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QUASI–NORMAL AND QUASI–ISOMETRY

WCT OPERATORS AND THEIR ALGEBRAS

ZHIDONG HUANG, YOUSEF ESTAREMI AND SAEEDEH SHAMSIGAMCHI

(Communicated by F. Kittaneh)

Abstract. In this paper, we investigate Deddens algebra of weighted conditional type opera-
tors(WCT) on the Hilbert space L2(μ) . Then we characterize n -quasi-normal, n -quasi-isometry
WCT operators. Moreover, we investigate the Deddense algebras and spectral radius algebras of
quasi-normal WCT and quasi-isometry WCT operators. Additionally, we discuss the Deddens
and spectral radius algebras related to rank one operators, operators that are similar to rank one
operators, operators that are majorized by rank one operators, and quasi-isometry operators.

1. Introduction and preliminaries

Let H be a complex Hilbert spaces, B(H ) be the Banach algebra of all bounded
linear operators on H , where I = IH is the identity operator on H . If T ∈ B(H ) ,
then T ∗ is the adjoint of T .

Let C be a class of operators on the Hilbert space H , and let T ∈ B(H ) .
We say that T is similar to an element of C if there exists C ∈ C ∩B(H ) and an
invertible operator A ∈ B(H ) such that AT = CA . In this case, we say that A is a
similarity between T and C , or T is similar to C by A . Since A is invertible, we have
T = A−1CA and C = ATA−1 .

Recall that a bounded linear operator T is called quasi-normal if T commutes
with T ∗T , i.e., TT ∗T = T ∗TT .

Let A and T be operators in B(H ) , where A is a non-zero positive operator.
The operator T is called an A-isometry if T ∗AT = A . It is easy to see that if T is
an A-isometry, then Tn is also an A-isometry for every n ∈ N . In order to [2], for
n ∈ N , we say that T is an n -quasi-isometry if T is a T ∗n

T n -isometry. Hence, T is an
n -quasi-isometry if and only if T is an isometry on R(Tn) . Moreover, T is called a
quasi-isometry if it is a 1-quasi-isometry.

If A is an invertible operator in B(H ) , then the collection

{T ∈ B(H ) : sup
n∈N

‖AnTA−n‖ < ∞}
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is called the Deddens algebra of A and denoted by DA . It is easy to see that S ∈ DT if
and only if there exists M > 0 such that

‖TnSx‖ � M‖Tnx‖, ∀n ∈ N, x ∈ H .

Let T ∈ B(H ) and r(T ) be the spectral radius of T . For m � 1, we define

Rm(T ) = Rm :=

(
∞

∑
n=0

d2n
m T ∗n

T n

) 1
2

, (1.1)

where dm = 1
1/m+r(T) . Since dm ↑ 1/r(T ) , the sum in 1.1 is norm convergent and the

operators Rm are well-defined, positive, and invertible. The spectral radius algebra BT

of T consists of all operators S ∈ B(H ) such that

sup
m∈N

‖RmSR−1
m ‖ < ∞,

or equivalently, S ∈ BT if and only if there exists M > 0 such that

∞

∑
n=0

d2n
m ‖TnSx‖ � M

∞

∑
n=0

d2n
m ‖Tnx‖, ∀m ∈ N, ∀x ∈ H .

The set BT is an algebra and it contains all operators that commute with T
({T}′ ). By the above definitions, for each T ∈ B(H ) , we have

{T}′ ⊆ DT ⊆ BT .

Let (X ,F ,μ) be a complete σ -finite measure space. All statements regarding sets and
functions are to be interpreted as holding true except for sets of measure zero.

For a σ -subalgebra A of F , the conditional expectation operator associated
with A is the mapping f → EA f , defined for all non-negative f as well as for all
f ∈ L2(F ) = L2(X ,F ,μ) . Here, EA f is the unique A -measurable function that
satisfies the equation: ∫

A
(EA f )dμ =

∫
A

f dμ ∀A ∈ A .

