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QUASI-NORMAL AND QUASI-ISOMETRY
WCT OPERATORS AND THEIR ALGEBRAS

ZHIDONG HUANG, YOUSEF ESTAREMI AND SAEEDEH SHAMSIGAMCHI

(Communicated by F. Kittaneh)

Abstract. In this paper, we investigate Deddens algebra of weighted conditional type opera-
tors(WCT) on the Hilbert space L? (1) . Then we characterize n-quasi-normal, r-quasi-isometry
WCT operators. Moreover, we investigate the Deddense algebras and spectral radius algebras of
quasi-normal WCT and quasi-isometry WCT operators. Additionally, we discuss the Deddens
and spectral radius algebras related to rank one operators, operators that are similar to rank one
operators, operators that are majorized by rank one operators, and quasi-isometry operators.

1. Introduction and preliminaries

Let ¢ be a complex Hilbert spaces, %(.7) be the Banach algebra of all bounded
linear operators on .77, where I = I, is the identity operator on 5. If T € ZB(7),
then T is the adjoint of 7.

Let € be a class of operators on the Hilbert space ¢, and let T € B(I).
We say that T is similar to an element of ¢ if there exists C € € N () and an
invertible operator A € () such that AT = CA. In this case, we say that A is a
similarity between T and C, or T is similar to C by A. Since A is invertible, we have
T=A"'CAand C=ATA™".

Recall that a bounded linear operator 7T is called quasi-normal if 7 commutes
with T*T ,ie., TT*T =T*TT.

Let A and T be operators in Z(7), where A is a non-zero positive operator.
The operator T is called an A-isometry if T*AT = A. It is easy to see that if T is
an A-isometry, then 7" is also an A-isometry for every n € N. In order to [2], for
n € N, we say that T is an n-quasi-isometry if T is a 7*"T” -isometry. Hence, T is an
n-quasi-isometry if and only if 7 is an isometry on Z(T"). Moreover, T is called a
quasi-isometry if it is a 1-quasi-isometry.

If A is an invertible operator in Z(.5), then the collection

{T € B(H) : sup||A"TAT"|| < oo}
neN
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is called the Deddens algebra of A and denoted by %4 . Itis easy to see that S € Ir if
and only if there exists M > 0 such that

IT"Sx|| < M||T"x||, VneN, xe 2.

Let T € () and r(T) be the spectral radius of T. For m > 1, we define

1

oo 2
Ru(T) =Ry := (Zd@”T*”T”) : (1.1)

where d,, = m Since dy, T 1/r(T), the sum in 1.1 is norm convergent and the

operators R, are well-defined, positive, and invertible. The spectral radius algebra Zr
of T consists of all operators S € Z(.7) such that

sup ||RuSR;, || < o,
meN

or equivalently, S € Ar if and only if there exists M > 0 such that
Z d>"||T"Sx|| < M Z d¥'|T"x||, VmeN, Vxe .
n=0 n=0

The set Ar is an algebra and it contains all operators that commute with T
({T}). By the above definitions, for each T € Z(.5), we have

{TY C 9r C %r.

Let (X,.Z, 1) be acomplete o -finite measure space. All statements regarding sets and
functions are to be interpreted as holding true except for sets of measure zero.

For a o-subalgebra &7 of %, the conditional expectation operator associated
with o7 is the mapping f — E f, defined for all non-negative f as well as for all
fel’(F)=L1*X,Z,u). Here, E f is the unique < -measurable function that
satisfies the equation:

/A(E““{f)du - /Afdu VA€ o

We will often use the notation E instead of E/ . This operator will play a signifi-
cant role in our work, and we list some of its useful properties here:

o If g is .o/ -measurable, then E(fg) = E(f)g.
e If f>0,then E(f) >0;if E(|f]) =0, then f=0.

1

o [E(F) < (E(F2)2 (E(2)z.

e Foreach f >0, S(E(f)) is the smallest ¢/ -set containing S(f), where
S(F) = {x € X : £(x) £0}.
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A detailed discussion and verification of most of these properties may be found in
[14].

