
Operators
and

Matrices

Volume 18, Number 3 (2024), 611–621 doi:10.7153/oam-2024-18-36

A SPECIAL PROPERTY OF RESISTANCE MATRICES
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(Communicated by S. Fallat)

Abstract. We deduce a new property exhibited by the resistance matrices of connected graphs.
Specifically, we show that if R = (ri j) is the resistance matrix of a connected graph on n vertices,
then every off-diagonal entry in the Moore-Penrose inverse of

Diag(
n

∑
j=1

r1 j , . . . ,
n

∑
j=1

rn j)−R

is negative. Thus, we establish that the Moore-Penrose inverse of the resistance Laplacian ma-
trices are M -matrices.

1. Introduction

This paper aims to generalize the following technical result in [1] for an arbitrary
connected graph.

THEOREM 1. Let D = (di j) be the distance matrix of a weighted tree on n ver-
tices. Then, the Moore-Penrose inverse of

Diag(
n

∑
j=1

d1 j, . . . ,
n

∑
j=1

dn j)−D

is an M-matrix.

In our context, a positive semidefinite matrix is an M-matrix if all the off-diagonal
entries are non-positive. Let G be a connected graph with n vertices. We assume that
each vertex in G is uniquely labelled from 1 to n and each edge (i, j) is assigned a
positive weight wi j . The length of a path P is computed by adding all the weights
on P . The distance between two vertices is then the length of the shortest path con-
necting them. We denote this by di j and define the distance matrix by D(G ) := (di j) .
Resistance distance is another metric used in graphs. The Laplacian matrix is defined
by L(G ) := Diag(∑n

j=1 α1 j, . . . ,∑n
j=1 αn j)− (αi j), where

αi j :=

{
1

wi j
if i and j are adjacent

0 else.
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Let gi j denote the (i, j)th entry in the Moore-Penrose inverse of L(G ) . Then the resis-
tance distance between i and j is defined by

ri j := gii +g j j −2gi j.

The resistance matrix is R(G ) := (ri j) . Resistance distance has certain advantages over
the shortest distance. Its significance and properties are discussed elaborately in [2]. In
particular, the resistance distance is always less than or equal to the classical distance,
that is, ri j � di j for all i, j and the equality holds if and only if G is a tree. We define
the resistance Laplacian matrix of a connected graph G on n vertices by

Diag(
n

∑
j=1

r1 j, . . . ,
n

∑
j=1

rn j)−R(G ).

In this article, we deduce the following special property of resistance matrices.

THEOREM 2. Let G be a connected graph with n vertices. Then, the Moore-
Penrose inverse of the resistance Laplacian matrix of G is an M-matrix.

Since R(G ) = D(G ) if and only if G is a tree, Theorem 1 follows immediately
from our result. The proof of Theorem 1 in [1] uses specific arguments that work only
for trees. On the other hand, the proof of Theorem 2 is simpler and relies only on
techniques from the theory of matrices.

Let A† denote the Moore-Penrose inverse of a matrix A . We shall say that A has
the M-property if both A and A† are M-matrices. In connection with this, we note the
following questions from the existing literature:

(Q1) Find necessary and sufficient conditions for the M-property.

(Q2) Classify connected graphs whose Laplacian matrices exhibit the M-property.

(Q3) For a connected graph G , determine edge weights that ensure L(G ) acquires the
M-property.

Deutsch and Neumann [3] have established necessary conditions for the M-property.
So far, only a few connected graphs are known to have Laplacian matrices possessing
the M-property. A result shown in [4] asserts that if T is a tree, then L(T ) has the
M-property if and only if T is a star. Further investigations on weighted graphs with
Laplacians exhibiting the M-property appear in Styan and Subak-Sharpe [6], Kirkland
and Neumann [5] and Kirkland, Neumann and Shader [4].

