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ON NUMBER THEORETIC PROPERTIES OF THE KDV FREQUENCIES

THOMAS KAPPELER AND JÜRG KRAMER ∗

(Communicated by F. Gesztesy)

Abstract. In this paper we investigate some number theoretic properties of the frequencies of the
Korteweg–de Vries equation on the torus, relevant for the stability of finite gap solutions.

1. Introduction

The Korteweg–de Vries (KdV) equation

∂t u = −∂ 3
x u+6u∂xu, u(t,x) ∈ R, t,x ∈ R, (1.1)

is a widely used model equation for describing dispersive phenomena. It is named af-
ter the two Dutch mathematician Korteweg and de Vries [29] (see also Boussinesq [12],
Raleigh [38]). The pioneering numerical experiments by Kruskal and Zabusky (see [31])
on special solutions of (1.1), referred to as solitons, the seminal discovery by Gardner,
Greene, Kruskal, and Miura that (1.1) admits infinitely many conservation laws ([23],
[36]), and the invention of the concept of what nowadays is referred to as a Lax pair rep-
resentation of evolution equations such as (1.1) by Lax [35] led to the modern theory
of integrable systems of finite and infinite dimension (see, e.g., [17], [20], and refer-
ences therein). As one of the most prominent examples among dispersive equations,
equation (1.1) has been extensively studied and played a major role in the develop-
ment of the theory of dispersive PDEs to which many of the leading analysts of our
times contributed. In particular, the (globally in time) well-posedness of (1.1) has been
established in various setups in great detail – see [15].

In the sequel we consider (1.1) on the torus T := R/Z . We record that for any inte-
ger s � 0, equation (1.1) is globally (in time) C0 -well-posed in the Sobolev space Hs ≡
Hs(T,R) , consisting of functions q , whose Fourier expansions q(x) = ∑n∈Z q̂(n)einx

satisfy

q̂−n = q̂(n), ∀n ∈ Z, ‖q‖s :=
(

∑
n∈Z

〈n〉2s|q̂(n)|2
)1/2

< ∞,
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where 〈n〉 := max{1, |n|} . A distinguished feature of equation (1.1) is that all its solu-
tions in Hs with s � 0, are almost periodic (in time) and that they can be approximated
by quasi-periodic (in time) solutions, referred to as finite gap solutions, which densely
fill finite dimensional invariant tori (see, e.g., [27]). Due to the importance of finite
gap solutions, their stability, in particular their structural stability, is of great interest. It
encompasses two major issues:

(1) The persistence of quasi-periodic solutions (and of the finite dimensional invari-
ant tori on which they evolve) under (small) perturbations of (1.1).

(2) The long time asymptotics of solutions of perturbations of (1.1) with initial data
close to the orbit of a finite gap solution and hence close to the corresponding
finite dimensional invariant torus.

In the last thirty years, the persistence of quasi-periodic solutions of integrable
PDEs such as (1.1) has been extensively studied. KAM type methods, which were pio-
neered by Kolmogorov, Arnold, and Moser to treat perturbations of finite dimensional
integrable system, were developed for (Hamiltonian) PDEs which allowed to prove that
a large portion of these quasi-periodic solutions persist – see [32], [33], [34], [39], [10],
[27], [1], [8], and references therein.

Concerning item (2), for Hamiltonian perturbations of linear integrable PDEs on
T , which satisfy non-resonance conditions, a normal form method has been developed
allowing to prove the stability of the equilibrium solution u ≡ 0 of (Hamiltonian) per-
turbations for large time intervals – see, e.g., [2], [3], [4], [7], [11], [13], [14], [22], and
references therein. More recently, these techniques have been refined so that in specific
cases, such results can also be proved for Hamiltonian perturbations of resonant lin-
ear integrable PDEs by approximating the perturbed equation by nonlinear integrable
systems, satisfying non-resonance conditions – see [11], [5], [6]. In contrast, first re-
sults on the long time asymptotics of solutions of perturbations of integrable PDEs
such as (1.1) with possibly large initial data close to an invariant finite dimensional
torus were obtained only very recently. In [26], such results are obtained for the KdV
equation.

It turns out that the time of stability of solutions of perturbations of (1.1) with ini-
tial data close to finite gap solutions of (1.1) is closely related to resonances or almost
resonances of the KdV frequencies. The goal of this paper is to discuss number theo-
retic properties of these frequencies which are relevant for the time of stability of the
solutions mentioned above.

2. Stability of finite gap solutions of the KdV equation

In this section we describe the results in [26] on the stability of solutions of pertur-
bations of (1.1) with initial data close to finite gap solutions of (1.1) in more detail and
then state the main result of this paper, which concerns number theoretic properties of
the KdV frequencies.
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We begin with some preliminary considerations. It is well known that (1.1) is a
Hamiltonian PDE with Poisson structure ∂x ,

∂tu = ∂x∇H, H(u) =
1∫

0

(
1
2
(∂xu)2 +u3

)
dx, (2.1)

where ∇H denotes the L2 -gradient of H . We consider semilinear Hamiltonian pertur-
bations of the form

∂t u = ∂x∇H + ε∂x∇F, F(u) =
1∫

0

f (x,u(x))dx, (2.2)

where ε is a small perturbation parameter and the density f : T×R → R of F is C∞ -
smooth and might depend explicitly on x . Note that û(t,0) =

∫ 1
0 u(t,x)dx (mass) of

any solution of (2.1) or of (2.2) is conserved and hence the subspace

Hs
0 :=

{
q ∈ Hs

∣∣∣∣ q̂(0) =
∫ 1

0
q(x)dx = 0

}
of Hs is left invariant by (2.1) as well as by (2.2) (see [27], Section 13). It means that
for any initial data u0 ∈ Hs

0 with s � 0, the solution u of (2.1) in Hs
0 with initial data

u0 evolves in Hs
0 as

u : R −→ Hs
0,

given by the assignment t 
→ u(t) = u(t, ·) with initial condition u(0) = u0 . To simplify
the exposition, we choose Hs

0 as our phase space. The corresponding space of Fourier
coefficients is denoted by hs

0 , i.e.,

hs
0 :=

{
(wn)n∈Z0 ∈ hs

0,c

∣∣w−n = wn, ∀n � 1
}
,

where

Z0 := N∪ (−N) with N := {1,2, . . .}
and hs

0,c ≡ hs(Z0,C) is defined to be the sequence space

hs
0,c :=

{
w = (wn)n∈Z0

∣∣wn ∈ C, ∀n �= 0, ‖w‖s < ∞
}
, ‖w‖s :=

(
∑
n �=0

|n|2s|wn|2
)1/2

.

