THE COMPLETE NEVANLINNA–PICK PROPERTY FOR BEURLING TYPE QUOTIENT MODULES OVER THE BIDISK

JIMING SHEN AND YIXIN YANG [∗]

(*Communicated by J. Ball*)

Abstract. In this paper, we show that for the inner function $\theta(z_1, z_2) \in H^2(\mathbb{D}^2)$, the Beurling type quotient module $\mathcal{K}_{\theta} = H^2(\mathbb{D}^2) \ominus \theta H^2(\mathbb{D}^2)$ over the bidisk has complete Nevanlinna-Pick property if and only if θ is a one-variable Möbius map.

1. Introduction

Let *X* be a set and let $k: X \times X \to \mathbb{C}$ be a function of two variables. We call k a positive semi-definite function on *X* if *k* is self-adjoint $(k(z, w) = \overline{k(w, z)})$, and for any finite set $\{\lambda_1, \lambda_2, \dots, \lambda_N\} \subseteq X$, the matrix $[k(\lambda_i, \lambda_j)]_{i,j=1}^N$ is positive semi-definite, i.e. for every $\alpha_1, \alpha_2, \cdots, \alpha_N \in \mathbb{C}$, we have that

$$
\sum_{i,j=1}^N \alpha_i \bar{\alpha}_j k(\lambda_i,\lambda_j) \geqslant 0.
$$

We will use the notation $k \geq 0$ to denote that k is positive semi-definite.

A reproducing kernel Hilbert space $\mathcal H$ on X is a Hilbert space of complex valued functions on *X* such that every point evaluation is a continuous linear functional. Thus by the Riesz representation theorem, for every $w \in X$, there exists an element $k_w \in \mathcal{H}$ such that for each $f \in \mathcal{H}$,

$$
\langle f, k_w \rangle_{\mathscr{H}} = f(w).
$$

Since $k_w(z) = \langle k_w, k_z \rangle_{\mathcal{H}}$, *k* can be regarded as a function on $X \times X$ and we write $k(z, w) = k_w(z)$. Let $\mathcal{H}(k)$ be a reproducing kernel Hilbert space on *X* with reproducing kernel *k* . See [6, 13] for background on reproducing kernel Hilbert spaces.

Complete Nevanlinna-Pick kernels are related to the solution of Nevanlinna-Pick interpolation problems. If for a set *X*, whenever $\{\lambda_1, \dots, \lambda_N\} \subseteq X$, and W_1, \dots, W_N are s-by-t matrices such that

$$
(I-W_iW_j^*)k(\lambda_i,\lambda_j)\geqslant 0,
$$

[∗] Corresponding author.

Mathematics subject classification (2020): Primary 46E22; Secondary 30H10.

Keywords and phrases: Hardy space over bidisk, Beurling type quotient module, complete Nevanlinna-Pick property.

This research is supported by National Science Foundation of China (No. 12471117) and the Fundamental Research Funds for the Central Universities (DUT23LAB301).

we can find Φ in the closed unit ball of

$$
\text{Mult}(\mathcal{H}(k) \otimes \mathbb{C}^t, \mathcal{H}(k) \otimes \mathbb{C}^s)
$$

= { $\Phi: X \to M_{s,t} : \Phi f \in \mathcal{H}(k) \otimes \mathbb{C}^s$ for every $f \in \mathcal{H}(k) \otimes \mathbb{C}^t$ }

such that $\Phi(\lambda_i) = W_i$, $i = 1, 2, \dots, N$, we say k has $s \times t$ -Pick property. If k has $s \times t$ -Pick property for all positive integers *s* and *t*, then we say *k* has the complete Nevanlinna-Pick property.

Complete Nevanlinna-Pick spaces share many properties with the Hardy space $H^2(\mathbb{D})$, and they have been studied extensively in the literature, see e.g. [2, 3, 4, 5, 6, 11]. Examples of complete Nevanlinna-Pick spaces include the Hardy space $H^2(\mathbb{D})$, the Drury-Arveson spaces H_d^2 [6], the classical Dirichlet space \mathscr{D} [1], all Dirichlet spaces with superharmonic weights \mathcal{D}_w [16], the Sobolev space $W_1^2(0,1)$ [14]. A natural question is to decide which reproducing kernel Hilbert spaces have complete Nevanlinna-Pick property.

In 2020, Chu [8] determined which de Branges-Rovnyak spaces (sub-Hardy spaces) have complete Nevanlinna-Pick property. In 2023, Luo and Zhu [12] determined which sub-Bergman spaces have complete Nevanlinna-Pick property. In this paper, we will characterize which Beurling type quotient modules of the Hardy space over bidisk have complete Nevanlinna-Pick property.

Let $\mathbb{D}^2 = \{(z_1, z_2) : |z_1| < 1, |z_2| < 1\}$ be the unit bidisk in \mathbb{C}^2 , and $\mathbb{T}^2 = \{(z_1, z_2) :$ $|z_1| = 1, |z_2| = 1$ } be the distinguished boundary of \mathbb{D}^2 . The Hardy space over the bidisk $H^2(\mathbb{D}^2)$ is the closure of all polynomial in $L^2(\mathbb{T}^2, \frac{1}{4\pi^2}d\theta_1 d\theta_2)$. The Szegö kernel

$$
k(z, w) = \frac{1}{(1 - \overline{w}_1 z_1)(1 - \overline{w}_2 z_2)}
$$

on \mathbb{D}^2 is the kernel for the Hardy space $H^2(\mathbb{D}^2)$.