Theorem 2 finds a rich class of matrices with the M-property. Let Kn be the
complete graph on n vertices. The Laplacian of Kn is then a positive multiple of its
Moore-Penrose inverse and hence carries the M-property. The conclusion of Theorem
2 extends the M-property to the weighted case: If each edge (i, j) of Kn is assigned
the weight ri j , then the resulting weighted Laplacian matrix retains the M-property.
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2. Preliminaries

Notations

• If A is a k× k matrix with columns a1, . . . ,ak , then we write A =
�
a1, . . . ,ak

�
.

The determinant of A is denoted by det(A) .

• The identity matrix is denoted by I and the column vector of all n -ones by 1 .
The symbol J will denote the order n matrix �1, . . . ,1� . If k < n , then we use
Ik , 1k and Jk .

• If Q is an n× n matrix and Γ is a subset of {1, . . . ,n} , then QΓ will denote
the principal submatrix of Q obtained by selecting rows and columns indexed
from Γ . The submatrix obtained by removing the pth row and qth column will
be denoted by Q(p|q) .

DEFINITION 1. An n×n real matrix is called a P-matrix if all the principal mi-
nors are positive. If A+ εI is a P-matrix for any ε > 0, then A is called a P0 -matrix.
Equivalently, A is a P0 -matrix if and only if all the principal minors of A are non-
negative.

3. Main result

We shall prove a more general result from which Theorem 2 will follow immedi-
ately.

THEOREM 3. Let L be an n× n symmetric matrix. Suppose L is an M-matrix,
rank(L) = n−1 and L1 = 0 . Let ri j := hii +h j j −2hi j , where hi j is the (i, j)th entry
in L† . If R := (ri j) , then the Moore-Penrose inverse of

Diag(
n

∑
j=1

r1 j, . . . ,
n

∑
j=1

rn j)−R

is an M-matrix. Furthermore, in this M-matrix, all the off-diagonal entries are nega-
tive numbers.

Proof. Define

θi :=
n

∑
j=1

ri j, S := Diag(θ1, . . . ,θn)−R and S† := (ξi j) i, j = 1, . . . ,n.

We need to show that S† is an M-matrix. If S is 2×2, then the result can be verified
directly. In the sequel, we assume n > 2. Since S is positive semidefinite, S† is also
positive semidefinite. Thus, to complete the proof, we need to show that ξi j < 0 for
any i < j . By a permutation similarity argument, it suffices to show that ξ := ξ12 < 0.
We have the following claim now.
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CLAIM 1. Let

B :=

⎛⎜⎜⎜⎝
β33 + θ3 β34 . . . β3n

β43 β44 + θ4 . . . β4n
...

...
. . .

...
βn3 βn4 . . . βnn + θn

⎞⎟⎟⎟⎠ ,

where
βi j := 2(h21−hi1−h j2 +hi j) i, j = 3, . . . ,n.

Then, ξ < 0 if and only if det(B) > 0.

Proof of the claim 1. Let bi j denote the (i, j)th entry in B . We first express bi j in
terms of ri j . By writing

βi j = −(h22 +h11−2h21)+ (hii +h11−2hi1)+ (h j j +h22−2h2 j)− (hii +h j j −2hi j),

we see that βi j = −r21 + ri1 + r2 j − ri j . Thus,

bi j :=

{
−r21 + ri1 + r2 j − ri j i �= j

−r21 + ri1 + r2i + θi i = j.

Now, to prove the claim, we use similar ideas as in [1]. Since rank(L†) = n−1 and L†

is positive semidefinite, the off-diagonal entries in R are positive numbers. Hence, the
off-diagonal entries of S are negative. Furthermore, S1 = 0. Thus, S(1|1) is strictly
diagonally dominant, and hence γ := det(S(1|1)) > 0. This says that rank(S) = n−1.
Therefore, SS† = I− J

n . Using this equation, we obtain

(S+ J)−1 = S† +
J
n2 . (3.1)

