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Abstract. For a semifinite von Neumann algebra M , individual convergence of subsequential,
Z (M) (center of M ) valued weighted ergodic averages is studied in non commutative Orlicz
spaces. In the process, we also derive a maximal ergodic inequality corresponding to such av-
erages in noncommutative Lp (1 � p < ∞) spaces using the weak (1,1) inequality obtained by
Yeadon.

1. Introduction

The connection between ergodic theory and von Neumann algebra dates back to
the very inception of theory of operator algebra. The study of pointwise ergodic the-
orems plays a center role in classical ergodic theory and has a very deep connection
with statistical physics as well. However, the study of analogous ergodic theorems in
the non commutative settings originated only in the pioneering work of Lance [17] in
1976. After that the theory flourished and many authors extended the results of Lance
to various directions. We refer here to [3], [13], [15] and the references therein.

Yeadon [23] first studied the ergodic theorems in the predual of a semifinite von
Neumann algebra. He proved a maximal ergodic theorem in noncommutative L1 space,
which still appears frequently in modern proofs of noncommutative ergodic theorems.
The corresponding maximal ergodic theorem is extended to noncommutative Lp (1 <
p < ∞) space in the celebrated work [14]. Also as a consequence the analogous indi-
vidual ergodic theorems are proved in the same article.

On the other hand an alternative approach solely based on Yeadon’s weak (1,1)
inequality was opted by various authors to prove various individual ergodic theorems
on non commutative Lp spaces. In [18], the author introduced the notion of noncom-
mutative uniform continuity and bilateral uniform continuity in measure at zero and
provided an alternative proof of the individual ergodic theorems from [14]. Several at-
tempts has been made since then to improve the results. One natural generalisation is
towards the proof of subsequential ergodic theorems. In [19], first attempt was made
to prove an individual ergodic theorem along the so called uniform sequence in the von
Neumann algebra setting. Simultaneously weighted ergodic theorems also became an
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interesting area of research. In [7], the authors studied the convergence of standard
ergodic averages for actions of free groups and also for the weighted averages. Several
other related works are available in the literature. The reader may look into [[1], [2],
[11], [12]] and the references therein.

Another extension of these results which has been studied extensively is in the
realm of symmetric spaces, in particular, the Orlicz spaces. It is known that the class
of Orlicz spaces is significantly wider than the class of Lp spaces. The first account
of study of individual ergodic theorems in the case of noncommutative Orlicz spaces
is found in [6]. In [5], ergodic theorems for weighted averages are studied in fully
symmetric spaces.

In this article we study various ergodic theorems associated with (vector valued)
weighted ergodic averages along some special subsequences in noncommutative Orlicz
spaces. Before this, ergodic averages with vector valued weights has been studied in
[4]. Very recently, in [20], the author studied convergence of (scalar) weighted ergodic
averages along subsequences in noncommutative Lp (1 � p < ∞) spaces.

Our aim in this article is to establish an individual ergodic theorem for positive
Dunford- Schwartz operator (see Definition 2.12) with von Neumann algebra valued
Besicovitch weighted (see Definition 3.1) ergodic averages along subsequence of den-
sity one in Orlicz spaces (see Theorem 3.15). Our proof essentially based upon the
notion of bilateral uniform continuity in measure for normed linear spaces.

Now we describe the layout of this article. In §2, we collect all the materials which
are essential for this article. In particular, we recall some basic facts about von Neu-
mann algebras M with faithful normal semifinite trace τ and space of τ - measurable
operators. We also discuss a few topologies on this space. After that, we recollect
the definition of non commutative Orlicz spaces and some of its properties which are
essential for this article. We also define Dunford Schwartz operators and bilaterally
uniformly equicontinuity in measure (b.u.e.m) at zero of sequences and end this sec-
tion with the recollection of few important theorems regarding this. §3 begins with the
appropriate definition of subsequential weighted ergodic averages. Then we prove a
suitable form of maximal ergodic inequality and use it to prove that sequence of aver-
ages under study is b.u.e.m at zero, which essentially helps us to obtain a convergence
result in L1∩M . Finally our main result is achieved.

2. Preliminaries

Throughout this article we assume that M is a semifinite von Neumann algebra
with faithful, normal, semifinite (f.n.s.) trace τ represented on a separable Hilbert
space H . Let P(M) (resp. P0(M)) denotes the collection of all (resp. non-zero)
projections in the von Neumann algebra M . For each e ∈ P(M) we assign e⊥ for the
projection 1− e , where 1 denotes the identity element of M .

Let B(H ) denotes the space of all bounded operators of the Hilbert space H . A
closed densely defined operator x : Dx ⊆H →H is called affiliated to a M if y′x⊆ xy′
for all y′ ∈M′ , where M′ denotes the commutant of M which is a von Neumann algebra
by its own right. Equivalently, one can define x to be affiliated to M if u′x = xu′ holds
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for all unitary u′ in M′ . When x is affiliated to M , it is denoted by xηM . The center
of the von Neumann algebra M is defined by M∩M′ and it is denoted by Z (M) .