A function $\theta \in H^2(\mathbb{D}^2)$ is called an inner function if $|\theta(e^{i\theta_1}, e^{i\theta_2})| = 1$ almost everywhere on \mathbb{T}^2 . We say that a submodule M_θ of $H^2(\mathbb{D}^2)$ is of Beurling type if M_θ is generated by an inner function $\theta \in H^2(\mathbb{D}^2)$, that is, $M_\theta = \theta H^2(\mathbb{D}^2)$. To every inner function $\theta(z_1, z_2)$ on \mathbb{D}^2 , the associated quotient space is defined by

$$
\mathscr{K}_{\theta}=H^2(\mathbb{D}^2)\ominus \theta H^2(\mathbb{D}^2).
$$

 \mathcal{K}_{θ} is called the Beurling type quotient module. The space \mathcal{K}_{θ} seems to be the most natural generalization of the one variable space $H^2(\mathbb{D}) \ominus \theta H^2(\mathbb{D})$. It is well known that the reproducing kernel of \mathcal{K}_{θ} is

$$
k^{\theta}(z,w) = \frac{1 - \overline{\theta(w_1, w_2)} \theta(z_1, z_2)}{(1 - \overline{w_1}z_1)(1 - \overline{w_2}z_2)}.
$$

A classic example of a complete Nevanlinna-Pick kernel is the Szegö kernel

$$
s(z_1, w_1) = \frac{1}{1 - \overline{w}_1 z_1}
$$

on $\mathbb D$, however, we will see that the Szegö kernel on $\mathbb D^2$ does not have complete Nevanlinna-Pick property. This inspires us to consider which Beurling type quotient module *X*^θ have complete Nevanlinna-Pick property. For $a \in \mathbb{D}$, let $h_a(z_1) = \frac{a-z_1}{1-\overline{a}z_1}$ be the one-variable Möbius map. We now state the main result of this paper.

THEOREM 1.1. (Main Theorem) *Suppose* $\theta(z_1, z_2) \in H^2(\mathbb{D}^2)$ *is an inner function. Then the Beurling type quotient module* \mathcal{K}_{θ} *has complete Nevanlinna-Pick property if and only if* $\theta(z_1, z_2) = \beta h_a(z_1)$ *or* $\theta(z_1, z_2) = \beta h_a(z_2)$ *, for some* $|a| < 1$ *,* $|\beta| = 1$ *.*

2. Proof of the main theorem

In this section, we will prove the main Theorem 1.1, which consists of several steps. Firstly, we need some preliminaries.

We will introduce the equivalent definition of complete Nevanlinna-Pick kernel, which will be used in this paper.

Let *k* be the reproducing kernel of an $\mathcal{H}(k)$ on X. In [5], if $k(z,w) \neq 0$ for all $z, w \in X$, it was shown that the *k* is a complete Nevanlinna-Pick kernel and if and only if

$$
1 - \frac{k(z, z_0)k(z_0, w)}{k(z_0, z_0)k(z, w)} \succeq 0
$$

for some $z_0 \in X$. A kernel *k* is normalized at $z_0 \in X$ if $k(z, z_0) = 1$ for all $z \in X$. If *k* is normalized, then *k* is a complete Nevanlinna-Pick kernel if and only if

$$
1 - \frac{1}{k(z, w)} \succeq 0.
$$

Let \mathcal{H}_1 , \mathcal{H}_2 be reproducing kernel Hilbert spaces on *X*. A multiplier of \mathcal{H}_1 into *H*₂ is a function *h* : *X* → $\mathbb C$ such that whenever *f* ∈ \mathcal{H}_1 , *hf* ∈ \mathcal{H}_2 . We let

Mult
$$
(\mathcal{H}_1, \mathcal{H}_2) = \{h : X \to \mathbb{C} : hf \in \mathcal{H}_2 \text{ for all } f \in \mathcal{H}_1\}
$$

denote the set of all multipliers of \mathcal{H}_1 into \mathcal{H}_2 . Given a multiplier $h \in \text{Mult}(\mathcal{H}_1, \mathcal{H}_2)$, we let $M_h: \mathcal{H}_1 \to \mathcal{H}_2$ denote the linear map $M_h(f) = hf$. By the closed graph theorem, *M_h* is a bounded linear operator on \mathcal{H}_1 into \mathcal{H}_2 , and we set $||h||_{\text{Mult}(\mathcal{H}, \mathcal{H}_2)} = ||M_h||$.

For two positive kernels k_1 , k_2 , we write $k_1 \geq k_2$ if $k_1 - k_2 \geq 0$. The following lemmas can be obtained from [13], which will be used in our proof.

LEMMA 2.1. ([13], Theorem 5.1) Let $\mathcal{H}(k_1)$ and $\mathcal{H}(k_2)$ be reproducing kernel *Hilbert spaces on X . Then*

 $H(k_1) ⊂ H(k_2)$

if and only if there exists a constant c > 0 *such that*

$$
k_1 \preceq c^2 k_2.
$$

Moreover, $||f||_{\mathcal{H}(k_2)} \le c||f||_{\mathcal{H}(k_1)}$ *for all* $f \in \mathcal{H}(k_1)$ *.*

LEMMA 2.2. ([13], Theorem 5.4) Let $\mathcal{H}(k_1)$ and $\mathcal{H}(k_2)$ be reproducing kernel *Hilbert spaces on X and let* $k = k_1 + k_2$ *. Then*

$$
\mathscr{H}(k) = \{f = f_1 + f_2 : f_1 \in \mathscr{H}(k_1), f_2 \in \mathscr{H}(k_2)\}.
$$

For every $f \in \mathcal{H}(k)$ *,*

$$
||f||_{\mathscr{H}(k)}^2 = \min\{||f_1||_{\mathscr{H}(k_1)}^2 + ||f_2||_{\mathscr{H}(k_2)}^2 : f = f_1 + f_2, f_1 \in \mathscr{H}(k_1), f_2 \in \mathscr{H}(k_2)\}.
$$

Let φ : *S* \rightarrow *X* be a function. If *k* is a positive kernel on *X*, then $k \circ \varphi$ is also a kernel function on *S* (see e.g. [13, Proposition 5.6]).

