is negative. Thus, we establish that the Moore-Penrose inverse of the resistance Laplacian ma-
trices are M -matrices.

1. Introduction

This paper aims to generalize the following technical result in [1] for an arbitrary
connected graph.

THEOREM 1. Let D = (d;j) be the distance matrix of a weighted tree on n ver-
tices. Then, the Moore-Penrose inverse of

n n
Diag(2d1j7...,2d,,j) —-D
j=1 j=1

is an M-matrix.

In our context, a positive semidefinite matrix is an M-matrix if all the off-diagonal
entries are non-positive. Let ¢ be a connected graph with n vertices. We assume that
each vertex in ¢ is uniquely labelled from 1 to n and each edge (i, ;) is assigned a
positive weight w;;. The length of a path & is computed by adding all the weights
on &. The distance between two vertices is then the length of the shortest path con-
necting them. We denote this by d;; and define the distance matrix by D(¥) := (d;;).
Resistance distance is another metric used in graphs. The Laplacian matrix is defined
by L(¥) := Diag(Zf}zl Opj,--- ,Z;le 0y;) — (04j), where
€
W,‘j

0 else.

if i and j are adjacent
0 =

Mathematics subject classification (2020): 05C50.

Keywords and phrases: Resistance matrices, Laplacian matrices, P-matrices, connected graphs, com-
plete graphs, Jacobi identity.

* Corresponding author.

© depay, Zagreb 611
Paper OaM-18-36


http://dx.doi.org/10.7153/oam-2024-18-36

612 R. BALAII, G. LATHER, H. KURATA AND V. GUPTA

Let g;; denote the (i, )™ entry in the Moore-Penrose inverse of L(%). Then the resis-
tance distance between i and j is defined by

rij = gii+8jj — 28ij-

The resistance matrix is R(%¢) := (r;;) . Resistance distance has certain advantages over
the shortest distance. Its significance and properties are discussed elaborately in [2]. In
particular, the resistance distance is always less than or equal to the classical distance,
that is, r;; < d;; for all i, j and the equality holds if and only if ¢ is a tree. We define
the resistance Laplacian matrix of a connected graph ¢ on n vertices by

Dlag(E Fljyeees 2 r,,j) —R(g)
=1

J=1

In this article, we deduce the following special property of resistance matrices.

THEOREM 2. Let 4 be a connected graph with n vertices. Then, the Moore-
Penrose inverse of the resistance Laplacian matrix of ¢ is an M-matrix.

Since R(¥) = D(¥) if and only if ¢ is a tree, Theorem 1 follows immediately
from our result. The proof of Theorem 1 in [1] uses specific arguments that work only
for trees. On the other hand, the proof of Theorem 2 is simpler and relies only on
techniques from the theory of matrices.

Let AT denote the Moore-Penrose inverse of a matrix A. We shall say that A has
the M-property if both A and A" are M-matrices. In connection with this, we note the
following questions from the existing literature:

(Q1) Find necessary and sufficient conditions for the M-property.
(Q2) Classify connected graphs whose Laplacian matrices exhibit the M-property.

(Q3) For a connected graph ¢, determine edge weights that ensure L(¥) acquires the
M-property.

Deutsch and Neumann [3] have established necessary conditions for the M-property.
So far, only a few connected graphs are known to have Laplacian matrices possessing
the M-property. A result shown in [4] asserts that if T is a tree, then L(T) has the
M-property if and only if T is a star. Further investigations on weighted graphs with
Laplacians exhibiting the M-property appear in Styan and Subak-Sharpe [6], Kirkland
and Neumann [5] and Kirkland, Neumann and Shader [4].

Theorem 2 finds a rich class of matrices with the M-property. Let K, be the
complete graph on n vertices. The Laplacian of K, is then a positive multiple of its
Moore-Penrose inverse and hence carries the M-property. The conclusion of Theorem
2 extends the M-property to the weighted case: If each edge (i, ;) of K, is assigned
the weight r;;, then the resulting weighted Laplacian matrix retains the M-property.
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2. Preliminaries

Notations

e If A is a k x k matrix with columns a!,...,a*, then we write A = [[al,...,ak]] .