Now we recall that for two positive, self-adjoint operators x,y defined on H ,

x � y is defined as: Dy ⊆ Dx and
∥∥x1/2ξ

∥∥2 �
∥∥y1/2ξ

∥∥2
for all ξ ∈ Dy .

PROPOSITION 2.1. Let x be a positive, self-adjoint operator affiliated to M and
z ∈ Z (M)+ be such that z � C for some constant C > 0 . Then 0 � zx � Cx.

Proof. First observe that Dzx = Dx ⊆ Dx1/2 . Also, Dzx ⊆ D(zx)1/2 . Let ξ ∈ Dx .
Then ∥∥∥(zx)1/2ξ

∥∥∥2
= 〈zxξ ,ξ 〉 = 〈xzξ ,ξ 〉 (since zx ⊂ xz)

=
〈
x1/2zξ ,x1/2ξ

〉
(since ξ ∈ Dx1/2 )

=
〈
zx1/2ξ ,x1/2ξ

〉
(since xηM)

� C
∥∥∥x1/2ξ

∥∥∥2
. �

A closed, densely defined operator x affiliated to M is said to be τ -measurable if
for every ε > 0 there is a projection e in M such that eH ⊆ Dx and τ(e⊥) < ε . The
set of all τ -measurable operators associated to M is denoted by L0(M,τ) or simply
L0 . For all ε,δ > 0, let us define the following neighborhoods of zero.

N (ε,δ ) := {x ∈ L0 : ∃ e ∈ P(M) such that ‖xe‖ � ε and τ(e⊥) � δ}, and

N ′(ε,δ ) := {x ∈ L0 : ∃ e ∈ P(M) such that ‖exe‖ � ε and τ(e⊥) � δ}.
It is established in [7, Theorem 2.2] that the families {N (ε,δ ) : ε > 0,δ > 0} and
{N ′(ε,δ ) : ε > 0,δ > 0} generate same topology on L0 , and it is termed as measure
topology in the literature. It is also well-known that L0 becomes a complete, metrizable
topological ∗ -algebra with respect to the measure topology containing M as a dense
subspace [see [10, Theorem 4.12]].

In this article, we also deal with so called almost uniform (a.u) and bilateral al-
most uniform (b.a.u) convergence of sequences in L0 . We describe it in the following
definition.

DEFINITION 2.2. A sequence of operators {xn}n∈N ⊂ L0 converges a.u (resp.
b.a.u) to x ∈ L0 if for all δ > 0 there exists a projection e ∈ M such that

τ(e⊥) < δ and lim
n→∞

‖(xn − x)e‖ = 0 (resp. τ(e⊥) < δ and lim
n→∞

‖e(xn− x)e‖ = 0).

Now we recall the following useful lemma from [19, Lemma 3].

LEMMA 2.3. If a sequence {an}n∈N ⊂ M is such that for every ε > 0 there is
a b.a.u (a.u) convergent sequence {bn}n∈N ⊂ M and a positive integer N0 satisfying
‖an−bn‖ < ε for all n � N0 , then {an}n∈N converges b.a.u (a.u).
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Next we provide a brief description of noncommutative Orlicz spaces. We follow
[21] as our main references.

2.1. Noncommutative Orlicz spaces

Let M be a von Neumann algebra equipped with a f.n.s. trace τ as mentioned
above. The trace τ is extended to the positive cone L0

+ of L0 as follows. Suppose
x ∈ L0

+ with the spectral decomposition x =
∫ ∞
0 λdeλ . Then τ(x) is defined by

τ(x) :=
∫ ∞

0
λdτ(eλ ).

For 0 < p � ∞ , the noncommutative Lp -space associated to (M,τ) is defined as

Lp(M,τ) :=

{
{x ∈ L0 : ‖x‖ := τ(|x|p)1/p < ∞} for p �= ∞
(M,‖·‖) for p = ∞

where, |x|= (x∗x)1/2 . From here onwards we will simply write Lp for noncommutative
Lp -spaces.

Let x ∈ L0 . Consider the spectral decomposition |x| = ∫ ∞
0 sdes . The distribution

function of x is defined by

(0,∞) : s �→ λs(x) := τ(e⊥s (|x|)) ∈ [0,∞]

and the generalised singular number of x is defined by

(0,∞) : t �→ μt(x) := inf{s > 0 : λs(x) � t} ∈ [0,∞].

Note that both the functions are decreasing and continuous from right on (0,∞) . Among
many other properties of generalised singular number, here we recall the following ones
which will be used later.

PROPOSITION 2.4. Let a,b,c ∈ L0 . Then

(i) μt( f (|a|)) = f (μt (a)) , t > 0 and for any continuous increasing function f on
[0,∞) with f (0) � 0 .

