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THE SPECTRAL RADII ON UNIFORM TRICYCLIC HYPERGRAPHS

LIYI ZHENG, YAOPING ZHAO, XIN ZOU AND ZHONGXUN ZHU ∗

(Communicated by S. Fallat)

Abstract. A connected k -uniform hypergraph with n vertices and m edges is called tricyclic
hypergraphs if n = m(k− 1)− 3 + 1 . Let T

m be the set of all connected tricyclic k -uniform
hypergraphs with m edges, where m � 2 . In this paper, the extremal hypergraphs with the first
seven largest spectral radius in T

m are characterized for m > 20 .

1. Introduction

A hypergraph H = (V,E) is a pair consisting of a vertex set V and a set E of
subsets of V , the elements of which are called hyperedges of H. For convenience, let
V = [n] . If all hyperedges of H have cardinality k , that is, E ⊆ [n]k , then we say
that H is k -uniform hypergraph, named by k -graph for short. Obviously, if k = 2, H
is the ordinary graph. Two vertices contained in one edge are called adjacent to each
other and said to be connected by this edge. An edge e that contains a vertex v is
called an incident edge of v . If a vertex has exactly one incident edge, then it is called
a pendent vertex, otherwise it is called non-pendent. A pendent edge in a k -graph is
an edge containing k− 1 pendent vertices. Denote the order of E by |E|(= m) . If
some element e ∈ E or E itself is a multi-set, then H is called a multi-hypergraph.
Otherwise, we call H a simple hypergraph. A simple hypergraph is called linear, if
each pair of its edges intersects at no more than one vertex, otherwise it is called non-
linear. In the sequel, all hypergraphsmentioned are simple uniform hypergraphs, unless
otherwise stated.

For a k -graph H , the adjacency tensor A=A(H) of order k(� 2) and dimension
n of H refers to a multi-dimensional array with entries ai1···ik such that

ai1···ik =

{
1

(k−1)! , if {i1, . . . , ik} is an edge of H,

0, otherwise.

where each i j runs from 1 to n for j ∈ [k] . For a vector x = (x1,x2, . . . ,xn)T and a
positive integer k , let x[k] = (xk

1,x
k
2, . . . ,x

k
n)

T . For a complex number ρ and a vector
x �= 0, if

Ax = ρx[k] (1.1)
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then ρ is called an eigenvalue of A , and x is an eigenvector of A corresponding
to ρ . The spectrum of H is defined as the multiset of eigenvalues of the tensor A
and the spectral radius of H , denoted by ρ(H) , is the maximum modulus among all
eigenvalues of A .

Since the initial work of Qi [10] and Lim [6], the research on spectra of hyper-
graphs via tensors has attracted much attention and interest. For examples, Cooper and
Dutle [1] presented a spectral theory of k -graphs that closely parallels spectral graph
theory. Li, Shao and Qi [5] determined the unique k -graph with maximum spectral
radius among all supertrees. Further in [12], Yuan, Shao and Shan proceeded to or-
der the uniform supertrees with larger spectral radii by their newly introduced edge
operation and a relation established by Zhou et al. [13] between spectral radius of an
ordinary graph and its k th power. P. Xiao et al [11] determined the supertrees with the
first two largest spectral radii among all supertrees. Fan, Tan, Peng and Liu [2] investi-
gated the hypergraphs that attain largest spectral radii among all unicyclic and bicyclic
k -graphs and determined the linear hypergraph with maximum spectral radius over all
linear unicyclic k -graphs, at the same time, they proposed several candidates for the
bicyclic case. Kang et al. [4] proved a conjecture in [2] which lead to the hypergraph
maximizing the spectral radius among all linear bicyclic k -graphs. In [8], the authors
determined the first five hypergraphs with largest spectral radius among all unicyclic
hypergraphs and the first three over all bicyclic hypergraphs.

Let T
m be the set of all connected tricyclic k -graphs with m edges, where m � 2.

Motivating by the preceding work on maximizing and ordering spectral radius, we take
into consideration and try to characterize the first few hypergraphs with larger spectral
radii among all tricyclic k -graphs.

We first present some edge operations that help investigating k -graphs with larger
spectral radius.

DEFINITION 1. [5] Let r � 1 and let H = (V,E) be a k -graph with u ∈ V and
e1, · · · ,er ∈E such that u /∈∪r

i=1ei . Suppose that vi ∈ ei and write e′i = (ei\{vi})∪u for
i ∈ [r] . Let H ′ = (V,E ′) be the hypergraph with E ′ = (E\{ei : i ∈ [r]})∪{e′i : i ∈ [r]} .
Then we say that H ′ is obtained from H by moving edges (e1, · · · ,er) from (v1, · · · ,vr)
to u .

LEMMA 1.1. [8] Let H be a connected k -graph and (v1, · · · ,vr) be some of its
vertices for r � 2 . Let Hi be a simple hypergraph obtained from H by moving at least
one edge from vertices {v j : j ∈ [r]\ {i}} to vi . Then we have

max{ρ(Hi) : i ∈ [r]} > ρ(H).

LEMMA 1.2. [8] Let H be a connected k -graph having two adjacent vertices u1

and u2 . Let H ′ be the hypergraph obtained from H by moving all incident edges of u2

except all common edges shared by u1 , u2 from u2 to u1 . If H ′ �∼= H , then

ρ(H) < ρ(H ′).
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LEMMA 1.3. [12] Let k � 3 , H be a connected k -graph on n vertices having
two edges e and f such that |e∩ f | = k− r(2 � r � k− 1) . Let V1 = e∩ f and
e \V1 = {u1, · · · ,ur} and f \V1 = {v1, · · · ,vr} where r � 2 , u1 , v1 are non-pendent
vertices while u2, · · · ,ur and v2, · · · ,vr are pendent vertices. Let He, f be the hypergraph
obtained from H by moving all the edges incident with v1 except f from v1 to u2 . Then
ρ(He, f ) > ρ(H) .

