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OPPENHEIM–SCHUR’S INEQUALITY AND RKHS

AKIRA YAMADA

(Communicated by M. S. Moslehian)

Abstract. In 2012, we obtained Oppenheim’s inequality for positive semidefinite matrices and
its equality condition by the reproducing kernel method. In this paper, as a continuation, we give
a reproducing kernel proof of the block matrix version of the Oppenheim-Schur’s inequality and
its equality condition in the positive definite case.

1. Introduction

Let A = (ai j) and B = (bi j)∈Mn be n×n positive semidefinite complex matrices.
The matrix (ai jbi j)∈Mn is called the Hadamard product or the Schur product of A and
B , and is denoted by A◦B .

THEOREM 1.1. (e.g. [8]) The following inequalities hold:

(i) Hadamard’s inequality:
|A| � a11a22 . . .ann.

(ii) Oppenheim’s inequality:

|A◦B|� |A|b11 · · ·bnn.

(iii) Oppenheim-Schur’s inequality:

|A◦B|+ |A||B|� |A|b11 · · ·bnn + |B|a11 · · ·ann.

Our aim is, as a continuation of [14], to prove an extension of the Oppenheim-
Schur inequality for positive semidefinite block matrices by the theory of the reproduc-
ing kernel due to Aronszajn [2] and Schwartz [12], and obtain equality conditions in
the positive definite cases. Our main tool is the identity (6) between the determinant of
a positive semidefinite matrix and the minimum norms of solutions of the inner product
in a RKHS with the matrix as the reproducing kernel. We also make use of a RKHS
which is contained in another Hilbert space, which is called a sub-Hilbert RKHS. Pos-
itive semidefinite block matrices are considered as the reproducing kernels of RKHSs,
which are the most basic and fundamental examples of sub-Hilbert RKHS.
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2. Interpolation problem and RKHS

Throughout the paper, all operators are continuous linear, and all vector spaces
are Hilbert spaces unless otherwise stated. Using the interpolation problem for inner
products in RKHS, we shall give simple proofs of Oppenheim-Schur’s inequality for
matrices, the equality conditions, and its extensions to block matrices (cf. [14], [15]).
We will make some preparations for this.

First, we recall the theory of the reproducing kernel due to L. Schwartz [12]. To
adapt the symbols and the notion of conjugate spaces to the case of Hilbert spaces, we
denote by C∗ the space of continuous antilinear functionals in a locally convex space C
and call it the antidual of C . If H is a Hilbert space, Riesz’s representation theorem
allows us to identify H ∗ with H . Let the canonical antiduality 〈C,C∗〉 on C×C∗
be the sesquilinear form:

y(x) = 〈x,y〉C,C∗ , x ∈C, y ∈C∗.

Let C be a Hausdorff quasi-complete locally convex space, and introduce the weak
topology σ(C∗,C) on C∗ . If a Hilbert space H is a linear subspace of C , and if the
inclusion operator i : H ↪→C is continuous, H is called a C-RKHS. The reproducing
kernel of the C -RKHS H is the operator ii∗ ∈ L (C∗,C) , and we call C the ambient
space of H . When we distinguish these reproducing kernels with those defined by
Aronszajn, these kernels are called the Schwartz reproducing kernel. Since i∗ : C∗ →
H , we have ran ii∗ ⊂ H . The reproducing kernel k ∈ L (C∗,C) of the C -RKHS has
the following reproducing property: for any x ∈ H and c ∈C ,

〈x,kc〉H = 〈x,c〉C,C∗ .

We call a C -RKHS a sub-Hilbert RKHS if the ambient space C is a Hilbert space. In
this case, from the above identification, we have

〈x,kc〉H = 〈x,c〉C.

The reproducing property gives ‖kc‖2 = 〈kc,c〉C,C∗ , thus for every c ∈C∗ ,

〈kc,c〉C,C∗ � 0.

If an operator k ∈ L (C∗,C) satisfies the above inequality, then k is called positive
definite and is denoted by k 
 0. A theorem of Schwartz [12, Proposition 10] asserts
the converse: for any k ∈ L +(C∗,C) (i.e., k 
 0), there exists a unique C -RKHS H
with the reproducing kernel k , which we denote by Hk .

DEFINITION 2.1. Let H be a Hilbert space and let V be a vector space. For a
linear map A : H →V with closed kernel, there exists a unique Hilbert space structure
on the subspace ranA = A(H ) of V such that the linear map A0 : x∈H �→ Ax∈ ranA
is a coisometry. In other words, we define an inner product on ranA such that, for
f ,g ∈ (kerA)⊥ ,

〈A f ,Ag〉M (A) = 〈 f ,g〉H .
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The space ranA equipped with this inner product is a Hilbert space which is called the
operator range of the map A and is denoted by M (A) . The norm ‖ · ‖M (A) of M (A)
is called the range norm (cf. [11]).

By definition, we note that if only one of f , g ∈H belongs to (kerA)⊥ , we have

〈A f ,Ag〉M (A) = 〈 f ,g〉H .

DEFINITION 2.2. (Image of a RKHS) If T ∈L (C,D) is weakly continuous, then
the operator range M (T |H ) of C -RKHS H is called an image or an image RKHS of
H , which is denoted by T∗H .

The following theorem is the counterpart of the classical theory of integral trans-
form (see, [10, p. 83]) in Schwartz’s theory of RKHS.

THEOREM 2.1. ([12, Proposition 21]) Let C and D be quasi-complete Hausdorff
locally convex spaces, and H be a C-RKHS with the reproducing kernel k . Let T ∈
L (C,D) be weakly continuous. Then, the operator range T∗H of the restriction T |H
is a D-RKHS with the reproducing kernel TkT ∗ . The norm of an element x ∈ T∗H
satisfies the identity:

‖x‖T∗H = inf{‖y‖H : Ty = x, y ∈ H }.

In general, the image of the reproducing kernel is dense in the RKHS.
Schwartz [12, Proposition 7 bis] gave the conditions for coincidence when the

ambient space is locally convex. Here, we describe the related results for the case
where the ambient space is a Hilbert space. There are many equivalent conditions, but
we list some of them which are related to RKHSs.

LEMMA 2.1. Let H and K be Hilbert spaces, and let A ∈ L (H,K) . The
following are equivalent:

(i) ranA is closed.

(ii) ranA∗ is closed.

(iii) ranA = ranAA∗ .

(iv) ranAA∗ is closed.

(v) There exists an operator X ∈ L (K,H) with AXA = A.

Proof. The equivalence of (i) and (ii) is the assertion of the closed range theorem
itself. From the orthogonal decomposition H = ranA∗ ⊕kerA , (ii) implies that ranA =
A(ranA∗) = ranAA∗ , i.e., (iii). Conversely, (iii) implies that H = ranA∗ +kerA . From
the orthogonal decomposition we have ranA∗ ⊂ ranA∗ . Thus, ranA∗ is closed, i.e., (ii).
We have now proved the equivalence of (i)–(iii). Obviously, (i) and (iii) imply (iv).
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(iv) =⇒ (iii) From

ranAA∗ ⊂ ranA = A(ranA∗) ⊂ ranAA∗ = ranAA∗,

we obtain ranAA∗ = ranA .
(v) =⇒ (i) Suppose that Axn = yn → y (n → ∞). Then, Axn = AXyn → AXy ,

which implies that y = AXy ∈ ranA . Thus, ranA is closed.
(i) =⇒ (v) The operator X is known as a generalized inverse of A . It is well

known (e.g. [3, Chapter II]) that if ranA is closed, then the Moore-Penrose inverse
A+ ∈ L (K,H) satisfies AA+A = A . �

LEMMA 2.2. Let HA be a sub-Hilbert C-RKHS with the reproducing kernel A.
If A ∈ L +(C) has a closed range, then HA = ranA as a vector space, and we have,
for ∀x,y ∈C,

〈Ax,Ay〉HA = 〈Ax,y〉C = 〈x,Ay〉C.