We will often use the notation E instead of EA . This operator will play a signifi-
cant role in our work, and we list some of its useful properties here:

• If g is A -measurable, then E( f g) = E( f )g .

• If f � 0, then E( f ) � 0; if E(| f |) = 0, then f = 0.

• |E( f g)| � (E(| f |2)) 1
2 (E(|g|2)) 1

2 .

• For each f � 0, S(E( f )) is the smallest A -set containing S( f ) , where
S( f ) = {x ∈ X : f (x) �= 0} .
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A detailed discussion and verification of most of these properties may be found in
[14].

DEFINITION 1.1. Let (X ,F ,μ) be a σ -finite measure space and A be a σ -
sub-algebra of F such that (X ,A ,μA ) is also σ -finite. Let E be the conditional
expectation operator relative to A . If u,w : X → C are F -measurable functions such
that u f is conditionable (i.e., E(u f ) exists) and wE(u f ) ∈ L2(F ) for all f ∈ L2(F ) ,
then the correspondingweighted conditional type (or briefly WCT) operator is the linear
transformation MwEMu : L2(F ) → L2(F ) defined by f → wE(u f ) .

The spectral radius and Deddens algebras help us to find invariant and hyperinvari-
ant subspaces for a bounded linear operator. Many mathematicians have investigated
the problem of finding invariant subspaces for special classes of bounded linear opera-
tors by studying the invariant subspaces of spectral radius and Deddens algebras. The
latest results on Deddens algebras can be found in [9]. For more information one can
see [1, 5, 10, 11, 12, 13, 15]. In this paper, we are concerned with the Deddens and
spectral radius algebras of some classes of bounded linear operators named weighted
conditional type operators(WCT), on the Hilbert space L2(μ) . The WCT operators
are studied by many mathematicians one can see [3-9]. Here we investigate Deddens
algebra of WCT on the Hilbert space L2(μ) . Then we characterize n-quasi-normal,
n-quasi-isometry WCT operators. Moreover, we investigate the Deddense algebras and
spectral radius algebras of quasi-normal WCT and quasi-isometry WCT operators. Ad-
ditionally, we characterize the Deddens and spectral radius algebras related to rank one
operators, operators that are similar to rank one operators, operators that are majorized
by rank one operators, and quasi-isometry operators.

2. Main results

As it was proved in [4], the WCT operator MwEMu on L2(F ) is bounded if and

only if (E(|u|2)) 1
2 (E(|w|2)) 1

2 ∈ L∞(A ) .
Now in the next theorem we characterize Deddens algebra of WCT operator T =

MuEMu .

THEOREM 2.1. Let T = MuEMu and S ∈ B(L2(F ) . Then S ∈ DT if and only if
PSP = PS and XP = PSP ∈ DM

E(|u|2)
, in which P = PN (EMu)⊥ .

Proof. We consider the Hilbert space L2(F ) as a direct sum H1 ⊕H2 , in which

H2 = N (EMu) = { f ∈ L2(F ) : E(u f ) = 0}
and

H1 = H ⊥
2 = uL2(A ).

Easily we get that N (EMu) = N (MuEMu) , because

〈MuEMu f , f 〉 = ‖EMu f‖2.
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Since T = MuEMu is bounded, then E(|u|2) ∈ L∞(A ) and so E(u f ) ∈ L2(A ) , for all
f ∈ L2(A ) . This implies that TP = ME(|u|2)P and consequently TnP = M(E(|u|2))nP ,
for every n ∈ N . Thus the corresponding block matrix of T = MuEMu is

Tn =
(

M(E(|u|2))n 0
0 0

)
and also for any S ∈ B(H ) , S =

(
X Y
Z W

)
.

Hence for every f ∈ L2(F ) , we have f = P f +(P⊥ f ) =
(

P f
P⊥ f

)
, in which P = PH1

and P⊥ = I−P . So we have

TnS f =
(

M(E(|u|2))nXP f +M(E(|u|2))nYP⊥ f
0

)
.