It turns out that (2.1) admits a nonlinear Fourier transform. It is described by the
following theorem in a somewhat informal way. For a precise statement and its proof
see [27].

THEOREM 2.1. ([27]) There exists a map

Φ : L2
0 ≡ H0

0 −→ �2
0 ≡ h0

0, q 
→ w(q) := (wn(q))n∈Z0 ,
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so that wn(q) , n �= 0 , are nonlinear Fourier coefficients for (2.1) with

In(q) :=
1

2πn
wn(q)w−n(q) � 0, ∀n � 1,

being action variables and hence prime integrals of (2.1). More precisely, the following
holds:

(1) For any integer s � 0 , the map Φ|Hs
0
: Hs

0 −→ hs
0 is a real analytic diffeomor-

phism.

(2) H ◦Φ−1 is a real analytic functional H of the actions I := (In)n∈N alone.

(3) Equation (2.1), when expressed in the nonlinear Fourier coefficients, takes the
form

∂twn(t) = iωnwn(t), ∀n ∈ Z0, (2.3)

where ωn ≡ ωn(I) , n �= 0 , denote the KdV frequencies,

ωn(I) := ∂InH (I), ω−n(I) := −ωn(I), ∀n ∈ N. (2.4)

Since the actions In , n � 1 , are prime integrals of (2.1), so are the frequencies. As a
consequence, (2.3) can be solved by quadrature,

wn(t) = wn(0)eiωnt , ∀t ∈ R, ∀n ∈ Z0.

We are now in a position to introduce in more precise terms the notion of finite
gap solutions of (2.1) and the invariant tori, on which they evolve. For any finite subset
S+ ⊆ N := {1,2, . . .} , let

S := S+∪ (−S+), S⊥ := Z0 \ S.

DEFINITION 2.1. An element q ∈ L2
0 is said to be an S -gap potential if

wn(q) �= 0, ∀n ∈ S, wn(q) = 0, ∀n ∈ S⊥.

We denote by MS the set of all S -gap potentials of L2
0 . By Theorem 2.1, MS is

contained in
⋂

s�0 Hs
0 and invariant under the flow of (2.1). We say that u(t,x) is a

finite gap solution of (2.1) if u(t,x) is in MS for some S with S+ ⊂ N finite.
Due to the presence of small divisors, the stability result in [26] imposes non-

resonance conditions on the KdV frequencies (2.4). To describe them, let us introduce
for any given finite subset S+ of N the action to frequency map,

ω : R
S+
>0 −→ RS+ , IS = (In)n∈S+ 
→ (ωn(IS,0))n∈S+ ∈ RS+ , (2.5)

where for notational convenience, we write (IS,0) for the sequence of actions (In)n�1

with In = 0 for any n ∈ N\ S+ . We remark that the action to frequency map ω is real
analytic. The following lemma is due to Krichever and its proof has been worked out
in [9].
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LEMMA 2.1. For any finite subset S+ ⊂ N , the map ω : R
S+
>0 → RS+ is a local

diffeomorphism.

It turns out to be convenient to locally parametrize the invariant tori of S -gap
potentials by ω . More precisely, let Ξ ⊂ R

S+
>0 be a closed ball so that ω : Ξ → Π :=

ω(Ξ) is a diffeomorphism onto Π . Denote by μ its inverse,

μ : Π −→ Ξ, ω 
→ μ(ω),

and define Tμ(ω) to be the torus of S -gap potentials with actions μn(ω) with n ∈ S+ ,
given by

Tμ(ω) := Φ−1({(
(wn)n∈S,0

) ∈ h0
0

∣∣ |wn|2 = 2πnμn(ω), ∀n ∈ S+
})

.

Note that the torus Tμ(ω) has dimension |S+| , is invariant under (2.1), and is Lyapunov
stable in Hs

0 for any s � 0, meaning that for any ε > 0 there exists δ > 0, depending
on s , so that for any initial data u0 ∈ Hs

0 with

distHs
(
u0,Tμ(ω)

)
� δ , distHs

(
u0,Tμ(ω)

)
:= inf

q∈Tμ(ω)
‖u0−q‖s, (2.6)

the solution u(t, ·) of (2.1) with u(0, ·) = u0 satisfies

distHs
(
u(t, ·),Tμ(ω)

)
� ε, ∀t ∈ R.

Finally, we introduce the so called normal frequencies,

Ω j(ω) := ω j(μ(ω),0), ∀ j ∈ S⊥, ∀ω ∈ Π, (2.7)

which have the following properties:

LEMMA 2.2. ([25, Lemma C.7]) For any ω ∈ Π , the normal frequencies admit
an asymptotic expansion of the form

Ω j(ω) = (2π j)3 + α
1
j
+O

(
1
j3

)
, as j →±∞, (2.8)

where the error term is uniform in ω and real analytic on Π . The coefficient α : Π→R

is real analytic and conserved by the flow of (2.1).

REMARK 2.1. It can be shown that the coefficient α in the asymptotic expan-
sion (2.8) does not vanish identically. See Appendix A for a proof.

Note that (2π j)3 with j ∈ Z , are the frequencies of the Airy equation, ∂t v =
−∂ 3

x v , which can be viewed as the linearization of (1.1) at the stationary solution u≡ 0.
For the following definition of non-resonance conditions, it is convenient to define for
any vector � = (�n)n∈S+ in ZS+ ,

〈�〉 := max
{
1,

(
∑

n∈S+

|�n|2
)1/2}

.
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DEFINITION 2.2. (Non-resonance conditions) For any 0 < γ < 1 and for any

τ > |S+| , introduce the following subsets Π(i)
γ ≡ Π(i)

γ,τ , 0 � i � 3, of Π ,

Π(0)
γ :=

{
ω ∈ Π

∣∣ |ω · �| � γ
〈�〉τ , ∀� ∈ ZS+ \ {0}},

Π(1)
γ :=

{
ω ∈ Π

∣∣ |ω · �+ Ω j(ω)| � γ
〈�〉τ , ∀(�, j) ∈ ZS+ ×S⊥

}
,

Π(2)
γ :=

{
ω ∈ Π

∣∣ |ω · �+ Ω j1(ω)+ Ω j2(ω)| � γ
〈�〉τ , (2.9)

∀(�, j1, j2) ∈ ZS+ ×S⊥×S⊥ with (�, j1, j2) �= (0, j1,− j1)
}
,

Π(3)
γ :=

{
ω ∈ Π

∣∣ |ω · �+ Ω j1(ω)+ Ω j2(ω)+ Ω j3(ω)| � γ
〈�〉τ( j1 j2 j3)2 ,

∀(�, j1, j2, j3) ∈ ZS+ ×S⊥×S⊥×S⊥ with jk + jl �= 0, ∀1 � k, l � 3
}
.