2. Preliminaries

In this section, we will compare the spectral radii among some specialized tricyclic
k -graphs by the methods on weighted incidence matrix and the definition of eigenvalue
and eigenvector of tensor.

2.1. Method on weighted incidence matrix

Let G = (V,E) be a multi-graph containing no loops, i.e. cycles of length 1.
Let G(a,b) be a multi-graph obtained from a cycle of length 2 by attaching a and b
pendent edges at its two vertices u and v respectively. Denote by H(a,b) the multi-
graph obtained from G(a,b) by adding a new edge connecting u and v . Denote by
M(a,b) the multi-graph obtained from G(a,b) by adding two new edges connecting u
and v .

The adjacency matrix A(G) of a multi-graph G on n vertices without loops is
an n× n matrix whose (i j)-entry is the number of parallel edges connecting i and
j if i �= j and zero otherwise. Denote by φG(x) = det(xI −A(G)) the characteristic
polynomial of a multi-graph G , where I denotes the unit matrix. By direct calculation,
we have

φM(a,b)(x) = φM(a,0) · xb + φK1,a ·φK1,b − x ·φK1,a · xb

= xm−6[x4− (m+12)x2 +ab], (2.1)

thus ρ(M(m−4,0))2 = m+12. (
1− m−1

m+6

1− m−4
m+6

)3

(2.2)

The k th power of a multi-graph G is the k -graph Gk obtained from G by blowing
up its edges to hyperedges through adding k−2 new pendent vertices to each edge of
G .

LEMMA 2.1. [13] If λ �= 0 is an eigenvalue of a multi-graph G, then λ
2
k is an

eigenvalue of Gk . Moreover, ρ(Gk) = ρ(G)
2
k .

DEFINITION 2. [7] A weighted incidence matrix B of a hypergraph H = (V,E)
is a |V |× |E| matrix such that for any vertex v and any edge e , the entry B(v,e) > 0 if
v ∈ e and B(v,e) = 0 if v /∈ e .
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DEFINITION 3. [7] A hypergraph H is called α -subnormal if there exists a
weighted incidence matrix B satisfying

(a) ∑e:v∈e B(v,e) � 1, for any v ∈V (H) ;
(b) ∏v∈e B(v,e) � α , for any e ∈ E(H) .

If no strict inequality appears in (a) and (b), then H is α -normal. Otherwise, H is
called strictly α -subnormal. If furthermore,

l

∏
i=1

B(vi,ei)
B(vi−1,ei)

= 1

for any cycle v0e1v1e2 · · ·elv0(l � 1) in H , then B is consistent and H is called strictly
and consistently α -subnormal.

LEMMA 2.2. [7] Let H be a k -graph. Then

(i) ρ(H) = α− 1
k if and only if H is consistently α -normal;

(ii) if H is strictly and consistently α -subnormal, then ρ(H) < α− 1
k .

Let T 1
4 (a,b,c,d) be a k -graph with merely two non-pendent edges which inter-

sect at exactly four vertices u,v,w,t , where a,b,c,d are the number of pendent edges
attached at u,v,w, t respectively. Let T 1

5 (a,b,c,d,e) be the k -graph obtained from
T 1
4 (a,b,c,d) by attaching e pendent edges at an arbitrary pendent vertex s in a cycle

edge. Let T 2
5 (a,b,c,d,e) be the k -graph obtained from T 1

4 (a+1,b,c,d) by attaching
e pendent edges at a pendent vertex s adjacent to u outside the cycle. The k -graphs
T 1
5 (a,b,c,d,e) and T 2

5 (a,b,c,d,e) are presented in Figure 1.

1
5 , , , ,T a b c d e 2

5 , , , ,T a b c d e

Figure 1: k -graphs of T 1
5 (a,b,c,d,e) and T 2

5 (a,b,c,d,e)

Denote by U2(a,b) the kth power of G(a,b) . Let U1
3 (a,b,c) be the k -graph

obtained from U2(a,b) by attaching c pendent edges at an arbitrary pendent vertex w
in a cycle edge. Let U2

3 (a,b;c) be the k -graph obtained from U2(a+1,b) by attaching
c pendent edges at a pendent vertex w adjacent to u outside the cycle.

Denote by B2(a,b) the k th power of H(a,b) . Denote by B1
3(a,b,c) the k -graph

with merely two non-pendent edges which intersect at exactly three vertices u,v,w ,
where a,b,c are the number of pendent edges attached at u,v,w respectively. Let
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B2
3(a,b,c) (B3

3(a,b,c) , resp.) be the hypergraph obtained from U1
3 (a,b;c) by adding a

new edge containing u,v (v,w resp.) and k− 2 new pendent vertices. Let B4
3(a,b,c)

(B5
3(a,b,c) and B6

3(a,b,c) resp.) be the hypergraph obtained from U2
3 (a,b;c) by

adding a new edge containing u,v (u,w and v,w resp.) and k−2 new pendent vertices.

Denote by T2(a,b) the k th power of M(a,b) . Let T 1
3 (a,b,c) be the k -graph ob-

tained from T2(a,b) by attaching c pendent edges at an arbitrary pendent vertex w in
a cycle edge. Let T 8

3 (a,b,c) be the k -graph obtained from T2(a + 1,b) by attaching
c pendent edges at an arbitrary pendent vertex w adjacent to u outside the cycle. Let
T 2
3 (a,b,c) be the hypergraph obtained from B2

3(a,b;c) by adding a new edge contain-
ing v,w and k− 2 new pendent vertices. Let T 3

3 (a,b,c) be the hypergraph obtained
from B3

3(a,b;c) by adding a new edge containing u,w and k−2 new pendent vertices.
Let T 4

3 (a,b,c) be the hypergraph obtained from B1
3(a,b;c) by adding a new edge con-

taining u,v and k−2 new pendent vertices. Let T 5
3 (a,b,c) be the hypergraph obtained

from B4
3(a,b;c) by adding a new edge containing v,w and k−2 new pendent vertices.

