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Abstract. In this paper we initiate the investigation of non-archimedean linear dynamics. We
study the hypercyclicity in Non-archimedean setting. Then, we give some Hypercyclicity Crite-
ria of operators on Non-archimedean Banach spaces of Coutable Type.

1. Introduction

Hypercyclicity is the study of operators that possess a dense orbit. There is many
approaches for proving the hypercyclicity of an operator. The first one is the Birkhoff’s
theorem [12] which establishes the equivalence between the hypercyclicity of an op-
erator on separable F -space and his topological transitivity. This theorem is a direct
application of the Baire category theorem. The best known and earliest examples of
hypercyclic operators are due to Birkhoff [12], MacLane [19] and Rolewicz [25]. Mo-
tivated by these examples, researchers began to study the dynamical properties of gen-
eral operators. One of the first important result is the Hypercyclicity Criterion which
was developed independently by Kitai [17] and Gethner and Shapiro [15]. It states
that an operator T is hypercyclic if it has a right inverse S and a dense subset D such
that the orbits by T and S of the elements of D tend to zero. Some generalizations
of this criterion have been later introduced and investigated. Hence, during the last
years Hypercyclicity Criterion on Banach or Fréchet spaces has attracted many Math-
ematicians working in linear Functional Analysis. However, all these investigations
were considered over the fields of real or complex numbers. But now the Analysis over
non-archimedean valued fields is a well-established discipline, which was developed
intensively, since the forties of the last century, thanks to the efforts of many Mathe-
maticians ([20], [21], [24], [26], [29]). We deal here with the concept of hypercyclicity
on infinite-dimensinal non-archimedean Banach spaces. Since the definition of the hy-
percyclicity requires a countable dense set in the space, this concept only occurs in
separable spaces. But in the non-archimedean context, this assumption entails that the
non-archimedean field must be separable as well, which is not always the case, as for
the real or complex cases. In non-archimedean setting, we introduce an other concept
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which fits better the non-archimedean structure. By linearizing the notion of separabil-
ity, we obtain a useful generalization for every scalar field, namely a space of countable
type. We say that a space is of countable type if it contains a countable set whose
linear hull is dense. So, every separable space is of countable type, and if K is itself
separable, the two notions are equivalent. The dynamics of linear operators and, as a
special case, a study of hypercyclic operators was actively developed for the last thirty
years. This study is strongly related to the unsolved problem in the Hilbert space op-
erator theory, which is the Invariant Subspace Problem. This problem deals with the
question wether every operator on a separable infinite-dimensional Hilbert space has a
non-trivial closed invariant subspace. It is easy to check that if every nonzero vector of
a space E is hypercyclic for an operator T , then T has no closed invariant subsets, and
so no closed invariant subspaces as well.

Recently, F. Mukhamedov and O. Khakimov [17] studied the hypercyclicity and
supecyclicity of operators on a separable non-archimedean Fréchet space. But this
automatically implies that the field K must be separable, which is not always true as in
the classical case.

The purpose of this paper is to initiate the study of linear dynamics in the non-
archimedean setting. We begin by the concept of hypercyclicity. Hence, we give some
hypercyclicity criteria for an operator on infinite-dimensional non-archimedeanBanach
space of countable type. In section one, we introduce the definitions and notations we
will use in this paper. In section two, we describe some facts about the linear dy-
namics. In section three, we give some basic results about the infinite-dimensional
non-archimedean Banach spaces of countable type. We establish that each one of
these spaces is linearly homeomorphic to a non-archimedean Banach space c0(N) of
null scalar sequences. Then, up to linear homeomorphisms, there is only one infinite-
dimensional non-archimedean Banach space of countable type, namely c0(N) . Hence,
for the study of the concept of hypercyclicity, or any other topological concept, in any
infinite-dimensional non-archimedean Banach space of countable type, it is completely
sufficient to undertake this study in c0(N) endowed with the topology induced by the
non-archimedean norm ‖.‖ . In the forth section, we give the main results of this pa-
per, namely Theorems 14, 15 and 17, which are hypercyclicity criteria of an operator
defined on any infinite-dimensional non-archimedean Banach space of countable type.