The determinant of A is denoted by det(A).

e The identity matrix is denoted by / and the column vector of all n-ones by 1.
The symbol J will denote the order n matrix [1,...,1]. If k < n, then we use
I, 1; and J;.

e If O is an nx n matrix and T is a subset of {1,...,n}, then Or will denote
the principal submatrix of Q obtained by selecting rows and columns indexed
from I'. The submatrix obtained by removing the p™ row and g™ column will
be denoted by Q(p|q).

DEFINITION 1. An n X n real matrix is called a P-matrix if all the principal mi-
nors are positive. If A+ €/ is a P-matrix for any € > 0, then A is called a Py-matrix.
Equivalently, A is a Pg-matrix if and only if all the principal minors of A are non-
negative.

3. Main result

We shall prove a more general result from which Theorem 2 will follow immedi-
ately.

THEOREM 3. Let L be an n x n symmetric matrix. Suppose L is an M-matrix,
rank(L) =n—1 and L1=0. Let r;j := hj;+h;j; — 2h;;, where h;j is the (i, /)™ entry
in L'. If R := (ry;), then the Moore-Penrose inverse of

n n
Dlag(E rlj,...,Ernj)—R
=1

J=1

is an M-matrix. Furthermore, in this M -matrix, all the off-diagonal entries are nega-
tive numbers.

Proof. Define

M=

0, := )Y rij, S:=Diag(6y,...,6,) —R and N (&) i,j=1,...,n.

1

~
I

We need to show that S is an M-matrix. If S is 2 x 2, then the result can be verified
directly. In the sequel, we assume n > 2. Since S is positive semidefinite, ST is also
positive semidefinite. Thus, to complete the proof, we need to show that &;; < 0 for
any i < j. By a permutation similarity argument, it suffices to show that & := &j, < 0.
We have the following claim now.
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CLAIM 1. Let

Bs+63 Bza ... PBaa
Bsz  PBaat0s... Pu

ﬁnf‘a ﬁn4 X ﬁnn + en
where
ﬂ,‘j Z=2(h21—hi1—hj2—|-hij) i,j=3,...,n.
Then, & < 0 if and only if det(B) > 0.
Proof of the claim 1. Let b;; denote the (i, )™ entry in B. We first express b;; in
terms of r;;. By writing

Bij = — (o2 +hit = 2ho1) + (hii + hiy — 2hin ) + (hjj + hoo — 2hoj) — (hig+ hjj — 2hij),

we see that ﬁij =—r1+ria+nr;—rij. Thus,

PR TR etV et B R o
v —rmi+ri+ni+6 i=j.

Now, to prove the claim, we use similar ideas as in [1]. Since rank(LT) =n—1and L'
is positive semidefinite, the off-diagonal entries in R are positive numbers. Hence, the
off-diagonal entries of S are negative. Furthermore, S1 = 0. Thus, S(1]1) is strictly
diagonally dominant, and hence 7y := det(S(1|1)) > 0. This says that rank(S) =n— 1.
Therefore, SST=1— % . Using this equation, we obtain

J
S+J) 7t =85T4+ 5. 3.1
S+0 =5+ G
Let T be the (1,2)™ entry in (S+J)~! and C:= S(1]2). By Cramer’s rule,
det(C+1,_,1
_ det(CHJ(12))  det(C+1,41 ) (32)

det(S+J) det(S+J)

Since S1 =0, all the cofactors of S are equal and therefore, adj(S) = yJ. Hence,
1'adj(S)1 = n?y and det(C) = —y. Put v:=1/_,C~'1,_;. By the matrix determinant
lemma,

det(C+1, 11, ;) =det(C)(1+v) = —y(1 +v);
det(S+J) = det(S) + 1" adj($)1 = ny.