We refer to Π(i)
γ , 0 � i � 3, as the i -th Melnikov conditions.

Note that the term 1/( j1 j2 j3)2 in the third Melnikov conditions can be viewed as
a loss of derivatives in space. Such a loss needs to be admitted in order to prove the
following measure estimate.

PROPOSITION 2.1. ([26, Proposition 8.1]) For any τ > |S+| , we have

lim
γ→0

meas(Π\Π(i)
γ ) = 0, ∀0 � i � 3.

REMARK 2.2. To prove that meas(Π \Π(3)
γ ) converges to 0 as γ → 0, one uses

that by Fermat’s last theorem for the special case of cubic powers, proved by Euler [19],
one has

∣∣ 3

∑
k=1

j3k
∣∣ � 1, ∀( j1, j2, j3) ∈ Z3 with jk + jl �= 0, ∀1 � k, l � 3. (2.10)

We refer to Section 4 for a general discussion on cubic diophantine equations, relevant
in the context of the KdV frequencies.

To state the main result of [26], we need to introduce one additional notation. Let
X be a Banach space with norm ‖·‖X , k � 0 an integer, and J ⊂R an interval. We then
denote by Ck(J,X) the Banach space of k times continuously differentiable functions
f : J → X , endowed with the supremum norm,

‖ f‖Ck := sup
{‖∂ j

t f (t)‖X
∣∣ t ∈ J, 0 � j � k

}
.

THEOREM 2.2. ([26, Theorem 1.1]) Let f : T → R be C∞ -smooth, S+ a finite
subset of N , and τ > |S+| . Then for any integer s sufficiently large and any 0 < γ < 1 ,
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there exists 0 < ε0 ≡ ε0(s,γ) < 1 with the following properties: for any 0 < ε � ε0 ,

any ω ∈ ⋂
0�i�3 Π(i)

γ , and any initial data u0 ∈ Hs
0 , satisfying

distHs
(
u0,Tμ(ω)

)
� ε, (2.11)

equation (2.2) admits a unique solution t 
→ u(t, ·) in C0([−T,T ],Hs
0)∩C1([−T,T ],Hs−3

0 )
with initial data u(0,x) = u0(x) and T = Ks,γ ε−2 . Moreover, u satisfies the estimate

distHs
(
u(t, ·),Tμ(ω)

)
� Ms,γ ε, ∀ −T � t � T,

where the distance function distHs is defined in (2.6). For notational convenience, the
dependence of the constants Ks,γ > 0 and Ms,γ > 0 on f , S+ , and τ is not indicated.

In informal terms, Theorem 2.2 can be stated as follows: For any smooth density
f : T×R → R , s sufficiently large, ε > 0 sufficiently small, and for most of the finite
gap solutions q : t 
→ q(t, ·) of (1.1), the following holds: for any initial data u0 ∈
Hs

0 , which is ε -close in Hs
0 to the orbit Oq := {q(t, ·) | t ∈ R} of q , the perturbed

equation (2.1) admits a unique solution t 
→ u(t, ·) in Hs
0 with initial data u(0, ·) = u0

and life span at least [−T,T ] with T = O(ε−2) . The solution u(t, ·) stays ε -close in
Hs

0 to the orbit Oq .
The proof of Theorem 2.2 is based on a normal form procedure and a refined

nonlinear Fourier transform, which admits an expansion in terms of pseudodifferential
operators [25]. This method is quite general and it is to be expected that for any in-
tegrable PDE, admitting coordinates of the type constructed in [25], a corresponding
version of Theorem 2.2 holds, up to the measure estimates of Proposition 2.1 related
to the non-resonance conditions for the frequencies of the integrable PDE considered.
These estimates might require specific arithmetic properties of the frequencies. For
further comments on Theorem 2.2, we refer the reader to [26].

It is an open question whether the time interval [−T,T ] of stability of the solutions
of the perturbed KdV equation (2.2), considered in Theorem 2.2, can be proved to be
larger. A first result of this paper concerns number theoretic properties of the KdV
frequencies, which would be needed to prove by the method of normal forms that the
length of this time interval is indeed larger – see Theorem 2.3 in paragraph (A) below.

In the case where the perturbation Hamiltonian in (2.2) is of the form F(u) =∫ 1
0 f (u(x))dx , some of the resonances of the KdV frequencies can be ignored and it

is expected that one can prove a result, similar to the one stated in Theorem 2.2, but
with a longer time interval of stability. Note that such perturbations are invariant under
translation, i.e., for any τ ∈ R , we have F(uτ) = F(u) , where uτ denotes the translate
of u by τ and uτ(·) = u(·+ τ) . In paragraph (B) below we discuss number theoretic
properties of the KdV frequencies, which would be needed for proving such a result for
F of the form F(u) =

∫ 1
0 f (u(x))dx .

(A) To show by a normal form procedure that the size of T in Theorem 2.2 is at
least of the order of O(ε−3) requires to impose in addition the 4th Melnikov conditions
on the frequencies ω ∈ Π considered, i.e., for any � ∈ ZS+ and any ( jk)1�k�4 ∈ (S⊥)4
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satisfying jk + jl �= 0 with 1 � k, l � 4,

∣∣ω · �+
4

∑
k=1

Ω jk (ω)
∣∣ � γ

〈�〉τ (∏4
k=1 jk)2

.

We denote by Π(4)
γ the frequencies ω ∈ Π , satisfying the 4th Melnikov conditions.

Following the line of arguments above (see Proposition 2.1), one needs to prove (among

other results) that limγ→0 meas(Π\Π(4)
γ ) = 0. A first difficulty in proving such a result

arises due the fact that the analogue of equation (2.10) no longer holds, i.e., there exist
integer vectors ( jk)1�k�4 ∈ Z4

0 with j1 � j2 � j3 � j4 so that

4

∑
k=1

j3k = 0, jk + jl �= 0, ∀1 � k, l � 4. (2.12)

Well known solutions of (2.12) are (see [18])

(−3,−4,−5,6), (−10,−9,1,12), (−9,1,6,8), (2.13)

and their non-zero integer multiples. In particular, it follows that (2.12) has infinitely
many solutions. In fact, according to [18], there are many more solutions of (2.12).
Closely related to (2.12) is the Fermat cubic, defined in P3(C) by the equation x3

1 +
x3
2 + x3

3 + x3
4 = 0, which has been extensively studied in algebraic geometry. We refer

to Section 4 for a further discussion of (2.12).
To overcome the difficulty caused by the infinitely many solutions of (2.12), one

can try to use the asymptotics of the normal frequencies, stated in Proposition 2.2. The

following theorem might suffice for proving that limγ→0 meas(Π\Π(4)
γ ) = 0.