(ii) μt(bac) � ‖b‖‖c‖μt(a) for all t > 0 .

(iii) τ( f (|a|)) =
∫ ∞
0 f (μt (a))dt for any continuous increasing function f on [0,∞)

with f (0) = 0 .

Proof. For the proofs we refer to [9, Lemma 2.5 and Corollary 2.8]. �

DEFINITION 2.5. A convex function Φ : [0,∞)→ [0,∞) which is continuous at 0
with Φ(0) = 0 and Φ(t) > 0 when t �= 0 is called an Orlicz function.
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It is to be noted that the convexity of the function Φ and continuity at 0 imply that
the function is continuous on [0,∞) . Moreover, it is also evident that Φ(λ t) � λ Φ(t)
whenever 0 � λ � 1 and t ∈ [0,∞) , which implies Φ(t1) < Φ(t2) for all 0 � t1 < t2 .
Hence the function Φ is increasing. The following result from [6, Lemma 2.1] is
crucial.

LEMMA 2.6. Let Φ be an Orlicz function. Then for all δ > 0 there exists u > 0
satisfying the condition

u ·Φ(t) � t whenever t � δ .

In particular, limt→∞ Φ(t) = ∞ .

Now let Φ be an Orlicz function and consider x ∈ L0
+ with the spectral decompo-

sition x =
∫ ∞
0 λd(eλ ) . Then by means of functional calculus, we have

Φ(x) =
∫ ∞

0
Φ(λ )deλ .

The noncommutative Orlicz space associated to (M,τ) for the Orlicz function Φ is
defined as

LΦ = LΦ(M,τ) :=
{

x ∈ L0 : τ
(

Φ
( |x|

λ

))
< ∞ for some λ > 0

}
.

The space LΦ is equipped with the norm (called Luxemburg norm)

‖x‖ := inf
{

λ > 0 : τ
(

Φ
( |x|

λ

))
� 1

}
, x ∈ LΦ.

It follows from [16, Proposition 2.5] that LΦ equipped with the norm defined above is
a Banach space. We now prove the following result.

PROPOSITION 2.7. Suppose x ∈ LΦ , then

(i) if a,b ∈ M, then axb ∈ LΦ . Moreover, ‖axb‖Φ � ‖a‖‖b‖‖x‖Φ and

(ii) if ‖x‖Φ � 1 , then τ(Φ(|x|)) � ‖x‖Φ .

Proof. (i) Let λ > 0 and observe that

τ
(

Φ
( |axb|
‖a‖‖b‖λ

))
=

∫ ∞

0
Φ

(
μt

( axb
‖a‖‖b‖λ

))
dt [by (iii) of Proposition 2.4]

�
∫ ∞

0
Φ

(
μt

( x
λ

))
dt [by (ii) of Proposition 2.4]

= τ
(

Φ
( |x|

λ

))
[by (iii) of Proposition 2.4 ].

(2.1)
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Then, note that

inf
{

λ > 0 : τ
(

Φ
( |axb|

λ

))
� 1

}
= inf

{
‖a‖‖b‖λ > 0 : τ

(
Φ

( |axb|
‖a‖‖b‖λ

))
� 1

}

= ‖a‖‖b‖ inf
{

λ > 0 : τ
(

Φ
( |axb|
‖a‖‖b‖λ

))
� 1

}
.

Therefore, by Eq. 2.1 we have

‖axb‖Φ = inf
{

λ > 0 : τ
(

Φ
( |axb|

λ

))
� 1

}
� ‖a‖‖b‖ inf

{
λ > 0 : τ

(
Φ

( |x|
λ

))
� 1

}
= ‖a‖‖b‖‖x‖Φ .

Proof of (ii) ; it follows immediately from [6, Proposition 2.2]. �
Let us now recall that a Banach space (E,‖·‖) ⊂ L0 is called fully symmetric if

x ∈ E, y ∈ L0,

∫ s

0
μt(y)dt �

∫ s

0
μt(x)dt ∀ s > 0 ⇒ y ∈ E and ‖y‖ � ‖x‖

and a fully symmetric space (E,‖·‖) ⊆ L0 is said to have Fatou Property if

xα ∈ E+, xα � xβ for α � β and sup
α

‖xα‖ < ∞

⇒∃ x = sup
α

xα ∈ E and ‖x‖ = sup
α

‖xα‖ .

Now the following proposition holds true.

PROPOSITION 2.8. (LΦ,‖·‖) is a fully symmetric space with the Fatou property
and an exact interpolation space for the Banach couple (L1,M) .

Proof. Proof follows from [6, Corollary 2.2]. �
As a consequence we remark the following.

REMARK 2.9. It follows from [8, Theorem 4.1] and Proposition 2.8 that unit ball
of (LΦ,‖·‖) is closed under measure topology.