Proof. By Theorem 2.1 the RKHS HA is given by the operator range of A1/2 .
From Lemma 2.1 we have ranA1/2 = ranA . Thus, HA = ranA as a vector space. Since
A is the reproducing kernel of HA , the last identity holds. �

If C is a finite-dimensional Hilbert space, then the range of A ∈L +(C) is closed,
hence as a corollary of Lemma 2.2 we have (cf. [14, Proposition 2.1]),

PROPOSITION 2.1. Let A = (ai j) = (aaa1 aaa2 . . . aaan)∈Mn be a positive semidefinite
matrix. Then, the RKHS HA on the set {1,2, . . . ,n} is given by the subspace ranA of
C

n spanned by the column vectors aaa1, . . . ,aaan of A, equipped with the inner product:

〈Ax,Ay〉HA = 〈Ax,y〉Cn = 〈x,Ay〉Cn .

In particular, dimHA = rank A. The i-th column aaai of the matrix A is the reproducing
kernel for the point i , and we have 〈aaaj,aaai〉 = ai j (i, j = 1, . . . ,n) , i.e., the matrix A is
the Gram matrix G(aaa1, . . . ,aaan) of the reproducing kernels {aaai} of the RKHS HA .

LEMMA 2.3. Let A and B be positive semidefinite operators in a Hilbert space
C. Then, the following hold:

(i) HA+B = HA +HB as vector spaces, and for any f ∈ HA and g ∈ HB ,

‖ f +g‖2
HA+B

� ‖ f‖2
HA

+‖g‖2
HB

. (1)

Equality holds if and only if 〈 f ,h〉HA = 〈g,h〉HB for every h ∈ HA ∩HB .

(ii) If C is finite dimensional, then ran(A + B) = ranA + ranB. Furthermore, the
equality in the inequality (1) holds if and only if there exists a z ∈ C such that
f = Az and g = Bz.
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Proof. (i) Well-known facts (cf. [2, pp. 352–354]). One can also prove this fact by
showing that the operator range of the linear map f ⊕g ∈ HA ⊕HB �→ f +g ∈ CE is
the RKHS with the reproducing kernel A+B .

(ii) The first assertion follows from Lemma 2.2 and (i). Let us show the last equiv-
alence.

⇐= By Lemma 2.2 we have, for every h ∈ ranA∩ ranB ,

〈 f ,h〉HA = 〈Az,h〉HA = 〈z,h〉C = 〈Bz,h〉HB = 〈g,h〉HB .

Thus, equality holds by (i).
=⇒ Since, by assumption, the ranges of the operators A and B are closed,

Lemma 2.2 implies that HA = ranA and HB = ranB . Thus, there exist x and y ∈ C
with f = Ax and g = By . If equality occurs, then, by (i), we have for each h ∈ ranA∩
ranB ,

〈x,h〉C = 〈 f ,h〉HA = 〈g,h〉HB = 〈y,h〉C.

Thus, x−y∈ (ranA∩ranB)⊥ . Since for arbitrary subspaces E and F of C , (E∩F)⊥ =
E⊥ +F⊥ , we have

(ranA∩ ranB)⊥ = (ranA)⊥ +(ranB)⊥ = kerA+kerB.

Thus, there exist a∈ kerA and b ∈ kerB with x−y = a+b , which implies that f = Az
and g = Bz if we take z = x−a = y+b∈C . �

Using the theory of integral transform, we can obtain results for solutions of the
interpolation problems concerning the inner product of a Hilbert space.

THEOREM 2.2. Let G = (〈a j,ai〉) ∈ Mn be the Gram matrix of the sequence
{ai}n

i=1 in a Hilbert space H . Given b = (b j) ∈ Cn , consider the interpolation prob-
lem for f ∈ H :

〈 f ,ai〉 = bi, i = 1, . . . ,n (2)

Then, the following hold:

(i) The RKHS HG consists of the set of vectors b ∈ C
n such that there exists a

solution f ∈ H of (2). HG = ranG as vector spaces.

(ii) The norm of HG is the range norm of the operator f ∈ H �→ (〈 f ,ai〉) ∈ Cn : for
any b ∈ HG ,

‖b‖HG = inf{‖ f‖ : 〈 f ,ai〉 = bi, i = 1, . . . ,n}.

(iii) If there exists a solution f ∈ H of (2), then there exists a unique solution with
the minimum norm. The solution f has the minimum norm if and only if f ∈
span{ai}n

i=1 .
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Proof. (i) Let E be the set {1,2, . . . ,n} . For f ∈H , define a function f̂ : E → C

by f̂ (i) = 〈 f ,ai〉 , i∈E . Then, the space Ĥ = { f̂ : f ∈H } is an RKHS on E with the
reproducing kernel G , which is called the integral transform of H (see, [10, p. 83]).
On the other hand, by Theorem 2.2, if G is a positive semidefinite matrix, then ranG is
an RKHS on E with the reproducing kernel G . By the uniqueness of the RKHS with
the same reproducing kernel, we have Ĥ = ranG . Therefore, the set of (bi)n

i=1 ⊂ C
n

with a solution of the interpolation problem (2) coincides with the set ranG of the
image of the integral transform.

(ii) Since the image RKHS ranG of the integral transform is the operator range of
the map f ∈ H �→ f̂ ∈ Ĥ , the norm of (bi) ∈ ranG coincides with the range norm of
Ĥ .

(iii) For a solution f of (2), let fn be the orthogonal projection of f onto span{ai} .
Then, fn is also a solution, and since f − fn ∈ {a1, . . . ,an}⊥ , we have

‖ f‖2 = ‖ f − fn‖2 +‖ fn‖2.

Thus, fn is the unique solution with the minimum norm. �

If the sequence {ai} is linearly independent, then we obtain a concrete represen-
tation of the minimum norm solution using the determinant.

THEOREM 2.3. (cf. [1, p. 13], [14]) Let {ai}n
i=1 be a linearly independent subset

of a Hilbert space H . Then, for any (bi)n
i=1 ∈ Cn , there exists a unique element

f ∈ H which satisfies the interpolation problem (2) and minimizes the norm, where f
and its norm are given by

f = − 1
|Gn|

∣∣∣∣∣∣∣∣∣

0 a1 · · · an

b1 〈a1,a1〉 · · · 〈an,a1〉
...

...
. . .

...
bn 〈a1,an〉 · · · 〈an,an〉

∣∣∣∣∣∣∣∣∣
,

‖ f‖2 = − 1
|Gn|

∣∣∣∣∣∣∣∣∣

0 b1 · · · bn

b1 〈a1,a1〉 · · · 〈an,a1〉
...

...
. . .

...
bn 〈a1,an〉 · · · 〈an,an〉

∣∣∣∣∣∣∣∣∣
.

To derive determinant inequalities, we now consider a special interpolation prob-
lem (2) of the form

b1 = · · · = bn−1 = 0, bn = 1, (3)

assuming that the set {ai} ⊂ H is linearly independent. Let fn be the minimum norm
solution for the above data (3), and λn = ‖ fn‖ be its norm. From Theorem 2.3 and (3)
we conclude that the sequence { fn} of solutions with minimum norm coincides up to
multiple constants with the sequence {Fn} obtained by the Gram-Schmidt orthogonal-
ization process. More precisely, fn = (|Gn−1|/|Gn|)1/2Fn , n = 1,2, . . . . Hence, we
have
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COROLLARY 2.1. If {ai}n
i=1 ⊂ H is linearly independent, then λn =√|Gn−1|/|Gn| , where Gk = G(a1, . . . ,ak) , k = 1, . . . ,n, are the Gram matrices of {ai}

(G0 = 1 ).

