CONTINUITY BETWEEN SOME SPECIAL KÖTHE SPACES

EMRE TAŞTÜNER AND MURAT HAYRETTIN YURDAKUL

(Communicated by R. Curto)

Abstract. In this work, we gave some necessary and sufficient conditions for a special lower triangular map from a nuclear Köthe space to a nuclear G_1 -space to be linear and continuous. Also, we considered its upper triangular version.

1. Preliminaries

Suppose that $A = (a_n^k)_{n,k \in \mathbb{N}}$ is a Köthe matrix, that is, A satisfies $0 \leq a_n^k \leq a_n^{k+1}$ for all $n, k \in \mathbb{N}$ and $\sup a_n^k > 0$ for all $n \in \mathbb{N}$. The ℓ^1 -Köthe space $\lambda(A)$ is the space defined by $\lambda(A) = \{x = (x_n) : ||x||_k = \sum_{n \in \mathbb{N}} |x_n| a_n^k < \infty$ for all $k \in \mathbb{N}\}$ and the topological dual of $\lambda(A)$ is isomorphic to the space of all sequences $u = (u_n)$ for which $|u_n| \leq Ca_n^k$ for some k and C > 0.

The ℓ^1 -Köthe space $\lambda(A)$ is a Fréchet space with the topology generated by the system of seminorms $\{||.||_k : k \in \mathbb{N}\}$.

We know that $\lambda(A)$ is a nuclear space if and only if for each $k \in \mathbb{N}$ there is $m \in \mathbb{N}$ such that $\sum_{n=1}^{\infty} \frac{a_n^k}{a_n^m} < \infty$.

If $\lambda(A)$ is nuclear, then the fundamental system of seminorms $||x||_k = \sum_{n \in \mathbb{N}} |x_n| a_n^k$ can be replaced by the equivalent system of seminorms $||x||_k = \sup_{n \in \mathbb{N}} |x_n| a_n^k$.

The space ℓ^1 is a Köthe space $\lambda(A)$ where $A = (a_n^k)$ with $a_n^k = 1$ for all $n, k \in \mathbb{N}$. The space of all sequences $w = \mathbb{K}^{\mathbb{N}}$ is a Köthe space $\lambda(A)$ where $A = (a_n^k)$ with $a_n^k = e_1 + e_2 + \ldots + e_k = (1, 1, \ldots, 1, 0, 0, 0, \ldots)$ (here 1 ends in the k^{th} place).

Let $(\alpha_n)_n$ be a monotonically increasing sequence of positive numbers with limit ∞ as *n* goes to ∞ . Then the Köthe spaces given by the matrices $(e^{k\alpha_n})$ and $(e^{-\frac{\alpha_n}{k}})$ are called the infinite and finite type power series spaces, respectively. Power series spaces play an important role in the structure theory of spaces of entire functions on \mathbb{C} and spaces of holomorphic functions on the unit disc.

Mathematics subject classification (2020): 47B37, 46A45. *Keywords and phrases:* ℓ^1 -Köthe spaces, nuclear spaces.

Smooth sequence spaces G_{∞} and G_1 appear in [4] and they are generalizations of power series spaces.

The ℓ^1 -Köthe space $\lambda(A)$ is called a G_{∞} space if its Köthe matrix $A = (a_n^k)_{n,k \in \mathbb{N}}$ satisfies:

$$a_n^1 = 1, \quad a_n^k \leqslant a_{n+1}^k \quad \text{for all } k, n \in \mathbb{N};$$

for all k there exists j such that $(a_n^k)^2 = O(a_n^j)$.

The ℓ^1 -Köthe space $\lambda(B)$ is called a G_1 space if its Köthe matrix $B = (b_n^k)_{n,k \in \mathbb{N}}$ satisfies:

$$0 < b_{n+1}^k \leq b_n^k < 1$$
 for all $k, n \in \mathbb{N}$;

for all k there exists j such that $b_n^k = O((b_n^j)^2)$.