Let T 6
3 (a,b,c) be the hypergraph obtained from B5

3(a,b;c) by adding a new edge con-
taining v,w and k−2 new pendent vertices. Let T 7

3 (a,b,c) be the hypergraph obtained

1
3 , ,T a b c 2

3 , ,T a b c 3
3 , ,T a b c

4
3 , ,T a b c 5

3 , ,T a b c 6
3 , ,T a b c

7
3 , ,T a b c 8

3 , ,T a b c

Figure 2: Some tricyclic k -graphs in T
m
3
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from B6
3(a,b;c) by adding a new edge containing u,w and k−2 new pendent vertices.

The k -graph T i
3(a,b,c) (i = 1,2, . . . ,8) is as shown in Figure 2.

LEMMA 2.3. For m � 6 , ρ(T 2
3 (0,m−4,0)) < ρ(T2(m−4,0)) .

Proof. Let α = ρ(M(m−4,0))−2 . Since T2(m−4,0) is the k th power of M(m−
4,0) , by Lemma 2.1 we have α− 1

k = ρ(M(m−4,0))
2
k = ρ(T2(m−4,0)) .

We first construct a weighted incidence matrix B for T 2
3 (0,m−4,0) . Let B(p,e)=

1 for every pendent vertex p in edge e and let B(q, f ) = α for each non-pendent vertex
q in a pendent edge f . Suppose that e1 and e3 are the two edges intersecting at u,v ,
e2 is one edge contains u,v,w , and e4 is one edge contains v,w . Write xi = B(u,ei)
for i = 1,2,3 , yi = B(v,ei) for i = 1,2,3,4 and zi = B(w,ei) for i = 2,4. Let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 = 1,

y1 + y2 + y3 + y4 = 1− (m−4)α,

z2 + z4 = 1,

x1y1 = α,

x3y3 = α,

y4z4 = α,

and let A = x2
x1

= y2
y1

> 0, B = y2
y4

= z2
z4

> 0, so y1
y4

= B
A > 0.

Since B is consistent for all cycles in T 2
3 (0,m−4,0) , and B is consistent accord-

ing to Definition 3. It is easy to verify that all equalities hold for (a) and (b) of Definition
3 except on the edge e2 .

Now we compare x2y2z2 with α . Note that

(A+2)
(

A+2+
A
B

)
=

1− (m−4)α
α

= m+12− (m−4)= 16.

By a direct calculation, we have B = 2A
16−(A+2)2 and AB2 +2B2 +2AB+2B−15A= 0.

Thus

14A5 +124A4−104A3−1480A2 +2112A = 0,

Further by A > 0, B > 0, we have A = 1.7741, B = 2.0204. Then

∏
t∈e2

B(t,e2) = x2y2z2 = A2 B
1+B

x1y1 = 2.1057α > α.

Thus T 2
3 (0,m−4,0) is strictly and consistently α -subnormal by Definition 3. By

Lemma 2.2 (ii), we have ρ(T 2
3 (0,m−4,0)) < α− 1

k = ρ(T2(m−4,0)) . �

LEMMA 2.4. For m � 6 , ρ(T 3
3 (0,m−4,0)) < ρ(T2(m−4,0)) .
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Proof. Let α = ρ(M(m−4,0))−2 . Since T2(m−4,0) is the k th power of M(m−
4,0) , by Lemma 2.1 we have α− 1

k = ρ(M(m−4,0))
2
k = ρ(T2(m−4,0)) .

We first construct a weighted incidence matrix B for T 3
3 (0,m−4,0) . Let B(p,e)=

1 for every pendent vertex p in edge e and let B(q, f ) = α for each non-pendent vertex
q in a pendent edge f . Suppose that e1 is the one edge contains u,v,w , e2 is one edge
contains u,w , e3 is one edge contains u,v , and e4 is one edge contains v,w . Write
xi = B(u,ei) for i = 1,2,3 , yi = B(v,ei) for i = 1,3,4 and zi = B(w,ei) for i = 1,2,4.
Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 = 1,

y1 + y3 + y4 = 1− (m−4)α,

z1 + z2 + z4 = 1,

y4z4 = α,

x3y3 = α,

x2z2 = α,

and let A = x3
x1

= y3
y1

= z4
z1

= y4
y1

> 0, B = z2
z1

= z2
z1

> 0.

Since B is consistent for all cycles in T 3
3 (0,m−4,0) , and B is consistent accord-

ing to Definition 3. It is easy to verify that all equalities hold for (a) and (b) of Definition
3 except on the edge e1 .

Now we compare x1y1z1 with α . Note that

(1+A+B)(1+2A)
A2 =

1− (m−4)α
α

= 16.

By direct calculation, we have B = 14A2−3A−1
1+2A and

(
B

1+A+B

)2

= α =
1

m+12
<

1
16

.

Then 3B < 1 + A , and 314A2−3A−1
1+2A < 1 + A , that is, 10A2 − 3A− 1 < 0. Hence 0 <

A < 0.5 and B < 0.5. Thus

∏
t∈e1

B(t,e1) = x1y1z1 =
1
A2

1
1+A+B

x3y3 > 4× 1
2

α = 2α > α.

Thus T 3
3 (0,m−4,0) is strictly and consistently α -subnormal by Definition 3. By

Lemma 2.2 (ii), we have ρ(T 3
3 (0,m−4,0)) < α− 1

k = ρ(T2(m−4,0)) . �
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LEMMA 2.5. For m � 6 , ρ(T 4
3 (0,m−3,0)) < ρ(T2(m−4,0)) .

Proof. Let α = ρ(M(m−4,0))−2 . Since T2(m−4,0) is the k th power of M(m−
4,0) , by Lemma 2.1 we have α− 1

k = ρ(M(m−4,0))
2
k = ρ(T2(m−4,0)) .