2. Preliminaries

Throughtout the present paper, K will denote a complete valued field with a non-
archimedean non-trivial absolute value |.| . K is said to be spherically complete if
every shrinking sequence of closed balls in K has a non-empty intersection. Clearly
the spherical completion implies completion, but the converse is not true in general
[29]. Normed spaces over K are defined in a natural way. We say that a norm ‖.‖ on a
K -vector space E is non-archimedean if it satisfies the strong triangle inequality: ‖x+
y‖ � max{‖x‖,‖y‖} for all x,y ∈ E . We say that a normed space is non-archimedean
if its topology is defined by a non-archimedean norm. Let E be a non-archimedean
normed space. For any subset A of E , [A] will denote the linear hull of A in E . Let
t ∈]0,1] , nonzero elements x and y of E are called T-orthogonal if d(x, [y]) � t.‖x‖ ,
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where d(x, [y]) = inf{‖x− z‖/z ∈ [y]} is the distance of x to [y] . We write x ⊥t y . If
t = 1, we say that x and y are orthogonal, and we write x ⊥ y . We check easily that
x ⊥t y if, and only if, ‖x+y‖ � t.max{‖x‖,‖y‖} for all , ∈ K . We say that
a family of nonzero elements (xi)i∈I of E is T-orthogonal if for each i ∈ I,xi ⊥t x j

for all j ∈ I\{i} . Clearly, (xi)i∈I is T-orthogonal if, and only if, for each finite J ⊂ I ,
(xi)i∈J is T-orthogonal if, and only if, for each distinct i1, . . . , in ∈ I , and for each
1, . . . ,n ∈ K , ‖n

k=1kxik‖ � t.max1�k�n ‖kxik‖ .

If, in addition, E = [xi/i ∈ I] , then we say that (xi)i∈I is a T-orthogonal basis of
E . More if ‖xi‖ = 1 for all i ∈ I , we say that (xi)i∈I is a T-orthonormal basis of E .

If (xi)i∈I is a T-orthogonal basis of E , for every x ∈ E , there is a unique family
(i)i∈I ∈ KI such that: x = i∈I ixi and ‖x‖ � t.supi∈I ‖ixi‖ .

Recall that x = i∈I ixi if, and only if, for all  > 0, there exists J0 finite ⊂ I
such that ‖x−i∈J ixi‖<  for all J finite with J0 ⊂ J ⊂ I . In that case, there exists a
countable set I0 ⊂ I such that xi = 0 for all i ∈ I\I0 . Hence, x =i∈I ixi = i∈I0 ixi .

We note that if (xi)i∈I is a T-orthogonal family in E and (i)i∈I is a family of
nonzero elements of K , then (ixi)i∈I is also a T-orthogonal family in E . In particular,
if we take  ∈ K with 0 < | | < 1, then we can choose (i)i∈I ∈ KI such that | | �
‖ixi‖ � 1 for all i ∈ I .

As a consequence, if (xi)i∈I is a T-orthogonal basis of E , without loss of gener-
ality, we can suppose that (xi)i∈I satisfies | |� ‖xi‖ � 1 for all i ∈ I .

Let c0(I) = {(i)i∈I ∈ K
I/ limi∈I i = 0} . Endowed with the non-archimedean

norm ‖(i)i‖ = supi∈I | i | , c0(I) is a non-archimedean Banach space.
For each i ∈ I , let ei = (i j) j∈I , with i j is the Kronecker symbol. We denote

(I) the linear hull of {ei/i ∈ I} . Clearly (ei)i∈I forms an orthonormal basis of c0(I) .
We note that if (xi)i∈I is T-orthogonal family of nonzero elements of non-archi-

medean normed space E such that E = [xi/i ∈ I] , then (xi)i∈I is a T-orthogonal basis
of E .

Let l(I) = {(i)i∈I ∈ KI/supi |i| < +} . (l(I),‖.‖) is a non-archimedean
Banach space containing c0(I) as a closed subspace.