LEMMA 2.3. ([13], Theorem 5.7) Let $\varphi : S \to X$ be a function and let $k : X \times Y$ $X \to \mathbb{C}$ *be a positive kernel. Then*

$$
\mathscr{H}(k \circ \varphi) = \{f \circ \varphi : f \in \mathscr{H}(k)\}.
$$

Moreover, for $u \in \mathcal{H}(k \circ \varphi)$ *,*

$$
||u||_{\mathscr{H}(k\circ\varphi)}=\min\{||f||_{\mathscr{H}(k)} : u=f\circ\varphi\}.
$$

LEMMA 2.4. ([13], Theorem 6.28) Let $\mathcal{H}(k_1)$ and $\mathcal{H}(k_2)$ be reproducing ker*nel Hilbert spaces on X*, let $\mathcal F$ *be a Hilbert space and* $\Phi: X \to \mathcal B(\mathcal F, \mathbb C)$ *. The following are equivalent:*

- *1.* Φ *is a contractive multiplier from* $\mathcal{H}(k_1) \otimes \mathcal{F}$ *to* $\mathcal{H}(k_2)$ *;*
- 2. $k_2(z, w) k_1(z, w) \Phi(z) \Phi(w)^*$ *is positive semi-definite.*

For the general inner function $\theta \in H^2(\mathbb{D}^2)$, it is well known that there exist two subsets $E_1, E_2 \subseteq \mathbb{T}$ of positive measure such that for each $\eta \in E_1$, $\theta(z_1, \eta)$ is a onevariable inner function, and for each $\zeta \in E_2$, $\theta(\zeta, z_2)$ is also one-variable inner function (see [15] for instance).

LEMMA 2.5. *Suppose* $\theta(z_1, z_2) \in H^2(\mathbb{D}^2)$ *is a nonconstant inner function, which is not one-variable inner function. A necessary condition for* \mathcal{K}_{θ} *to have complete Nevanlinna-Pick property is that there exist two subsets* $E_1, E_2 \subseteq \mathbb{T}$ *of positive measure such that for each* $\eta \in \mathbb{D} \cup E_1$, $\theta(\cdot, \eta)$ *is injective on* \mathbb{D} *, and for each* $\zeta \in \mathbb{D} \cup E_2$ *,* $\theta(\zeta,\cdot)$ *is injective on* \mathbb{D} *.*

Proof. For the general inner function $\theta \in H^2(\mathbb{D}^2)$, if $\theta(0,0) = a \neq 0$, we can let $\Theta(z_1, z_2) = h_a(\theta(z_1, z_2))$, then $\Theta(0, 0) = h_a(\theta(0, 0)) = 0$, and

$$
k^{\Theta}(z,w) = \overline{g(w_1,w_2)}g(z_1,z_2)k^{\Theta}(z,w),
$$

where $g(z_1, z_2) = \frac{\sqrt{1-|a|^2}}{1-\overline{a}\theta(z_1, z_2)}$, so $k^{\theta}(z, w)$ is a complete Nevanlinna-Pick kernel if and only if $k^{\Theta}(z, w)$ is a complete Nevanlinna-Pick kernel. So we can assume that $\Theta(0, 0)$ = 0.

Suppose $\theta(0,0) = 0$, and $k^{\theta}(z,w)$ is a complete Nevanlinna-Pick kernel, we have $1 - \frac{1}{k^{\theta}(z,w)} \succeq 0$, then

$$
1 - \frac{(1 - \overline{w}_1 z_1)(1 - \overline{w}_2 z_2)}{1 - \overline{\theta}(w_1, w_2)\theta(z_1, z_2)} \succeq 0.
$$
 (2.1)

Rewrite (2.1) as

$$
\frac{\overline{w}_1 z_1 + \overline{w}_2 z_2 - \overline{w}_1 z_1 \overline{w}_2 z_2 - \overline{\theta(w_1, w_2)} \theta(z_1, z_2)}{1 - \overline{\theta(w_1, w_2)} \theta(z_1, z_2)} \succeq 0.
$$
\n(2.2)

Let

$$
k_1(z,w) = \frac{\overline{w_1}z_1}{1 - \overline{\theta(w_1,w_2)}\theta(z_1,z_2)}, \quad k_2(z,w) = \frac{\overline{w_2}z_2}{1 - \overline{\theta(w_1,w_2)}\theta(z_1,z_2)},
$$

$$
k_{12}(z,w) = \frac{\overline{w_1}z_1\overline{w_2}z_2}{1 - \overline{\theta(w_1,w_2)}\theta(z_1,z_2)}, \quad k_{\theta}(z,w) = \frac{\overline{\theta(w_1,w_2)}\theta(z_1,z_2)}{1 - \overline{\theta(w_1,w_2)}\theta(z_1,z_2)},
$$

then (2.1) holds if and only if $\mathcal{H}(k_1+k_2) \supseteq \mathcal{H}(k_1+k_0)$, $||f||_{\mathcal{H}(k_1+k_2)} \leq ||f||_{\mathcal{H}(k_1+k_0)}$ for all $f \in \mathcal{H}(k_{12} + k_{\theta})$.