3. Hadamard product of vector-valued RKHSs and inner product interpolation

Consider a C -RKHS H whose ambient space C is a direct sum
⊕

x∈E Cx of
Hilbert spaces {Cx}x∈E . An element of C =

⊕
x∈E Cx is regarded as a function that

takes values in Cx at the point x ∈ E . The point evaluation f ∈ H �→ f (x) ∈ Cx at
x ∈ E is denoted by evx , and, for each x ∈ E , evx ∈ L (H ,Cx) is bounded. The
adjoint operator kx = ev∗x ∈ L (Cx,H ) is called the reproducing kernel of H for the
point x . The reproducing property of kx is given by, for f ∈ H , c ∈Cx ,

〈 f ,kx(c)〉H = 〈 f (x),c〉Cx .

The operator K(x,y) = k∗xky ∈ L (Cy,Cx) is called the kernel function of C -RKHS
H . Between the Schwartz reproducing kernel K ∈ L +(C) of C -RKHS H , the
reproducing kernel kx for the point x , and the kernel function K(x,y) , the following
identities hold:

evx Kiy = K(x,y), ky = Kiy,

where iy : Cy ↪→C denotes the canonical injection. The kernel function K(x,y) of C -
RKHS H is positive semidefinite: for every a1, . . . ,an ∈ E and ci ∈Ci ,

∑〈K(ai,a j)c j,ci〉Cai
� 0.

Note that the inner product of the tensor product Hilbert space
⊗m

p=1 Hi of the Hilbert
spaces H1, . . . ,Hm satisfies the identity (see, e.g. [9, p. 49]): for fi ∈ Hi , gi ∈ Hi ,
p = 1, . . . ,m ,

〈 f1 ⊗ . . .⊗ fm, g1⊗ . . .⊗gm〉⊗Hi =
m

∏
p=1

〈 fi,gi〉Hi . (4)

Hereafter, we fix the natural numbers m and s , and let E be the set {1, . . . ,s}
and Cp =

⊕s
j=1Cp

j be the direct sum of the finite-dimensional Hilbert space Cp
j . For

simplicity, we identify an element of Cp
j with its image in Cp of the canonical injection.

Under this identification, Cp
j is a mutually orthogonal subspace of Cp , which leads to

the orthogonal decomposition Cp =
⊕s

j=1Cp
j . Now we have a canonical isomorphism

of the tensor product Hilbert space
⊗m

p=1Cp :

m⊗
p=1

Cp ∼=
⊕

( j1,..., jm)∈Em

C1
j1 ⊗ . . .⊗Cm

jm .

Let H p (p = 1, . . . ,m) be a Cp -RKHS on E , and let kp
j ∈ L (Cp,H p) be the repro-

ducing kernel of H p for the point j ∈ E . Since every element of H p is a Cp -valued
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function on E , for fp ∈H p , p = 1, . . . ,m , we can define the simple tensor f1⊗ . . .⊗ fm
as a vector-valued function on the Cartesian product Em :

( f1 ⊗ . . .⊗ fm)( j1, . . . , jm) = f1( j1)⊗ . . .⊗ fm( jm) ∈
m⊗

p=1

Cp.

Thus, the tensor product Hilbert space
⊗m

p=1 H p is a
⊗m

p=1Cp -RKHS on the product
space Em . From the identity (4), for any ⊗m

p=1 fp ∈ ⊗
H p and cp

jp ∈Cp , we have

〈⊗m
p=1 fp,⊗m

p=1k
p
jp(c

p
jp)〉⊗H p =

m

∏
p=1

〈 fp( jp),c
p
jp〉Cp

j
= 〈⊗m

p=1 fp( jp),⊗m
p=1c

p
jp〉⊗m

p=1C
p
jp

= 〈(⊗m
p=1 fp)( j1, . . . , jm),⊗m

p=1c
p
jp〉⊗m

p=1C
p
jp

,

which shows that ⊗m
p=1k

p
jp

is the reproducing kernel of
⊗m

p=1 H p for the point ( j1, . . . , jm)
∈ Em . Let

φ∗ : f ∈
m⊗

p=1

H p �→ φ∗ f = f ◦φ ∈
m⊙

p=1

Cp

be the pullback by the diagonal map φ : j ∈ E �→ ( j, . . . , j) ∈ Em , where
⊙m

p=1Cp

denotes the direct sum ⊕
j∈E

Cp
j ⊗ . . .⊗Cm

j .

Denote the operator range of φ∗ by
⊙m

p=1 H p , which is a
⊙m

p=1Cp -RKHS on E ,
and is called the Hadamard product RKHS of {H p}m

p=1 . For vector-valued func-

tions f1 ∈H 1, . . . , fm ∈H m , the pullback φ∗( f1⊗ . . .⊗ fm) is denoted by
⊙m

p=1 fi or
f1∗ . . .∗ fm , and satisfies

⊙m
p=1 fi ∈⊙m

p=1 H p . This is called the Hadamard product of
{ fp}m

p=1 . Since
⊗m

p=1 kp
j ∈ (kerφ∗)⊥ , by the reproducing property of the tensor prod-

uct
⊗m

p=1 kp
j , and by definition of the operator range, we see that

⊙m
p=1 kp

i ∈⊙m
p=1 H p

is the reproducing kernel for the point i ∈ E of
⊙m

p=1 H p . Furthermore, we immedi-
ately have an inequality, for any f ∈ ⊗m

p=1 H p ,

‖φ∗ f‖⊙m
p=1 H p � ‖ f‖⊗m

p=1 H p .

DEFINITION 3.1. An element f ∈ ⊗m
p=1 H p is called extremal if m � 2 and if

equality holds in the above inequality ([13, p. 378]).

Note that f is extremal if and only if f ∈ (kerφ∗)⊥ .

PROPOSITION 3.1. (cf. [14]) Let Cp be a Hilbert space, and let H p be a Cp -
RKHS on the set E ( p = 1, . . . ,m). An element f ∈ ⊗m

p=1 H p is extremal if and only
if f is in the closed linear span of the set

⋃
j∈E rank1

j ⊗ . . .⊗ rankm
j , where kp

j is the
reproducing kernel of H p for the point j ∈ E .
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Proof. By the reproducing property of
⊗m

p=1 kp
j for the point ( j, j, . . . , j) ∈ Em ,

we have kerφ∗ = (
⋃

j∈E
⊗m

p=1 rankp
j )

⊥ . Thus, its orthogonal complement is given by

(kerφ∗)⊥ =
∨

j∈E
⊗m

p=1 rankp
j , where

∨
denotes a closed linear span. �

In particular, if the ambient space is finite dimensional, then we have a simple
characterization of extremal simple tensors.

PROPOSITION 3.2. Let m � 2 . Suppose that Cp =
⊕s

i=1Cp
i is a direct sum of

finite dimensional Hilbert spaces, and suppose that each Ap ∈ L (Cp) is positive def-
inite (Ap > 0 ) for every p = 1, . . . ,m. If fp ∈ H p \ {0} for p = 1, . . . ,m, then the
simple tensor f1⊗ . . .⊗ fm is extremal if and only if there exists a point i ∈ E such that
fp ∈ rankp

i for every p = 1, . . . ,m.

Proof. For each p , the reproducing kernel kp
i for the point i∈E is the i-th column

of the operator matrix Ap = (Ap
i j)

s
i, j=1 , that is, Ap = (kp

1 . . . kp
s ) . Since Ap is positive

definite, Ap is an injection. Thus, if Apc = ∑s
i=1 kp

i ci = 0 for c = (ci) ∈Cp , then ci = 0
for each i . Since Cp is finite dimensional, by Lemma 2.2 H p and ranAp are identical
as vector spaces. Hence, we conclude that H p is a direct sum

⊕s
i=1 rankp

i .
=⇒ Since for every p H p is a direct sum

⊕s
i=1 rankp

i and since fp �= 0, there
exists a subset Ep of E and an element cp

i ∈Cp
i such that fp is a linearly independent

sum of the form
fp = ∑

i∈Ep

kp
i (cp

i ).