Therefore S ∈ DT if and only if there exists M > 0 such that

‖M(E(|u|2))nXP f +M(E(|u|2))nYP⊥ f‖ � M‖M(E(|u|2))n f‖, ∀n ∈ N, f ∈ L2(F .

By Theorem 2.4 of [5] we have S∈BT if and only if N (EMu) is invariant under
S , and so S ∈ BT if and only if P⊥SP⊥ = SP⊥ if and only if PSP = PS . Moreover,
we know that DT ⊆ BT . This means that if S ∈ DT , then it has to have the property
PSP = PS . So we have Y = 0. Also,

XP = PSP2 = PSP = P2SP = PX = PXP.

Hence S ∈ DT if and only if there exists M > 0 such that

‖M(E(|u|2))nPSP f‖ � M‖M(E(|u|2))n f‖, ∀n ∈ N, f ∈ L2(F .

By all these observations we get that S ∈ DT if and only if PSP = PS and XP =
PSP ∈ DME(|u|2)

. �

Here we have the next corollary.

COROLLARY 2.2. Let T = MauEMu ∈ B(L2(F ) , a be an A -measurable func-
tion and S ∈ B(L2(F ) . Then S ∈ DT if and only if PSP = PS and XP = PSP ∈
DMaE(|u|2)

, in which P = PN (EMu)⊥ .

Let S = S(E(|u|2)) , S0 = S(E(u)) , G = S(E(|w|2)) , G0 = S(w) , F = S(E(uw)) .
By the conditional type H ö lder inequality we get that F ⊆ S∩G , S(wE(u f )) ⊆ S∩G ,
for all f ∈ L2(μ) , and also by the elementary properties of the conditional expectation
E we have S0 ⊆ S and G0 ⊆ G .

For WCT operator T = MwEMu , as a bounded linear operator on the Hilbert space
L2(μ) , we have T ∗ = MuEMw and the following properties hold [4],

T ∗T = MuE(|w|2)EMu, TT ∗ = MwE(|u|2)EMw,

TT ∗T = ME(|u|2)E(|w|2)MwEMu = ME(|u|2)E(|w|2)T, T ∗TT = ME(wu)E(|w|2)MuEMu.
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PROPOSITION 2.3. The WCT operator T = MwEMu : L2(μ) → L2(μ) is quasi-

normal if and only if T ( f ) = MvuEMu , in which v = E(uw)
E(|u|2) χS∩G .

Proof. The WCT operator T = MwEMu is quasi-normal if and only if TT ∗T =
T ∗TT if and only if

E(|u|2)E(|w|2)wE(u f ) = E(wu)E(|w|2)uE(u f ), for all f ∈ L2(μ).

Since T is bounded, then E(|u|2)E(|w|2)∈L∞(A ) and ‖T‖= ‖(E(|u|2)) 1
2 (E(|w|2) 1

2 ‖∞ ,
[4]. By the fact that (X ,A ,μA ) is a σ -finite measure space, we have an increas-
ing sequence {An}n∈N ⊆ A , with 0 < μ(An) < ∞ and X = ∪n∈NAn . Now we set
fn = u

√
E(|w|2)χAn , for every n ∈ N . So

‖ fn‖2
2 =

∫
X
|u|2E(|w|2)χAndμ

=
∫

X
E(|u|2)E(|w|2)χAndμ

� ‖E(|u|2)E(|w|2)‖2
∞μ(An)

< ∞,

and hence fn ∈ L2(μ) , for all n ∈ N .
Suppose that T = MwEMu is quasi-normal, then by the above observations we

have

E(|u|2)E(|w|2)wE(|u|2)
√

E(|w|2)χAn = E(|u|2)E(|w|2)wE(u fn)

= E(wu)E(|w|2)uE(u fn)

= E(wu)E(|w|2)uE(|u|2)
√

E(|w|2)χAn

Moreover, by taking limit we get

E(|u|2)E(|w|2)wE(|u|2)
√

E(|w|2) = lim
n→∞

E(|u|2)E(|w|2)wE(|u|2)
√

E(|w|2)χAn

= lim
n→∞

E(wu)E(|w|2)uE(|u|2)
√

E(|w|2)χAn

= E(wu)E(|w|2)uE(|u|2)
√

E(|w|2).