THEOREM 2.3. The system of equations

4

∑
k=1

j3k = 0,
4

∑
k=1

1
jk

= 0, (2.14)

has no solutions ( jk)1�k�4 ∈ Z4
0 satisfying

jk + jl �= 0, ∀1 � k, l � 4. (2.15)

Proof. The proof will be given in Section 3. �
(B) If the density f of the perturbation F(u) =

∫ 1
0 f (x,u(x))dx (cf. (2.2)) does

not explicitly depend on x , i.e., F(u) =
∫ 1
0 f (u(x))dx , then the momentum M(u) =∫ 1

0 u(x)2 dx , which is conserved by (2.1), is also a prime integral of equation (2.2). In
this case one expects that the length of the time interval [−T,T ] of stability in Theo-
rem 2.2 is at least of the order of ε−3 . One of the ingredients for proving such a result
is that the system of equations

4

∑
k=1

j3k = 0,
4

∑
k=1

jk = 0, (2.16)
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has no solutions ( jk)1�k�4 ∈ Z4
0 satisfying

jk + jl �= 0, ∀1 � k, l � 4. (2.17)

This can be established by elementary means. Indeed, by substituting j4 = − j1− j2 −
j3 into the first equation of (2.16), one gets

j31 + j32 + j33 − ( j1 + j2 + j3)3 = −3( j1 + j2)( j1 + j3)( j2 + j3),

which shows that (2.16) has no integer solutions satisfying (2.17).
Going one step further, one might try to prove that the time interval [−T,T ] of

stability of the solutions of (2.2) in Theorem 2.2 for perturbations of the form F(u) =∫ 1
0 f (u(x))dx is at least of the order of ε−4 . Similarly as in item (A) above, a first

difficulty in proving such a result arises from the fact that the system of equations

5

∑
k=1

j3k = 0,
5

∑
k=1

jk = 0, (2.18)

has infinitely many solutions ( jk)1�k�5 ∈ Z5
0 satisfying

jk + jl �= 0, ∀1 � k, l � 5. (2.19)

The infinitude of the set of integral solutions of the system of equations (2.18) satisfy-
ing (2.19) will be discussed in Section 4.

In analogy to Theorem 2.3, one might try to overcome the difficulty for proving
the corresponding measure estimate, caused by the infinitely many integral solutions of
the system of equations (2.18) satisfying (2.19), in case the following question has an
affirmative answer.

QUESTION 2.1. Does the system of equations

5

∑
k=1

j3k = 0,
5

∑
k=1

jk = 0,
5

∑
k=1

1
jk

= 0, (2.20)

subject to the constraints

jk + jl �= 0, ∀1 � k, l � 5, (2.21)

have no solutions ( jk)1�k�5 ∈ Z5
0 ?

The likeliness for an affirmative answer of Question 2.1 will be discussed in Sec-
tion 3 below.

3. Proofs and discussions

In this section, we prove Theorem 2.3 and then discuss Question 2.1, both stated
in Section 2. We also outline some general results from number theory which might be
useful for establishing results of the type of Theorem 2.3.
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Proof of Theorem 2.3. Let us start by pointing out that in the end, the proof of
Theorem 2.3 will be reduced to an elementary problem, which can be solved quite
easily. In order to arrive at this reduction, we reformulate the claim of Theorem 2.3 as
follows.

Let us introduce the 3-dimensional complex projective space P3(C) with the ho-
mogenous coordinates (x1 : x2 : x3 : x4) . Then, the cubic equation

4

∑
k=1

x3
k = 0

defines a cubic surface S1 in P3(C) . Similarly, the fractional equation

4

∑
k=1

1
xk

= 0

defines also a cubic surface S2 in P3(C) . Therefore, the system of equations

4

∑
k=1

x3
k = 0,

4

∑
k=1

1
xk

= 0 (3.1)

describes the intersection S1 ∩ S2 of the two cubic surfaces S1 and S2 , which is an
algebraic curve C of degree 9 embedded in P3(C) . Since it is easily checked that
the set of non-zero integral solutions of the system of equations (3.1) equals the set
of non-zero rational solutions of the system of equations (3.1), the search of solutions
( jk)1�k�4 ∈ Z4

0 of the system of equations (2.14) amounts to the search of points on
the curve C having non-zero rational coordinates. Thus, it will be useful to compute
the polynomial equation describing the curve C explicitly, which will be done below
by eliminating the variable x4 .

Before doing so, it is helpful to also interpret the constraints (2.15), which the
solutions ( jk)1�k�4 ∈ Z4

0 of (2.14) have to satisfy, in the present algebraic geometric
context. For this, we observe that the system of equations (3.1) admits solutions satis-
fying the linear relations

xk + xl = 0, ∀1 � k, l � 4, (3.2)

which we call trivial solutions. Therefore, in order to prove Theorem 2.3, we have to
show that the curve C contains only points having rational coordinates of which at least
one is zero.

As promised, we are now going to compute the polynomial equation describing
the curve C in P2(C) with the homogeneous coordinates (x1 : x2 : x3) by eliminating
the variable x4 . For this we use the second equation in (3.1) to obtain

1
x4

= − 1
x1

− 1
x2

− 1
x3

= −x1x2 + x1x3 + x2x3

x1x2x3
,
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which we rewrite as

x4 = − x1x2x3

x1x2 + x1x3 + x2x3
. (3.3)

Substituting (3.3) into the first equation of (3.1) and multiplying by (x1x2 + x1x3 +
x2x3)3 , yields

(x1x2 + x1x3 + x2x3)3(x3
1 + x3

2 + x3
3)− (x1x2x3)3 = 0, (3.4)

which is the polynomial equation describing the curve C in P2(C) .
We note that a rational solution (x1 : x2 : x3 : x4) ∈ P3(Q) of the system of equa-

tions (3.1) with x1x2x3x4 �= 0 gives rise to a solution (x1 : x2 : x3)∈ P3(Q) of (3.4) with
x1x2x3 �= 0; conversely, a solution (x1 : x2 : x3) ∈ P3(Q) of (3.4) with x1x2x3 �= 0 gives
rise to a solution (x1 : x2 : x3 : x4) ∈ P3(Q) of the system of equations (3.1) with x4

being determined by (3.3) and such that x1x2x3x4 �= 0. This confirms indeed that the
solutions ( jk)1�k�4 ∈ Z4

0 of the system of equations (2.14) correspond to the points on
the curve C having non-zero rational coordinates.