Let τ be the (1,2)th entry in (S+ J)−1 and C := S(1|2) . By Cramer’s rule,

τ = −det(C+ J(1|2))
det(S+ J)

= −det(C+1n−11′n−1)
det(S+ J)

. (3.2)

Since S1 = 0, all the cofactors of S are equal and therefore, adj(S) = γJ . Hence,
1′ adj(S)1 = n2γ and det(C) = −γ . Put υ := 1′n−1C

−11n−1 . By the matrix determinant
lemma,

det(C+1n−11′n−1) = det(C)(1+ υ) = −γ(1+ υ);

det(S+ J) = det(S)+1′ adj(S)1 = n2γ.

By (3.1) and (3.2) , we get ξ = τ − 1
n2 and τ = 1

n2 (1 + υ) . Eliminating τ , we
have ξ = υ

n2 . We now express det(B) in terms of υ . Let

F :=
(

1 1′n−2
0 In−2

)
.
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Then, F−1 =
(

1 −1′n−2
0 In−2

)
. Denoting the (i, j)th entry of S by si j , we see that

G := F ′−1CF−1 =

⎛⎜⎜⎜⎝
s21 −s21 + s23 . . . − s21 + s2n

−s21 + s31 s21 − s31− s23 + s33 . . . s21 − s31− s2n + s3n
...

...
. . .

...
−s21 + sn1 s21 − sn1− s23 + sn3 . . . s21 − sn1− s2n + snn

⎞⎟⎟⎟⎠ .

Since

si j =

{
−ri j i �= j

θi i = j

it follows that B = G(1|1) . As det(C) = −γ and det(F) = 1, det(G) = −γ . The
(1,1)th entry of G−1 is

1
det(G)

det(G(1|1)) = −1
γ

det(B).

Furthermore, an easy observation reveals that the (1,1)th entry in G−1 is υ . We
thus have

υ = −1
γ

det(B) = n2ξ .

Hence, ξ < 0 if and only if det(B) > 0. The proof of the claim is complete.

We now proceed to show that det(B) > 0. Define

A :=

⎛⎜⎜⎜⎝
β33 β34 . . . β3n

β43 β44 . . . β4n
...

...
. . .

...
βn3 βn4 . . . βnn

⎞⎟⎟⎟⎠ and E := Diag(θ3, . . . ,θn).

Now, B = A+E. We first establish that A is a P0 -matrix. Let Ã be a principal subma-
trix of A . Without loss of generality, let

Ã :=

⎛⎜⎜⎜⎝
β33 β34 . . . β3k

β43 β44 . . . β4k
...

...
. . .

...
βk3 βk4 . . . βkk

⎞⎟⎟⎟⎠ .

We shall show that det(Ã) � 0. As usual, let ek denote the kth vector in the standard
basis of R

n . Define

P : = �e1,e2 − (e3 + . . .+ ek),e3, . . . ,en�
Q : = �e1,e2,e3 − e1, . . . ,ek − e1,ek+1, . . . ,en� .
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Let L† =
�

f 1, . . . , f n
�
. Then,

L†Q =
�

f 1, f 2, f 3 − f 1, . . . , f k − f 1, f k+1, . . . , f n
�

.

Let
Δ := {3, . . . ,k} and ∇ := {1, . . . ,n}� Δ.

If i, j ∈ Δ , then the (i, j)th entry of PL†Q is

−e′2 f j + e′i f
j + e′2 f 1 − e′i f

1 = −h2 j +hi j +h21−hi1 =
βi j

2
.

Thus, Ã = 2(PL†Q)Δ . By a similar argument, (PJQ)Δ = 0. Therefore, we can write Ã
as

Ã = 2(P(L† +
J
n
)Q)Δ. (3.3)

The inverse of P and Q are

P−1 = �e1,e2 + · · ·+ ek,e3, . . . ,en�
Q−1 = �e1,e2,e3 + e1, . . . ,ek + e1,ek+1, . . . ,en� .