So we have

E(|u|2)E(|w|2)wE(|u|2)
√

E(|w|2) = E(wu)E(|w|2)uE(|u|2)
√

E(|w|2).

Therefore
wE(|u|2)χS∩G = E(uw)uχS∩G,
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and hence w = E(uw)
E(|u|2) uχS∩G . Consequently we have

T ( f ) = wE(u f ) = wχS∩GE(u f ) =
E(uw)
E(|u|2)χS∩GuE(u f ) = MvuEMu,

in which v = E(uw)
E(|u|2) χS∩G . �

In the next theorem we characterize Deddens algebra of quasi-normal WCT oper-
ators.

THEOREM 2.4. Let WCT operator T = MwEMu : L2(μ)→ L2(μ) be quasi-normal
and S ∈B(L2(F ) . Then S ∈ DT if and only if PSP = PS and XP = PSP∈DMvE(|u|2)

,

in which P = PN (EMu)⊥ and v = E(uw)
E(|u|2) χS∩G ..

Proof. It is a direct consequence of Corollary 2.2 and Proposition 2.3. �
Here we provide two technical lemmas for later use.

LEMMA 2.5. Let g ∈ L∞(A ) and let T : L2(Σ) → L2(Σ) be the WCT operator
T = MwEMu . Then MgT = 0 if and only if g = 0 on S(E(|w|2)E(|u|2)) = S∩G.

Proof. By Theorem 2.1 of [4] we have

‖MgT‖2 = ‖|g|2E(|w|2)E(|u|2)‖∞.

Hence MgT = 0 if and only if

‖MgT‖2 = |g|2E(|w|2)E(|u|2) = 0

if and only if g = 0 on S(E(|w|2)E(|u|2)) . �
As we now from [6] the Moore-Penrose inverse of WCT operator T = MwEMu is

T † = M χS∩G
E(|u|2)E(|w|2)

MuEMw = M χS∩G
E(|u|2)E(|w|2)

T ∗.

LEMMA 2.6. Let T = MwEMu . Then T † = T ∗ if and only if E(|u|2)E(|w|2) =
χS∩G .

Proof. It is obvious that

T † = M χS∩G
E(|u|2)E(|w|2)

T ∗

and so T † = T ∗ if and only if (1−M χS∩G
E(|u|2)E(|w|2)

))T ∗ = 0. Therefore by the Lemma 2.5

we get that T † = T ∗ if and only if E(|u|2)E(|w|2) = 1, μ , a.e., on S∩G if and only if
E(|u|2)E(|w|2) = χS∩G , μ , a.e., on S∩G . �

We recall that T ∈B(H ) is partial isometry if and only if TT ∗T = T . From The-
orem 3.2 of [4] we have T = MwEMu is partial isometry if and only if E(|u|2)E(|w|2) =
χS∩G , μ , a.e., on S∩G . Now we have the following corollary.
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COROLLARY 2.7. Let T = MwEMu ∈ B(H ) . Then T is partial isometry if and
only if T † = T ∗ .

Now in the next Theorem we characterize quasi-isometry WCT operators.

THEOREM 2.8. Let T = MuEMw . Then For each n ∈ N , T is n-quasi-isometry
if and only if T is 1-quasi-isometry if and only if |E(uw)| = 1 , μ , a.e.

Proof. Let T = MwEMu . Then for each n ∈ N ,

T ∗n
Tn = T ∗n+1

Tn+1

if and only if

ME(|w|2)|E(uw)|2(n−1)MuEMu = ME(|w|2)|E(uw)|2(n)MuEMu

if and only if
ME(|w|2)|E(uw)|2(n−1)(1−|E(uw)|2)MuEMu = 0.