Next we identify the corresponding reproducing kernel Hilbert spaces. By Lemma 2.3, we notice that the corresponding reproducing kernel Hilbert space of the reproducing kernel

$$
\frac{1}{1-\overline{\theta(w_1,w_2)}\theta(z_1,z_2)}
$$

is

$$
\mathcal{H}(s \circ \theta) = \{f \circ \theta : f \in H^2(\mathbb{D})\}
$$

=
$$
\left\{ h(z_1, z_2) = \sum_{n=0}^{\infty} a_n (\theta(z_1, z_2))^n, \sum_{n=0}^{\infty} |a_n|^2 < +\infty \right\}.
$$

Therefore

$$
\mathcal{H}(k_i) = z_i \mathcal{H}(s \circ \theta), \quad i = 1, 2,
$$

$$
\mathcal{H}(k_{12}) = z_1 z_2 \mathcal{H}(s \circ \theta),
$$

$$
\mathcal{H}(k_{\theta}) = \theta(z_1, z_2) \mathcal{H}(s \circ \theta).
$$

Then for every $f \in H^2(\mathbb{D})$, there exists $g_1, g_2 \in H^2(\mathbb{D})$ such that

$$
(z_1z_2 + \theta(z_1, z_2))f(\theta(z_1, z_2)) = z_1g_1(\theta(z_1, z_2)) + z_2g_2(\theta(z_1, z_2)).
$$
 (2.3)

By taking $f = 1$, then we also have $g_1, g_2 \in H^2(\mathbb{D})$ such that

$$
z_1 z_2 + \theta(z_1, z_2) = z_1 g_1(\theta(z_1, z_2)) + z_2 g_2(\theta(z_1, z_2)).
$$
\n(2.4)

Let $E_1 \subseteq \mathbb{T}$ be a measurable subset of positive measure such that for each $\eta \in E_1$, $\theta(z_1, \eta)$ is a one-variable inner function. We will show that for each $\eta \in \mathbb{D} \cup E_1$,

 $\theta(\cdot,\eta)$ is injective. Suppose that $\theta(\lambda^1,\eta) = \theta(\lambda^2,\eta)$ for some pair $\lambda^1 \neq \lambda^2$, $\lambda^1, \lambda^2 \in$ D. Putting $z_1 = \lambda^1$, $z_2 = \eta$ and $z_1 = \lambda^2$, $z_2 = \eta$ in (2.4), respectively, we obtain that

$$
\begin{cases}\n\lambda^1 \eta + \theta(\lambda^1, \eta) = \lambda^1 g_1(\theta(\lambda^1, \eta)) + \eta g_2(\theta(\lambda^1, \eta)), \\
\lambda^2 \eta + \theta(\lambda^2, \eta) = \lambda^2 g_1(\theta(\lambda^2, \eta)) + \eta g_2(\theta(\lambda^2, \eta)).\n\end{cases}
$$

Then we have

$$
(\lambda^1 - \lambda^2)\eta = (\lambda^1 - \lambda^2)g_1(\theta(\lambda^1, \eta)).
$$

Since $\lambda^1 \neq \lambda^2$, we see that

$$
g_1(\theta(\lambda^1,\eta))=\eta.
$$

It follows from $\theta(\lambda^1, \eta) = \theta(\lambda^2, \eta)$ that for each $\tilde{\lambda}^1$ near to λ^1 , there exists $\tilde{\lambda}^2$ near to λ^2 such that

$$
\theta(\tilde{\lambda}^1,\eta)=\theta(\tilde{\lambda}^2,\eta),
$$

and hence $g_1(\theta(\cdot, \eta)) - \eta$ has to vanish at all points z_1 near to λ^1 . This gives that for each $\eta \in \mathbb{D} \cup E_1$,

$$
g_1(\theta(z_1,\eta))\equiv \eta\,,\,\forall z_1\in\mathbb{D}.
$$

Combining with (2.4), we obtain that

$$
g_1(\theta(z_1,z_2)) = z_2, \quad \theta(z_1,z_2) = z_2g_2(\theta(z_1,z_2))
$$

for all $(z_1, z_2) \in \mathbb{D}^2$, and this gives that

$$
\theta(z_1,0) = 0, g_1(0) = 0.
$$

Let $E_2 \subseteq \mathbb{T}$ be a measurable subset of positive measure such that for each $\zeta \in E_2$, $\theta(\zeta, z_2)$ is a one-variable inner function. Thus

$$
g_1(\theta(\zeta,z_2))=z_2
$$

for each $\zeta \in E_2$, this implies that $\theta(\zeta, \cdot)$ is injective on D, and hence $\theta(\zeta, z_2)$ is Möbius map. Thus

$$
\theta(\zeta,z_2) = \beta(\zeta) \frac{z_2 - \alpha(\zeta)}{1 - \overline{\alpha(\zeta)}z_2},
$$

where $|\beta(\zeta)| = 1$. Note that $\theta(\zeta, 0) = 0$, we obtain that

$$
\theta(\zeta,z_2) = \beta(\zeta)z_2
$$

for all $\zeta \in E_2$. By $\theta(\zeta, z_2) = z_2 g_2(\theta(\zeta, z_2))$ for all $z_2 \in \mathbb{D}$, we have

$$
g_2(\beta(\zeta)z_2)=\beta(\zeta),
$$

this implies that $g_2 = \beta(\zeta) \equiv \beta$ is a constant, and thus

$$
\theta(z_1,z_2)=\beta z_2
$$

is a one-variable inner function, which is a contradiction, and this proves that for each $\eta \in \mathbb{D} \cup E_1$, $\theta(\cdot, \eta)$ is injective on \mathbb{D} .