Define M := Q−1(L+ J) . Let li j , mi j and αi j denote the (i, j)th entries of L , M and
MP−1 . Then,

mi j =

⎧⎨⎩li j +
k
∑

r=3
lr j + k−1 i = 1

li j +1 else.
(A)

αi j =

⎧⎨⎩
k
∑

r=2
mir j = 2

mi j else.
(B)

Since L1 = 0 and rank(L) = n−1, adj(L) = μJ , where μ > 0. Put V := MP−1 .

CLAIM 2. det(Ã) = 2

n2μ
det(V∇).

Proof of the claim 2. We know that det(P) = det(Q) = 1. So,

det(V ) = det(MP−1) = det(Q−1(L+ J)P−1) = det(L+ J).

By the matrix determinant lemma,

det(L+ J) = n2μ .

By Jacobi’s determinant formula,

det((V−1)Δ) det(V ) = det(V∇). (3.4)
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The assumptions on L imply L† + J
n = (L+ J)−1. Thus,

V−1 = P(L† +
1
n
J)Q. (3.5)

Using (3.3) , (3.4) and (3.5) , we get

det(Ã) =
2

det(V )
det(V∇) =

2
n2μ

det(V∇).

This completes the proof of the claim.
We now compute the column sums of V∇ . In view of (B), the (i, j)th entry of V

is given by αi j .

CLAIM 3. If j ∈ ∇ , then

∑
i∈∇

αi j =

{
n(k−1) j = 2

n j ∈ ∇ �{2}.
Proof of the claim 3. Let i ∈ ∇ and j ∈ ∇ �{2} . Then, by (B),

∑
i∈∇

αi j = ∑
i∈∇

mi j,

and by (A),

mi j =

⎧⎨⎩l1 j +
k
∑

ν=3
lν j + k−1 i = 1

li j +1 i = 2,k+1, . . . ,n.

(3.6)

Therefore,

∑
i∈∇

αi j =
n

∑
i=1

li j +n = n.

Let j = 2. Then, by (B),

∑
i∈∇

αi2 =
k

∑
r=2

m1r +
k

∑
r=2

m2r +
k

∑
r=2

m(k+1)r + · · ·+
k

∑
r=2

mnr.

By (3.6), we have

k

∑
r=2

mir =

⎧⎪⎪⎨⎪⎪⎩
k
∑
j=2

l1 j +
k
∑

r=3
(lr2 + · · ·+ lrk)+ (k−1)(k−1) i = 1

k
∑
j=2

li j +(k−1) i ∈ ∇ �{1}.

Therefore,

∑
i∈∇

αi2 =
n

∑
r=1

lr2 + · · ·+
n

∑
r=1

lrk +n(k−1) = n(k−1).
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This proves the claim.
The row sums of V∇ are computed now.

CLAIM 4. Let i ∈ ∇ �{1} . Then, ∑
j∈∇

αi j = n .

Proof of the claim 4. In view of equations (A) and (B),

∑
j∈∇

αi j = mi1 +
n

∑
r=2

mir =
n

∑
j=1

li j +n = n.

The proof of the claim is complete.
Let ∂ := det(V∇) . Utilising the previous claims, we now show that ∂ is non-

negative.

CLAIM 5. ∂ � 0.

Proof of the claim 5. Define

λ j := ∑
i∈∇

αi j j ∈ ∇.

As the determinant is multilinear in columns,

∂ = det

⎛⎜⎜⎜⎜⎜⎝
λ1 λ2 λk+1 . . . λn

α21 α22 α2(k+1) . . . α2n

α(k+1)1 α(k+1)2 α(k+1)(k+1) . . . α(k+1)n
...

...
...

. . .
...

αn1 αn2 αn(k+1) . . . αnn

⎞⎟⎟⎟⎟⎟⎠ .