DEFINITION 2.10. An Orlicz function Φ is said to satisfy Δ2 condition if there
exists d > 0 such that

Φ(2t) � dΦ(t) for all t � 0.

Observe that for every 1 � p < ∞ , Φ(u) = up

p , u � 0 is an Orlicz function which

satisfy the Δ2 condition. Also, in this case LΦ = Lp for all 1 � p < ∞ .
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PROPOSITION 2.11. Let Φ be an Orlicz function satisfying Δ2 condition. Then
the linear subspace L1 ∩M is dense in (LΦ,‖·‖) .

Proof. For the proof we refer to [6, Proposition 2.3]. �

DEFINITION 2.12. A linear map T : L1+M→ L1+M is called Dunford-Schwartz
operator if it contracts both L1 and M , i.e,

‖Tx‖∞ � ‖x‖∞ ∀ x ∈ M and ‖Tx‖1 � ‖x‖1 ∀ x ∈ L1.

If in addition T (x) � 0 for all x � 0 then we call T is a positive Dunford-Schwartz
operator. We write T ∈ DS (resp. T ∈ DS+ ) to denote T is a Dunford-Schwartz
operator (resp. positive Dunford-Schwartz operator).

Let T ∈ DS . Then observe that for an Orlicz function Φ the space LΦ is an exact
interpolation space for the Banach couple (L1,M) (by Proposition 2.8). Therefore we
have

T (LΦ) ⊆ LΦ and
∥∥T : LΦ → LΦ∥∥ � 1.

DEFINITION 2.13. Let (X ,‖·‖) be a normed linear space and Y ⊆ X be such
that the identity element of X is a limit point of Y . A family of maps Aα : X → L0 ,
α ∈ I , is called uniformly equicontinuous in measure (u.e.m) [bilaterally uniformly
equicontinuous in measure (b.u.e.m)] at zero on Y if for all ε,δ > 0, there exists γ > 0
such that for all x ∈ Y with ‖x‖ < γ there exists e ∈ P(M) such that

τ(e⊥) < ε and sup
α∈I

‖Aα(x)e‖∞ < δ (respectively, sup
α∈I

‖eAα(x)e‖∞ < δ ).

Now we recall the following significant result from [18, Theorem 2.1] which will
play an important role in our studies.

THEOREM 2.14. Let (X ,‖·‖) be a Banach space and An : X → L0 be a sequence
of additive maps. If the sequence {An}n∈N

is b.u.e.m (u.e.m) at zero on X , then the set

{x ∈ X : {An(x)} converges b.a.u (a.u)}
is closed in X .

We end this section with a brief introduction to density and lower density of a
sequence of natural numbers.

DEFINITION 2.15. A sequence k := {k j} j∈N of natural numbers is said to have
density (resp, lower density) d if

lim
n→∞

|{0,1, . . . ,n}∩k|
n+1

= d (resp, liminf
n→∞

|{0,1, . . . ,n}∩k|
n+1

= d).

REMARK 2.16. We remark that if a sequence k has density d , then limn→∞
kn
n =

1
d . Moreover, we recall from [22, Lemma 40] that a sequence k has positive lower
density if and only if supn∈N

kn
n < ∞ .



742 P. BIKRAM AND D. SAHA

3. Convergence along sequence of density one

Throughout this section M is assumed to be a semifinite von Neumann algebra
with f.n.s. trace τ and T ∈ DS+ . In this section, we will study the convergence of er-
godic averages with M -valued Besicovitch weights (see Definition 3.1 and Definition
3.11) along sequence of density one. In particular, we will prove the b.a.u convergence
of sequences of such averages in the spaces LΦ for some Orlicz function Φ . Conver-
gence of usual vector valued weighted averages in norm and b.a.u topology has already
been studied in [4]. In this section, we also extend some of these results. We begin with
few definitions of ergodic averages.

DEFINITION 3.1. Let T ∈ DS+ . For {b j} j∈N ⊂ M and {d j} j∈N ⊂ M and any
sequence k := {k j} j∈N of natural numbers, define

An({b j},{d j},x) :=
1
n

n−1

∑
j=0

T j(b jxd j), An({b j},x) :=
1
n

n−1

∑
j=0

T j(b jx);

and

Ak
n({b j},{d j},x)) :=

1
n

n−1

∑
j=0

Tkj (bkj xdkj ), Ak
n({b j},x) :=

1
n

n−1

∑
j=0

Tkj (bkj x)

for all n ∈ N and x ∈ L1 +M .

Here we observe that when the sequence {b j} j∈N consists of only scalars β :=
{β j} j∈N and the set {d j} j∈N consists of only identity of M , then the averages men-

tioned above will be denoted by Aβ
n (x) and Aβ ,k

n (x) respectively for x ∈ L1 +M . Con-
vergence of such averages is studied in [20].

Let us now recall the following maximal ergodic theorem from [23]. This result is
crucial in obtaining a maximal ergodic inequality in the form required for our purpose.