We first construct a weighted incidence matrix B for T 4
3 (0,m−3,0) . Let B(p,e)=

1 for every pendent vertex p in edge e and let B(q, f ) = α for each non-pendent ver-
tex q in a pendent edge f . Suppose that e1 and e2 are the two edges intersecting at
u,v,w , e3 is one edge contains u,v . Write xi = B(u,ei) , yi = B(v,ei) for i = 1,2,3 and
zi = B(w,ei) for i = 1,2. Let⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 = 1,

y1 + y2 + y3 = 1− (m−3)α,

z1 + z2 = 1,

x2y2z2 = α,

x3y3 = α,

and let A = x1
x2

= y1
y2

= z1
z2

> 0, B = x1
x3

= y1
y3

> 0.
Since x1y2 = x2y1 , x1z2 = x2z1 , y1z2 = y2z1 and x1y3 = x3y1 for all four cycles,

B is consistent according to Definition 3. It is easy to verify that all equalities hold for
(a) and (b) of Definition 3 except on the edge e1 .

Now we compare x1y1z1 with α . Note that

(AB+A+B)2

A2 =
1− (m−3)α

α
,

(A+1)(AB+A+B)2

B2 =
1− (m−3)α

α
.

By direct calculation, we have B = A
√

A+1. Then

(A2
√

A+1+A+A
√

A+1)2

A2 =
1− (m−3)α

α
= m+12− (m−3)= 15

and A = 3
√

(15−1)2−1 = 1.020948. Thus

∏
t∈e1

B(t,e1) = x1y1z1 = A3x2y2z2 = A3α > α.

Thus T 4
3 (0,m−3,0) is strictly and consistently α -subnormal by Definition 3. By

Lemma 2.2 (ii), we have ρ(T 4
3 (0,m−3,0)) < α− 1

k = ρ(T2(m−4,0)) . �

2.2. Method on the definition of eigenvalue and eigenvector of tensor

Let T2(m − 4,0) , T 1
4 (m − 3,1,0,0) , T 1

4 (m − 4,2,0,0) , T 1
4 (m − 4,1,1,0) ,

T 1
5 (m− 3,0,0,0,1) , T 2

5 (m− 4,0,0,0,1) , T 2
5 (m− 5,0,0,0,2) be k -graphs as shown

in Figure 3. For simplicity, let X = [λ · (k−1)!]k and a . . .a︸ ︷︷ ︸
b

= ab .
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Figure 3: Some tricyclic k -graphs in Tm
i for i = 4,5 .

LEMMA 2.6. For m � 6 , ρ(T 1
4 (m−4,1,1,0)) > ρ(T 2

5 (m−5,0,0,0,2)) .

Proof. Let λ and x = (x1,x2, . . . ,xn) be the eigenvalue and eigenvector of the ad-
jacency tensor A of T 1

4 (m−4,1,1,0) , respectively. By (1.1) and symmetry of vertices
of T 1

4 (m−4,1,1,0) , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a12345k−4x2x3x4x
k−4
5 +(m−4)a17k−1xk−1

7 = λxk−1
1 ,

2a12345k−4x1x3x4x
k−4
5 +a26k−1xk−1

6 = λxk−1
2 ,

2a12345k−4x1x2x4x
k−4
5 +a36k−1xk−1

6 = λxk−1
3 ,

2a12345k−4x1x2x3x
k−4
5 = λxk−1

4 ,

a12345k−4x1x2x3x4x
k−5
5 = λxk−1

5 ,

a26k−1x2x
k−2
6 = λxk−1

6 ,

a17k−1x1x
k−2
7 = λxk−1

7 ,

By direct calculation, we have X3− (m+14)X2 +(2m−7)X− (m−4) = 0.
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Similarly, for k -graph T 2
5 (m−5,0,0,0,2) , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a12345k−4x2x3x4x
k−4
5 +(m−5)a17k−1xk−1

7 +a168k−2x6x
k−2
8 = λxk−1

1 ,

2a12345k−4x1x3x4x
k−4
5 = λxk−1

2 ,

2a12345k−4x1x2x4x
k−4
5 = λxk−1

3 ,

2a12345k−4x1x2x3x
k−4
5 = λxk−1

4 ,

a12345k−4x1x2x3x4x
k−5
5 = λxk−1

5 ,

a168k−1x1x
k−2
8 +2a69k−1xk−1

9 = λxk−1
6 ,

a12347k−4x1x2x3x4x
k−5
7 = λxk−1

7 ,

a168k−1x1x6x
k−3
8 = λxk−1

8 ,

a69k−1x6x
k−2
9 = λxk−1

9 .

By direct calculation, we have X2− (m+14)X +2(m+11) = 0
Let Y = [ρ(T 2

5 (m−5,0,0,0,2))(k−1)!]k , then Y 2 = (m+14)Y −2(m+11) . Let
g(X) = X3− (m+14)X2+(2m−7)X − (m−4) . Then

g(Y ) = Y 3− (m+14)Y2 +(2m−7)Y − (m−4)
= Y [(m+14)Y −2(m+11)]− (m+14)Y2 +(2m−7)Y − (m−4)
= −29Y −m+4 < 0.

Note that [ρ(T 1
4 (m−4,1,1,0))(k−1)!]k is the largest zero point of g(X) , thus it is

strictly larger than Y = [ρ(T 2
5 (m−5,0,0,0,2))(k−1)!]k , then ρ(T 1

4 (m−4,1,1,0)) >
ρ(T 2

5 (m−5,0,0,0,2)) . �

LEMMA 2.7. Let m > 20 , then ρ(T 2
5 (m−4,0,0,0,1)) > ρ(T 1

4 (m−4,2,0,0)) .