Finally, by [1], we know that a linear map T between the ℓ^1 -Köthe spaces $\lambda(A)$

and $\lambda(B)$ is continuous if and only if for all k there is m such that $\sup_{n} \frac{||Te_n||_k}{||e_n||_m} < \infty$.

For the terminology used, but not defined here we refer to [2], [3] and [4].

The aim in this work is to generalize the results given in [5].

2. Continuity between special Köthe spaces

THEOREM 1. Let $\lambda(A)$ be a nuclear Köthe space and $\lambda(B)$ be a nuclear G_1 -Köthe space. Let $T : \lambda(A) \to \lambda(B)$ be a linear map given by the lower triangular matrix $C = (c_i^n)_{j,n \in \mathbb{N}}$ where $((c_n^n)^{-1})_{n \in \mathbb{N}}$ is a bounded sequence.

Then T is continuous if and only if for all n $(c_j^n)_j \in \lambda(B)$ for $j \ge n$ and $\lambda(A) \subset \lambda(B)$.

Proof. Notice

$$Te_n = \begin{cases} c_j^n, & j \ge n\\ 0, & j < n \end{cases};$$
$$||Te_n||_k = \sup_{j \ge n} |c_j^n| b_j^k \text{ and } ||e_n||_m = a_n^m.$$

Suppose that *T* is continuous. Then for all *k* there exists *m* such that $\sup_{n} \frac{||Te_n||_k}{||e_n||_m} < \infty$ i.e. for all *k* there exist *m* and $\rho > 0$ such that $\sup_{j \ge n} |c_j^n| b_j^k \le \rho a_n^m$ for all $n \in \mathbb{N}$.

By taking j = n, we get that $|c_n^n|b_n^k \leq \rho a_n^m$ for all $n \in \mathbb{N}$.

Since $((c_n^n)^{-1})$, $n \in \mathbb{N}$ is a bounded sequence, this means $b_n^k \leq Ca_n^m$ for all $n \in \mathbb{N}$ for some C > 0 and hence $\lambda(A) \subset \lambda(B)$.

Notice that $Te_n = (0, 0, \dots, 0, c_n^n, c_{n+1}^n, c_{n+2}^n, \dots) \in \lambda(B)$ for all n. Since $(c_j^n)_j$ is a subsequence of Te_n for $j \ge n$, we get $(c_j^n)_j \in \lambda(B)$ for $j \ge n$.

Conversely, suppose that for all n $(c_j^n)_j \in \lambda(B)$ for $j \ge n$ and $\lambda(A) \subset \lambda(B)$.

So, since *B* is a G_1 -set and $\lambda(A) \subset \lambda(B)$ for all *k* there exist $m_1 = m_1(k)$, $C_1 > 0$, $m_2 = m_2(m_1)$, $C_2 > 0$ such that

$$||Te_n||_k = \sup_{j \ge n} |c_j^n| b_j^k \leqslant C_1 \sup_{j \ge n} |c_j^n| (b_j^{m_1})^2$$

$$\leqslant C_1 (\sup_{j \ge n} |c_j^n| b_j^{m_1}) b_n^{m_1}$$

$$\leqslant C_2 C_1 (\sup_{j \ge n} |c_j^n| b_j^{m_1}) a_n^{m_2} \leqslant C a_n^{m_2}$$

for some C > 0. So, for all k there exists m_2 such that $\sup_n \frac{||Te_n||_k}{||e_n||_{m_2}} < \infty$, i.e. $T : \lambda(A) \to \lambda(B)$ is continuous. \Box

THEOREM 2. Let $\lambda(A)$ be a nuclear G_{∞} -Köthe space and $\lambda(B)$ be a nuclear Köthe space. Let $T : \lambda(A) \to \lambda(B)$ be a linear map given by the upper triangular matrix $C = (c_i^n)_{j,n \in \mathbb{N}}$ where $((c_n^n)^{-1})_{n \in \mathbb{N}}$ is a bounded sequence.

Then T is continuous if and only if for all n $(c_j^n)_n \in \lambda(A)'$ for $j \leq n$ and $\lambda(A) \subset \lambda(B)$.