DEFINITION 1.1. Let (X,.%,u) be a o-finite measure space and < be a 0 -
sub-algebra of .% such that (X, u,.,) is also o-finite. Let E be the conditional
expectation operator relative to .o7. If u,w: X — C are .# -measurable functions such
that uf is conditionable (i.e., E(uf) exists) and wE (uf) € L*(F) forall f € L*(.F),
then the corresponding weighted conditional type (or briefly WCT) operator is the linear
transformation M,,EM,, : L*(.F) — L*(.F) defined by f — wE (uf).

The spectral radius and Deddens algebras help us to find invariant and hyperinvari-
ant subspaces for a bounded linear operator. Many mathematicians have investigated
the problem of finding invariant subspaces for special classes of bounded linear opera-
tors by studying the invariant subspaces of spectral radius and Deddens algebras. The
latest results on Deddens algebras can be found in [9]. For more information one can
see [1, 5, 10, 11, 12, 13, 15]. In this paper, we are concerned with the Deddens and
spectral radius algebras of some classes of bounded linear operators named weighted
conditional type operators(WCT), on the Hilbert space L?(u). The WCT operators
are studied by many mathematicians one can see [3-9]. Here we investigate Deddens
algebra of WCT on the Hilbert space L?>(u). Then we characterize n-quasi-normal,
n-quasi-isometry WCT operators. Moreover, we investigate the Deddense algebras and
spectral radius algebras of quasi-normal WCT and quasi-isometry WCT operators. Ad-
ditionally, we characterize the Deddens and spectral radius algebras related to rank one
operators, operators that are similar to rank one operators, operators that are majorized
by rank one operators, and quasi-isometry operators.

2. Main results

As it was proved in [4], the WCT operator M,,EM, on L*(.%) is bounded if and
only if (E(|u?))2 (E(lw2))2 € L~(<7).

Now in the next theorem we characterize Deddens algebra of WCT operator T =
MzEM,, .

THEOREM 2.1. Let T = MzEM, and S € B(L*(F). Then S € Pr if and only if
PSP=PS and XP=PSP€ Dy, . inwhich P=P y(p, . .

E(ju?)’

Proof. We consider the Hilbert space L?(.%) as a direct sum .74 & .74, in which
Hs = N (EMy) = {f € L*(F) : E(uf) =0}

and _
I = A5 = al2().

Easily we get that A (EM,,) = A (MzEM,), because

(MzEM. f.f) = | EM.f]|*.
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Since T = MzEM, is bounded, then E(|u|?) € L”(</) and so E(uf) € L*(</), for all
f € L*(/). This implies that TP = Mg 2P and consequently T"P = Mg, 2. P,
for every n € N. Thus the corresponding block matrix of "= MzEM,, is

T = (M(E%“|2))" 0) and also for any S € B(H), S = <X Y )

0 zZW

Pf

Hence for every f € L>(F), we have f = Pf+ (P-f) = (Plf>’in which P = Py,

and P+ =1—P. So we have

TSf = < E(lu?) nXPf—BM (luf2)) Y P f)

Therefore S € Zr if and only if there exists M > 0 such that
||M(E(‘M‘2))nXPf+M(E(|u|2))nYPlfH < MHM(E(|M|2))"fH7 Vn € N7 f S Lz(y

By Theorem 2.4 of [5] we have S € %y if and only if 4 (EM,) is invariant under
S, and so S € %r if and only if PLSP- = SP* if and only if PSP = PS. Moreover,
we know that Zr C ZBr. This means that if S € Zr, then it has to have the property
PSP =PS. Sowehave Y =0. Also,

XP = PSP* = PSP = P>SP = PX = PXP.
Hence S € &7 if and only if there exists M > 0 such that

1M1y PSPAIl < MMy fll, Vr€N, feLX(F

E(|ul?)

By all these observations we get that S € 27 if and only if PSP = PS and XP =
PSP ¢ QM () O

2)

Here we have the next corollary.

COROLLARY 2.2. Let T = MzEM, € B(L*(.F), a be an < -measurable func-
tion and S € B(L*(F). Then S € Dr if and only if PSP = PS and XP = PSP ¢

‘@MaE(\u\Z)’ in which P = R/V(EMu)i'

Let S = S(E(Ju?)). So = S(E(w)). G = S(E(|w2)). Go=S(w). F = S(E(uw)).
By the conditional type Hélder inequality we get that F C SNG, S(WE(uf)) CSNG,
forall f € L?(u), and also by the elementary properties of the conditional expectation
E we have Sy C S and Gy C G.