On the other hand, for each $\zeta \in \mathbb{D} \cup E_2$, $\theta(\zeta, \cdot)$ is also injective on \mathbb{D} . \Box

For $\eta \in E_2$, $\theta(\cdot, \eta)$ is injective, and is a one-variable inner function, thus $\theta(z_1, \eta)$ is a Möbius map. Also we have for $\zeta \in E_2$, $\theta(\zeta, z_2)$ is a Möbius map. Therefore, by Corollary B in [10], $\theta(z_1, z_2)$ is a rational inner function with degree at most (1,1).

Therefore we proved the following theorem.

THEOREM 2.6. *Given an inner function* $\theta \in H^2(\mathbb{D}^2)$, *A necessary condition for K*^θ *to have complete Nevanlinna-Pick property is that* ^θ(*z*1*,z*2) *is a rational function with degree at most* (1*,*1)*.*

In [10], Guo and Wang determined the following characterization of rational inner function with degree at most (1*,*1).

LEMMA 2.7. ([10], Theorem 1.2) *Given an inner function* $\theta \in H^2(\mathbb{D}^2)$, If θ *is a rational inner function having degree at most (1,1). This turns out to be equivalent to that* θ *has one of the following forms:*

I.
$$
\theta(z_1, z_2) = \beta h_a(z_1)
$$
 or $\theta(z_1, z_2) = \beta h_a(z_2)$, for some $|a| < 1$, $|\beta| = 1$;

2.
$$
\theta(z_1, z_2) = \beta h_a(z_1) h_b(z_2)
$$
, for some $|a| < 1$, $|b| < 1$, $|\beta| = 1$;

3.
$$
\theta(z_1, z_2) = \beta \frac{z_1 z_2 + a z_1 + b z_2 + c}{1 + \overline{a} z_2 + \overline{b} z_1 + \overline{c} z_1 z_2}
$$
 for some $|\beta| = 1$ and $c \neq ab$.

LEMMA 2.8. Suppose $\theta(z_1, z_2) = \beta h_a(z_1)$ for some $|a| < 1$, $|\beta| = 1$. Then \mathcal{K}_{θ} *has complete Nevanlinna-Pick property.*

Proof. If $\theta(z_1, z_2) = \beta h_a(z_1) = \beta \frac{a - z_1}{1 - \overline{a}z_1}$, then it is easy to check that

$$
k^{\theta}(z,w) = \frac{1 - |a|^2}{(1 - a\overline{w}_1)(1 - \overline{a}z_1)(1 - \overline{w}_2 z_2)}
$$

is a complete Nevanlinna-Pick kernel.

LEMMA 2.9. *Suppose* $\theta(z_1, z_2) = \beta h_a(z_1)h_b(z_2)$, for some $|a| < 1$, $|b| < 1$, $|\beta| =$ 1. Then \mathcal{K}_{θ} does not have the complete Nevanlinna-Pick property.

Proof. We can assume that $\theta(0,0) = 0$, so let $\theta(z_1, z_2) = \beta z_1 h_b(z_2)$. Suppose *k*^θ(*z,w*) is a complete Nevanlinna-Pick kernel, we have $1 - \frac{1}{k^{\theta}(z,w)} ≥ 0$, then

$$
1 - \frac{(1 - \overline{w}_1 z_1)(1 - \overline{w}_2 z_2)}{1 - \overline{\theta}(w_1, w_2)\overline{\theta}(z_1, z_2)} \succeq 0.
$$

Rewrite it as

$$
\frac{\overline{w}_{1}z_{1} + \overline{w}_{2}z_{2} - \overline{w}_{1}z_{1}\overline{w}_{2}z_{2} - \overline{w}_{1}z_{1}\frac{b-\overline{w}_{2}}{1-b\overline{w}_{2}}\frac{b-z_{2}}{1-\overline{b}z_{2}}}{1-\overline{w}_{1}z_{1}\frac{\overline{b}-\overline{w}_{2}}{1-b\overline{w}_{2}}\frac{b-z_{2}}{1-\overline{b}z_{2}}} \geq 0.
$$
\n(2.5)

Thus a necessary condition for $k^{\theta}(z,w)$ to be a complete Nevanlinna-Pick kernel is that (2.5) holds.

Let
$$
\mathcal{H} = \mathcal{H}\left(\frac{1}{1-\overline{w}_1z_1\frac{\overline{b}-\overline{w}_2}{1-\overline{b}\overline{v}_2}\frac{b-z_2}{1-\overline{b}z_2}}\right)
$$
. Indeed, it follows from the proof of Lemma

2.5 that

$$
\mathscr{H}=\left\{f(z_1,z_2)=\sum_{n=0}^\infty a_n\left(z_1\frac{b-z_2}{1-\overline{b}z_2}\right)^n,\sum_{n=0}^\infty |a_n|^2<+\infty\right\}.
$$