MATHEMATICA allows us to fully expand equation (3.4), which leads to the fol-
lowing homogeneouspolynomial equation of degree 9 describing the curve C in P2(C)

x6
1x

3
2 +3x6

1x
2
2x3 +3x6

1x2x
2
3 + x6

1x
3
3 +3x5

1x
3
2x3 +6x5

1x
2
2x

2
3 +3x5

1x2x
3
3

+3x4
1x

3
2x

2
3 +3x4

1x
2
2x

3
3 + x3

1x
6
2 +3x3

1x
5
2x3 +3x3

1x
4
2x

2
3 +2x3

1x
3
2x

3
3

+3x3
1x

2
2x

4
3 +3x3

1x2x
5
3 + x3

1x
6
3 +3x2

1x
6
2x3 +6x2

1x
5
2x

2
3 +3x2

1x
4
2x

3
3

+3x2
1x

3
2x

4
3 +6x2

1x
2
2x

5
3 +3x2

1x2x
6
3 +3x1x

6
2x

2
3 +3x1x

5
2x

3
3 +3x1x

3
2x

5
3

+3x1x
2
2x

6
3 + x6

2x
3
3 + x3

2x
6
3 = 0. (3.5)

Applying the MATHEMATICA command Factor to the polynomial given in equa-
tion (3.5), we obtain the factorization into irreducible polynomials

(x1 + x2)(x1 + x3)(x2 + x3) f (x1,x2,x3) = 0,

where f (x1,x2,x3) is the irreducible homogeneous polynomial of degree 6 given by

f (x1,x2,x3) := x4
1x

2
2 +2x4

1x2x3 + x4
1x

2
3− x3

1x
3
2 − x3

1x
3
3 + x2

1x
4
2 + x2

1x
2
2x

2
3

+ x2
1x

4
3 +2x1x

4
2x3 +2x1x2x

4
3 + x4

2x
2
3− x3

2x
3
3 + x2

2x
4
3. (3.6)

Geometrically, this factorization implies that the curve C is reducible and consists of
four irreducible components, three of which are given by the projective lines

xk + xl = 0, ∀1 � k, l � 3, (3.7)

while the fourth irreducible component is an irreducible curve C′ of degree 6 in P2(C) ,
described by the polynomial equation

f (x1,x2,x3) = 0. (3.8)
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Since the points on the projective lines (3.7) give rise to the trivial solutions (3.2),
namely

(x1 : −x1 : x3), (x1 : x2 : −x1), (x1 : x2 : −x2),

which are not of interest to us, it remains to investigate the rational solutions of equa-
tion (3.8), i.e., the rational points on the curve C′ . The curve C′ has the obvious three
rational points

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),

which in the end will not be relevant in our further discussion, since some of their
coordinates vanish.

We next consider the affine curve C′
aff in the affine x1,x2 -plane obtained from

C′ by dehomogenization, i.e., by setting x3 = 1. In order to ease notation for the
subsequent calculations, we set x = x1 and y = x2 . Thus, C′

aff is given by the equation
faff(x,y) = 0, where

faff(x,y) := f (x,y,1)

= x4y2− x3y3 + x2y4 +2x4y+2xy4 + x4 + x2y2 + y4− x3− y3 + x2 +2xy+ y2.

In this affine picture, the points P1 and P2 are the two points at infinity of the curve C′
aff

and the point P3 reflects that the curve C′
aff contains the origin of the x,y-plane. We

now claim that the only real point on the affine curve C′
aff is the origin, which in turn

shows that the only real points on the projective curve C′ are the points P1 , P2 , P3 .
In order to show this, we observe that we can make the implicit equation faff(x,y)=

0 explicit by considering it as a polynomial equation of degree four in y and then solve
it using Ferrari’s formulae. Defining the quantities

A(x) :=
x2 − x+1
4(x+1)

,

B(x) := −3(x4 +2x3− x2 +2x+1)
4(x+1)2 ,

C(x) := −x4 + x2 +1
2(x+1)2 ,

D(x) := −3(x2 +3x+1)2(x2− x+1)
(x+1)3 ,

MATHEMATICA provides the following four solutions (branches),

y1,2(x) = A(x)− 1
2

√
B(x)± 1

2

√
C(x)− D(x)

4
√

B(x)
,

y3,4(x) = A(x)+
1
2

√
B(x)± 1

2

√
C(x)+

D(x)
4
√

B(x)
.
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One easily checks that for real x , the rational function B(x) has a pole at x = −1 and
possesses the two real zeros

x1 =
−3−√

5
2

= −2.61803 . . ., x2 =
−3+

√
5

2
= −0.38196 . . . ,

from which we conclude that for x < x1 and for x > x2 , the quantity B(x) is negative
and thus

√
B(x) is purely imaginary. More specifically, a careful analysis (either using

MATHEMATICA or a direct inspection by hand) shows that for x < x1 and x > x2 , the
solutions y j(x) with 1 � j � 4 are always purely complex unless x = 0, which leads
to

y2(0) = y3(0) = 0, y1(0) =
1−√−3

2
, y4(0) =

1+
√−3
2

,

and shows that for x < x1 and x > x2 , the origin (x,y) = (0,0) of the affine x,y-plane
is the only real point on C′

aff . As an example, we present the plots of the imaginary part
of y1(x) for −6 < x < x1 and of the imaginary part of y4(x) for x2 < x < 5; similar
plots can be obtained for the imaginary parts of y2(x) and y3(x) in the range under
consideration:
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Therefore, the solutions y j(x) with 1 � j � 4 are strictly complex and cannot be
real. In case x = −1, we find the two solutions y1,2 = ±i . Altogether, this shows that
the origin (x,y) = (0,0) of the affine x,y-plane is the only real point on the curve C′

aff .
This allows us to conclude the proof of the theorem: we have shown that the only

non-trivial rational points on the curve C are the points P1 , P2 , P3 . However, since
some of their coordinates vanish, these points have to be ignored. Thus, by our intro-
ductory reformulations, it follows that the system of equations (2.14) has no solutions
( jk)1�k�4 ∈ Z4

0 satisfying (2.15). �

REMARK 3.1. In the preceding proof of Theorem 2.3, the crucial point was to
show that the irreducible curve C′ in P2(C) , defined by the equation

f (x1,x2,x3) = 0,

where f (x1,x2,x3) is the irreducible homogeneouspolynomial of degree 6 given by (3.6),
has