For WCT operator T = M,,EM,,, as a bounded linear operator on the Hilbert space
L?*(u), we have T* = MzEMj; and the following properties hold [4],

T T= M (‘W‘ )EMu7 TT :MWE(‘M‘Z)EMW7

TT'T = My (up)e(wpyMwEMu = MgupypqupyTs - T7TT = My )y MaEMu-
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PROPOSITION 2.3. The WCT operator T = M,EM,, : L*(u) — L*(u) is quasi-

normal if and only if T(f) = M,zEM,, in which v = If((”:‘?) XSNG -

Proof. The WCT operator T = M,,EM,, is quasi-normal if and only if T7T*T =
T*TT if and only if

E(Jul)E(\wP)WE (uf) = E(wuw)E(|w*)&E (uf), forall feL*(n).
Since T is bounded, then E (|u|?)E(|w|?) € L*(<7) and || T|| = ||(E(|u?) 2 (E(|W[?)? |,

[4]. By the fact that (X, </, ll,s) is a o-finite measure space, we have an increas-
ing sequence {A;}neny C &7, with 0 < U(A,) < e and X = U,enA,. Now we set

fn=u\/E(|W|?)xa,, for every n € N. So
3= [ 1uPE (), du

= [ EQuPE(wP) 2, au
< NE(uP)Ew)]2(40)

< oo,

and hence f, € L*(u), forall n € N.
Suppose that T = M,,EM, is quasi-normal, then by the above observations we
have

E(ju)E(w)WE (ju)\ E(Iw2)xa, = E((u)E (W[ )WE (uf,)
= E(wu)E(|w[)aE (uf,)
= E(wu)E(|w|*)aE (Jul*)\/E(w|?) xa,

Moreover, by taking limit we get

E(|u)E([w*)WE (|u*)\/ E(Iw]?) = lim E(|ul*)E(Jw[*)WE (|u*)(/ E(|w[?)xa,
= lim E(wu)E(Jw]*)ul (jul*)/ E(IW[*) 24,
= E(wu)E(Iw*)aE (|u*)\/ E(|w]?).

So we have

E(|ul)E(IWP)WE([ul?)\/E(w[?) = E(wu) E(Iw]*)@E (Jul*)\/ E(jw]?).

Therefore
wE (|u*) xsnc = E (uw)itxsnc,
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and hence w = E((w uxsnc - Consequently we have

E(uw _
T(f)=wE(uf) =wxsncE(uf) = ﬁXSﬁGuE(uf) = M,zEM,,
in which v = % xsng. O
In the next theorem we characterize Deddens algebra of quasi-normal WCT oper-

ators.

THEOREM 2.4. Let WCT operator T = M, EM,, : L*> (1) — L*(u) be quasi-normal

and S € B(L*(F). Then S € Zr if and only if PSP = PS and XP = PSP € Dy )’

in which P = R/V(EMu)i and v = %xgmg..
Proof. 1t is a direct consequence of Corollary 2.2 and Proposition 2.3. [J
Here we provide two technical lemmas for later use.
LEMMA 2.5. Let g € L*(/) and let T : L*(X) — L*(Z) be the WCT operator
T = MyEM,. Then M,T =0 if and only if g =0 on S(E(|w|*)E(|u|*)) =SNG.
Proof. By Theorem 2.1 of [4] we have
1T = l[gPE(Iw ) E([uf*) |-
Hence M,T = 0 if and only if
17T > = |gPE (W) E(|ul?) = 0
if and only if g =0 on S(E(|w]>)E(Jul?)). O
As we now from [6] the Moore-Penrose inverse of WCT operator T = M,,EM,, is

T'=M_ e MiEMy=M 150 T".
E(jul?)E(lw?) E(u?)E(w?)
LEMMA 2.6. Let T = M,EM,. Then T = T* if and only if E(|u|>)E(|w|?) =
XSnG-