Thus, their tensor product is the sum of linearly independent terms:

f1 ⊗ . . .⊗ fm = ∑
i1∈E1,...,im∈Em

k1
i1(c

1
i1)⊗ . . .⊗ km

im(cm
im).

Since Cp is finite dimensional, from Proposition 3.1, f1 ⊗ . . .⊗ fm must be a linear
combination of elements in rank1

i ⊗ . . .⊗ rankm
i , i ∈ E . This is only possible if there

exists an i ∈ E such that the set Ep is the singleton {i} for every p = 1, . . . ,m .
⇐= This is clear from Proposition 3.1. �

In this paper, the inner product interpolation in a sub-Hilbert RKHS played an
important role. We will describe the setting and state some lemmas concerning the
interpolation problem. Let C be a Hilbert space. Given a C -RKHS HA and a CONS
{u j} j∈J of C , we consider the problem of finding solutions f ∈ HA that satisfy, for
j ∈ J ,

〈 f ,Aui〉HA = 0 for all i < j, and 〈 f ,Auj〉HA = 1,

which is called the inner product interpolation problem (IPIP) of order j with respect
to a CONS {u j} of the C -RKHS HA . For simplicity, we denote this IPIP of order j by
triple (HA,{u j}, j) . The set of solutions to this problem is denoted by PA

j . We require

that the index set J to be linearly ordered. If PA
j �= /0 , we denote the element of PA

j with

the minimum norm by f A
j and its norm by λ A

j . If C =
⊕s

i=1Ci is a direct sum of Hilbert
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spaces, we denote the CONS of Ci with a double suffix as {ui j : j = 1, . . . ,ni} . Thus,
{ui j : i = 1, . . . ,s; j = 1, . . . ,ni} is a CONS of C . Here, we introduce the lexicographic
order for the suffix i j of ui j . From the definition of f A

i j and the reproducing property
of kA

i j , we obtain

f A
i j (l) = 0, l = 1, . . . , i−1, j = 1, . . . ,ni.

This is important when considering equality conditions for inequalities.

LEMMA 3.1. Let C =
⊕s

i=1Ci be the direct sum of finite-dimensional Hilbert
spaces Ci , and let the operator A ∈ L (C) be expressed as an operator matrix A =
(Ai j)s

i, j=1 , Ai j ∈ L (Cj,Ci) . If A is positive definite, then the IPIP (HA,{ui j}, i j) has
a solution, and the following inequality holds:

λ A
i j � 1/〈Aiiui j,ui j〉1/2

Ci
. (5)

Equality holds if and only if f A
i j is a constant multiple of kA

i (ui j) , which in turn is equiv-

alent to the condition that kA
i′ (ui′ j′) ⊥ kA

i (ui j) in HA for every i′ j′ < i j . In particular,
when equality occurs, the C1, . . . ,Ci−1 -components of the vector Aui j ∈C are equal to
0.

Proof. Since C is finite dimensional, A > 0 implies that A is an injection. Hence,
the sequence {Aui j} is linearly independent, which implies that the Gram matrix G is
nonsingular. Therefore, G is a surjection, which implies that PA

i j �= /0 by Theorem 2.2.

Since Aui j = kA
i (ui j) , if f ∈ PA

i j , then by Schwarz’s inequality,

1 = 〈 f ,kA
i (ui j)〉HA � ‖ f‖HA‖kA

i (ui j)‖HA .

From ui j �= 0, we conclude that

‖kA
i (ui j)‖2

HA
= 〈(kA

i )∗kA
i (ui j),ui j〉Ci = 〈Aiiui j,ui j〉Ci > 0.

Thus,
‖ f‖HA � 1/〈Aiiui j,ui j〉1/2

Ci
.

Taking the minimum of the left-hand side, we obtain the inequality (5). From the
equality condition of Schwarz’s inequality, f A

i j and kA
i (ui j) are linearly dependent, thus

we have

f A
i j =

kA
i (ui j)

〈Aiiui j,ui j〉Ci

.

By definition of f A
i j , if i′ j′ < i j , then it is clear that kA

i′ (ui′ j′) ⊥ kA
i (ui j) . Conversely, if

this is the case, then f A
i j is a constant multiple of kA

i j(ui j) , which implies equality. The
last statement follows from the note immediately above this Lemma. �

If {u j}n
j=1 is a CONS of the n -dimensional Hilbert space C , then, by Parseval’s

theorem, the operator φ : C → Cn defined by φ( f ) = (〈 f ,u j〉)n
j=1 is an onto isometry.

We call φ the isometry induced by the CONS {u j}n
j=1 . From a finite-dimensional sub-

Hilbert RKHS H , we can construct a classical RKHS due to Aronszajn [2] which is
isometrically isomorphic to H .
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LEMMA 3.2. Let φ : C → Cn be the isometry induced by a CONS {u j}n
j=1 , and

let A ∈ Mn be the matrix representing the operator T ∈ L +(C) with respect to the
basis {u j}n

j=1 . Then, the matrix A = φTφ−1 is positive semidefinite, HT = ranT and
HA = ranA as vector spaces, and we have for any x,y ∈ HT ,

〈x,y〉HT = 〈φx,φy〉HA .

C C
n

HT HA

φ

φ |HT

.

Thus, φ |HT : HT → HA is an onto isometry.

Proof. Since φ is an isometric isomorphism, we have φ∗ = φ−1 . By Theorem 2.1,
this implies that the reproducing kernel of the image RKHS φ∗(HT ) is the matrix A .
Since φ∗(HT ) is a Cn -RKHS, we see that φ∗(HT ) = HA . By Lemma 2.2 HT =
ranT and HA = ranA as vector spaces, since C and Cn are both finite dimensional.
Furthermore, for x = Tz, y = Tw , z,w ∈C ,

〈x,y〉HT = 〈x,w〉C = 〈φx,φw〉Cn = 〈φx,Aφw〉HA = 〈φx,φy〉HA . �

DEFINITION 3.2. The RKHS HA on {1, . . . ,n} constructed above is called the
scalarization of the C -RKHS HT .

From Lemma 3.2, we can express the determinant of the reproducing kernel T of
the sub-Hilbert RKHS using minimum norms {λ T

i } .

LEMMA 3.3. Let {u j}n
j=1 be a CONS of finite-dimensional Hilbert space C, and

let T ∈ L (C) be positive definite. Then,

n

∏
i=1

λ T
i = |T |−1/2. (6)

Furthermore, if C is the direct sum C =
⊕s

i=1Ci , and if {ci j}ni
j=1 is a CONS of Ci ,

then, for i = 1, . . . ,s,
ni

∏
j=1

λ T
i j =

|Ti−1|1/2

|Ti|1/2
, (|T0| = 1),

where Ti = (Tjk)i
j,k=1 is the i-th leading principal submatrix of the operator matrix

T = (Tjk)s
j,k=1 .

Proof. By Lemma 3.2, let φ : C → Cn be the isometry induced by a CONS {u j} ,
and let HA be the scalarization of HT . Then, the representation matrix A ∈ Mn of T
with respect to the basis {u j} is positive definite, and HT is isometrically isomorphic
with HA . If {e j}n

j=1 is the canonical basis of Cn , then φ(u j) = e j , for each j =
1, . . . ,n . Thus, the inner product interpolation problem of HT with respect to {u j}⊂C
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is reduced to HA with respect to {e j} ⊂ Cn . Since Aej is the reproducing kernel of
HA for the point j ∈ {1, . . . ,n} by Proposition 2.1, we have, from Corollary 2.1,

|A| = Gn(A) =
Gn(A)

Gn−1(A)
· Gn−1(A)
Gn−2(A)

· · ·G1(A) = (λ A
n · · ·λ A

1 )−2.