Proof. Notice

$$Te_n = \begin{cases} c_j^n, & j \le n\\ 0, & j > n \end{cases};$$
$$||Te_n||_k = \sup_{1 \le j \le n} |c_j^n| b_j^k \text{ and } ||e_n||_m = a_n^m.$$

Suppose that *T* is continuous. Then for all *k* there exist *m* and $\rho > 0$ such that $\sup_{1 \le j \le n} |c_j^n| b_j^k \le \rho a_n^m$ for all $n \in \mathbb{N}$, in particular $|c_j^n| b_j^k \le \rho a_n^m$ for all $n \in \mathbb{N}$ and for all j = 1, 2, ..., n.

So, we have $|c_j^n| \leq Ca_n^m$, i.e. $(c_j^n)_n \in \lambda(A)'$ for $j \leq n$.

Now choose j = n. Then for all k there exist m and $\rho > 0$ such that $|c_n^n|b_n^k \leq \rho a_n^m$ for all n. Since $((c_n^n)^{-1})$, $n \in \mathbb{N}$ is a bounded sequence, we have that for all k there exist m and $\tilde{C} > 0$ such that $b_n^k \leq \tilde{C}a_n^m$ for all $n \in \mathbb{N}$ and hence $\lambda(A) \subset \lambda(B)$.

Conversely, suppose $(c_i^n)_n \in \lambda(A)'$ and $\lambda(A) \subset \lambda(B)$ for all $j \leq n$.

So there exist m_1 , $C_1 > 0$ for all k there exist $m_2 = m_2(k)$, $C_2 > 0$ such that

$$||Te_{n}||_{k} = \sup_{1 \le j \le n} |c_{j}^{n}|b_{j}^{k} \le C_{1} \sup_{1 \le j \le n} a_{n}^{m_{1}}b_{j}^{k}$$
$$\le C_{2}C_{1} \sup_{1 \le j \le n} a_{n}^{m_{1}}a_{j}^{m_{2}}$$
$$\le C_{2}C_{1}a_{n}^{m_{1}}a_{n}^{m_{2}} \le C_{2}C_{1}(a_{n}^{m})^{2}$$

where $m = \max\{m_1, m_2\}$ since A is a G_{∞} -set.

Also, since $\lambda(A)$ is a G_{∞} -space, there exists j = j(m) such that $\sup_{n} \frac{(a_{n}^{m})^{2}}{a_{n}^{j}} < \infty$, i.e. there exist j = j(m) and $\tilde{C} > 0$ such that $(a_{n}^{m})^{2} \leq \tilde{C}a_{n}^{j}$. Thus, for all k there exist *j* and $\tilde{C} > 0$ such that $||Te_n||_k \leq \tilde{C}C_2C_1a_n^j$, i.e. $\sup_n \frac{||Te_n||_k}{||e_n||_j} < \infty$. Hence, *T* is continuous.

REFERENCES

- L. CRONE, W. ROBINSON, *Diagonal maps and diameters in Köthe spaces*, Israel J. of Math., 17 (1975), 13–22.
- [2] R. MEISE, D. VOGT, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
- [3] A. PIETSCH, Nuclear Locally Convex Spaces, Springer-Verlag, Berlin-New York, 1972.
- [4] M. S. RAMANUJAN, T. TERZIOĞLU, Subspaces of smooth sequence spaces, Studia Math., 65 (1979), 299–312.
- [5] E. UYANIK, M. YURDAKUL, A note on triangular operators on smooth sequence spaces, Oper. Matrices, 13 (2) (2019), 343–347.

(Received December 7, 2021)

Emre Taştüner Department of Mathematics Middle East Technical University 06800 Ankara, Turkey e-mail: tastuner@metu.edu.tr

Murat Hayrettin Yurdakul Department of Mathematics Middle East Technical University 06800 Ankara, Turkey e-mail: myur@metu.edu.tr

Operators and Matrices www.ele-math.com oam@ele-math.com