We claim that

$$
z_1, \ \frac{b-z_2}{1-\overline{b}z_2} \notin \mathscr{H}.
$$

If $z_1 \in \mathcal{H}$, then $z_1 = \sum_{n=0}^{\infty} a_n \left(z_1 \frac{b - z_2}{1 - \overline{b}z_2} \right)$ 1−*bz*2 \int_0^n . It follows that $a_0 = 0$, and

$$
1 = a_1 \frac{b - z_2}{1 - \overline{b}z_2} + a_2 z_1 \left(\frac{b - z_2}{1 - \overline{b}z_2}\right)^2 + \cdots,
$$

which is a contradiction. If $\frac{b-z_2}{1-\overline{b}z_2} \in \mathcal{H}$, then

$$
\frac{b-z_2}{1-\overline{b}z_2}=\sum_{n=0}^\infty b_n\left(z_1\frac{b-z_2}{1-\overline{b}z_2}\right)^n.
$$

By taking $z_2 = h_b(z_2)$, we get that $b_0 = 0$, and

$$
1 = b_1 z_1 + b_2 z_1^2 z_2 + \cdots,
$$

which is also a contradiction. Since $1 \in \mathcal{H}$, we get that z_1 , $\frac{b-z_2}{1-\overline{b}z_2}$ are not multipliers of $\mathcal H$.

Let $w_2 = w_1$ and $z_2 = z_1$ in (2.5), then (2.5) becomes

$$
\frac{2\bar{w}_1z_1-\bar{w}_1^2z_1^2-\bar{w}_1z_1\frac{\bar{b}-\bar{w}_1}{1-\bar{b}\bar{w}_1}\frac{b-z_1}{1-\bar{b}z_1}}{1-\bar{w}_1z_1\frac{\bar{b}-\bar{w}_1}{1-\bar{b}\bar{w}_1}\frac{b-z_1}{1-\bar{b}z_1}}=\bar{w}_1z_1\frac{2-\bar{w}_1z_1-\frac{\bar{b}-\bar{w}_1}{1-\bar{b}\bar{w}_1}\frac{b-z_1}{1-\bar{b}z_1}}{1-\bar{w}_1z_1\frac{\bar{b}-\bar{w}_1}{1-\bar{b}\bar{w}_1}\frac{b-z_1}{1-\bar{b}z_1}}.
$$

By Lemma 2.4, we know that

$$
\frac{1 - \frac{1}{\sqrt{2}} \frac{\bar{b} - \bar{w}_1}{1 - b\bar{w}_1} \frac{1}{\sqrt{2}} \frac{b - z_1}{1 - \bar{b}z_1}}{1 - \bar{w}_1 z_1 \frac{\bar{b} - \bar{w}_1}{1 - b\bar{w}_1} \frac{b - z_1}{1 - \bar{b}z_1}}, \quad \frac{1 - \frac{\bar{w}_1}{\sqrt{2}} \frac{z_1}{\sqrt{2}}}{1 - \bar{w}_1 z_1 \frac{\bar{b} - \bar{w}_1}{1 - b\bar{w}_1} \frac{b - z_1}{1 - \bar{b}z_1}}
$$

is not positive, and therefore $\Phi(z_1) = \left(\frac{z_1}{\sqrt{2}}\right)^2$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ 2 *b*−*z*1 $\frac{b-z_1}{1-\overline{b}z_1}$) ∉ Mult₁ ($\mathcal{H} \otimes \mathbb{C}^2$, \mathcal{H}). It follows that

$$
\frac{1 - \frac{\overline{w}_1}{\sqrt{2}} \frac{z_1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{b - \overline{w}_1}{1 - b\overline{w}_1} \frac{1}{\sqrt{2}} \frac{b - z_1}{1 - \overline{b}z_1}}{1 - \overline{w}_1 z_1 \frac{\overline{b} - \overline{w}_1}{1 - b\overline{w}_1} \frac{b - z_1}{1 - \overline{b}z_1}}
$$

is not positive, and hence (2.5) is not positive. Therefore $k^{\theta}(z,w)$ does not have complete Nevanlinna-Pick property. □

LEMMA 2.10. *Suppose* $\theta(z_1, z_2) \in H^2(\mathbb{D}^2)$ *is an inner function. If* \mathcal{K}_{θ} *has complete Nevanlinna-Pick property, then for all* $|\beta| = 1$, $\mathcal{K}_{\beta\theta}$ *also has complete Nevanlinna-Pick property.*

Proof. Indeed,

$$
1 - \overline{\beta \theta(w_1, w_2)} \beta \theta(z_1, z_2) = 1 - |\beta|^2 \overline{\theta(w_1, w_2)} \theta(z_1, z_2)
$$

=
$$
1 - \overline{\theta(w_1, w_2)} \theta(z_1, z_2).
$$

So $k^{\theta}(z, w)$ is a complete Nevanlinna-Pick kernel if and only if $k^{\beta\theta}(z, w)$ is a complete Nevanlinna-Pick kernel. □

LEMMA 2.11. *Suppose* $θ(z_1, z_2) = β \frac{z_1z_2 + az_1 + bz_2 + c}{1 + \overline{a}z_2 + \overline{b}z_1 + \overline{c}z_1z_2}$ *for some* $|β| = 1$ *and* $c ≠$ *ab. Then K*^θ *does not have complete Nevanlinna-Pick property.*

Proof. We assume that $\theta(0,0) = 0$, then we can let

$$
c = 0, \ \ \theta(z_1, z_2) = \beta \frac{z_1 z_2 + a z_1 + b z_2}{1 + \overline{a} z_2 + \overline{b} z_1}.
$$