THEOREM 3.2. Let T ∈ DS+ . Then for all x ∈ L1
+ and ε > 0 there exists e ∈

P(M) such that

τ(e⊥) � ‖x‖1

ε
and sup

n∈N

‖eAn({1},x)e‖ � ε.

Although the following lemma is a part of the proof of Theorem 2.1 in [5], we
include the proof here for the sake of completeness.

LEMMA 3.3. Let 1 � p < ∞ , x ∈ Lp
+ and ε > 0 . Then there exists e ∈ P(M)

such that

τ(e⊥) �
(‖x‖p

ε

)p
and sup

n∈N

‖eAn({1},x)e‖∞ � 2ε
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Proof. Consider the spectral decomposition of x =
∫ ∞
0 λdeλ . Note that since λ �

ε ⇒ λ � ε1−pλ p , we have∫ ∞

ε
λdeλ � ε1−p

∫ ∞

ε
λ pdeλ � ε1−pxp.

Therefore, we obtain

x =
∫ ε

0
λdeλ +

∫ ∞

ε
λdeλ � xε + ε1−pxp,

where xε =
∫ ε
0 λdeλ . Now since xp ∈ L1

+ , it follows from Theorem 3.2 that there exists
e ∈ P(M) such that

τ(e⊥) � ‖xp‖1

ε p =
(‖x‖p

ε

)p
and sup

n∈N

‖eAn({1},xp)e‖ � ε p.

Consequently, for all n ∈ N we have

0 � eAn({1},x)e � eAn({1},xε)e+ ε1−peAn({1},xp)e.

Since xε ∈ M and ‖T (xε )‖∞ � ‖xε‖∞ � ε , we conclude that

sup
n∈N

‖eAn({1},x)e‖∞ � 2ε. �

Now the following result holds.

THEOREM 3.4. Let {b j} j∈N be a bounded sequence in Z (M) and x ∈ Lp (1 �
p < ∞) . Then for all ε > 0 there exists e ∈ P(M) such that

τ(e⊥) � 4
(‖x‖p

ε

)p
and sup

n∈N

∥∥eAn({b j},x)e
∥∥

∞ � 48Cε,

where C = sup j∈N

∥∥b j
∥∥

∞ .

Proof. First consider x ∈ Lp
+ and observe that if b j = 1 for all j ∈ N , then it

follows from Lemma 3.3 that for all ε > 0 there exists e ∈ P(M) such that

τ(e⊥) �
(‖x‖p

ε

)p
and sup

n∈N

‖eAn({1},x)e‖∞ � 2ε. (3.1)

Now consider {b j} j∈N to be a bounded sequence in Z (M) with
∥∥b j

∥∥
∞ � C for

all j ∈ N . Then we have 0 � Re(b j)+C � 2C and similarly 0 � Im(b j)+C � 2C for
all j ∈ N . Therefore, we must have for all j ∈ N

0 � (Re(b j)+C)x � 2Cx and 0 � (Im(b j)+C)x � 2Cx.
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Also, for all j ∈ N , we have

T j(b jx) = T j((Re(b j)+C)x)+ iT j((Im(b j)+C)x)− (1+ i)CT j(x).

Then Eq 3.1 implies that for all ε > 0 there exists e ∈ P(M) such that

τ(e⊥) �
(‖x‖p

ε

)p
and sup

n∈N

∥∥eAn({b j},x)e
∥∥

∞ � 6C sup
n∈N

‖eAn({1},x)e‖∞ � 12Cε.

(3.2)

For x ∈ Lp , write x = (x1 − x2)+ i(x3− x4) , where xl ∈ Lp
+ and ‖xl‖p � ‖x‖p for all

l ∈ {1, . . . ,4} . Therefore, it follows from Eq 3.2 that there exist projections el ∈ M
such that

τ(e⊥l ) �
(‖x‖p

ε

)p
and sup

n∈N

∥∥elAn({b j},x)el

∥∥
∞ � 12Cε for all l ∈ {1, . . . ,4}.

Now consider e = ∧4
l=1el to obtain the required result. �

Before we move to our next theorem we need to fix some notations. From here
onwards k := {k j} j∈N will always denote a strictly increasing sequence of natural num-
bers. For any sequence {b j} j∈N ⊂ M and n ∈ N , An({b j},x) recall the definition of
Ak

n({b j},x) and Ak
n({b j},x) from Definition 3.1, where x ∈ L1 +M .

THEOREM 3.5. Let {b j} j∈N be a bounded sequence in Z (M) . If the strictly
increasing sequence k := {k j} j∈N of natural numbers has lower density d > 0 , then the
sequences {An({b j}, ·)}n∈N and {Ak

n({b j}, ·)}n∈N are b.u.e.m at zero on (LΦ,‖·‖Φ) .