By (3.1) and (3.2), we get £ =1— niz and 7= niz(l +v). Eliminating 7, we
have & = -5 . We now express det(B) in terms of v. Let

R
P (12
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1 -1 . .
Then, F~! = (0 I”2> . Denoting the (i, /) entry of S by s;;, we see that
n—2
$21 —S$21 4523 ... — 821+ 852,
R P =821 T 831 8§21 — 831 — 523 T 533 ... $21 — 831 — 520+ S3
=821 4 Sp1 8§21 — Sp1 — 823 +Sp3 - .. $21 = Spl — $20 + Sun
Since

ey i#E]
Sii = . .
o i=

it follows that B = G(1|1). As det(C) = —y and det(F) = 1, det(G) = —y. The
(1,1)™ entry of G~ is

detL(G) det(G(1]1)) = —%det(B).

Furthermore, an easy observation reveals that the (1,1)™ entry in G~ is v. We
thus have !
V= —7—/det(B) = n2§.

Hence, & < 0 if and only if det(B) > 0. The proof of the claim is complete.

We now proceed to show that det(B) > 0. Define

B33 B34 --- Ban
= ﬁj‘} ﬁjm ﬁ?n and E := Diag(6s,...,6,).
Bus Bus .. B

Now, B=A+ E. We first establish that A is a Py-matrix. Let Abea principal subma-
trix of A. Without loss of generality, let

B33 Baa .. B
o Baz Baa - Pax

Bz Brs - Bk
We shall show that det(g) > 0. As usual, let ¢; denote the k™ vector in the standard
basis of R”". Define

P:= [[61762—(€3+~~~+ek)7e37~”7en]]

Q:: [[61362363_617"'aek_el7ek+l7"'aen]]'



616 R. BALAII, G. LATHER, H. KURATA AND V. GUPTA

Let L' = [f',...,f"] . Then,
L'g= |[f17f27f3 _fl,,..7fk_f1’fk+1’.”7fn]] .
Let
A:={3,...0k} and V:={1,...,n} N A.
If i, j € A, then the (i, /)™ entry of PLTQ is

—ebf! +eiff + e ft —eift = —haj+ hij+hoy —hiy = %

Thus, A = 2(PL'Q),. By a similar argument, (PJQ)x = 0. Therefore, we can write A

as
A=2(P(L"+ %)Q)A. (3.3)

The inverse of P and Q are
P l=[el,er+-+ep,e3,....e1]

—1
Q" =[ei,er,e3+e1,....ex+e1 €41, .,6n]-

Define M := Q' (L+J). Let l;;, m;; and o;; denote the (i, )" entries of L, M and
MP~". Then,

k
lj+ 3 Lj+k—1 i=1
r=3

mijj = (A)
Lij+1 else.
k
. =2
0 = r§2 Mir (B)
mjj else.

Since L1 =0 and rank(L) =n — 1, adj(L) = uJ, where g > 0. Put V := MP~!.

CLAIM 2. det(A) = —3— det(Vy).

nu
Proof of the claim 2. 'We know that det(P) = det(Q) = 1. So,
det(V) = det(MP~') = det(Q ' (L+J)P~') = det(L+J).
By the matrix determinant lemma,
det(L+J) = n’u.
By Jacobi’s determinant formula,

det((V™1)a) det(V) = det(Vy). (3.4)
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The assumptions on L imply L' + 2 = (L+J)~!. Thus,
vi=pL + ~J)Q. (3.5)
Using (3.3), (3.4) and (3.5), we get

det(A) = det(Vy) = % det(Vy).

2
det(V)

This completes the proof of the claim.
We now compute the column sums of V. In view of (B), the (i, j)™ entry of V
is given by ;.

CLAIM 3. If j €V, then

(k-1) j=2
Sa=1 :
s n jeV~{2}.

Proof of the claim 3. Let i € V and j € V~ {2}. Then, by (B),
Z Oij = Z mij,
eV eV
and by (A),

k
I+ lyi+k—1 i=1
mij =24 Eg v (3.6)

Lij+1 i=2k+1,...;n

Therefore,

Zau—Zl,j—i—n—n

eV i=
Let j =2. Then, by (B),

2a12—2m1r+2m2r+2mk+1 +- +Zmnr

ieV
By (3.6), we have

lej+2(r2+ )+ (k=1)(k—1) i=1
Zml}"_ / r=3
Zlu+( 1) ie V{1}.