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1)

as its only rational points. In order to approach such a claim in general, one shows in
a first step that the curve C′ , which is defined over Q , has only finitely many rational
points. Such a finiteness result then implies that the system (2.14) has only finitely
many primitive solutions ( jk)1�k�4 ∈Z4

0 satisfying (2.15), by which we mean solutions
( jk)1�k�4 ∈ Z4

0 with greatest common divisor equal to 1.
In order to prove the finiteness of the set of rational points on the curve C′ , one

is tempted to employ Faltings’s Theorem (formerly the Mordell Conjecture, see [21]),
which states that this set is indeed finite if the genus gC′ of C′ is bigger than 1. (For
an elementary introduction to this circle of problems, we refer to Appendix C in [30]
and the references therein.) Hence, we need to compute the genus gC′ , which requires
to determine the singular points of C′ . Either by a direct computation or alternatively
using the command singularities( f ,x1,x2,x3 ) of the software package with(algcurves)
of MAPLE, one concludes that the three singular points are the points P1 , P2 , P3 men-
tioned above, having the following multiplicities and delta-invariants

m1 = 2 and δ1 = 2,

m2 = 2 and δ2 = 2,

m3 = 2 and δ3 = 2,

respectively. We note that the delta-invariants being bigger than 1 implies that the
singularities in question are not ordinary. With these data at hand, the genus gC′ of the
curve C′ of degree d = 6 is given by

gC′ =
(d−1)(d−2)

2
−

3

∑
j=1

δ j =
5 ·4
2

− (2+2+2)= 4.



ON NUMBER THEORETIC PROPERTIES OF THE KDV FREQUENCIES 655

The normalization C̃′ of the curve C′ is then an irreducible, smooth, projective curve
of genus g

C̃′ = 4. The normalization C̃′ admits a surjective morphism π : C̃′ −→ C′ ,
which is an isomorphism away from the three singular points, i.e., we have

C̃′ \π−1({P1,P2,P3}) ∼= C′ \ {P1,P2,P3}, (3.9)

and for any 1 � j � 3, the fiber π−1(Pj) over the singular point Pj consists of finitely

many points. Finally, since the curve C′ is defined over Q , its normalization C̃′ is also
defined over Q .

In summary, C̃′ is an irreducible, smooth, projective curve of genus g
C̃′ = 4, which

is moreover defined over Q . By Faltings’s Theorem we then conclude that C̃′ has only
finitely many rational points. Because of the isomorphism (3.9) and the fact that the
fibers over the three singular points are finite, the curve C′ also has only finitely many
rational points. This concludes our remark demonstrating that our main result can be
reduced to a finite problem in quite general terms.

Let us now turn to the promised discussion of Question 2.1.

Discussion of Question 2.1. In analogy to the proof of Theorem 2.3, in order to
approach Question 2.1, we introduce the homogeneous coordinates (x1 : x2 : x3 : x4 : x5)
in projective space P4(C) and first investigate the algebraic geometric objects defined
by the system of equations

5

∑
k=1

x3
k = 0,

5

∑
k=1

xk = 0,
5

∑
k=1

1
xk

= 0. (3.10)

The first equation of (3.10) defines a cubic threefold T1 , the second equation of (3.10)
defines a hyperplane T2 , while the third equation of (3.10) defines a quartic threefold
T3 in P4(C) , given by the homogeneous polynomial equation of degree 4,

x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5 = 0.

We are interested in the locus given by the intersection of the three threefolds Tj (1 �
j � 3) in P4(C) .

Intersecting the cubic threefold T1 with the hyperplane T2 , leads to the irreducible
cubic surface S1 in P3(C) , given by the equation

x3
1 + x3

2 + x3
3 + x3

4− (x1 + x2 + x3 + x4)3 = 0,

and known as the Clebsch cubic surface. The set of rational points on S1 turns out be
infinite; it will be discussed in more detail in Section 4. On the other hand, intersecting
the hyperplane T2 with the quartic threefold T3 gives rise to the irreducible quartic
surface S2 in P3(C) , given by the equation

x1x2x3x4− (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)(x1 + x2 + x3 + x4) = 0,

and known as the Hessian surface. We do not know if the set of rational points on
S2 is infinite, however it is likely that this indeed the case since the resolution of the
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singularities of S2 leads to a K3-surface (see Section 9.4.2 in [16]) which is, of course,
not of general type and thus might allow infinitely many rational points projecting down
to S2 .

Ultimately, we are interested in the set of rational points on the intersection T1 ∩
T2 ∩T3 = S1 ∩ S2 , which is a curve D of degree 12 in P3(C) defined over Q . Using
the algebraic geometry software package MACAULAY, it can be shown that the curve
D is irreducible and has genus 19. Arguing as in Remark 3.1 above, it then follows
again from Faltings’s Theorem that the system of equations (2.20) can have at most
finitely many primitive solutions ( jk)1�k�5 ∈ Z5

0 satisfying (2.21). To fully answer
Question 2.1, it thus remains to show that for any primitive solution ( jk)1�k�5 ∈ Z5 ,
there is always an index k ∈ {1, . . . ,5} such that jk = 0, which then implies that the
remaining four indices can be grouped into two pairs of indices (l, l′) and (m,m′) such
that jl + jl′ = 0 and jm + jm′ = 0. It is likely that this can be proved, however this
seems not to be an easy task.

4. On cubic diophantine equations

The aim of this section is to give a broad overview about results on the set of
rational solutions of cubic equations which are relevant in the context of the KdV fre-
quencies. We start with a discussion of results on the set of rational points on Fermat’s
cubic in 3, 4 , and 5 variables and then proceed by adding to the equation of Fermat’s
cubic a linear and, subsequently, a fractional constraint. For each of these systems of
equations, we study the set of common rational solutions.

4.1. The Fermat cubic in several variables

We start by considering the Fermat cubic curve in P2(C) , given by

F3 : x3
1 + x3

2 + x3
3 = 0.

We are interested in the set of rational points of F3 , which do not lie on the lines in
P2(C) , defined by

xk + xl = 0, ∀1 � k, l � 3. (4.1)

As Fermat’s Last Theorem tells us, there are no such rational points on F3 .
Next, we consider the Fermat cubic surface in P3(C) , given by

F4 : x3
1 + x3

2 + x3
3 + x3

4 = 0.