Suppose $k^{\theta}(z, w)$ is a complete Nevanlinna-Pick kernel, then by proof of Lemma 2.5, we have that (2.4) holds, i.e. there exists $g_1, g_2 \in H^2(\mathbb{D})$ such that

$$
z_1z_2+\theta(z_1,z_2)=z_1g_1(\theta(z_1,z_2))+z_2g_2(\theta(z_1,z_2)).
$$

If $z_1 = 0$, then we have $g_2(\frac{\beta bz_2}{1+\overline{a}z_2}) = \frac{\beta b}{1+\overline{a}z_2}$, and thus $g_2(z_2) = \beta b - \overline{a}z_2$. On the other hand, if $z_2 = 0$, then we also have $g_1(\frac{\beta a z_1}{1 + \overline{b}z_1}) = \frac{\beta a}{1 + \overline{b}z_1}$, thus $g_1(z_1) = \beta a - \overline{b}z_1$. Therefore

$$
z_1z_2 + \theta(z_1, z_2) = z_1(\beta a - \overline{b}\theta(z_1, z_2)) + z_2(\beta b - \overline{a}\theta(z_1, z_2)),
$$

this implies that

$$
\theta(z_1, z_2) = \beta \frac{-\bar{\beta} z_1 z_2 + a z_1 + b z_2}{1 + \bar{a} z_2 + \bar{b} z_1}
$$

,

and thus $\beta = -1$.

A necessary condition for $k^{\theta}(z, w)$ to be a complete Nevanlinna-Pick kernel is that (2.4) holds, and then β must be −1. If $\theta(z_1, z_2) = -\frac{z_1z_2 + az_1 + bz_2}{1 + \overline{a}z_2 + \overline{b}z_1}$ such that \mathcal{K}_{θ} has complete Nevanlinna-Pick property, then by Lemma 2.10, we know that for all $|\alpha| = 1$, $K_{αθ}$ also has complete Nevanlinna-Pick property, which is a contradiction. Therefore, \mathcal{K}_{θ} does not have complete Nevanlinna-Pick property. \square

The same example appears in the following Remarks.

REMARK 2.12. Suppose $\theta(z_1, z_2) = z_1 \frac{a - z_2}{1 - \overline{a}z_2}$ for $|a| < 1$, then for every $f(z_1) \in$ *H*²(\mathbb{D}), there exists $g_1(z_1) = af(z_1), g_2(z_1) = \overline{a}z_1 f(z_1) \in H^2(\mathbb{D})$ such that (2.3) holds. However, by Lemma 2.9, \mathcal{K}_{θ} does not have complete Nevanlinna-Pick property.

Thus, combining Lemma 2.8 with Lemma 2.9, Lemma 2.11, we obtain Theorem 1.1, which we restate as follows.

THEOREM 2.13. *Suppose* $\Theta(z_1, z_2) \in H^2(\mathbb{D}^2)$ *is an inner function. Then the Beurling type quotient module* \mathcal{K}_{θ} *has complete Nevanlinna-Pick property if and only* $if \theta(z_1, z_2) = \beta h_a(z_1) \text{ or } \theta(z_1, z_2) = \beta h_a(z_2)$, for some $|a| < 1$, $|\beta| = 1$.

In [8], Chu characterized the de Branges-Rovnyak spaces \mathcal{H}_{θ} with complete Nevanlinna-Pick property. If θ is an inner function on \mathbb{D} , there are a large number of θ such that $H^2(\mathbb{D}) \ominus \theta H^2(\mathbb{D})$ has the complete Nevanlinna-Pick property. In [12], Luo and Zhu proved sub-Bergman Hilbert space

$$
\mathscr{H}\left(\frac{1-\overline{\theta(w_1)}\theta(z_1)}{(1-\overline{w}_1z_1)^2}\right)
$$

on $\mathbb D$ has the complete Nevanlinna-Pick property if and only if θ is a Möbius map. Theorem 1.1 implies that there be few \mathcal{K}_{θ} with complete Nevanlinna-Pick property, and we will see that $H^2(\mathbb{D}^2)$ does not have complete Nevanlinna-Pick property. It seems that the complete Nevanlinna-Pick property of the quotient spaces is closed relate to the Nevanlinna-Pick property of space which is sited.

REMARK 2.14. $H^2(\mathbb{D}^2)$ does not have the complete Nevanlinna-Pick property.

Proof. By definition, we need to check $1 - (1 - \overline{w}_1 z_1)(1 - \overline{w}_2 z_2)$ is not positive semi-definite. Rewrite it as

$$
\overline{w}_1 z_1 \left(1 - \frac{1}{2} \overline{w}_2 z_2 \right) + \overline{w}_2 z_2 \left(1 - \frac{1}{2} \overline{w}_1 z_1 \right). \tag{2.6}
$$

Let $\alpha \in \mathbb{D}, |\alpha|^2 = \frac{1}{2}$. Since αz_i for $i = 1, 2$ is not a contractive multiplier in a constant space, by Lemma 2.4, we know that $1 - \frac{1}{2} \overline{w_i} z_i$ is not positive. Let $z_2 = z_1$ and $w_2 = w_1$ in (2.6), then

$$
\overline{w}_1 z_1 \left(1 - \frac{1}{2}\overline{w}_2 z_2\right) + \overline{w}_2 z_2 \left(1 - \frac{1}{2}\overline{w}_1 z_1\right) = 2\overline{w}_1 z_1 \left(1 - \frac{1}{2}\overline{w}_1 z_1\right)
$$

is not positive, and hence (2.6) is not positive. Therefore $H^2(\mathbb{D}^2)$ does not have the complete Nevanlinna-Pick property.