Proof. Ttis obvious that

T"=M 4o T*

E(Ju/2)E(w]?)
andso 77 =T* ifand only if (1—M z5¢ ))T* = 0. Therefore by the Lemma 2.5
(\M\Z)E(\W\z)
we get that 77 = T* if and only if E(|u|?)E(|w|*) =1, u, a.e.,on SNG if and only if
E([u)E(Iw*) = xsnG» 1, ae,on SNG. O

We recall that T € Z () is partial isometry if and only if 7T*T = T . From The-
orem 3.2 of [4] we have T = M,,EM,, is partial isometry if and only if E (|u|>)E(|w|*) =
XsnG» U, a.e.,on SNG. Now we have the following corollary.
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COROLLARY 2.7. Let T = M,EM, € B(I). Then T is partial isometry if and
only if T" =T*.

Now in the next Theorem we characterize quasi-isometry WCT operators.

THEOREM 2.8. Let T = M,EM,,. Then For each n € N, T is n-quasi-isometry
if and only if T is 1-quasi-isometry if and only if |E(uw)| =1, U, a.e.

Proof. Let T =M, EM,,. Then for each n € N,

T*n T" _ T*71+1Tn+1

if and only if
M2y w2 MaEMu = M2, o) 200 MaEMy

if and only if
M) o 2= (1 a2y ME M = 0.

Since E(|w|?)|E (uw)[>"=1(1 — |E(uw)|?) is an <7 -measurable function, then by the
Lemma 2.5 we get that

M (3op2) ) PO (1= ) 2y M EMu = O

if and only if E(|w|?)|E(uw)[*"~ V(1 — |E(uw)[*) =0, u, a.e., on S if and only if
|[E(uw)| =1, u,ae.,on F =S(E(uw)) if and only if |E(uw)| =1, u, a.e.

Moreover, for n=1, T*T = T*T? if and only if E(Jw|?)(1—|E(uw)|?) =0, u,
a.e.,on S, if and only if 1 — |E(uw)[> =0, u, ae., on SNG. Since F C SNG, then
1—|E(uw)]>=0, u, ae.,on SNG if and only if 1 — |[E(uw)|> =0, u, a.e., on F if
and only if |[E(uw)| =1, u,ae. O

In Theorem 2.4 of [1] the authors have investigated the relation between %7 and
P, in the case that T and C are similar. In the next Lemma we discuss the relation
between the Deddens and spectral radius algebras of two bounded linear operators that
are similar through an invertible operator.

LEMMA 2.9. Let T,A,C € B(H) and A be invertible such that T is similar
to C by A. Then T" is similar to C" by A, for every n € N and APt = DcA (or
equivalently ADrA™" = D¢, D1 = A" DcA). Also, ABr = BcA (or equivalently
A%TAfl = Bc, Br ZAilﬁcA).

Proof. Let S € Y7, then there exists M > 0 such that

IT"Sx|| < M||T"x|), ¥n €N, xe 2.
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So we have

|C"ASA™ x| = ||AT"SA x|

< JlAflIT"sA™ x|
<M|A||IT"A |
= MJ|A|[|A7'C"]

= M||A|| A= [lllc" ],

forall n € N, x € 7. Thus we have ASA~! € 9 and consequently AZrA~ C 9.
Similarly we get the converse i.e., Zc C AZ7A~! andso AZrA™! = 9.
Let S € Ay, then there exists M > 0 such that

Z d,zn"HT"SxH <M Z a’,z,l"||T”x||7 VmeN, Vxe 2.
n=0 n=0
Hence we have

=3 =3

dy'||C"ASA™ x| = Y dy |AT"SA™ x|
n=0 n=0

<Al Y, darlIT"SA™ |
n=0

<M|A| Y, dat | T"A™ x|
n=0

=M|A| 3 dy'||A~"Cx|
n=0

<M|A[IIA~] Y darllc ]|,
n=0

forall m € N and for all x € 7. This means that ASA~' € % andso ABrA~' C Bc.
Similarly one can prove the converse. Therefore ABrA~! = Bc. [

Let X,Y,Z be Banach spaces and %(X,Y) be the Banach space of all bounded
linear operators from X into Y. Also, Z(T), A4/ (T) are the range and the kernel of
T, respectively. If T € #(X,Y) and S € #(X,Z), then we say that 7 majorizes S if
there exists M > 0 such that

|Sx|| < M||Tx||, forallxeX.