Since E(|w|2)|E(uw)|2(n−1)(1− |E(uw)|2) is an A -measurable function, then by the
Lemma 2.5 we get that

ME(|w|2)|E(uw)|2(n−1)(1−|E(uw)|2)MuEMu = 0

if and only if E(|w|2)|E(uw)|2(n−1)(1− |E(uw)|2) = 0, μ , a.e., on S if and only if
|E(uw)| = 1, μ , a.e., on F = S(E(uw)) if and only if |E(uw)| = 1, μ , a.e.

Moreover, for n = 1, T ∗T = T ∗2
T 2 if and only if E(|w|2)(1−|E(uw)|2) = 0, μ ,

a.e., on S , if and only if 1− |E(uw)|2 = 0, μ , a.e., on S∩G . Since F ⊆ S∩G , then
1− |E(uw)|2 = 0, μ , a.e., on S∩G if and only if 1− |E(uw)|2 = 0, μ , a.e., on F if
and only if |E(uw)| = 1, μ , a.e. �

In Theorem 2.4 of [1] the authors have investigated the relation between BT and
BC , in the case that T and C are similar. In the next Lemma we discuss the relation
between the Deddens and spectral radius algebras of two bounded linear operators that
are similar through an invertible operator.

LEMMA 2.9. Let T,A,C ∈ B(H ) and A be invertible such that T is similar
to C by A. Then Tn is similar to Cn by A, for every n ∈ N and ADT = DCA (or
equivalently ADT A−1 = DC , DT = A−1DCA). Also, ABT = BCA (or equivalently
ABT A−1 = BC , BT = A−1BCA).

Proof. Let S ∈ DT , then there exists M > 0 such that

‖TnSx‖ � M‖Tnx‖, ∀n ∈ N, x ∈ H .
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So we have

‖CnASA−1x‖ = ‖ATnSA−1x‖
� ‖A‖‖TnSA−1x‖
� M‖A‖‖TnA−1x‖
= M‖A‖‖A−1Cnx‖
= M‖A‖‖A−1‖‖Cnx‖,

for all n ∈ N, x ∈ H . Thus we have ASA−1 ∈ DC and consequently ADT A−1 ⊆ DC .
Similarly we get the converse i.e., DC ⊆ ADT A−1 and so ADT A−1 = DC .

Let S ∈ BT , then there exists M > 0 such that

∞

∑
n=0

d2n
m ‖TnSx‖ � M

∞

∑
n=0

d2n
m ‖Tnx‖, ∀m ∈ N, ∀x ∈ H .

Hence we have

∞

∑
n=0

d2n
m ‖CnASA−1x‖ =

∞

∑
n=0

d2n
m ‖ATnSA−1x‖

� ‖A‖
∞

∑
n=0

d2n
m ‖TnSA−1x‖

� M‖A‖
∞

∑
n=0

d2n
m ‖TnA−1x‖

= M‖A‖
∞

∑
n=0

d2n
m ‖A−1Cnx‖

� M‖A‖‖A−1‖
∞

∑
n=0

d2n
m ‖Cnx‖,

for all m∈N and for all x∈H . This means that ASA−1 ∈BC and so ABT A−1 ⊆BC .
Similarly one can prove the converse. Therefore ABT A−1 = BC . �

Let X ,Y,Z be Banach spaces and B(X ,Y ) be the Banach space of all bounded
linear operators from X into Y . Also, R(T ) , N (T ) are the range and the kernel of
T , respectively. If T ∈ B(X ,Y ) and S ∈ B(X ,Z) , then we say that T majorizes S if
there exists M > 0 such that

‖Sx‖ � M‖Tx‖, for all x ∈ X .

The following characterization are known in the case of Hilbert spaces.