Proof. It is enough to show that the sequences {An({b j}, ·)}n∈N and {Ak
n({b j}, ·)}n∈N

are b.u.e.m at zero on (LΦ
+,‖·‖Φ) . Define, C := sup j∈N

∥∥b j
∥∥

∞ .
Now fix ε,δ > 0. Then by Lemma 2.6, there exists a t > 0 such that

t ·Φ(λ ) � λ for all λ � δ
2C

.

Choose 0 < γ < min{1, δε
4×96Ct } . Let x ∈ LΦ

+ with ‖x‖Φ < γ and let x =
∫ ∞
0 λdeλ be

its spectral decomposition. Then we can write

x =
∫ δ

2C

0
λdeλ +

∫ ∞

δ
2C

λdeλ � xδ + t
∫ ∞

δ
2C

Φ(λ )deλ � xδ + tΦ(x),

where xδ =
∫ δ

2C
0 λdeλ and Φ(x) =

∫ ∞
0 Φ(λ )deλ .

Observe that, ‖xδ‖ � δ
2C and since T is a positive Dunford-Schwarz operator we

must have

sup
n∈N

∥∥An({b j},xδ )
∥∥ � Cδ

2C
=

δ
2

.
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Also, since ‖x‖Φ < γ < 1, by Proposition 2.7 we have ‖Φ(x)‖1 � ‖x‖Φ . Further-
more, since Φ(x) ∈ L1

+ , by Theorem 3.4 we find e ∈ P(M) satisfying

τ(e⊥) <
4×96Ct‖Φ(x)‖1

δ
� 4×96Ct‖x‖Φ

δ
< ε

and,

sup
n∈N

∥∥eAn({b j},Φ(x))e
∥∥ <

48Cδ
96Ct

=
δ
2t

.

Therefore,

sup
n∈N

∥∥eAn({b j},x)e
∥∥ � sup

n∈N

∥∥eAn({b j},xδ )e
∥∥+ t · sup

n∈N

∥∥eAn({b j},Φ(x))e
∥∥

<
δ
2

+ t · δ
2t

= δ .

Hence, the sequence {An({b j}, ·)}n∈N is b.u.e.m at zero on (LΦ
+,‖·‖Φ) . To show

the sequence
{
Ak

n({b j}, ·)
}

n∈N
is b.u.e.m at zero on (LΦ

+,‖·‖Φ) , we first consider the
sequence {c j} j∈N , where for all j ∈ N , c j := χk( j) .

Observe that for all n ∈ N ,

Ak
n({b j},x) =

kn−1 +1
n

Akn−1+1({c jb j},x). (3.3)

By the first part of the proof we observe that the sequence {An({c jb j, ·})}n∈N is
is b.u.e.m at zero on (LΦ

+,‖·‖Φ) .
Let K = supn∈N

kn
n . It follows from Remark 2.16 that 0 < K < ∞ . Let ε,δ > 0.

Let γ > 0 be such that for all x ∈ LΦ
+ there exists e ∈ P(M) such that

τ(e⊥) < ε and sup
n∈N

∥∥eAn({c jb j},x)e
∥∥

∞ <
δ
K

.

Consequently,

sup
n∈N

∥∥eAk
n({b j},x)e

∥∥
∞ = sup

n∈N

kn−1 +1
n

∥∥eAkn−1+1({c jb j},x)e
∥∥

∞

� K sup
n∈N

∥∥eAn({c jb j},x)e
∥∥

∞

< K
δ
K

= δ .

This completes the proof. �

COROLLARY 3.6. Let {β j} j∈N ⊂ l∞(C) . If the strictly increasing sequence k :=
{k j} j∈N of natural numbers has lower density d > 0 , then the sequences {Aβ

n }n∈N and

{Aβ ,k
n }n∈N are b.u.e.m at zero on (LΦ,‖·‖Φ) .
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REMARK 3.7. Let {β j} j∈N ⊂ l∞(C) . Note that it follows from [20, Proposition

3.1] that the sequences {Aβ
n }n∈N and {Aβ ,k

n }n∈N are b.u.e.m at zero on Lp for (1 � p <
∞) where the sequence k := {k j} j∈N is of lower density d > 0. Therefore, Corollary
3.6 substantially improves Proposition 3.1 of [20].

As a consequence we prove the following proposition which is an important in-
gredient in proving our main result.

PROPOSITION 3.8. Let {b j} j∈N be a bounded sequence in Z (M) . If the strictly
increasing sequence k := {k j} j∈N of natural numbers has lower density d > 0 , then
the sets

S {b j} :=
{
x ∈ LΦ :

{
An({b j},x)

}
converges b.a.u

}
and,

S {b j},k :=
{
x ∈ LΦ :

{
Ak

n({b j},x)
}

converges b.a.u
}

are closed in LΦ .