The following characterization are known in the case of Hilbert spaces.

THEOREM 2.10. [3] For T,S € B(I), the following conditions are equivalent:
(1) 2(5) C 2(T);

(2) T* majorizes S*;

(3) S=TU forsome U € B(H).
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For x,y € 7, we have x®y € B(A), and ||x®y| = ||x]|||y||. Here, (x@y)h =
(h,y) swx forevery h € 5. It is known that all rank one operators are of the form x®y,
and as a result, they generate finite rank operators on JZ .

In the following theorem, we determine the elements of the dense algebras of rank
one operators on Hilbert spaces. Additionally, we show that % s,n = Zxay for every
neN.

THEOREM 2.11. Let x,y€ 5 and T € B(H). Then T € Dy if and only if x®
y majorizes (x® T*y) if and only if there exists M > 0 such that |{z,T*y)| < M|(z,y)|,
forall z€ A, if and only if y is an eigenvector of T*. Moreover, D, ,yn = Dray, for
every n € N.

Proof. If x,y € 7 such that (x,y) # 0, then (x®y)" = ({x,y))" '(x®y). And
so, if {x,y) =0, then (x®y)? = 0 and so it is nilpotent. Hence for the case (x,y) =0,
we have

Doy ={T € B(A): IM >0, [(x@y)Tz|| < M| (x@y)z||}.
And for the case (x,y) #0,

Dray = (T € BA) 1 3M >0, (x@ )Tl < M| (x@ )], ¥ € N}
={T € B(A):IM > 0,|(x, )" "|(x@y)Tz|| <M|(x,y)|" "||(x@y)z], ¥n € N}
={TeB(H):3M >0, | (x@y)Tz| < M|/(x®y)zl|}
={T € () :3M >0, |(Tz,y)|x]| < M|z, y)[[lx[I}
={T € () :3IM >0,(z,T"y)| <M|(z,y)|}.

So T € Pygy if and only if (x®y) majorizes (x® T*y) if and only if there exists
M > 0 such that |(z,T*y)| < M|{(z,y)|, for all z € #. By these observations and the
factthat (x®@y)" = ((x,y))" ' (x®y), we get that Dy = Zasy. forevery neN. O

By these observations we get that the Deddens algebra of x®y, Py, is inde-
pendent of x. This implies that for all x,y € 5 and all S € #(5) with (Sx,y) #0,
we have Zysy = Dsyay - More generally, for all x € 57 such that x,z ¢ {y}*, we have
@x&v = @z®y .

From Theorem 2.8 of [12], for unit vectors x,y € S,

Broy ={T € B(H) : yis an eigenvector for T*}. (2.1

In the following proposition we aim to characterize elements of Deddens and spectral
radius algebras of operators that are similar to rank one operators.

PROPOSITION 2.12. Let T,A € B(H), x,y € A and A be invertible such that
T is similar to x®y by A. Then S € Pr ifand only if (A~ x®A*y) majorizes (A~'x®
S*A*y) if and only if there exists M > 0 such that |(z,S*A*y)| < M|{z,A*y)|, for all
z € J£. Moreover,

Br ={S € B(H) : A"y is an eigenvector for S* }.
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Proof. Since T is similar to x®y by A, then AT = (x®y)A and so
T=A"x2y)A=(A"x24%).

Hence by Theorem 2.8 of [12] and Theorem 2.11 we get the proof. [
In the next lemma we get that if a bounded linear operator is majorized by a rank

one operator is rank one.

LEMMA 2.13. Let x,y € 5 and T € B(H). If x®y majorizes T, then T is a
rank one operator and therefore there exists h € 7€ suchthat T =h®y.

Proof. If x®y majorizes T, then by Theorem 2.10, we have
R(T*) CR(yox)={ay:acC}.
Hence T* is a rank one operator and so there exists 4 € ¢ such that T* =y®h.
Consequently 7 = h®y. This completes the proof. [J
In the next Theorem we characterize Deddense and spectral radius algebras of

operators majorized by rank one operators.

THEOREM 2.14. Let x,y € 5 and T € B(). Then if x®y majorizes T, then
S € 9y if and only if h®y majorizes (h® S*y), for some h € F if and only if there
exists M > 0 such that |(z,S*y)| < M|(z,y)|, for all z € . Also,

Br ={S € B(A) :y is an eigenvector for S*} = Brey.