Thus, (6) holds by isometry, φ |HT .
If C is a direct sum, let ιi : C(i) →C be the canonical injection, and let πi : C →

C(i) be the projection with C(i) =
⊕i

j=1Cj . Then, it is easy to see that Ti ∈ L (C(i))
is the reproducing kernel of the image RKHS (πi)∗(HT ) , and, by the reproducing
property, for each f ∈ HT and cl j ∈Cl ( l � i),

〈 f ,kT
l (cl j)〉HT = 〈 f ,T (ιicl j)〉HT = 〈 f , ιicl j〉C

= 〈πi f ,cl j〉C(i) = 〈πi f ,Ticl j〉HTi

= 〈πi f ,k
Ti
l (cl j)〉HTi

.

Thus, λ T
l j = λ Ti

l j , l � i . Consequently, for the CONS {ui j} (=
⋃s

i=1{ui j}ni
j=1) of C , we

have,
ni

∏
j=1

λ T
i j =

∏i
l=1 ∏nl

j=1 λ T
l j

∏i−1
l=1 ∏nl

j=1 λ T
l j

=
∏i

l=1 ∏nl
j=1 λ Ti

l j

∏i−1
l=1 ∏nl

j=1 λ Ti−1
l j

,

which is equal to |Ti−1|1/2/|Ti|1/2 by the first half of the proof. �

4. Main results

We list the settings:

• C =
⊕m

p=1Cp , Cp =
⊕s

i=1Cp
i : direct sums of finite-dimensional Hilbert spaces,

• Cp
i is identified with the subspace of Cp by the canonical injection,

• {cp
i j}

np
i

j=1 : a CONS for Cp
i , i = 1, . . . ,s , p = 1, . . . ,m ,

• The order of the set Jp of subscripts of {cp
i j} is the lexicographic order of N2

obtained by identifying i j with (i, j) ∈ N2 :

Jp = {i j : 1 � i � s; 1 � j � np
i },

and the order of the Cartesian product J = ∏m
p=1 Jp is the lexicographic order of

Jp , p = 1, . . . ,m .

• The subset Ji of J is defined by

Ji = {(i j1, . . . , i jm) : 1 � jp � np
i , 1 � p � m}.
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Now, the set {cp
i j}i j∈Jp is a CONS of Cp , and if we put, for γ = (i j1, . . . , i jm) ∈ Ji ,

i = 1, . . . ,s ,

cγ = c1
i j1 ⊗ . . .⊗ cm

i jm ∈
m⊗

p=1

Cp
i ,

then c = {cγ}γ∈⋃s
i=1 Ji is a CONS of the Hadamard product

m⊙
p=1

Cp =
s⊕

i=1

m⊗
p=1

Cp
i .

If Ap = (Ap
i j)

s
i, j=1 ∈ L (Cp) is positive semidefinite for each p = 1, . . . ,m , then the

Hadamard product RKHS
⊙m

p=1 HAp of the Cp -RKHS HAp is a
⊙m

p=1Cp -RKHS on
the set E = {1, . . . ,s} , whose reproducing kernel is given by

m⊙
p=1

Ap = (A1
i j ⊗ . . .⊗Am

i j)
s
i, j=1 ∈ L

( m⊙
p=1

Cp
)
.

Note that the function f Ap

i j ∈ HAp vanishes for every point i′ ∈ E with i′ < i . For, if

kAp

i′ is the reproducing kernel of HAp for the point i′ ∈ E , then, since i′ j′ < i j , f Ap

i j is

orthogonal to kAp

i′ (cp
i′ j′) . By the reproducing property, we have

〈 f Ap

i j (i′),cp
i′ j′ 〉Cp

i′
= 〈 f Ap

i j ,kAp

i′ (cp
i′ j′)〉HAp = 0,

hence f Ap

i j (i′) = 0, because the vectors {cp
i′ j′ } j′ span Cp

i′ .

THEOREM 4.1. In the above settings, suppose that m � 2 , Ap ∈ L (Cp) is pos-

itive definite for each p = 1, . . . ,m and that the set {kAp

i (cp
i j)}

np
i

j=1 is an orthogonal

system for each i . Then, for each γ = (i j1, . . . , i jm) ∈ Ji , the minimum norm λ
⊙m

p=1 Ap

γ
of IPIP (

⊙m
p=1 HAp ,c,γ) satisfies the following inequality:

λ
⊙m

p=1 Ap

γ �
m

∏
p=1

λ Ap

i jp ·
{ m

∏
p=1

(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉HAp

−
m

∏
p=1

[
(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉HAp −1

]}−1/2
.

Equality holds if and only if there exists a l � i such that f Ap

i jp is a linear combination

of kAp

i (cp
i jp) and {kAp

l (cp
l j′)}l j′�i jp for each p = 1, . . . ,m. In the case of equality, the

minimum norm solution is given by

f
⊙m

p=1 Ap

γ =

⊙m
p=1(λ Ap

i jp )
2kAp

i (cp
i jp)−

⊙m
p=1{(λ Ap

i jp )
2kAp

i (cp
i jp)− f Ap

i jp}
∏m

p=1(λ Ap

i jp
)2〈Ap

iic
p
i jp

,cp
i jp
〉HAp −∏m

p=1

[
(λ Ap

i jp
)2〈Ap

iic
p
i jp

,cp
i jp
〉HAp −1

] .
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Proof. By the reproducing property of
⊙m

p=1 kAp

i , for each fp ∈Cp , p = 1, . . . ,m ,
we have

〈
m⊙

p=1

fp,
m⊙

p=1

kAp

i (cp
i jp

)〉⊙m
p=1 HAp =

m

∏
p=1

〈 fp,kAp

i (cp
i jp

)〉HAp .

Let f Ap

i j be the minimum norm solution of IPIP (HAp ,{cp
i j}i j∈Jp , i j) and let λ Ap

i j be its
norm. Consider the element h of

⊙m
p=1 HAp defined by

h =
m⊙

p=1

(λ Ap

i jp )
2kAp

i (cp
i jp

)−
m⊙

p=1

{(λ Ap

i jp )
2kAp

i (cp
i jp

)− f Ap

i jp}. (7)

We show that h satisfies the conditions for interpolation. First, we show that h is or-
thogonal to

⊙m
p=1 kAp

i′ (cp
i′ j′p

) in
⊙m

p=1 HAp for every order γ ′ < γ with γ ′ = (i′ j′1, . . . , i
′ j′m)

∈ Ji′ . Since
⊗m

p=1 kAp

i′ (cp
i′ j′p

) is extremal, if H is defined by

H =
m⊗

p=1

(λ Ap

i jp )
2kAp

i (cp
i jp)−

m⊗
p=1

{(λ Ap

i jp )
2kAp

i (cp
i jp)− f Ap

i jp},

then,

〈h,
m⊙

p=1

kAp

i′ (cp
i′ j′p

)〉⊙m
p=1 HAp = 〈H,

m⊗
p=1

kAp

i′ (cp
i′ j′p

)〉⊗m
p=1 HAp . (8)

Since i′ � i , we divide the cases.
Case i′ < i : By expanding the second term of H to the sum of simple tensors,

each term of H has at least one factor of the form f Aq

i jq , 1 � q � m . However, since

i′ j′p < i jq for every q , by definition of f Aq

i jq we have 〈 f Aq

i jq ,kAp

i′ (cp
i′ j′p

)〉 = 0, So H is

orthogonal to
⊗m

p=1 kAp

i′ (cp
i′ j′p

) .

Case i′ = i : Since γ ′ < γ , there exists a p with j′p < jp by definition of the
lexicographic order. By expanding the second term of H , each term of simple ten-
sors contains a factor kAp

i (cp
i jp) or f Ap

i jp . By the hypothesis of the orthogonal system,

kAp

i (cp
i jp

) ⊥ kAp

i (cp
i j′p

) . On the other hand, by definition f Ap

i jp ⊥ f Ap

i j′p . Thus, H is orthog-

onal to the tensor product
⊗m

p=1 kAp

i′ (cp
i′ j′p

) , as desired.