Proof. Let λ and x = (x1,x2, . . . ,xn) be the eigenvalue and eigenvector of the ad-
jacency tensor A of T 1

4 (m−4,2,0,0) , respectively. By (1.1) and symmetry of vertices
of T 1

4 (m−4,2,0,0) , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a12345k−4x2x3x4x
k−4
5 +(m−4)a17k−1xk−1

7 = λxk−1
1 ,

2a12345k−4x1x3x4x
k−4
5 +2a26k−1xk−1

6 = λxk−1
2 ,

2a12345k−4x1x2x4x
k−4
5 = λxk−1

3 ,

2a12345k−4x1x2x3x
k−4
5 = λxk−1

4 ,

a12345k−4x1x2x3x4x
k−5
5 = λxk−1

5 ,

a26k−1x2x
k−2
6 = λxk−1

6 ,

a17k−1x1x
k−2
7 = λxk−1

7 ,

By direct calculation, we have X2− (m+14)X +2(m−4) = 0.
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Similarly, for k -graph T 2
5 (m−4,0,0,0,1) , we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a12345k−4x2x3x4x
k−4
5 +(m−4)a17k−1xk−1

7 +a168k−2x6x
k−2
8 = λxk−1

1 ,

2a12345k−4x1x3x4x
k−4
5 = λxk−1

2 ,

2a12345k−4x1x2x4x
k−4
5 = λxk−1

3 ,

2a12345k−4x1x2x3x
k−4
5 = λxk−1

4 ,

a12345k−4x1x2x3x4x
k−5
5 = λxk−1

5 ,

a168k−1x1x
k−2
8 +a19k−1xk−1

9 = λxk−1
6 ,

a12347k−4x1x2x3x4x
k−5
7 = λxk−1

7 ,

a168k−1x1x6x
k−3
8 = λxk−1

8 ,

a69k−1x6x
k−2
9 = λxk−1

9 .

and X2− (m+14)X +(m+12) = 0.
Let Y = [ρ(T 1

4 (m− 4,2,0,0))(k− 1)!]k , then Y 2 = (m + 14)Y − 2(m− 4) . Let
g(X) = X2− (m+14)X +(m+12) . Then

g(Y ) = Y 2 − (m+14)Y +(m+12)
= −m+20 < 0.

Note that [ρ(T 2
5 (m−4,0,0,0,1))(k−1)!]k is the largest zero point of g(X) , thus it

is strictly larger than Y = [ρ(T1
4 (m−4,2,0,0))(k−1)!]k , then ρ(T 2

5 (m−4,0,0,0,1))>
ρ(T 1

4 (m−4,2,0,0)) . �

LEMMA 2.8. For m � 6 , ρ(T 1
4 (m−3,1,0,0)) > ρ(T 2

5 (m−4,0,0,0,1)) .

Proof. Let λ and x = (x1,x2, . . . ,xn) be the eigenvalue and eigenvector of the ad-
jacency tensor A of T 1

4 (m−3,1,0,0) , respectively. By (1.1) and symmetry of vertices
of T 1

4 (m−3,1,0,0) , we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a12345k−4x2x3x4x
k−4
5 +(m−3)a17k−1xk−1

7 = λxk−1
1 ,

2a12345k−4x1x3x4x
k−4
5 +a16k−1xk−1

6 = λxk−1
2 ,

2a12345k−4x1x2x4x
k−4
5 = λxk−1

3 ,

2a12345k−4x1x2x3x
k−4
5 = λxk−1

4 ,

a12345k−4x1x2x3x4x
k−5
5 = λxk−1

5 ,

a26k−1x2x
k−2
6 = λxk−1

6 ,

a17k−1x1x
k−2
7 = λxk−1

7 ,

By direct calculation, we have X2− (m+14)X +(m−3) = 0.
Let Y = [ρ(T 2

5 (m− 4,0,0,0,1))(k− 1)!]k , then Y = (m+ 14)Y − (m+ 12) . Let
g(X) = X2− (m+14)X +(m−3) . Then

g(Y ) = Y 2− (m+14)Y +(m−3)
= −15 < 0.
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Note that [ρ(T 1
4 (m−3,1,0,0))(k−1)!]k is the largest zero point of g(X) , thus it is

strictly larger than Y = [ρ(T 2
5 (m−4,0,0,0,1))(k−1)!]k , then ρ(T 1

4 (m−3,1,0,0)) >
ρ(T 2

5 (m−4,0,0,0,1)) . �
By lemmas 1.2 and 2.8–10, we have the following results.

COROLLARY 2.9. For m > 20 , ρ(T2(m − 4,0)) < ρ(T 2
5 (m − 5,1,0,0,1)) <

ρ(T 2
5 (m−5,0,0,0,2)) < ρ(T 1

4 (m−4,1,1,0)) < ρ(T 1
4 (m−4,2,0,0)) < ρ(T 2

5 (m−4,0,
0,0,1)) < ρ(T 1

4 (m−3,1,0,0)) < ρ(T 1
4 (m−2,0,0,0)) .

LEMMA 2.10. For m � 6 , ρ(T2(m−4,0)) > ρ(T 1
5 (m−3,0,0,0,1)) .

Proof. Let λ and x = (x1,x2, . . . ,xn) be the eigenvalue and eigenvector of the
adjacency tensor A of T 1