Proof. Since (LΦ,‖·‖Φ) is a Banach space and
{
An({b j}, ·)

}
and

{
Ak

n({b j}, ·)
}

are sequences of additive maps, the result follows immediately from Theorem 3.5 and
Theorem 2.14. �

REMARK 3.9. Let β := {β j} j∈N ⊂ l∞(C) and k := {k j} j∈N be as stated in Propo-
sition 3.8. Then we remark that it is evident from Proposition 3.8 that the sets

S β :=
{

x ∈ LΦ :
{

Aβ
n (x)

}
converges b.a.u

}
and,

S β ,k :=
{

x ∈ LΦ :
{

Aβ ,k
n (x)

}
converges b.a.u

}

are closed in LΦ .

In what follows U(M) will always denote the group of unitary operators in M and
σ(x) will denote the spectrum of an operator in x ∈ M . Let us define,

Uf := {u ∈U(M) : σ(u) is finite}.

DEFINITION 3.10. Let U0 ⊆U(M) . A function ψ : N → M is called a trigono-
metric polynomial over U0 if for some m ∈ N there exists {z j}m

1 ⊂ C and {u j}m
1 ⊂U0

such that

ψ(k) =
m

∑
j=1

z ju
k
j, k ∈ N.

For a trigonometric polynomial ψ over U0 as defined above, it is clear that ‖ψ‖�
∑m

j=1

∣∣z j
∣∣ .
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DEFINITION 3.11. Let U0 ⊆U(M) . A sequence {b j} ⊂ M is called U0 -besico-
vitch if for all ε > 0 there exists a trigonometric polynomial ψ over U0 such that

limsup
n→∞

1
n

n−1

∑
j=0

∥∥b j −ψ( j)
∥∥

∞ � ε.

A U0 -besicovitch sequence {b j} is called bounded if sup j∈N

∥∥b j
∥∥

∞ < ∞ .

Now we recall the following result from [4] regarding the convergence of sequence
of ergodic averages and immediately after that we extend it to the case of ergodic aver-
ages along a sequence of density 1.

THEOREM 3.12. Let {b j} and {d j} be Uf -besicovitch sequences such that at
least one of which is bounded. Then the averages An({b j},{d j},x) converge a.u for all
x ∈ L1 ∩M.

Proof. For proof we refer to [4, Theorem 5.1]. �

THEOREM 3.13. Let {b j} and {d j} be Uf -besicovitch sequences with at least
one of them is bounded and {k j} be a strictly increasing sequence of natural numbers
of density 1 . Then the sequence of averages Ak

n({b j},{d j},x)) converges a.u for all
x ∈ L1 ∩M.

Proof. Without loss of generality we assume that {d j} is bounded and define

C := sup j

∥∥d j
∥∥ < ∞ . Fix ε > 0 and let ψ1(·) = ∑m

i=1 ziu
(·)
i and ψ2(·) = ∑l

i=1 wiv
(·)
i be

such that {zi},{wi} ⊂ C , {ui},{vi} ⊂Uf and

limsup
n→∞

1
n

n−1

∑
j=0

∥∥b j −ψ1( j)
∥∥

∞ � ε, limsup
n→∞

1
n

n−1

∑
j=0

∥∥d j −ψ2( j)
∥∥

∞ � ε. (3.4)

Let x ∈ L1 ∩M . Note that by Theorem 3.12 the averages An({b j},{d j},x) con-
verges a.u. In particular, the averages An({ψ1( j)},{ψ2( j)},x) converges a.u. Hence
the subsequence Akn({ψ1( j)},{ψ2( j)},x) converges a.u. Define,

Mn({ψ1( j)},{d j},x) :=
1
kn

n−1

∑
j=0

Tkj (ψ1(k j)xdkj ), n ∈ N.

Now, we have∥∥Akn({ψ1( j)},{ψ2( j)},x)−Mn({ψ1( j)},{d j},x)
∥∥

=

∥∥∥∥∥ 1
kn

kn−1

∑
j=0

T j(ψ1( j)xψ2( j))− 1
kn

n−1

∑
j=0

Tkj (ψ1(k j)xdkj )

∥∥∥∥∥
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�
∥∥∥∥∥ 1

kn

kn−1

∑
j=0

T j(ψ1( j)xψ2( j))− 1
kn

kn−1

∑
j=0

T j(ψ1( j)xd j)

∥∥∥∥∥
+

∥∥∥∥∥ 1
kn

kn−1

∑
j=0

T j(ψ1( j)xd j)− 1
kn

n−1

∑
j=0

Tkj (ψ1(k j)xdkj )

∥∥∥∥∥
� 1

kn

kn−1

∑
j=0

∥∥d j −ψ2( j)
∥∥‖x‖‖ψ1‖+

∥∥∥∥∥ 1
kn

kn−1

∑
j=0, j/∈k

T j(ψ1( j)xd j)

∥∥∥∥∥ (since ‖T‖ < 1)

�‖ψ1‖‖x‖ε +
1
kn

kn−1

∑
j=0, j/∈k

‖ψ1‖C‖x‖ (since ‖T‖ < 1 and by Eq. 3.4)

�‖ψ1‖‖x‖ε +
kn−n

kn
‖ψ1‖C‖x‖ .