3. Linear dynamics

Linear dynamics is a rapidly evolving area of operator theory. The study of orbits,
and in particular cyclic vectors, has a long history and several classical problems and re-
sults in Analysis can be viewed as problems and results on orbits of operators. In recent
years there has been growing interest to study orbits of operators in more detailed way
than was done before. Hypercyclicity is the study of operators thas possess a dense or-
bits. It is a wide-spread phenomenon in Analysis. The field of hypercyclicity was born
in 1982 with the Ph.D dissertation of Kitai [18]. The name of hypercyclicity was sug-
gested in 1986 by Beauzamy [5] because of its connection to the much older concept in
operator theory of a cyclic operator. A more systematic study of hypercyclic operators
started in 1987 with Gethner and Shapiro [15]. In all what follows, an operator on a
topological vector space X will be a continuous linear mapping X → X . L(X) is the
space of all operators on X . A linear dynamical system is a pair (X,T) consisting of a
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separable Fréchet space X and an operator T : X → X . Let T ∈ L(X) and x ∈ X\{0} ,
the T-orbit of X is the set O(x,T) = {Tn.x/n ∈ N} . T is called hypercyclic if there
exists x ∈ X such that its T-orbit O(x,T ) is dense in X . Then, X is called a T-
hypercyclic vector. The set of all T-hypercyclic vectors is denoted by HC(T) . A first
example of a hypercyclic operator was provided in 1929 by Birkhoff [12], who showed
the existence of an entire function f whose successive translates by a nonzero constant
 are arbitrarily close to any function in the space of entire functions H(C) . A second
example of a hypercyclic operator was provided in 1952 by MacLane [19], who showed
that there exists a universal entire function f whose successive derivatives are dense in
H(C) .

We note that the importance of the field of hypercyclicity is made evident by its
connection to the famous Invariant Subspace Problem in operator theory, which asks
wether every operator on a Hilbert space has a non-trivial closed T-invariant subspace,
and which still open until now. We stress that the definition of hypercyclicity can be
difficult to work with, since it is not always easy to find a hypercyclic vector for a given
operator. Fortunately there exist a number of approaches for establishing hypercyclicity.
The first characterization of hypercyclicity is due to Birkhoff [12], it relates the concept
of hypercyclicity to the well known notion of topological transitivity. T ∈ L(X) is
called topologically transitive if for each pair of nonempty open sets U,V ⊂ X , there
exists n ∈ N such that Tn(U)∩V �= /0 .

THEOREM 1. (Birkhoff Transitivity Theorem) Let T be a continous map on sep-
arable complete metric space X without isolated points. Then the following assertions
are equivalent:

(i) T is topologically transitive;
(ii) There exists some x ∈ X such that O(x,T) is dense in X .
If one of these conditions holds, then the set of points of X with dense orbit is a

dense G -set.

Proof. [16], p. 10, Theorem 1.16. �

Another approach for establishing the hypercyclicity of an operator is by linear
conjugacy.

DEFINITION 2. Let (X,T) and (Y,S) be linear dynamical systems.
(a) T ∈ L(X) is called linearly quasi-conjugate to S ∈ L(Y) if there exists an

operator  : Y → X with a dense range such that T = S , that is the following
diagram commutes:

S
Y → Y

 ↓ ↓ 
X → X

T

(b) If  is a linear homeomorphism, then S and T are called linearly conjugate.
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The linear conjugacy introduces an equivalence relation among dynamical sys-
tems. And the conjugate dynamical systems have the same dynamical behaviour.

THEOREM 3. (1) If T is linearly quasi-conjugate to S then: S is hypercyclic
implies T is hypercyclic.

(2) If T and S are linearly conjugate then: S is hypercyclic if, and only if, T is
hypercyclic.

Proof. [16], p. 11, Proposition 1.19. �
We note also the very useful result of Shapiro [28], which shows that in search of

hypercyclic operators on a space X , it can be useful to find hypercyclic operators on
smaller spaces.

THEOREM 4. (Hypercyclicity Comparison Principle) Suppose X and Y are two
normed spaces, Y is continuously and densely embedded in X , and T is a linear
transformation on X that maps the smaller space Y to itself and is continuous in the
topology of each space. Then, T is hypercyclic on the larger space X whenever T is
hypercyclic on Y .

In particular, if x is an hypercyclic vector for T|Y , then x is an hypercyclic vector
for T .

Proof. See [28]. �
While the theorem of Birkhoff characterizes hypercyclicity by topological tran-

sitivity, the most useful result in this theory is the so called Hypercyclicity Criterion,
which is a set of sufficient conditions for realizing the hypercyclicity, discovered by Ki-
tai in her Thesis [18], but she never published it. This criterion was rediscovered later
by Gethner and Shapiro [15]. Its proof is easy, and it is quite easy to use nevertheless
his seemingly complicated statement. They proved the following theorem:

THEOREM 5. (Kitai-Gethner-Shapiro Hypercyclicity Criterion) Let T be an op-
erator on a Fréchet space X . If there exist a dense set D and a map S : X → X such
that:

(1) TS = I;
(2) Tn → 0 on D;
(3) Sn → 0 on D.
Then, T is hypercyclic.