Proof. Since x ® y majorizes T, then by the Lemma 2.13, there exists h € J7
such that 7 = h®y. Therefore by Theorem 2.11 we get that S € 27 if and only if
h®y majorizes (h® S*y), for some h € 5 if and only if there exists M > 0 such that
[(z,8*y)| < M|(z,y)|, for all z € . Also, by 2.1 we have

PBr ={S € B(H) : yis an eigenvector for '} = HBygy. O

Now we consider the quasi isometry operators on the Hilbert space .72 and char-
acterize Deddens and spectral radius algebras of them. The operator T € B(J) is
called quasi-isometry if T*(T*T)T =T*T.

THEOREM 2.15. Let S,T € B(5C). If T is quasi-isometry, then S € Pr if and
only if T majorizes TS. Moreover, if r(T) < 1, then $Br = B(H). Also, for the case
r(T) > 1, S € Pr if and only if there exists M > 0 such that

(|Sx|| + || TSx|| ot < M(||x]| + || Tx||0tm), Ym EN, Vxe€ I,

where O = Yo d2.
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Proof. If T is quasi-isometry, T*(T*T)T =T*T, then for every n € N, T'1" =
T*T . This implies that for every n € N and x € 7,

| T7x||?> = (T"x, T"x) = (T T"x,x) = (T*Tx,x) = (Tx,Tx) = || Tx|%.

Let S € B(s). Then || T"Sx|| = ||TSx||, ||T"x|| = ||Tx||, foreach x € 7, n € N, and
so S € r if and only if there exists M > 0 such that

IT"Sx|| < M||T"x||, VneN, xe
if and only if there exists M > 0 such that
|7Sx|| < M||Tx||, forallxe€X.

This implies that S € 7 if and only if 7 majorizes T'S.
By our assumptions we have 7" T" = T*T, for every n € N. So S € %y if and
only if there exists M > 0 such that

=3

Edrz,,"HT"SxH SMZd,i"HT"xH, VmeN, Vxe
n=0 n=0

if and only if
S 2| TSx| <MY 2| Tx], YmeN, vxe A
=0 =0
if and only if
1Sxll 1752 S a2 < Ml + Tl 3 27), YmeN, Vxe 2.

n=1 n=1

By definition, {d,,} is an increasing sequence convergent to ﬁ, indeed

1
supd, = .
meN " V(T)
Since T is a bounded operator, then 7(T) < o. Hence the series oy, = Yoo, d2" is

convergent for all m € N if and only if #(T) > 1, otherwise it is divergent. Hence for
the case r(T) > 1, S € Py if and only if there exists M > 0 such that

|Sx|| + || TSx|| ot < M(||x]| + || Tx||0tm), YmEN, Vxe .

Also, for the case r(T) < 1, ¥, d2" = o and consequently Br = B(#). O

Here we apply Theorems 2.8 and 2.15 for WCT operators and we get the following
results.
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THEOREM 2.16. Let T = M,,EM, be WCT operators on L*(u), |E(uw)| =1,
ae., on F=S(E(uw)) and S € B(L*(1)). Then S € Pr if and only if T majorizes
TS. Also, S € Pr if and only if there exists M > O such that

ISFI+ 1TSfllown < MFII+NT fllowm), YmeN, Vf €L (u),

where Oy, = Yo d2.

Proof. We know that T"f = E(uw)"~'Tf, for all n € N and f € L>(u). If
|E(uw)| =1, a.e.,on F = S(E(uw), then | T"f|| = ||Tf||, forall n € N and f € L*(u).
Hence for S € Z(L*(u)), we have S € 27 if and only if T majorizes TS. Similarly,
we get that #(T) = 1 and so by Theorem 2.15, § € %y if and only if there exists M >0
such that

ISFIl+ TS fllow < MU A+ T fllown), ¥meN, VfeL*(n). O

Now by Theorems 2.8 and 2.16 we have the following corollary.