We are interested in the set of rational points of F4 , which do not lie on the planes in
P3(C) , defined by

xk + xl = 0, ∀1 � k, l � 4. (4.2)

In contrast to the preceding case, it turns out that there are infinitely many such rational
points on F4 . In fact, the set of such rational points can be shown to be Zariski dense
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in F4(Q) . In the next subsection, we will indicate how such rational points can be
constructed. More generally, there is a parametrization of them, given by N. Elkies in
[18]. As an aside, we remark that this problem is related to the question of representing
an integer in two different ways as a sum of two cubes, the celebrated “cab number
problem”, e.g.,

13 +123 +(−9)3 +(−10)3 = 0.

Finally, turning to 5 variables, we consider the Fermat cubic threefold in P4(C) ,
given by

F5 : x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0.

We are interested in the set of rational points of F5 , which do not lie on the hyperplanes
in P4(C) , defined by

xk + xl = 0, ∀1 � k, l � 5. (4.3)

Given our preceding discussion, it is not surprising that there is an infinitude of such
rational points on F5 . As an example, we mention

53 +73 +93 +103 +(−13)3 = 0.

4.2. The Fermat cubics with a linear constraint

First consider the system of equations in P2(C) , given by

F3 : x3
1 + x3

2 + x3
3 = 0, L3 : x1 + x2 + x3 = 0.

We are interested in the set of rational points of F3 ∩ L3 , which do not lie on the
lines (4.1). Since there are no rational points on F3 away from the lines (4.1), we
have that F3(Q)∩L3(Q) = /0 .

Next, we consider the system of equations in P3(C) , given by

F4 : x3
1 + x3

2 + x3
3 + x3

4 = 0, L4 : x1 + x2 + x3 + x4 = 0.

We are interested in the set of rational points of F4 ∩ L4 , which do not lie on the
planes (4.2). It turns out that F4(Q)∩L4(Q) = /0 , as discussed on the top of page 649.

Continuing in this way, we next consider the system of equations in P4(C) , given
by

F5 : x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0, L5 : x1 + x2 + x3 + x4 + x5 = 0.

We are interested in the set of rational points of F5 ∩L5 , which do not lie on the hy-
perplanes (4.3). The intersection F5∩L5 is known as the Clebsch cubic surface S , for
which we know that there are infinitely many rational points on F5∩L5 away from the
hyperplanes (4.3). In fact, it is known that the set of rational points on F5∩L5 is Zariski
dense.
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Let us sketch how such rational points can be systematically computed on S : Using
the relation x5 = −x1 − x2 − x3 − x4 , the Clebsch cubic surface S can be described
equivalently as the cubic surface in P3(C) , given by the equation

x3
1 + x3

2 + x3
3 + x3

4− (x1 + x2 + x3 + x4)3 = 0.

Given a non-zero rational number a , the Clebsch cubic surface S obviously contains the
rational point P = (−a,a,1,−1) ∈ S(Q) . The aim now is to construct further rational
points on S , starting with the rational point P . For this, we first construct the tangent
plane T of S at the point P , which is easily computed as

T : a2x1 +a2x2 + x3 + x4 = 0.

Next, we compute the intersection of the Clebsch cubic surface S with the tangent plane
T , which leads to the cubic curve

C : x3
1 + x3

2 + x3
3− (a2x1 +a2x2 + x3)3− ((1−a2)x1 +(1−a2)x2)3 = 0. (4.4)

By construction, the cubic curve C contains the line given by x1 + x2 = 0. Hence the
left-hand side of (4.4) has to be divisible by (x1 + x2) . Performing this polynomial
division leads to the quadric

Q : x1x2 +a2(a2−1)(x1 + x2)2 +a4(x1 + x2)x3 +a2x2
3 = 0.

Obviously, the point P is also a rational point on the quadric Q . Therefore, we obtain
all the rational points P′ on Q , by intersecting Q with any line L passing through P
and having rational slope, i.e., by intersecting Q with

L : b(x1 +ax3)− c(x2−ax3) = 0,

where (b,c) ∈ Q2 \ {(0,0)} . Since the quadric Q is by construction contained in the
Clebsch cubic surface S , by varying the pair (b,c) through Q2 \ {(0,0)} , one obtains
infinitely many rational points P′ on S . Assuming that b �= 0, a straightforward com-
putation yields the following coordinates for P′ ∈ S(Q) :

x1,P′ = − a
b2

(
a2(a2−1)(b+ c)2 +a3c(b+ c)+ c2),

x2,P′ =
a
b2

(
a2(a2−1)(b+ c)2−a3b(b+ c)+b2),

x3,P′ =
1
b2

(
a2(a2−1)(b+ c)2 +bc

)
,

x4,P′ =
1
b2

(
a4(a2−1)(b+ c)2 +a2(b+ c)(−ab+ac+b+ c)−bc

)
,

x5,P′ = − 1
b2

(
a4(a2−1)(b+ c)2−a(a2−1)(b2− c2)

)
.
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We can simplify the above formulas by multiplying them by b2/a and then setting
b = 1 to obtain

x1 = −a2(a2−1)(c+1)2−a3c(c+1)− c2,

x2 = a2(a2 −1)(c+1)2−a3(c+1)+1,

x3 = a(a2−1)(c+1)2 + c/a,

x4 = a3(a2 −1)(c+1)2 +a(c+1)(ac−a+ c+1)− c/a,

x5 = −a3(a2−1)(c+1)2− (a2−1)(c2−1).

Finally, choosing for example a = 2 and c = 0, we arrive at

x1 = −12, x2 = 5, x3 = 6, x4 = 22, x5 = −21,

which constitutes indeed a non-trivial rational point on the Clebsch cubic surface S .

4.3. The Fermat cubics with a fractional constraint

Consider the system of equations in P2(C) , given by

F3 : x3
1 + x3

2 + x3
3 = 0, R3 :

1
x1

+
1
x2

+
1
x3

= 0.

We are interested in the set of rational points of F3 ∩ R3 , which do not lie on the
lines (4.1). Since there are no rational points on F3 away from the lines (4.1), we
have that F3(Q)∩R3(Q) = /0 .

Next, we consider the system of equations in P3(C) , given by

F4 : x3
1 + x3

2 + x3
3 + x3

4 = 0, R4 :
1
x1

+
1
x2

+
1
x3

+
1
x4

= 0.

We are interested in the set of rational points of F4 ∩ R4 , which do not lie on the
planes (4.2). Theorem 2.3 shows that there are no such rational points.

Continuing in this way, we next consider the system of equations in P4(C) , given
by

F5 : x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0, R5 :

1
x1

+
1
x2

+
1
x3

+
1
x4

+
1
x5

= 0.

We are interested in the set of rational points of F5∩R5 , which do not lie on the hyper-
planes (4.3). In analogy to the linear equation, one expects that there are such rational
points. However, we have not studied this problem.