Now since kn−n
kn

→ 0 as n → ∞ , we can choose N ∈ N such that for all n � N we
have ∥∥Akn({ψ1( j)},{ψ2( j)},x)−Mn({ψ1( j)},{d j},x)

∥∥ < ε.

Hence, it follows from Lemma 2.3 that the sequence {Mn({ψ1( j)},{d j},x)} con-
verges a.u. Again, define

Mn({b j},{d j},x) :=
1
kn

n−1

∑
j=0

Tkj (bkj xdkj ), n ∈ N.

Then, ∥∥Mn({b j},{d j},x)−Mn({ψ1( j)},{d j},x)
∥∥

=

∥∥∥∥∥ 1
kn

n−1

∑
j=0

Tkj (bkj xdkj )−
1
kn

n−1

∑
j=0

Tkj (ψ1(k j)xdkj )

∥∥∥∥∥
� 1

kn

n−1

∑
j=0

∥∥∥bkj −ψ1(k j)
∥∥∥‖x‖C (since ‖T‖ < 1)

� 1
kn

kn−1

∑
j=0

∥∥b j −ψ1( j)
∥∥‖x‖C

� ε ‖x‖C(by Eq. 3.4).

Hence, an appeal to Lemma 2.3 implies that the sequence {Mn({b j},{d j},x)} con-
verges a.u. Now since limn→∞

kn
n = 1 and Ak

n({b j},{d j},x) = kn
n Mn({b j},{d j},x) for

all n ∈ N , the result follows immediately. �

COROLLARY 3.14. Let {b j} j∈N be a Uf -besicovitch sequence and {k j} j∈N has
density 1 . Let x ∈ L1 ∩M. Then the averages

1
n

n−1

∑
j=0

Tkj (bkj x) and
1
n

n−1

∑
j=0

Tkj (xbkj )
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converges a.u.

As a consequence we obtain the individual ergodic theorem for vector valued Besi-
covitch weight along a sequence of density one.

THEOREM 3.15. Assume that the Orlicz function Φ satisfies Δ2 condition. Let
k :=

{
k j

}
be a sequence of density 1 and {b j} j∈N be a bounded Uf -besicovitch se-

quence in Z (M) . Then for every x ∈ LΦ the sequence {Ak
n({b j},x)} converges b.a.u

to some x̂ ∈ LΦ .

Proof. Define, S {b j},k :=
{
x ∈ LΦ :

{
Ak

n({b j},x)
}

converges b.a.u
}

. Note that,
by Proposition 3.8 the set S {b j},k is closed in LΦ . Since L1 ∩M is dense in LΦ , we
have S {b j},k = LΦ .

Let x ∈ LΦ . Then by Proposition 2.7 {Ak
n({b j},x)}n∈N ⊂ LΦ . Also there exists

x̂∈ L0 such that Ak
n({b j},x) converges b.a.u to x̂ , hence in measure. Now since ‖T‖�

1, we observe that for all n ∈ N ,

∥∥Ak
n({b j},x)

∥∥
Φ � 1

n

n−1

∑
j=0

∥∥∥bkj

∥∥∥‖x‖Φ � C‖x‖Φ ,

where C = sup j∈N

∥∥b j
∥∥ < ∞ . Therefore, for all n ∈ N , Ak

n({b j},x) belongs to the
closed ball of (LΦ,‖·‖Φ) of radius C‖x‖Φ . Consequently by Remark 2.9, x̂ ∈ LΦ . �

REMARK 3.16.

1. Following Definition 3.10 and 3.11 one can always define a scalar valued Besi-
covitch sequence. In particular, a scalar valued trigonometric polynomial is a
function P : N → C satisfying

P(k) =
s

∑
j=1

r jλ k
j , k ∈ Z

for some {r j}s
j=1 ⊂ C and {λ j}s

j=1 ⊂ C1 , where C1 := {z ∈ C : |z| = 1} . A

sequence
{

β j
}∞

j=1 of complex numbers is called a Besicovitch sequence if for
all ε > 0 there exists a trigonometric polynomial P such that

limsup
n→∞

1
n

n−1

∑
j=0

∣∣β j −P( j)
∣∣ < ε.

The sequence
{

β j
}∞

j=1 is bounded if sup j∈N

∣∣β j
∣∣ < ∞ .

2. Very recently in [20, Corollary 3.2], the author proved the conclusion of Theorem
3.15 when x∈ Lp (1 � p < ∞) and also under the hypothesis that the Besicovitch
weights are scalar valued. Hence our theorem generalises Corollary 3.2 of [20].
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MANUEL LESIGNE, PATRICK MAHEUX, JEAN-PIERRE OTAL, BARBARA SCHAPIRA, AND
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