THEOREM 2.10. [3] For T,S∈B(H ) , the following conditions are equivalent:
(1) R(S)⊆ R(T );
(2) T ∗ majorizes S∗ ;
(3) S = TU for some U ∈ B(H ) .
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For x,y ∈ H , we have x⊗ y ∈ B(H ) , and ‖x⊗ y‖ = ‖x‖‖y‖ . Here, (x⊗ y)h =
〈h,y〉H x for every h∈H . It is known that all rank one operators are of the form x⊗y ,
and as a result, they generate finite rank operators on H .

In the following theorem, we determine the elements of the dense algebras of rank
one operators on Hilbert spaces. Additionally, we show that D(x⊗y)n = Dx⊗y for every
n ∈ N .

THEOREM 2.11. Let x,y∈H and T ∈B(H ) . Then T ∈Dx⊗y if and only if x⊗
y majorizes (x⊗T ∗y) if and only if there exists M > 0 such that |〈z,T ∗y〉| � M|〈z,y〉| ,
for all z ∈ H , if and only if y is an eigenvector of T∗ . Moreover, D(x⊗y)n = Dx⊗y , for
every n ∈ N .

Proof. If x,y ∈ H such that 〈x,y〉 �= 0, then (x⊗ y)n = (〈x,y〉)n−1(x⊗ y) . And
so, if 〈x,y〉 = 0, then (x⊗ y)2 = 0 and so it is nilpotent. Hence for the case 〈x,y〉 = 0,
we have

Dx⊗y = {T ∈ B(H ) : ∃M > 0,‖(x⊗ y)Tz‖ � M‖(x⊗ y)z‖}.
And for the case 〈x,y〉 �= 0,

Dx⊗y = {T ∈ B(H ) : ∃M > 0,‖(x⊗ y)nTz‖ � M‖(x⊗ y)nz‖, ∀n ∈ N}
= {T ∈ B(H ) : ∃M > 0, |〈x,y〉|n−1‖(x⊗ y)Tz‖ � M|〈x,y〉|n−1‖(x⊗ y)z‖, ∀n ∈ N}
= {T ∈ B(H ) : ∃M > 0,‖(x⊗ y)Tz‖ � M‖(x⊗ y)z‖}
= {T ∈ B(H ) : ∃M > 0, |〈Tz,y〉|‖x‖ � M|〈z,y〉|‖x‖}
= {T ∈ B(H ) : ∃M > 0, |〈z,T ∗y〉| � M|〈z,y〉|}.
So T ∈ Dx⊗y if and only if (x⊗ y) majorizes (x⊗T ∗y) if and only if there exists

M > 0 such that |〈z,T ∗y〉| � M|〈z,y〉| , for all z ∈ H . By these observations and the
fact that (x⊗y)n =(〈x,y〉)n−1(x⊗y) , we get that D(x⊗y)n = Dx⊗y , for every n∈N . �

By these observations we get that the Deddens algebra of x⊗ y , Dx⊗y , is inde-
pendent of x . This implies that for all x,y ∈ H and all S ∈ B(H ) with 〈Sx,y〉 �= 0,
we have Dx⊗y = DSx⊗y . More generally, for all x ∈ H such that x,z /∈ {y}⊥ , we have
Dx⊗y = Dz⊗y .

From Theorem 2.8 of [12], for unit vectors x,y ∈ H ,

Bx⊗y = {T ∈ B(H ) : y is an eigenvector for T ∗}. (2.1)

In the following proposition we aim to characterize elements of Deddens and spectral
radius algebras of operators that are similar to rank one operators.

PROPOSITION 2.12. Let T,A ∈ B(H ) , x,y ∈ H and A be invertible such that
T is similar to x⊗y by A. Then S∈DT if and only if (A−1x⊗A∗y) majorizes (A−1x⊗
S∗A∗y) if and only if there exists M > 0 such that |〈z,S∗A∗y〉| � M|〈z,A∗y〉| , for all
z ∈ H . Moreover,

BT = {S ∈ B(H ) : A∗y is an eigenvector for S∗}.
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Proof. Since T is similar to x⊗ y by A , then AT = (x⊗ y)A and so

T = A−1(x⊗ y)A = (A−1x⊗A∗y).