COROLLARY 2.17. Let T = M,EM, be WCT operators on L*(u) and S €
B(L*()). If T is 1-quasi-isometry or n-quasi-isometry, for every n € N or there
exists n € N such that T is n-quasi-isometry, then S € D¢ if and only if T majorizes
TS. And, S € $Br if and only if there exists M > 0 such that

|Sx|| + || TSx|| oo < M(||x]| + || Tx||0tm), Ym EN, Vxe I,
where O = Yo d2.

COROLLARY 2.18. Let fi,f> € L*(u) and T = M,EM,. Then if fi ® f» ma-
jorizes T, then S € Zr if and only if g @ fo majorizes (§®S" f2), for some g € L*(u) if
and only if there exists M > 0 such that [y hS*(f>)du <M [y hf>du, forall h € L (p).
Also,

Br ={S € B(L*(w)) : h is an eigenvector for S*} = B,
Proof. As is known the inner product of the Hilbert space L* () is as:

(f.g) = /X fgdu, forall f.g e L2(n).

Hence by Theorem 2.14 we get the proof. [

Declarations
Ethical Approval. Not applicable.
Competing interests. The authors declare that there is no conflict of interest.

Availability of data and materials. Our manuscript has no associate data.



[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

QUASI-NORMAL AND QUASI-ISOMETRY WCT OPERATORS 775

REFERENCES

A. BISWAS, A. LAMBERT AND S. PETROVIC, On spectral radius algebras and normal operators,
Indiana University Mathematics Journal. 56 (2007) 1661-1674.

G. CASSIER AND L. SUCIA, Mapping theorems and similarity to contractions for classes of A-
contractions. Hot topics in Operator theory, Theta Series in Advanced Mathematices, (2008), 39-58.
R. DOUGLAS, On majorization factorization and range inclusion of operators on Hilbert space, Proc.
Amer. Math. Soc. 17 (1966), 413-415.

Y. ESTAREMI, M. R. JABBARZADEH, Weighted lambert type operators on Lp-spaces, Oper. Matrices
1(2013) 101-116.

Y. ESTAREMI AND M. R. JABBARZADEH, Spectral radius algebras of WCE operators, Oper. Matri-
ces. 11 (2017) 337-346.

Y. ESTAREMI AND S. SHAMSIGAMCHI, Unbounded WCT operators and applications to linear equa-
tions, Comp. Appl. Math. 238 (2022).

M. R. JABBARZADEH AND H. EMAMALIPOUR, On the dilation of a conditional operator, Linear and
Multilinear Algebra 69 (2021), 2204-2219.

M. R. JABBARZADEH, M. H. SHARIFL, Lambert conditional type operators on LZ(Z) , Linear and
Multilinear Algebra 67 (2019), 2030-2047.

M. R. JABBARZADEH AND B. MINAYI, On spectral radius algebras and conditional type operators,
Kragujevac Journal of Mathematics. 49 (2025), 967-977.

S. Ko. E. JUNG AND J. E. LEE, Remarks on Complex Symmetric Operators, Mediterr. J. Math. 13
(2016), 719-728.

M. LACRUZ, Invariant subspaces and Deddens algebras, Expositiones Mathematicae, 33 (2015),
116-120.

A. LAMBERTA AND S. PETROVIC, Beyond hyperinvariance for compact operators, J. Functional
Analysis, 219 (2005) 93-108.

S. PETROVIC, D. SIEVEWRIGHT, Compact Composition Operators and Deddens Algebras, Complex
Anal. Oper. Theory 12 (2018), 1889-1901.

M. M. RAO, Conditional measure and applications, Marcel Dekker, New York, 1993.

D. SIEVEWRIGHT, Spectral radius algebras and weighted shifts of finite multiplicity, J. Math. Anal.
Appl. 429 (2015) 658-679.

(Received April 3, 2024) Zhidong Huang

Huxley Building Department of Mathematics
South Kensington Campus

Imperial College London, London, UK
e-mail: jameszhuang923@gmail.com

Yousef Estaremi

Department of Mathematics

Faculty of Sciences, Golestan University
Gorgan, Iran

e-mail: y.estaremi@gu.ac.ir

Saeedeh Shamsigamchi
Department of Mathematics
Payame Noor University (PNU)
Tehran, Iran

e-mail: s.shamsi@pnu.ac.ir

Operators and Matrices
www.ele-math.com

oam@ele-math.com