By Claims 3 and 4,

∂ = ndet

⎛⎜⎜⎜⎜⎜⎝
1 k−1 1 . . . 1

α21 α22 α2(k+1) . . . α2n

α(k+1)1 α(k+1)2 α(k+1)(k+1) . . . α(k+1)n
...

...
...

. . .
...

αn1 αn2 αn(k+1) . . . αnn

⎞⎟⎟⎟⎟⎟⎠ and ∑
j∈∇

αi j = n i ∈ ∇.

Thus, by the multilinearity of the determinant,

∂ = n2 det

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1

α21 1 α2(k+1) . . . α2n

α(k+1)1 1 α(k+1)(k+1) . . . α(k+1)n
...

...
...

. . .
...

αn1 1 αn(k+1) . . . αnn

⎞⎟⎟⎟⎟⎟⎠ .
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In view of (A) and (B),

∂ = n2 det

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1

l21 +1 1 l2(k+1) +1 . . . l2n +1
l(k+1)1 +1 1 l(k+1)(k+1) +1 . . . l(k+1)n +1

...
...

...
. . .

...
ln1 +1 1 ln(k+1) +1 . . . lnn +1

⎞⎟⎟⎟⎟⎟⎠ .

Again, by the multilinearity of the determinant,

∂ = n2 det

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
l21 1 l2(k+1) . . . l2n

l(k+1)1 1 l(k+1)(k+1) . . . l(k+1)n
...

...
...

. . .
...

ln1 1 ln(k+1) . . . lnn

⎞⎟⎟⎟⎟⎟⎠ .

Expanding along the first row,

∂ = −n2 det

⎛⎜⎜⎜⎝
l21 l2(k+1) . . . l2n

l(k+1)1 l(k+1)(k+1) . . . l(k+1)n
...

...
. . .

...
ln1 ln(k+1) . . . lnn

⎞⎟⎟⎟⎠ . (3.7)

Put

ϑ := l21, p := (l2(k+1), . . . , l2n), q := (l(k+1)1, . . . , ln1)′ and Γ := {k+1 . . . ,n}.
Rewriting (3.7) with these notations,

∂ = −n2 det

(
ϑ p
q LΓ

)
.

As LΓ is positive definite, by the Schur complement formula,

∂ = −n2 det(LΓ)(ϑ − pL−1
Γ q).

The entries in p and q are non-positive. Since LΓ is an M-matrix, all entries in L−1
Γ

are non-negative. Hence, pL−1
Γ q � 0. As ϑ � 0 and det(LΓ) > 0, it follows that ∂ � 0.

This completes the proof of the claim.

We now complete the proof. By Claim 2, det(Ã) � 0. So, A is a P0 -matrix.
Hence, by the multilinear property of the determinants,

det(B) = det(A+E) = det(E)+ s,

where s � 0. Since det(E) > 0, we conclude det(B) > 0. The proof is complete. �
Specializing Theorem 3 to resistance matrices of connected graphs, we have the

following result.
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COROLLARY 1. Let G be a connected graph with n vertices. Then, the Moore-
Penrose inverse of the resistance Laplacian matrix of G is an M-matrix. Furthermore,
in this M-matrix, all the off-diagonal entries are negative.

4. Illustration

We illustrate our result by an example.

Figure 1: G

EXAMPLE 1. For G ,

R(G ) =
1

516

⎛⎜⎜⎜⎜⎝
0 258 129 44 56

258 0 387 302 314
129 387 0 173 185
44 302 173 0 60
56 314 185 60 0

⎞⎟⎟⎟⎟⎠ .

The Moore-Penrose inverse of Diag(
5
∑
i=1

ri1, . . . ,
5
∑
i=1

ri5)−R(G ) is

1
17210

⎛⎜⎜⎜⎜⎝
5707 −828 −1288 −1953 −1638
−828 2222 −368 −558 −468
−1288 −368 3252 −868 −728
−1953 −558 −868 4857 −1478
−1638 −468 −728 −1478 4312

⎞⎟⎟⎟⎟⎠ .
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