Therefore,

206,2—2124- —l—Elk—i-n k—1)=n(k—1).

i€V
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This proves the claim.
The row sums of Vy are computed now.

CLAIM 4. Let i€ V~ {1}.Then, ¥ o =n.
jev

Proof of the claim 4. In view of equations (A) and (B),
2 Qi =m; + Emir = El,-j—l-n:n.
jev r=2 j=1
The proof of the claim is complete.
Let 0 := det(Vy). Utilising the previous claims, we now show that ¢ is non-
negative.

CLAIM 5. 0 >0.

Proof of the claim 5. Define

AJ' = Z o VAS V.
eV
As the determinant is multilinear in columns,
A«l 2/2 z/k+1 e A«n

01 022 O kt1)y -+ Oon
0 =det | h+1)1 Ok+1)2 Olk1)(k+1) -+ Ak+1)n

Oy (0/%) an(k+1) ... Oy
By Claims 3 and 4,
1 k—1 1 o1
%51 (0%)) Dkr1) -+ O2n
d =ndet | M)l Hhr)2 K1) (k+1) -+ Hrtn | and Y ogj=n i€V.
. . . . . jev
Ol (0/%) an(k+1) oo Oy

Thus, by the multilinearity of the determinant,

1 1 1 1
o 1 opyry oo 0o
9 = n2det | %kt 1 Qurnykr) -+ Qs )n

oy 1 Cp(k+1) -+ O
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In view of (A) and (B),

1 1 1 1
Li+1 1 lz(k+1)+l R
0 =ndet | lern T 1 L ggngerny +1 - Lpgryn +1

lnl+1 1 ln(k+1)+1 lnn"'l
Again, by the multilinearity of the determinant,

0 1 0 .. 0
bi 1 by - b
0 =n2det | larnr Vlgsyarr) -+ Lksin

Expanding along the first row,

by b+ - b

S et l(kam l(k+1)'(k+1) l(k-&:l)n

lnl ln(k+1) lnn

Put

1922121, p = (lz(k+1),~~~712n), q:= (l(kJrl)l,...,lnl)/ and T':= {k—l—l...

Rewriting (3.7) with these notations,

_ 2 9 p
0=—-n det(qu .

As Lr is positive definite, by the Schur complement formula,

d = —n*det(Lr)(V — pLr'q).

619

(3.7)

The entries in p and ¢ are non-positive. Since Lr is an M-matrix, all entries in L !
are non-negative. Hence, pL- 1q >0. As ¥ <0 and det(Lr) > 0, it follows that d > 0.

This completes the proof of the claim.

We now complete the proof. By Claim 2, det(g) > 0. So, A is a Py-matrix.

Hence, by the multilinear property of the determinants,

det(B) = det(A+E) = det(E) +s,

where s > 0. Since det(E) > 0, we conclude det(B) > 0. The proof is complete. [

Specializing Theorem 3 to resistance matrices of connected graphs, we have the

following result.
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COROLLARY 1. Let & be a connected graph with n vertices. Then, the Moore-

Penrose inverse of the resistance Laplacian matrix of ¢ is an M -matrix. Furthermore,
in this M-matrix, all the off-diagonal entries are negative.

4. IMlustration

We illustrate our result by an example.

Figure 1: ¢

EXAMPLE 1. For ¢,

0 258129 44 56
258 0 387302314
R(@)= 5z | 129387 0 173185
44 302173 0 60
56 314185 60 0

5 5
The Moore-Penrose inverse of Diag( Y, ri1,..., X, ris) —R(¥) is
' i=1

=

5707 —828 —1288 —1953 —1638
|| 828 2222 368 558 468
| —1288 —368 3252 —868 —728
172101 _1953 558 —868 4857 —1478
1638 —468 —728 —1478 4312
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