Second, we calculate the inner product of h with
⊙m

p=1 kAp

i (cp
i jp

) by (8):

〈h,
m⊙

p=1

kAp

i (cp
i jp

)〉⊙m
p=1 HAp =

m

∏
p=1

(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉Cp

i

−
m

∏
p=1

[
(λ Ap

i jp )
2〈Ap

iic
p
i jp ,c

p
i jp〉Cp

i
−1

]
,
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which is easily seen to be greater than or equal to 1, since (λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉Cp

i
� 1

by Lemma 3.1. Thus,{ m

∏
p=1

(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉−

m

∏
p=1

[
(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉−1

]}−1
h ∈ P

⊙m
p=1 Ap

γ . (9)

Also, by definition of f Ap

i jp and λ Ap

i jp ,

‖h‖2⊙m
p=1 HAp �

∥∥∥ m⊗
p=1

(λ Ap

i jp )
2kAp

i (cp
i jp

)−
m⊗

p=1

{(λ Ap

i jp )
2kAp

i (cp
i jp

)− f Ap

i jp}
∥∥∥2

⊗m
p=1 HAp

=
m

∏
p=1

(λ Ap

i jp )
4〈Ap

iic
p
i jp

,cp
i jp
〉

+
m

∏
p=1

{
(λ Ap

i jp )
4〈Ap

iic
p
i jp ,c

p
i jp〉+(λ Ap

i jp )
2 −2(λ Ap

i jp )
2
}

−2Re
m

∏
p=1

{
(λ Ap

i jp )
2〈kAp

i (cp
i jp

),(λ Ap

i jp )
2kAp

i (cp
i jp

)− f Ap

i jp

〉}

=
m

∏
p=1

(λ Ap

i jp )
2
{ m

∏
p=1

(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉−

m

∏
p=1

[
(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉−1

]}
.

Therefore,

λ
⊙m

p=1 Ap

γ � ‖h‖⊙m
p=1 HAp

×
{ m

∏
p=1

(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉−

m

∏
p=1

[
(λ Ap

i jp )
2〈Ap

iic
p
i jp

,cp
i jp
〉−1

]}−1

�
∏m

p=1 λ Ap

i jp{
∏m

p=1(λ Ap

i jp )
2〈Ap

iic
p
i jp ,c

p
i jp〉−∏m

p=1

[
(λ Ap

i jp )
2〈Ap

iic
p
i jp ,c

p
i jp〉−1

]}1/2
.

This completes the proof of the inequality.
Next, we consider the equality condition of the inequality. Noting the identity (7)

and Proposition 3.1, we see from the above proof of the inequality that the equality
holds if and only if the simple tensor

⊗m
p=1{(λ Ap

i jp )
2kAp

i (cp
i jp

)− f Ap

i jp} is extremal. From
Proposition 3.2, this is equivalent to the condition that there exists a l ∈ {1, . . . ,s} such
that, for each p = 1, . . . ,m , there exists a cp

l ∈Cp
l satisfying

(λ Ap

i jp )
2kAp

i (cp
i jp

)− f Ap

i jp = kAp

l (cp
l ).

By Theorem 2.2, the solution f Ap

i jp with the minimum norm belongs to the span of the

set {kAp

i′ (cp
i′ j′) : i′ j′ � i jp} , and since HAp is a direct sum of rankAp

1 , . . . , rankAp

s , we

conclude that l � i , and that, if l = i , cp
l ∈ span{cp

i j′} j′� jp . If f Ap

i jp is of the form

f Ap

i jp = γkAp

i (cp
i jp

)+ ∑
j′< jp

γ j′k
Ap

i (cp
i j′),
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then, by the interpolation condition, we obtain

γ = 〈 f Ap

i jp ,γkAp

i (cp
i jp

)+ ∑
j′< jp

γ j′k
Ap

i (cp
i j′)〉 = ‖ f Ap

i jp ‖2 = (λ Ap

i jp )
2,

hence equality holds if and only if there exists a l � i such that, for every p = 1, . . . ,m ,
f Ap

i jp is a linear combination of kAp

i (cp
i jp) and {kAp

l (cp
l j′)}l j′�i jp . Moreover, if equality

occurs, we see from the above proof that the function (9) has the minimum norm for
the IPIP.

Therefore, this is the extremal function f
⊙m

p=1 Ap

γ . �

REMARK 4.1. If i = 1, the equality condition of the above Theorem is satisfied.
Therefore, equality holds.

5. Application to determinant inequalities

We derive determinant inequalities from the minimum norms λn . To evaluate the
inequalities, we need to change the order of the products, in which case the following
elementary inequality is useful. The case of m = 2 has appeared in [7, Prop. 2.1].

LEMMA 5.1. Let m and n be natural numbers. If every ai j � 1 , then the follow-
ing inequality holds:

n

∏
i=1

{ m

∏
j=1

ai j −
m

∏
j=1

(ai j −1)
}

�
m

∏
j=1

n

∏
i=1

ai j −
m

∏
j=1

( n

∏
i=1

ai j −1
)
. (10)

Equality occurs if and only if one of the conditions (i)–(iii) holds:

(i) m = 1 or n = 1 ,

(ii) There exists a column of the matrix (ai j) such that every entry of the column is
one, i.e., there exists a j such that ai j = 1 for every i ,

(iii) There exists a row of the matrix (ai j) such that every entry of the other rows is
one, i.e., there exists i0 such that ai j = 1 for every i �= i0 and every j .

Proof. Let pi j = ai j−1. Let pi• = (pi1, . . . , pim)∈Rm
+ and p• j = (p1 j, . . . , pn j)∈

Rn
+ , respectively, be the i-th row and the j -th column of the matrix p = (pi j) ∈

Mn,m(R+) . Using multi-index notation, for the matrix α = (αi j) ∈ Mn,m({0,1}) , we
denote by pα the product ∏n

i=1 ∏m
j=1 p

αi j
i j . The matrix with each entry equal to one is

denoted by � . Let the order of the matrices be the product order with respect to each
entry, that is, (bi j) � (ci j) ⇐⇒ bi j � ci j for each i and j . Then,

m

∏
j=1

ai j =
m

∏
j=1

(1+ pi j) = ∑
αi•

pαi1
i1 · · · pαim

im = ∑
αi•

pαi•
i• ,

m

∏
j=1

(ai j −1) = pi1 . . . pim = p�i•,
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and we have identities:
m

∏
j=1

ai j −
m

∏
j=1

(ai j −1) = ∑
αi•<�

pαi•
i• ,

n

∏
i=1

{ m

∏
j=1

ai j −
m

∏
j=1

(ai j −1)
}

= ∑
∀i, αi•<�

pα1•
1• . . . pαn•

n• = ∑
∀i, αi•<�

pα ,

m

∏
j=1

n

∏
i=1

ai j =
n

∏
i=1

m

∏
j=1

ai j = ∑
α

pα1•
1• . . . pαn•

n• = ∑
α

pα ,

m

∏
j=1

( n

∏
i=1

ai j −1
)

=
m

∏
j=1

∑
α• j>0

p
α• j
• j = ∑

∀ j, α• j>0

pα•1
•1 . . . pα•m•m = ∑

∀ j, α• j>0

pα .

Thus, if we define the subsets E and F of the set Mn,m({0,1}) by

E = {α ∈ Mn,m({0,1}) : ∃i s.t. αi• = �},
F = {α ∈ Mn,m({0,1}) : ∀ j, α• j > 0},

then the inequality to prove is the following:

∑
α∈E

pα � ∑
α∈F

pα .

However, it is clear that E ⊂ F , and since pα � 0, we have proved the inequality (10).
Next, we consider the case of equality. The condition for equality is pα = 0 for

every α ∈ F \E , where

F \E = {α ∈ Mn,m({0,1}) : αi• < � and α• j > 0 for every i and j}.
Let us divide the cases as follows:

(a) p• j = 0 for some j : In this case, we have pα = 0 for every α ∈ F . Thus,
∑α∈E pα = ∑α∈F pα = 0, hence equality holds.