Hence by Theorem 2.8 of [12] and Theorem 2.11 we get the proof. �

In the next lemma we get that if a bounded linear operator is majorized by a rank
one operator is rank one.

LEMMA 2.13. Let x,y ∈ H and T ∈ B(H ) . If x⊗ y majorizes T , then T is a
rank one operator and therefore there exists h ∈ H such that T = h⊗ y.

Proof. If x⊗ y majorizes T , then by Theorem 2.10, we have

R(T ∗) ⊆ R(y⊗ x) = {αy : α ∈ C}.

Hence T ∗ is a rank one operator and so there exists h ∈ H such that T ∗ = y⊗h .
Consequently T = h⊗ y . This completes the proof. �

In the next Theorem we characterize Deddense and spectral radius algebras of
operators majorized by rank one operators.

THEOREM 2.14. Let x,y ∈H and T ∈B(H ) . Then if x⊗y majorizes T , then
S ∈ DT if and only if h⊗ y majorizes (h⊗ S∗y) , for some h ∈ H if and only if there
exists M > 0 such that |〈z,S∗y〉| � M|〈z,y〉| , for all z ∈ H . Also,

BT = {S ∈ B(H ) : y is an eigenvector for S∗} = Bx⊗y.

Proof. Since x⊗ y majorizes T , then by the Lemma 2.13, there exists h ∈ H
such that T = h⊗ y . Therefore by Theorem 2.11 we get that S ∈ DT if and only if
h⊗ y majorizes (h⊗S∗y) , for some h ∈ H if and only if there exists M > 0 such that
|〈z,S∗y〉| � M|〈z,y〉| , for all z ∈ H . Also, by 2.1 we have

BT = {S ∈ B(H ) : y is an eigenvector for S∗} = Bx⊗y. �

Now we consider the quasi isometry operators on the Hilbert space H and char-
acterize Deddens and spectral radius algebras of them. The operator T ∈ B(H ) is
called quasi-isometry if T ∗(T ∗T )T = T ∗T .

THEOREM 2.15. Let S,T ∈ B(H ) . If T is quasi-isometry, then S ∈ DT if and
only if T majorizes TS . Moreover, if r(T ) < 1 , then BT = B(H ) . Also, for the case
r(T ) � 1 , S ∈ BT if and only if there exists M > 0 such that

‖Sx‖+‖TSx‖αm � M(‖x‖+‖Tx‖αm), ∀m ∈ N, ∀x ∈ H ,

where αm = ∑∞
n=1 d2n

m .
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Proof. If T is quasi-isometry, T ∗(T ∗T )T = T ∗T , then for every n ∈ N , T ∗n
Tn =

T ∗T . This implies that for every n ∈ N and x ∈ H ,

‖Tnx‖2 = 〈Tnx,Tnx〉 = 〈T ∗n
Tnx,x〉 = 〈T ∗Tx,x〉 = 〈Tx,Tx〉 = ‖Tx‖2.

Let S ∈ B(H ) . Then ‖TnSx‖= ‖TSx‖ , ‖Tnx‖= ‖Tx‖ , for each x ∈ H , n∈ N , and
so S ∈ DT if and only if there exists M > 0 such that

‖TnSx‖ � M‖Tnx‖, ∀n ∈ N, x ∈ H

if and only if there exists M > 0 such that

‖TSx‖ � M‖Tx‖, for all x ∈ X .