Using this result, Gethner and Shapiro presented much simpler proofs for the re-
sults of Birkhoff, MacLane and Rolewicz, as well as other examples of hypercyclic
operators. Later, Bés and Peris [11] weakened the sufficient condition of the criterion
and this is the form which is widely utilized in this theory.

THEOREM 6. (Kitai-Bés-Peris Hypercyclicity Criterion) Let X be a separable
Fréchet space and T : X → X an operator.
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If there exist an increasing sequence (nk) of positive integers, two dense sets D1

and D2 , and a sequence of maps Snk : D2 → X such that:
(1) Tnk .x → 0 for all x ∈ D1 ;
(2) Snk .y → 0 for all y ∈ D2 ;
(3) TnkSnk .y → y for all y ∈ D2 .
Then, T is hypercyclic.

Proof. See [10], [11] and [4]. �

4. Non-archimedean Banach spaces of countable type

The separable Banach spaces played a special role in Archimedean analysis. We
note that the useful property of this class of spaces is, in general, the existence of a
countable subset whose linear hull is dense rather the existence of a dense countable
subset. However, these properties are equivalent thanks to the separability of R and
C . But in non-archimedean analysis this is not the case, and the situation is completely
different if K is not separable. In that case the only separable non-archimedean Ba-
nach space is {0} , since if E is a non-trivial separable non-archimedean Banach space
over K, any one-dimensinal subspace of E is homeomorphic to K , and K must be
separable. However, there exist non-archimedean Banach spaces over a non separable
non-archimedean field K that possess a countable subset which its linear hull is dense,
such as all finite-dimensional Banach spaces and the non-archimedean Banach space
of null sequences c0(N) . Thus, the concept of separability is of no use in the theory of
non-archimedean Banach spaces if the field is not separable. However, if we linearize
this concept we obtain a new one which generalizes the separability and fits well the
non-archimedean setting. In all what follows E will denote a non-archimedean Banach
space over a non-archimedean valued field K .

DEFINITION 7. E is of countable type if it contains a countable set whose linear
hull is dense in E .

It is evident that all separable non-archimedean Banach spaces are of countable
type. And the converse is true if K is separable. Thus, the two notions are equivalent
if the field K is separable.

We can check easily that:
(1) Every finite product of spaces of countable type is of countable type;
(2) Every countable direct sum of spaces of countable type is of countable type;
(3) Every subspace of a space of countable type is of countable type;
(4) Every continuous linear image of a space of countable type is of countable

type.

PROPOSITION 8. Let F be a dense subspace of E . Then, E is of countable type
if, and only if, F is of countable type.
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Proof. Suppose that F is of countable type, and let A be a countable subset of F
such that F = [A] . Then, E = [A] and E is of countable type. Conversely, if E is of
countable type, let D be a countable subset of E such that E = [D] . For each x ∈ D ,
there exists a countable subset Ax of F such that x ∈ Ax . Let A = ∪x∈DAx . Then, A is
countable and F = [A] . Therefore, F is of countable type. �

THEOREM 9. If E is of countable type, then for each t ∈]0,1[ , E has a countable
T-orthogonal basis.

Proof. [21], p. 30, Theorem 2.3.7. �

THEOREM 10. If E is of countable type and K is spherically complete, then E
has a countable orthogonal basis.

Proof. [21], p. 36, Theorem 2.3.25. �

COROLLARY 11. Each non-archimedean Banach space of countable type is lin-
early homeomorphic to c0(N) .

Proof. Let E be a non-archimedean Banach space of countable type. Then, for
t ∈]0,1[ , there exists (en) a T-orthogonal basis of E . So, for each x ∈ E , there exists
a unique (n) ∈ KN such that x = nnen and ‖x‖ � t.supn ‖nen‖ .

Let  ∈ K such that 0 < | | < 1. Without loss of generality we can assume that
| | � ‖en‖ � 1 for all n ∈ N . Define the linear map

f : E → c0(N)
nnen �→ (n)

f is well defined since for each x = nnen we have:

| n |= ‖nen‖
‖en‖ � ‖nen‖

|  | → 0 (n → +).

On the other hand, ‖x‖ = ‖nnen‖ � supn ‖nen‖ � supn | n |= ‖ f (x)‖ .
And by T-orthogonality, ‖x‖� t.supn ‖nen‖� t. |  | supn | n |= t. |  | ‖ f (x)‖ .
Hence, t. |  | ‖ f (x)‖ � ‖x‖� ‖ f (x)‖ . Therefore, f is a homeomorphism. �

REMARK 12. As an important consequence of a Corollary 11, we can state that
there exists only one non-archimedean Banach space of countable type, namely c0(N) ,
or equivalently c0(I) with I is any infinte countable set.