(b) p• j �= 0 for every j : We further divide this division into cases.

1. m = 1 or n = 1: Then, the inequality (10) is an equality.

2. The case where there exists an i0 such that pi j = 0 for every i �= i0 and every
j : Since, every i-th row, i �= i0 , of the matrix p is 0, the inequality (10) reduces
to the case n = 1, in which case equality holds.

3. Otherwise: In this case, for every j = 1, . . . ,m , there exists an i j such that
pi j j �= 0. Since m � 2, we can choose the set {i j}m

j=1 with cardinality greater
than or equal to two. Then, the matrix α = (αi j) defined by

αi j =

{
1, (i = i j)
0, (i �= i j)

satisfies α ∈ F \E , hence pα �= 0. Therefore, equality does not hold in this
case.
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From the above considerations, we conclude that equality holds if and only if in case
(a), (b)-1, or (b)-2. This completes the proof of the equality conditions. �

As in the list at the beginning of §4, to obtain Oppenheim-Schur’s inequality for
block matrices Ap , we assume the following:

• Cp =
⊕s

i=1Cp
i , Cp

i = Cnip , np = dimCp = ∑s
i=1 nip , p = 1, . . . ,m ,

• Ap = (Ap
i j)

s
i, j=1 , Ap

i j ∈ Mnip,n jp(C) , where Ap is a s× s symmetric partitioned
positive semidefinite block matrix ( p = 1, . . . ,m). By a symmetric partitioned
block matrix, we mean that the main-diagonal blocks are square matrices.

• {cp
i j}

nip
j=1 : a CONS of C

nip consisting of eigenvectors of Ap
ii � 0 ( i = 1, . . . ,s).

For each i = 1, . . . ,s , {⊗m
p=1 cp

i jp
: jp = 1, . . . ,nip} is a CONS consisting of eigen-

vectors of the matrix
⊗m

p=1 Ap
ii ([5, p. 245]). Let HAp ( p = 1, . . . ,m) be the Cp -RKHS

on E with the reproducing kernel Ap ∈ L (Cp) . Then, the reproducing kernel of the
Hadamard product RKHS

⊙m
p=1 HAm is given by the Hadamard product of A1 , . . . ,

Am :
m⊙

p=1

Ap = A1 ∗ . . .∗Am = (A1
i j ⊗ . . .⊗Am

i j)
s
i, j=1,

which is also called the Khatri-Rao product of the block matrices A1, . . . ,Am . We
denote by (X)i the i-th leading principal block submatrix of a block matrix X , where
we define (X)0 = 1 for simplicity’s sake.

THEOREM 5.1. In the above settings, if we assume that each block matrix A1, . . . ,
Am is positive definite, then their Hadamard product

⊙m
p=1 Ap satisfies the following

inequality for each i = 1, . . . ,s:

|(⊙m
p=1 Ap)i|

|(⊙m
p=1 Ap)i−1| �

m

∏
p=1

|Ap
ii|σip −

m

∏
p=1

{
|Ap

ii|σip −
( |(Ap)i|
|(Ap)i−1|

)σip
}
, (11)

with σip = n−1
ip ∏m

q=1 niq . Equality occurs if and only if one of the conditions (a)–(c)
holds:

(a) m = 1 or i = 1 .

(b) There exists a p with 1 � p � m such that Ap
li and Ap

il is 0 for every l < i .

(c) nip = 1 for every p, and there exists an i0 with i0 < i such that Ap
li = Ap

li0
(Ap

i0i0
)−1Ap

i0i
for every l with l < i and every p.

Proof. If m = 1 or i = 1, then it is clear that equality holds. Thus, we assume
that m � 2 and i � 2. Since the set {cp

i j}
nip
j=1 is a CONS of Cp

i consisting of eigen-

vectors of the matrix Ap
ii ∈ L (Cp

i ) , we have |Ap
ii| = ∏

nip
j=1 ξ (cp

i j) , where ξ (v) denotes
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the eigenvalue of an eigenvector v . If γ = (i j1, . . . , i jm) ∈ Ji , then we have αγ p � 1 by
Lemma 3.1, where αγ p is defined by

αγ p = (λ Ap

i jp )
2ξ (cp

i jp). (12)

Applying Lemma 3.3, Theorem 4.1 and Lemma 5.1, we have

|(⊙m
p=1 Ap)i|

|(⊙m
p=1 Ap)i−1| = ∏

γ∈Ji

(λ A
γ )−2

� ∏
γ∈Ji

∏m
p=1(λ Ap

i jp )
2ξ (cp

i jp)−∏m
p=1

[
(λ Ap

i jp )
2ξ (cp

i jp)−1
]

∏m
p=1(λ Ap

i jp )
2

(13)

=
∏γ∈Ji

{
∏m

p=1(λ Ap

i jp )
2ξ (cp

i jp
)−∏m

p=1

[
(λ Ap

i jp )
2ξ (cp

i jp
)−1

]}
∏γ∈Ji ∏m

p=1(λ Ap

i jp
)2

�
∏m

p=1 ∏γ∈Ji(λ
Ap

i jp )
2ξ (cp

i jp)−∏m
p=1{∏γ∈Ji(λ

Ap

i jp )
2ξ (cp

i jp)−1}
∏m

p=1 ∏γ∈Ji(λ
Ap

i jp )
2

. (14)

If πp : J = ∏m
j=1 J j → Jp denotes the projection, then the cardinality of the set π−1

p (i jp)
is σip . Thus,

∏
γ∈Ji

ξ (cp
i jp) = ∏

π−1
p (i jp)

∏
i jp∈Jp

ξ (cp
i jp) = |Ap

ii|σip .

Similarly,

∏
γ∈Ji

(λ Ap

i jp )
2 =

( |(Ap)i−1|
|(Ap)i|

)σip
.

Therefore,

∏
γ∈Ji

(λ Ap

i jp )
2ξ (cp

i jp) =
( |Ap

ii||(Ap)i−1|
|(Ap)i|

)σip
. (15)

Substituting these identities into (14), we obtain the inequality (11), as desired.
Now, we consider the equality condition of the inequality. From the above proof,

we see that equality occurs when the following conditions (I) and (II) are satisfied:

(I) The equality conditions (ii) and (iii) of Lemma 5.1 for the matrix (αγ p) of (12).

(II) The equality condition of Theorem 4.1 for each γ ∈ Ji .

First, we consider case (I) of the equality condition (ii). Then, there exists a p such
that (λ Ap

i j )2ξ (cp
i j) = 1 for every j . By Lemma 3.1, for every l < i , the Cp

l -component
of Apc vanishes for every c ∈ Cp

i . Thus, Ap
li = Ap

il = 0 for every l < i , since Ap is
Hermite. This is the equality condition (b) of Theorem. Conversely, it is easy to see
that equality holds if the condition (b) is satisfied.
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Next, we consider case (I) of the equality condition (iii). By Lemma 5.1 there
exists a γ0 = (i j′1, . . . , i j

′
m) ∈ Ji such that αγ p = 1 for every γ = (i j1, . . . , i jm) ∈ Ji \

{γ0} and for every p = 1, . . . ,m . We divide the cases according to the integers nip