We will give two examples which can be calculated explicitly.

EXAMPLE 2.15. If $\theta(z_1, z_2) = z_1 z_2$ or $\theta(z_1, z_2) = z_1^2$, then \mathcal{K}_{θ} does not have complete Nevanlinna-Pick property.

(1) By definition, we need to check that

$$
1 - \frac{1}{k^{\theta}(z,w)} = \frac{\overline{w}_1 z_1 + \overline{w}_2 z_2 - 2\overline{w}_1 z_1 \overline{w}_2 z_2}{1 - \overline{w}_1 z_1 \overline{w}_2 z_2}
$$

is not positive semi-definite. Rewrite this as

$$
[\bar{w}_1 z_1 (1 - \bar{w}_2 z_2) + \bar{w}_2 z_2 (1 - \bar{w}_1 z_1)] \sum_{n=0}^{\infty} (\bar{w}_1 z_1 \bar{w}_2 z_2)^n.
$$
 (2.7)

Note that for $i = 1, 2, 1 - \overline{w}_i z_i$ is not positive, and by the same argument as Remark 2.14, we know that

$$
\overline{w}_1z_1(1-\overline{w}_2z_2)+\overline{w}_2z_2(1-\overline{w}_1z_1)
$$

is not positive. Therefore (2.7) is not positive.

(2) By definition, we need to check that

$$
1-\frac{1}{k^{\theta}(z,w)}=\frac{\bar{w}_1z_1+\bar{w}_2z_2-\bar{w}_1z_1\bar{w}_2z_2-\bar{w}_1^2z_1^2}{1-\bar{w}_1^2z_1^2}
$$

is not positive semi-definite. Rewrite this as

$$
(\overline{w}_1 z_1 + \overline{w}_2 z_2) \sum_{n=0}^{\infty} (-1)^n (\overline{w}_1 z_1)^n,
$$
\n(2.8)

and since $\sum_{n=0}^{\infty}(-1)^n(\overline{w}_1z_1)^n$ is not positive, we know that (2.8) is not positive.

Acknowledgements. The authors would like to thank the referee for his/her careful reading of the paper and helpful suggestions. The authors also thank the referee to point out that the characterization of the de Branges-Rovnyak spaces with complete Nevanlinna-Pick property in [7] is more general, and the main result (Theorem 1.1) is a special case of Theorem 1.4 from [7]. The results in our paper were obtained independently and the methods rely heavily on the structure of inner functions on the bidisk.

REFERENCES

- [1] J. AGLER, *Some interpolation theorems of Nevanlinna-Pick type*, Unpublished manuscript, 1988.
- [2] A. ALEMAN, M. HARTZ, J. E. MCCARTHY, AND S. RICHTER, *The Smirnov class for spaces with the complete Pick property*, J. Lond. Math. Soc. (2) **96** (2017) 228–242.
- [3] A. ALEMAN, M. HARTZ, J. E. MCCARTHY, AND S. RICHTER, *Factorizations induced by complete Nevanlinna-Pick factors*, Adv. Math. **335** (2018) 372–404.
- [4] A. ALEMAN, M. HARTZ, J. E. MCCARTHY, AND S. RICHTER, *Weak products of complete Pick spaces*, Indiana Univ. Math. J. **70** (2021) 325–352.
- [5] J. AGLER, J. E. MCCARTHY, *Complete Nevanlinna-Pick kernels*, J. Funct. Anal. **175** (1) (2000) 111–124.
- [6] J. AGLER, J. E. MCCARTHY, *Pick Interpolation and Hilbert Function Spaces*, American Mathematical Society, Providence, 2002.
- [7] H. AHMED, B. K. DAS, AND S. PANJA, *de Branges-Rovnyak spaces which are complete Nevanlinna-Pick spaces*, arXiv:2403.19377v1.
- [8] C. CHU, *Which de Branges-Rovnyak spaces have complete Nevanlinna-Pick property?*, J. Funct. Anal. **279** (6) (2020) 108608.
- [9] J. B. GARNETT, *Bounded Analytic Functions*, Academic press, 1981.
- [10] K. GUO, K. WANG, *Beurling type quotient modules over the bidisk and boundary representations*, J. Funct. Anal. **257** (2009) 3218–3238.
- [11] M. HARTZ, *Every complete Pick space satisfies the column-row property*, arXiv:2005.09614v1.
- [12] S. LUO, K. ZHU, *Sub-Bergman Hilbert spaces on the unit disk III*, Canadian Journal of Mathematics, published online 2023: 1–18.
- [13] V. I. PAULSEN, M. RAGHUPATHI, *An Introduction to the Theory of Reproducing Kernel Hilbert Spaces*, Cambridge University Press, Cambridge, 2016.
- [14] P. QUIGGIN, *For which reproducing kernel Hilbert spaces is Pick's theorem true?*, Integral Equations Operator Theory, **16** (2) 244–266, 1993.
- [15] W. RUDIN, *Function theory on polydiscs*, Benjamin, New York, 1969.
- [16] S. SHIMORIN, *Complete Nevanlinna-Pick property of Dirichlet-type spaces*, J. Funct. Anal. **191** (2) 276–296, 2002.

(Received June 20, 2024) *Jiming Shen School of Mathematical Sciences Dalian University of Technology Dalian 116024, People's Republic of China e-mail:* shenjiming@mail.dlut.edu.cn

> *Yixin Yang School of Mathematical Sciences Dalian University of Technology Dalian 116024, People's Republic of China e-mail:* yangyixin@dlut.edu.cn