5 (m− 3,0,0,0,1) , respectively. By (1.1) and symmetry of
vertices of T 1

5 (m−3,0,0,0,1) , we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a123456k−5x2x3x4x5x
k−5
6 +a12347k−4x2x3x4x

k−4
7 +(m−3)a18k−1xk−1

8 = λxk−1
1 ,

a123456k−5x1x3x4x5x
k−5
6 +a12347k−4x1x3x4x

k−4
7 = λxk−1

2 ,

a123456k−5x1x2x4x5x
k−5
6 +a12347k−4x1x2x4x

k−4
7 = λxk−1

3 ,

a123456k−5x1x2x3x5x
k−5
6 +a12347k−4x1x2x3x

k−4
7 = λxk−1

4 ,

a123456k−5x2x3x4x5x
k−5
6 +a59k−1xk−1

9 = λxk−1
5 ,

a123456k−5x1x2x3x4x5x
k−6
6 = λxk−1

6 ,

a12347k−4x1x2x3x4x
k−5
7 = λxk−1

7 ,

a18k−1x1x
k−2
8 = λxk−1

8 ,

a59k−1x5x
k−2
9 = λxk−1

9 ,

By direct calculation, we have X2−mX +(m−2) = 0.
Similarly, for k -graph T2(m−4,0) , we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
4a123k−2x2x

k−2
3 +(m−4)a14k−1xk−1

4 = λxk−1
1 ,

4a123k−2x1x
k−2
3 = λxk−1

2 ,

a123k−2x1x2x
k−3
3 = λxk−1

3 ,

a14k−1x1x
k−2
4 = λxk−1

4 ,

and X −m−12 = 0.
Let g(X) = X2−mX +(m−2) . Then g′(X) = 2X−m > 0 and g(X) is increasing

for X � m+12. Note that

g(m+12) = (m+12)2−m(m+12)+ (m−2)
= 13m+142 > 0.

Hence all zero points of g(X) are less than m+ 12. Let [ρ(T 1
5 (m− 3,0,0,0,1))(k−

1)!]k be the largest zero point of g(X) , thus it is strictly smaller than m+12 = [ρ(T2(m−
4,0))(k−1)!]k , then ρ(T2(m−4,0)) > ρ(T 1

5 (m−3,0,0,0,1)) . �



THE SPECTRAL RADII ON UNIFORM TRICYCLIC HYPERGRAPHS 635

3. The extremal tricyclic k-graphs with larger spectral radius in T
m

For a k -graph H = (V,E) , if E ′ ⊂ E and V ′ =
⋃

e∈E ′ e ⊂V , then H ′ = (V ′,E ′) is
called a sub-k -graph induced by E ′ . A path in H refers to an alternative sequence of
distinct vertices and distinct edges such that two consecutive vertices are contained in
the edge between them in this sequence. If every two vertices in H appear in at least
one path, then H is called a connected k -graph. A cycle in H is formed from a path
and another edge in H containing the two end vertices of that path. The number of
edges in this cycle is called its length. An edge contained in a cycle is called a cycle
edge. A k -graph on n vertices and m edges is called r -cyclic if m(k−1)−n+ l = r ,
where l is the number of its connected components.

LEMMA 3.1. [8] Let H = (V,E) be a simple connected r -cyclic k -graph with
n vertices and m edges. Let H1 = (V1,E1) be a connected subgraph of H . If H1 is
r1 -cyclic, then r1 � r .

PROPOSITION 3.2. Let H be a k -graphs in T
m . Then

(i) every two vertices in H share at most four common edges;
(ii) every four vertices in H have at most two common edge.

Proof. If there exist two vertices in H having five common edges, or there are five
vertices sharing two common edges, then the subgraph in H induced by those common
edges is 4-cyclic sub-k -graph, which contradicts Lemma 3.1. �

Denote by T
m
i the set of hypergraphs in T

m with exactly i non-pendent vertices
where i � 2. Let H be a k -graph in T

m . We first consider that H is in T
m
2 . Let u,v

be the non-pendent vertices in H . Since H is tricyclic, u,v have at least four common
edges. By Proposition 3.2, there are exactly four edges sharing u,v . As the remaining
edges of H (if there exists any) are pendent edges, H ∼= T2(a,b) for some integers a,b .
Thus k -graphs in T

m
2 are in the form of T2(a,b) with a,b ∈ N .

LEMMA 3.3. Let a � b � 1 and a+b = m−3 . Then

ρ(T2(a,b)) < ρ(T2(a+1,b−1))� ρ(T2(m−4,0))

Proof. Note that ρ(T2(a+1,b−1)) can be obtained from ρ(T2(a,b)) by moving
one pendent edge from v to u , or by moving a− b+ 1 pendent edges from u to v .
By Lemma 1.2, ρ(T2(a,b)) < ρ(T2(a+1,b−1)) . Then by induction, ρ(T2(a+1,b−
1)) � ρ(T2(m−4,0)) with equality if and only if b = 1. �

Now we investigate H ∈ T
m
3 . Let u,v,w be the three non-pendent vertices of H .

We may discuss by the number of common edges u,v,w have. By Proposition 3.2,
u,v,w share at most two common edges.

If u,v,w have only one common edge e1 , then there are three edges must contain
two of them, and these three edges only contain two non-pendent vertices, otherwise
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there is a 4-cyclic sub-k -graph induced by three non-pendent edges in H , which con-
tradicts Lemma 3.1. If e2

⋂
e3
⋂

e4 = {u,v} , then H ∼= T 1
3 (a,b,c) . If e2

⋂
e3 = {u,v}

and e4 contains v,w , then H ∼= T 2
3 (a,b,c) . If e2 contains u,v , e3 contains v,w and e4

contains u,w then H ∼= T 3
3 (a,b,c) .

If u,v,w have exactly two common edges e1,e2 , then there are one edge must
contain two of them, and these three edges only contain two non-pendent vertices,
otherwise there is a 4-cyclic sub-k -graph induced by three non-pendent edges in H ,
which contradicts Lemma 3.1. If e3 contains u,v , then H ∼= T 4

3 (a,b,c) .
Suppose that u,v,w do not have common edge. Since H is connected, there is a

path connecting u,v,w , say ve1ue2w . As H is bicyclic, there are exactly three more
non-pendent edges, say e3,e4 and e5 , that each contains two of u,v,w , and these three
edges only contain two non-pendent vertices. Otherwise H is not tricyclic hypergraphs.
If e3

⋂
e4 is {u,v} and e5 contains v,w , then H ∼= T 5

3 (a,b,c) for some a,b,c . If e3
⋂

e4

is {u,v} and e5 contains u,w , then H ∼= T 6
3 (a,b,c) for some a,b,c . If e3 contains

u,v , e4 contains u,w and e5 contains v,w , then H ∼= T 7
3 (a,b,c) for some a,b,c . If all

of e3,e4,e5 contain u,v , and each of them don’t have other non-pendent vertex, then
H ∼= T 8

3 (a,b,c) for some a,b,c .