This implies that S ∈ DT if and only if T majorizes TS .
By our assumptions we have T ∗n

Tn = T ∗T , for every n ∈ N . So S ∈ BT if and
only if there exists M > 0 such that

∞

∑
n=0

d2n
m ‖TnSx‖ � M

∞

∑
n=0

d2n
m ‖Tnx‖, ∀m ∈ N, ∀x ∈ H

if and only if

∞

∑
n=0

d2n
m ‖TSx‖ � M

∞

∑
n=0

d2n
m ‖Tx‖, ∀m ∈ N, ∀x ∈ H

if and only if

‖Sx‖+‖TSx‖
∞

∑
n=1

d2n
m � M(‖x‖+‖Tx‖

∞

∑
n=1

d2n
m ), ∀m ∈ N, ∀x ∈ H .

By definition, {dm} is an increasing sequence convergent to 1
r(T ) , indeed

sup
m∈N

dm =
1

r(T )
.

Since T is a bounded operator, then r(T ) < ∞ . Hence the series αm = ∑∞
n=1 d2n

m is
convergent for all m ∈ N if and only if r(T ) � 1, otherwise it is divergent. Hence for
the case r(T ) � 1, S ∈ BT if and only if there exists M > 0 such that

‖Sx‖+‖TSx‖αm � M(‖x‖+‖Tx‖αm), ∀m ∈ N, ∀x ∈ H .

Also, for the case r(T ) < 1, ∑∞
n=1 d2n

m = ∞ and consequently BT = B(H ) . �

Here we apply Theorems 2.8 and 2.15 for WCT operators and we get the following
results.
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THEOREM 2.16. Let T = MwEMu be WCT operators on L2(μ) , |E(uw)| = 1 ,
a.e., on F = S(E(uw)) and S ∈ B(L2(μ)) . Then S ∈ DT if and only if T majorizes
TS . Also, S ∈ BT if and only if there exists M > 0 such that

‖S f‖+‖TS f‖αm � M(‖ f‖+‖T f‖αm), ∀m ∈ N, ∀ f ∈ L2(μ),

where αm = ∑∞
n=1 d2n

m .

Proof. We know that Tn f = E(uw)n−1T f , for all n ∈ N and f ∈ L2(μ) . If
|E(uw)|= 1, a.e., on F = S(E(uw) , then ‖Tn f‖= ‖T f‖ , for all n∈N and f ∈ L2(μ) .
Hence for S ∈ B(L2(μ)) , we have S ∈ DT if and only if T majorizes TS . Similarly,
we get that r(T ) = 1 and so by Theorem 2.15, S∈BT if and only if there exists M > 0
such that

‖S f‖+‖TS f‖αm � M(‖ f‖+‖T f‖αm), ∀m ∈ N, ∀ f ∈ L2(μ). �

Now by Theorems 2.8 and 2.16 we have the following corollary.

COROLLARY 2.17. Let T = MwEMu be WCT operators on L2(μ) and S ∈
B(L2(μ)) . If T is 1 -quasi-isometry or n-quasi-isometry, for every n ∈ N or there
exists n ∈ N such that T is n-quasi-isometry, then S ∈ DT if and only if T majorizes
TS . And, S ∈ BT if and only if there exists M > 0 such that

‖Sx‖+‖TSx‖αm � M(‖x‖+‖Tx‖αm), ∀m ∈ N, ∀x ∈ H ,

where αm = ∑∞
n=1 d2n

m .

COROLLARY 2.18. Let f1, f2 ∈ L2(μ) and T = MwEMu . Then if f1 ⊗ f2 ma-
jorizes T , then S∈DT if and only if g⊗ f2 majorizes (g⊗S∗ f2) , for some g∈ L2(μ) if
and only if there exists M > 0 such that

∫
X hS∗( f2)dμ � M

∫
X h f2dμ , for all h∈ L2(μ) .

Also,
BT = {S ∈ B(L2(μ)) : h is an eigenvector for S∗} = B f⊗g.

Proof. As is known the inner product of the Hilbert space L2(μ) is as:

〈 f ,g〉 =
∫

X
f gdμ , for all f ,g ∈ L2(μ).

Hence by Theorem 2.14 we get the proof. �
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