By the same arguments, if E is a non-archimedean Banach space of countable
type, for each t ∈]0,1[ , we can choose the T-orthogonal basis for E of the form
(en)n∈Z . Thus, for each x ∈ E , there exists a unique (n) ∈ KZ such that: x = nnen

and ‖x‖ � t.supn∈Z‖nen‖ .
In a such case, E is linearly homeomorphic to c0(Z) = {(i)i∈Z ∈ KZ/ limii =

0} .
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5. Hypercyclicity criteria on c0(Z) and c0(N)

Let (ei)i∈Z be the canonical basis of c0(Z) . For each j ∈ N , let E j = [ei/|i|� j] .
(E j) j∈N is an increasing sequence of subspaces of c0(Z) such that c0(Z) = ∪ j∈NE j .

Before stating the first Hypercyclicity Criterion, we give the following lemma.

LEMMA 13. Let E be a non-archimedean Banach space with a dense sequence
(en) , and let T be an operator on E . If x is nonzero vector of E such that there exists
an increasing sequence of positive integers (nk) satisfying limk ‖Tnk .x− ek‖ = 0 .

Then, x is a T-hypercyclic vector.

Proof. Let y be an element of E , and let  > 0.

There exists k ∈ N such that max{‖y− ek‖,‖Tnk .x− ek‖} <  .
Hence, ‖Tnk .x− y‖ � max{‖Tnk .x− ek‖,‖y− ek‖} <  . Therefore, O(T,x) is

dense in E . �
Now, we give the Hyperciclicity Criterion of an operator on c0(Z) .

THEOREM 14. Let T be an operator on c0(Z) satisfying the following property:
For each  > 0 , j ∈ N and x,y ∈ E j , there exist n ∈ N and z ∈ E j+n such that:

max{‖z‖,‖Tn.z− y‖,‖Tn.x‖} < .

Then, T is hypercyclic.

Proof. Let lk = |i|�k lkiei be a basis of c0(Z) . Let n0 = 1 and a = ‖T‖ . We

apply the hypothesis of the theorem to 1 =
1

21a1 and x1 = y1 = l1 ∈ E1 , then there

exist n1 > n0 and z1 ∈ En0+n1 such that:

max{‖z1‖,‖Tn1 .z1 − y1‖,‖Tn1 .x1‖} < 1.

Now; let 2 =
1

22aan1
, y2 = l2 ∈ E2 , and x2 = z1 ∈ En0+n1 . Then there exist n2 > n1

and z2 ∈ En0+n1+n2 such that:

max{‖z2‖,‖Tn2 .z2 − y2‖,‖Tn2 .x2‖} < 2.

Hence, by induction, we construct an increasing sequence (nk) of positive integers and
sequences (xk) , (yk) , (zk) in c0(Z) such that for all k � 2 we have:

yk = lk;

zk ∈ En0+n1+...+nk ;

xk = z1 + z2 + . . .+ zk−1;

max{‖zk‖,‖Tnk .zk − yk‖,‖Tnk .xk‖} < k =
1

2kank−1
.
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Let z = k�1 zk . Clearly z ∈ c0(Z) .
Let  > 0, there exists k0 ∈ N such that max{k, 1

2k } <  for all k � k0 .
For all k � k0 we have:

‖Tnk .z− lk‖ � max{‖Tnk . 
1�i�k−1

zi‖,‖Tnk .zk − lk‖,‖
i>k

Tnk .zi‖}

< max{k,sup
i>k

‖Tnk‖.‖zi‖}

< max{k, 1
2k+1 } < .

Hence, limk ‖Tnk .z− lk‖ = 0. So, by lemma 13, T is hypercyclic. �
Now, let Let (ei)i∈N be the canonical basis of c0(N) . For each j ∈ N , let Fj =

[ei/i � j] . (Fj) j∈N is an increasing sequence of subspaces of c0(N) such that c0(N) =
∪ j∈NFj . In the next theorem, we give the Hyperciclicity Criterion of an operator on
c0(N) .

THEOREM 15. Let T be an operator on c0(N) satisfying the following property:
There exists an increasing sequence (nk) of positive integers such that for each  > 0 ,
and for each y ∈ Fnk , there exists z ∈ Fnk+1 such that:

max{‖z‖,‖Tnk .z− y‖}< .