Therefore, k -graphs in T
m
3 have eight forms T j

3 (a,b,c) , j = 1, · · · ,8.

LEMMA 3.4. Let H be a k -graph in T
m
3 . If m � 6 , then ρ(H) < ρ(T2(m−4,0)) .

Proof. We discuss by the formation of H.

Case 1. H ∼= T 2
3 (a,b,c) .

Note that H ∼= T 2
3 (0,a+b+c,0) can be obtained from H ∼= T 2

3 (a,b,c) by moving
a pendent edges from u to v and moving c pendent edges from w to v , or by moving c
pendent edges from w to v and moving a pendent edges from u to v . By Lemma 1.2,
ρ(T 2

3 (a,b,c)) � ρ(T 2
3 (0,a+b+c,0)) with equality if and only if a,c = 0. By Lemma

2.3,
ρ(H) � ρ(T 2

3 (0,m−4,0)) < ρ(T2(m−4,0)).

Case 2. H ∼= T 1
3 (a,b,c) with c � 1.

Suppose that a � b within this case. If a � 1, then by Lemma 1.2, take u1 = v
and u2 = w , we have for b+ c � 1 that

ρ(H) < ρ(T2(a,b+ c)) � ρ(T2(m−4,0))

Suppose that a = b = 0. By removing one pendent edge from w to u , we obtain
T 1
3 (1,0,m−5) . Besides, by removing a non-pendent edge not containing w from u to

w , we obtain T 2
3 (0,0,m−4) from H . Then by Lemma 1.3 and the discussion in case

1,2,

ρ(H) < max{ρ(T1
3 (1,0,m−5)),ρ(T2

3 (0,0,m−4))}< ρ(T2(m−4,0)).



THE SPECTRAL RADII ON UNIFORM TRICYCLIC HYPERGRAPHS 637

Case 3. H ∼= T 3
3 (a,b,c) .

Note that H ∼= T 3
3 (0,a+b+c,0) can be obtained from H ∼= T 3

3 (a,b,c) by moving
a pendent edges from u to v and moving c pendent edges from w to v , or by moving c
pendent edges from w to v and moving a pendent edges from u to v . By Lemma 1.2,
ρ(T 3

3 (a,b,c)) � ρ(T 3
3 (0,a+b+c,0)) with equality if and only if a,c = 0. By Lemma

2.4,
ρ(H) � ρ(T 3

3 (0,m−4,0)) < ρ(T2(m−4,0)).

Case 4. H ∼= T 4
3 (a,b,c) .

Suppose that b � a within this case. If a = c = 0, then by Lemma 2.5, ρ(H) =
ρ(T 4

3 (0,m−3,0)) < ρ(T2(m−4,0)) . If a � 1, then by Lemma 1.2,

ρ(H) < ρ(T 4
3 (0,a+b,c)) � ρ(T 4

3 (0,a+b+ c,0))< ρ(T2(m−4,0)).

Case 5. H ∼= T j
3 (a,b,c) , j = 5,6,7,8.

If H ∼= T 5
3 (a,b,c) .Then by moving c pendent edges and one edge containing u,w

from w to an arbitrary pendent vertex in an edge containing u,v , we obtain T 2
3 (a +

1,b,c) . By Lemma 1.3 and the discussion in case 1,

ρ(H) < ρ(T 2
3 (a+1,b,c)) < ρ(T2(m−4,0)).

If H ∼= T 6
3 (a,b,c) .Then by moving c pendent edges and one edge containing u,w

from w to an arbitrary pendent vertex in an edge containing u,v , we obtain T 2
3 (a,b+

1,c) . By Lemma 1.3 and the discussion in case 1,

ρ(H) < ρ(T 2
3 (a,b+1,c)) < ρ(T2(m−4,0)).

If H ∼= T 7
3 (a,b,c) .Then by moving c pendent edges and one edge containing v,w

from w to an arbitrary pendent vertex in an edge containing u,v , we obtain T 3
3 (a +

1,b,c) . By Lemma 1.3 and the discussion in case 3,

ρ(H) < ρ(T 3
3 (a+1,b,c)) < ρ(T2(m−4,0)).

If H ∼= T 8
3 (a,b,c) .Then by moving c pendent edges and one edge containing v,w

from w to an arbitrary pendent vertex in an edge containing u,v , we obtain T 1
3 (a +

1,b,c) . By Lemma 1.3 and the discussion in case 2,

ρ(H) < ρ(T 1
3 (a+1,b,c)) < ρ(T2(m−4,0)). �

LEMMA 3.5. Let i � 4 and H be a k -graph in T
m
i \ {F : F has the subgraph

T 1
4 (a,b,c,d)} with m � 7 . Then ρ(H) < max{ρ(F) : F is a k -graph in T

m
i−1 \ {F : F

has the subgraph T 1
4 (a,b,c,d)}} .

Proof. If all non-pendent vertices in H are in one edge say f , then we can find two
non-pendent vertices v1 , v2 that do not have other common edge. Otherwise every two
non-pendent vertices shares two common edges, then H contains a 4-cyclic subgraph,
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a contradiction. Denote by H ′ the k -graph obtained from H by moving all edges
incident with v2 except f from v2 to v1 . It is obvious that H ′ ∈ T

m
i−1 . By Lemma 1.2,

we have ρ(H) < ρ(H ′) .
Suppose there exists two non-pendent vertices v1,v2 in H that do not have com-

mon edge. Let P = v1e1 · · ·esv2 be a shortest path connecting v1 and v2 where s � 2.
Denote H1 be the k -graph obtained from H by moving all edges incident with v1 ex-
cept e1 from v1 to v2 , and denote H2 be the k -graph obtained from H by moving all
edges incident with v2 except es from v2 to v1 . Then H1 and H2 are in T

m
i−1 . By

Lemma 1.1, we have ρ(H) < max{ρ(H1),ρ(H2)} .
This completes the proof. �

Repeatedly by Lemma 3.4 and Lemma 3.5, we have the following result.