(= dimCp
i ) , p = 1, . . . ,m . If there exists a q with niq > 1, then we can choose an

index jq with jq �= j′q such that the index γ = (i j1, . . . , i jq, . . . , i jm)∈ Ji satisfies γ �= γ0

for every index i jp ( p �= q ). Thus, αγ p = 1. By Lemma 3.1 we have Ap
li = Ap

il = 0
for every l < i and every p �= q . Therefore, in this case the condition (b) holds. The
remaining case is one where nip = 1 for every p , in which case the inequality (14) is
always an equality, since only one order is possible. As for the inequality (13), by the
equality condition of Theorem 4.1, there exists an i0 (� i) such that f Ap

i j is a linear

combination of kAp

i (up
i j) and kAp

i0
(cp) , cp ∈ Cp

i0
for each p . If i0 = i , then f Ap

i j is a

constant multiple of kAp

i (up
i j) , since Cp

i is one dimensional. Similar to the proof of
Lemma 3.1, we have Ap

li = Ap
il = 0 for each l < i , which is the case (b). If i0 < i ,

then f Ap

i j is a nonzero multiple of kAp

i (up
i j)+ kAp

i0
(cp) . By the orthogonality condition

of f Ap

i j , we have

0 = 〈kAp

i (up
i j)+ kAp

i0 (cp),kAp

l (ul j′)〉HAp = 〈Ap
liu

p
i j +Ap

li0
cp,ul j′ 〉Cp

l

for each l < i and for each j′ . Since the set {ul j′} j′ spans Cp
l , Ap

liu
p
i j + Ap

li0
cp =

0 for each l < i . Noting that up
i j ∈ Cp

i and Cp
i is one dimensional, we have Ap

li =
Ap

li0
(Ap

i0i0
)−1Ap

i0i
for each l < i . This is the condition (c) of Theorem. Conversely, it is

easy to see from the above proof that if (c) is satisfied, then equality holds. �

REMARK 5.1. Since αγ p � 1, from (15) we have, for i = 1, . . . ,s ,

|Aii| � |(A)i|
|(A)i−1| ,

where A = (Ai j) is a symmetric partitioned positive definite s× s block matrix. Multi-
plying this inequality for i = 1, . . . ,s gives Fischer’s inequality (cf. [4, p. 506]):

s

∏
i=1

|Aii| � |A|.

In particular, if the matrix Ap is a s×s block matrix of the form Ap ∈Ms(Mtp) for
each p = 1, . . . ,m , we obtain the following extension of Oppenheim-Schur’s inequality.
The cases m = 2 and t1 = t2 = 1 correspond to the usual Oppenheim-Schur’s inequality.

THEOREM 5.2. If each block matrix Ap = (Ap
i j) ∈ Ms(Mtp) , p = 1, . . . ,m, is pos-

itive semidefinite, then we have the following inequality for the determinant of the
Hadamard product

⊙m
p=1 Ap :

|
m⊙

p=1

Ap| �
m

∏
p=1

s

∏
i=1

|Ap
ii|σp −

m

∏
p=1

{ s

∏
i=1

|Ap
ii|σp −|Ap|σp

}
, (16)
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with σp = t−1
p ∏m

q=1 tq . If each Ap is positive definite, then equality holds if and only if
one of the following conditions holds:

(a) m = 1 or s = 1 .

(b) There exists p such that Ap is block diagonal.

(c) For every p = 1, . . . ,m, tp = 1 (i.e., Ap ∈Ms ) and there exist i and j (1 � i, j � s)
such that every entry of the matrix Ap is 0 except for the diagonal entries and the
(i, j) and ( j, i) entries.

Proof. If Ap is positive semidefinite, then the inequality (16) is obtained by taking
the limit ε → +0 of one for the positive definite matrices Ap + εI , where I denotes
the identity matrix. Thus, without loss of generality, we can assume that every Ap is
positive definite. Moreover, if m = 1, then equality holds trivially in (16), and if s = 1,
then (16) is also equality, since this is the case i = 1 of Theorem 5.1. Thus, we assume
m � 2 and s � 2. Similar to the proof of Theorem 5.1, we have

|(⊙m
p=1 Ap)i|

|(⊙m
p=1 Ap)i−1| �

m

∏
p=1

|Ap
ii|σp −

m

∏
p=1

{
|Ap

ii|σp −
( |(Ap)i|
|(Ap)i−1|

)σp
}

=
m

∏
p=1

( |(Ap)i|
|(Ap)i−1|

)σp

×
[ m

∏
p=1

( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −
m

∏
p=1

{( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −1
}]

.

Thus,

|
m⊙

p=1

Ap| =
s

∏
i=1

|(⊙m
p=1 Ap)i|

|(⊙m
p=1 Ap)i−1|

�
s

∏
i=1

m

∏
p=1

( |(Ap)i|
|(Ap)i−1|

)σp
(17)

×
s

∏
i=1

[ m

∏
p=1

( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −
m

∏
p=1

{( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −1
}]

.

Consequently, from Lemma 5.1, we have

|
m⊙

p=1

Ap| �
m

∏
p=1

s

∏
i=1

( |(Ap)i|
|(Ap)i−1|

)σp

×
[ m

∏
p=1

s

∏
i=1

( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −
m

∏
p=1

{ s

∏
i=1

( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −1
}]

=
m

∏
p=1

|Ap|σp ×
[ m

∏
p=1

∏s
i=1 |Ap

ii|σp

|Ap|σp
−

m

∏
p=1

{∏s
i=1 |Ap

ii|σp

|Ap|σp
−1

}]

=
m

∏
p=1

s

∏
i=1

|Ap
ii|σp −

m

∏
p=1

{ s

∏
i=1

|Ap
ii|σp −|Ap|σp

}
,
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as desired.
Now, we consider the equality condition of the inequality (16). If we define αγ p

by (12), then the equality condition is derived from those of (ii) and (iii) of Lemma 5.1
and those of Theorem 4.1. Consider the case (ii). In this case, there exists a p such that
(λ Ap

i j )2ξ (cp
i j) = 1 for every j . By Lemma 3.1, kAp

i′ (ci′ j′)⊥ kAp

i (cp
i j) for every i′ < i and

every j′ . Thus,

〈Ap
i′ic

p
i j,c

p
i′ j′ 〉Ci′ = 〈kAp

i (cp
i j),k

Ap

i′ (cp
i′ j′)〉HAp = 0.

Since {cp
i′ j′ } and {cp

i j} span Cp
i′ and Cp

i , respectively, we have Ap
i′i = 0. Therefore,

for some p , Ap is an upper triangular block matrix, which implies that Ap is a block
diagonal matrix, since Ap is Hermitian. Conversely, if this is the case, then

⊙m
p=1 Ap

is also block diagonal, and thus it is easy to see that the inequality (16) is an equality.
In case (iii), there exists a γ0 = (i j1, . . . , i jm) ∈ J such that αγ p = 1 for every γ =

(i′ j′1, . . . , i
′ j′m) with γ ∈ J \ {γ0} , and every p = 1, . . . ,m . We divide the cases. If there

exists a q with tq > 1, then, as in the proof of the equality condition of Theorem 5.1,
Ap is block diagonal for every p �= q , which implies that the equality is trivial.

There remains the case that tp = 1 for every p , that is, the case of scalar matrices
or non-block matrices. In this case, by the equality condition of Lemma 3.1, the j -th
column of Ap satisfies Ap

k j = Ap
jk = 0 (k = 1, . . . , j− 1) for every j (�= i) . From this

and the equality condition of Theorem 4.1, we easily conclude that there exists an i0 < i
such that Ap

li = 0 for every l �= i0 and l �= i . Therefore, Ap is the matrix which satisfies
the condition (b) of Theorem for every p . Conversely, if this is the case, then

|Ap| = (Ap
iiA

p
j j −|Ap

i j|2)
s

∏
k �=i, j

Ap
kk.

Thus, equality holds in this case (cf. [8]). �

REMARK 5.2. If the matrices Ap are all positive definite, then, by the inequal-
ity (17), we have

|
m⊙

p=1

Ap| �
m

∏
p=1

|Ap|σp

×
s

∏
i=1

{ m

∏
p=1

( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp −
m

∏
p=1

[( |Ap
ii||(Ap)i−1|
|(Ap)i|

)σp
.−1

]}

Noting that Ap
11 = (Ap)1 and (Ap)0 = 1, we see that the product ∏s

i=1 can be changed
to ∏s

i=2 . Thus, for m � 3 the inequality (17) is sharper than the one obtained by Li-
Feng [6, Theorem 2.5].
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