Then, T is hypercyclic.

Proof. Let a = ‖T‖ and k = 1
2nk a2nk

for all k ∈N. And let lk =i�k lkiei (k ∈ N)
be a basis of c0(N) such that ‖lk‖ < 1

2nk ank for all k ∈ N.
Let z0 = 0. For y1 = l1 ∈ F1 , there exists z1 ∈ Fn1 such that:

max{‖z1‖,‖T.z1− y1‖} < 1.

For y2 = l2 + z1 ∈ Fn1 , there exists z2 ∈ Fn2 such that:

max{‖z2‖,‖Tn1 .z2 − (l2 + z1)‖} < 2.

For all k � 3, let yk = lk + zk−1 + . . .+ z1 ∈ Fnk−1 , then there exists zk ∈ Fnk such that:

max{‖zk‖,‖Tnk−1 .zk − (lk + zk−1 + . . .+ z1)‖} < k.

For all k � 2, we have:

‖Tnk−1 .zk‖ � ank−1‖zk‖ <
1

2nkank
.

‖Tnk−1zk − lk‖ � max{‖Tnk−1zk‖,‖lk‖} < 1
2nk ank .

Hence, ‖1�i�k−1 zi‖ < k. Then, ‖Tnk−1 .1�i�k−1 zi‖ < ank−1k < 1
2nk .

Let z = i�1 zi . Clearly z ∈ c0(N) .
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Let  > 0, there exists k0 ∈ N such that 1
2nk <  for all k � k0.

For all k � k0 we have:

‖Tnk−1 .z− lk‖ � max{‖Tnk−1 . 
1�i�k−1

zi‖,‖Tnk−1 .zk − lk‖,‖
i>k

Tnk−1 .zi‖}

� max{ 1
2nk

,
1

2nkank
,sup

i>k
‖Tnk−1‖.‖zi‖}

� 1
2nk

< .

Hence, limk ‖Tnk−1 .z− lk‖ = 0. Therefore, by lemma 13, T is hypercyclic. �
We have the following Corollary which is a spacial case for Theorem 15.

COROLLARY 16. Let T be an operator on c0(N) satisfying the following prop-
erty:

For each  > 0 , and for each y ∈ Fm (m ∈ N) , there exists z ∈ F2m such that:

max{‖z‖,‖Tm.z− y‖} < .

Then, T is hypercyclic.

Now, we give an other Hyperciclicity Criterion of an operator on c0(N) .

THEOREM 17. Let T be an operator on c0(N) satisfying the following property:
For each  > 0 , and for each x,y ∈ Fm (m ∈ N) , there exists z ∈ Fm+1 such that:

max{‖z‖,‖Tm.z− y‖,‖Tm.x‖} < .

Then, T is hypercyclic.

Proof. Let lk = i�k lkiei (k ∈ N) be a basis of c0(N) . And let a = ‖T‖ and
k = 1

2nk a2nk
for all k ∈ N .

For x1 = y1 = l1 ∈ F1 , there exists z1 ∈ F2 such that:

max{‖z1‖,‖T.z1 − y1‖,‖T.x1‖} < 1.

For y2 = l2 ∈ F2 and x2 = z0 + z1 ∈ F2 , there exists z2 ∈ F3 such that:

max{‖z2‖,‖T2.z2 − y2‖,‖T2.x2‖} < 2.

By induction, for all n � 3, let yn = ln ∈ Fn and xn = z0 + z1 + . . . + zn−1 ∈ Fn , then
there exists zn ∈ Fn+1 such that:

max{‖zn‖,‖Tn.zn − yn‖,‖Tn.xn‖} < n.

Let z = n zn . Evidently z ∈ c0(N).
Let  > 0, there exists n0 ∈ N such that max{n, 1

2n } <  for all n � n0.
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For all n � n0 we have:

‖Tn.z− ln‖ � max{‖Tn. 
0�k�n−1

zk‖,‖Tn.zn − ln‖,‖
k>n

Tn.zk‖}

< max{n,sup
k>n

‖Tn‖.‖zk‖}

< max{n, 1
2n } < .

Hence, limn ‖Tn.z− ln‖ = 0. So, by lemma 13, T is hypercyclic. �

REMARK 18. We note that by the assumptions given in Theorems 14, 15 and 17
we must have ‖T‖ > 1.
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[9] L. BERNAL-GONZÀLEZ, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127,

(1999), 1003–1010.
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