COROLLARY 3.6. Let H be a k -graph in T
m
i \ {F : F has the subgraph T 1

4 (a,b,
c,d)} with m � 7 , if i � 3 and m > 9 , then ρ(H) < ρ(T2(m−4,0)) .

LEMMA 3.7. Let M = {F : F has the subgraph T 1
4 (a,b,c,d)} , N = {T 1

4 (m−
2,0,0,0) , T 1

4 (m−3,1,0,0) , T 1
4 (m−4,2,0,0) , T 1

4 (m−4,1,1,0) , T 2
5 (m−4,0,0,0,1) ,

T 2
5 (m− 5,0,0,0,2) , T 2

5 (m− 5,1,0,0,1)} . If H ∈ M \N , then ρ(H) < ρ(T 2
5 (m−

5,1,0,0,1)) for m > 6 .

Proof. For a k -graph H ∈ M , it can be obtained from T 1
4 (a,b,c,d) by attach-

ing some k -trees at the vertices of T 1
4 (a,b,c,d) . Let the non-pendent vertices of

T 1
4 (a,b,c,d) be v1,v2,v3,v4 , and v5 be a pendent vertex of T 1

4 (a,b,c,d) on a cycle
edge, and v6 be a pendent vertex of T 1

4 (a,b,c,d) on a pendent edge which is adjacent
to v1 . Repeatedly by moving edge operation, we can attain a k -graph H1 which is ob-
tained from T 1

4 (a,b,c,d) by attaching some k -stars at the vertices v1,v2,v3,v4,v5,v6 ,
respectively. By Lemma 1.2, we have ρ(H) � ρ(H1) . The equality holds if and only
if H ∼= H1. Let l1, l2, l3, l4, l5, l6 be the number of pendent edges at v1,v2,v3,v4,v5,v6 ,
respectively.

Case 1. If l1, l2, l3, l4, l5, l6 � 1, we can obtain a k -graph T 2
5 (m− 5,1,0,0,1) by

the moving edge operation, we have ρ(H1) < ρ(T 2
5 (m−5,1,0,0,1)) .

Case 2. l5 = 0, l6 �= 0.

Subcase 2.1. If l1, l2, l3, l4, l6 � 1, l5 = 0, we can obtain a k -graph T 2
5 (m−

5,1,0,0,1) and ρ(H1) � ρ(T 2
5 (m− 5,1,0,0,1)) . The equality holds if and only if

H1
∼= T 2

5 (m−5,1,0,0,1).

Subcase 2.2. If l1 � 1, l6 � 2, l2 = l3 = l4 = l5 = 0, we can obtain a k -graph
T 2
5 (m− 5,0,0,0,2) and ρ(H1) � ρ(T 2

5 (m− 5,0,0,0,2)) . The equality holds if and
only if H1

∼= T 2
5 (m−5,0,0,0,2).

Subcase 2.3. If l1 � 1, l6 = 1, l2 = l3 = l4 = l5 = 0, we can obtain a k -graph
T 2
5 (m− 4,0,0,0,1) and ρ(H1) � ρ(T 2

5 (m− 4,0,0,0,1)) . The equality holds if and
only if H1

∼= T 2
5 (m−4,0,0,0,1).
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Case 3. If l5 �= 0, l6 = 0, we can obtain a k -graph T 1
5 (m−3,0,0,0,1) . By Lemma

1.2 and Lemma 2.14, ρ(H1) � ρ(T 1
5 (m−3,0,0,0,1)) < ρ(T2(m−4,0)) . The equality

holds if and only if H1
∼= T 1

5 (m−3,0,0,0,1).

Case 4. l5 = l6 = 0. We can find a k -graph H2 ∈ {T 1
4 (m− 2,0,0,0),T1

4 (m−
3,1,0,0),T 1

4 (m−4,2,0,0),T1
4 (m−4,1,1,0)} such that ρ(H1) < ρ(H2).

By corollary 2.9, we have our desirable results. �
By corollaries 2.9 and 3.6 and Lemma 3.7, we have our main results:

THEOREM 3.8. Let H be a k -graph in T
m with m > 20 . Then

(i) ρ(T2(m−4,0)) < ρ(T 2
5 (m−5,1,0,0,1)) < ρ(T 2

5 (m−5,0,0,0,2)) < ρ(T 1
4 (m−

4,1,1,0))< ρ(T1
4 (m−4,2,0,0))< ρ(T2

5 (m−4,0,0,0,1))< ρ(T1
4 (m−3,1,0,0))

< ρ(T 1
4 (m−2,0,0,0));

(ii) If H /∈ {T 1
4 (m−2,0,0,0),T 1

4 (m−3,1,0,0),T 1
4 (m−4,2,0,0),T 1

4 (m−4,1,1,0),
T 2
5 (m − 4,0,0,0,1),T2

5 (m − 5,0,0,0,2),T 2
5 (m − 5,1,0,0,1)} , then ρ(H) <

ρ(T 2
5 (m−5,1,0,0,1)) .

4. Concluding remarks

The concept of tensor is a natural extension of matrix. It is similar to the relation-
ship between matrix and graph, there is one-to-one correspondence between tensor and
hypergraph. It is a interesting problem to characterize extremal structure of graph and
hypergraphwith respect to their spectral radius, respectively. In this paper, the extremal
hypergraphs with the first seven largest spectral radius in T

m for m > 20 are character-
ized. It is natural that we can continue to consider extremal hypergraphs in T

m given
some parameters, such as diameter, matching number, independent number, and so on.
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