REMARK 4.1. The preceding three subsections lead to the following pattern: In
the case of three variables, the Fermat cubic F3 has no rational points away from the
lines (4.1). Increasing the number of variables by one, we find that the Fermat cubic
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F4 subject to the additional constraint L4 or R4 has no rational points away from the
planes (4.2). Continuing and increasing the number of variables again by one, we end
up with the conjecture that the Fermat cubic F5 subject to the two constraints L5 and R5

has no rational points away from the hyperplanes (4.3). Therefore, it is to be expected
that the Fermat cubic Fn in n > 5 variables subject to the constraints Ln and Rn will
always have infinitely many rational points away from the hyperplanes xk + xl = 0 for
0 � k, l � n .

A. Asymptotic expansion of KdV frequencies

In this appendix we prove Remark 2.1, stating that the coefficient α in the expan-
sion of the normal frequencies Ω j does not vanish identically. First we note that, when
viewed as a function of the potential q , it is straightforward to show that the coeffi-
cient α analytically extends to the closure MS of MS (cf. Definition 2.1), consisting of
potentials q ∈ L2

0 , satisfying

wn(q) = 0 , ∀n ∈ S⊥ .

Note that the zero potential is in MS as well as any potential q ∈ L2
0 , for which there

exists k ∈ S+ , so that wn(q) = 0 for any n � 1 with n �= k . We now compute α
for such potentials. Without further reference, we use the notation introduced in [27].
According to [27, Theorem F.4 and Remark 2],

Ω j = 8 jπ(τ j − r j) , r j = ∑
m�1

(σ j
m − λ̇m) .

(For notational convenience, σ j
j is defined as σ j

j := τ j (cf. [27, (D.1) page 212]).) For

a one gap potential q as above, σ j
m = λ̇m (= τm) for any m � 1 with m �= k . Hence

Ω j = 8 jπτ j +8 jπ(λ̇k−σ j
k ) .

We need to compute

α = lim
j→∞

j(Ω j −8 j3π3) = lim
j→∞

j
(
8 jπτ j −8 j3π3 +8 jπ(λ̇k−σ j

k )
)
. (A.1)

It is well known that τ j admits the asymptotic expansion (cf. e.g. Theorem 1.3, Theo-
rem 1.4 in [28] and [37, page 39]),

τ j = j2π2 + c2
1

j2π2 +O
( 1

j4

)
, c2 =

1
4

∫ 1

0
q(x)2dx , (A.2)

implying that

8 jπτ j −8 j3π3 = 8c2
1
jπ

+O
( 1

j3

)
.

It thus follows that

lim
j→∞

j(8 jπτ j −8 j3π3) =
8
π

c2 =
2
π

∫ 1

0
q(x)2dx . (A.3)
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It remains to compute
lim
j→∞

j ·8 jπ(λ̇k −σ j
k ).

Following [27, Section D], one sees that for j > k , the contour integral in the identity
1
2π

∫
Γ j

ψ j(λ )
c
√

Δ(λ )2−4
dλ = 1 can be computed by Cauchy’s theorem, yielding

jπ
+
√

τ j −λ0

τ j −σ j
k

+
√

(τ j − τk)2− γ2
k /4

= 1,

or

τ j −σ j
k =

+
√

τ j −λ0

jπ
+
√

(τ j − τk)2− γ2
k /4 . (A.4)

According to [27, page 229, Remark 2], τk − λ̇k = −λ0/2. Hence the left hand side of
(A.4) can be written as

τ j −σ j
k = (τ j − τk)−λ0/2+(λ̇k−σ j

k ). (A.5)

Using the Taylor expansion +√1+ x = 1+ 1
2x− 1

8x2 +O(x3) and (A.2), the right hand
side of (A.4) can be expanded as

+
√

τ j −λ0 = jπ − λ0

2
1
jπ

+
(c2

2
− λ 2

0

8

) 1
j3π3 +O

( 1
j5

)
,

+
√

(τ j − τk)2 − γ2
k /4 = (τ j − τk)− γ2

k

8
1

τ j − τk
+O

( 1
j6

)
,

yielding

+
√

τ j −λ0

jπ
+
√

(τ j − τk)2 − γ2
k /4

=
(
1− λ0

2
1

j2π2 +
(c2

2
− λ 2

0

8

) 1
j4π4

)(
(τ j − τk)− γ2

k

8
1

τ j − τk

)
+O

( 1
j4

)
= (τ j − τk)− λ0

2
τ j − τk

j2π2 +
(c2

2
− λ 2

0

8

)τ j − τk

j4π4 − γ2
k

8
1

τ j − τk
+O

( 1
j4

)
.

Using that
τ j−τk

j2π2 = 1− τk
j2π2 +O( 1

j4
) , we finally get

+
√

τ j −λ0

jπ
+
√

(τ j − τk)2 − γ2
k /4

= (τ j − τk)− λ0

2
+

(λ0

2
τk +

c2

2
− λ 2

0

8
− γ2

k

8

) 1
j2π2 +O

( 1
j4

)
. (A.6)

Combining (A.5) and (A.6), we obtain

lim
j→∞

8
π

j2π2(λ̇k −σ j
k ) =

8
π

(λ0

2
τk +

c2

2
− λ 2

0

8
− γ2

k

8

)
,
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which together with (A.1) and (A.3) then yields for any q∈MS with wn(q) = 0 for any
n �= k ,

α =
8
π

(λ0

2
τk +

3c2

2
− λ 2

0

8
− γ2

k

8

)
.

It remains to remark that the L2 -gradient of α at q = 0 does not vanish. Indeed, since
λ0|q=0 = 0, τk|q=0 = k2π2 , ∇λ0|q=0 = f 2

0 |q=0 ≡ 1, and ∇c2|q=0 = 0, one has

∇
(λ0

2
τk +

3c2

2
− λ 2

0

8
− γ2

k

8

)
|q=0 =

τk

2
∇λ0|q=0− 1

π
∇γ2

k |q=0 =
k2π2

2
, (A.7)

where for the latter identity we used that ∇γ2
k |q=0 = 0. To see that ∇γ2

k |q=0 vanishes,
first note that by [27, Theorem 7.3], γ2

k = 1
ξ 2
k
8Ik and 1

ξ 2
k
|q=0 = kπ . By [27, Theorem

7.3] and the fact that ∇Δ(λ , ·)|q=0 ≡ 0 (cf. [27, Proposition B.3]), it then follows that
∇Ik|q=0 = 0 and hence ∇γ2

k = kπ∇Ik = 0.
The computation (A.7) shows that α does not vanish identically.
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