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Abstract. In this article, we establish some conditions which imply the normality of class An .
Also, we prove that if T is a class An and M is an invariant subspace of T such that T |M
is a normal operator with 0 �∈ p(T |M) , then M reduces T . Moreover, we show that Weyl’s
theorem holds for every class An operator and some results related to the Riesz idempotent of
class An operators. By using the spectral properties of class An operators, we prove that a class
An contraction is the direct sum of a unitary and a C.0 completely non-unitary contraction. In
addition, the existence of a nontrivial hyperinvariant subspace of a class An operator will be
shown.

1. Introduction

Throughout this paper let H be a separable complex Hilbert space with inner
product 〈., .〉 . Let B(H) denote the C∗ -algebra of all bounded linear operators on H .
If T ∈B(H) we shall write ker(T ) and ran(T ) for the null space and range of T . Also,
let (T ) , a(T ) , r(T ) and p(T ) denote the spectrum, approximate point spectrum,
the residual spectrum and the point spectrum of T . A closed subspace M of H is
T -invariant (or M is invariant under T ) if T (M) ⊆M . We say that an operator T
has a non-trivial invariant closed subspace M of H if M is closed, T -invariant, and
{0} �= M �= H . A closed subspace M of H is called T -hyperinvariant if S(M)⊆M
for every S ∈ B(H) such that TS = ST (see [26]). An operator T is said to be positive
(denoted by T � 0) if 〈Tx,x〉 � 0 for all x ∈ H , and also T is said to be strictly
positive (denoted by T > 0) if it is positive and invertible. The polar decomposition
states that the operator T can be uniquely decomposed as T = U |T | , where U is a

partial isometry, |T | = (T ∗T )
1
2 and ker(T ) = ker(|T |) = ker(U) , which is one of the

most important results in operator theory ([10], [15], [18] and [32]).
An easy extension of normal operators, hyponormal operators have been studied

by many researchers. Though there are many unsolved interesting problems for this
class (for example, the invariant subspace problem), one of recent trends in operator
theory is to study natural extensions of hyponormal operators. Here we introduce some
of these non-hyponormal operators. Following [13], an operator T ∈ B(H) is said
to be hyponormal, if T ∗T � TT ∗ . An operator T ∈ B(H) is said to be paranormal
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[11], if ‖Tx‖2 �
∥∥T 2x

∥∥ for every unit vector x ∈ H . Further, T ∈ B(H) is said to be

n -paranormal operator [7], if ‖Tx‖n+1 �
∥∥Tn+1x

∥∥‖x‖n for all x ∈H .
T. Furuta el at. [13] introduced a very interesting class of bounded linear Hilbert

space operator: class A defined by |T 2| � |T |2, and they showed that class A is a
subclass of paranormal operators. Hence, we have

{Hyponormal} ⊂ {class A} ⊂ {paranormal} ⊂ {n -paranormal}.

The Riesz idempotent E of an operator T with respect to an isolated point  of (T )
is defined as follows.

E =
1

2 i

∫
D

(z−T )−1 dz (1.1)

It satisfies (T |EH) = {} and (T |(1−E)H) = (T ) \ {} , where the integral
is taken by the positive direction and D is a closed disk with center  and small
enough radius r such as D ∩(T ) = {} . In [31], Uchiyama proved that for every
paranormal operator T and each isolated point  of (T ) the Riesz idempotent E
satisfies that

E0 = kerT
E = ker(T − ) = ker(T − )∗ and E is self-adjoint if  �= 0.

We shall show that for every class An operator T and each isolated point  ∈ (T )
the Riesz idempotent E of T with respect to  is self-adjoint with the property that
EH = ker(T − ) = ker(T − )∗ .

If T ∈ B(H) , we denote kerT and ranT for the kernel of T and the range of T
respectively. We also denote the spectrum of T , the point spectrum of T , the Weyl
spectrum of T and the set of all eigenvalues of T with finite multiplicity which are
isolated in the spectrum by (T ) , p(T ) , w(T ) and 00(T ) respectively. An operator
T ∈ B(H) is called to be Fredholm if ranT is closed and both of kerT and kerT ∗

are finite dimensional subspaces. For arbitrary Fredholm operator T , the index of T is
definded by

ind(T ) := dimkerT −dimkerT ∗.

An operator T ∈ B(H) is called to be Weyl if and only if T is a Fredholm operator
with ind(T ) = 0. And the Weyl spectrum of T is defined by

w(T ) := { ∈ C : T − is not Weyl}.

We say that the Weyl’s theorem holds for an operator T ∈ B(H) if

(T )\w(T ) = 00(T ).
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2. Complementary results and definitions

We introduce several ideas and notations in this part that the study will build upon
(see [25, 27, 33]).

DEFINITION 2.1. An operator T ∈ B(H) is said to be belongs to class An opera-
tors (briefly, T ∈ An ) if

|Tn+1| 2
n+1 � |T |2

for some positive integer n .

REMARK 2.2. It follows from the definition that

(i) If n = 1, then class An and class A operators are coincides.

(ii) If T belongs to a class An , then T is n -paranormal.

THEOREM 2.3. For T ∈ B(H) . Then the following assertions hold.

(i) If T belongs to a class An , then T is normaloid [27].

(ii) If T belongs to class An and  �= 0 , then for unit vectors {xm} , (T − )xm →
0 implies (T −  )∗xm → 0 , p(T ) \ {0} =  jp(T ) \ {0} and a(T ) \ {0} =
 ja(T )\ {0} [33].

(iii) If T belongs to class An , then T − has finite ascent for all complex number 
and T has SVEP [33].

(iv) Any restriction T |M of T to an arbitrary T -invariant subspace M also belongs
to class An [27].

(v) T is isoloid, i.e., every isolated point of (T ) is an eigen value of T [27].

The following results are very important in the sequel.

LEMMA 2.4. (Hölder-McCarthy Inequality) Let T � 0. Then the following as-
sertions hold.

(i) 〈T rx,x〉 � 〈Tx,x〉r ‖x‖2(1−r) for r > 1 and x ∈H.

(ii) 〈T rx,x〉 � 〈Tx,x〉r ‖x‖2(1−r) for r ∈ [0,1] and x ∈H.

THEOREM 2.5. Let T ∈ B(H) . Then T ∈An if and only if

‖Tx‖2 �
∥∥Tn+1x

∥∥ 2
n+1 ‖x‖ 2n

n+1

for all x ∈H .
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Proof. For each a vector x ∈H , we have

T ∈An ⇐⇒ ‖Tx‖2 = 〈Tx,Tx〉 =
〈|T |2x,x〉

�
〈
|Tn+1| 2

n+1 x,x
〉

�
〈|Tn+1|2x,x〉 1

n+1 ‖x‖ 2n
n+1 (by Lemma 2.4)

=
∥∥Tn+1x

∥∥ 2
n+1 ‖x‖ 2n

n+1 . �

COROLLARY 2.6. Suppose that T belongs to class An and , ∈( T ) with  �=
 . Then ker(T −) ⊥ ker(T − ).

Proof. Let x ∈ ker(T −) and y ∈ ker(T −  ) . Then Tx = x and Ty = y .
Therefore

 〈x,y〉 = 〈x,y〉 = 〈Tx,y〉 = 〈x,T ∗y〉 =
〈
x,y

〉
=  〈x,y〉 .

Hence  〈x,y〉 =  〈x,y〉 and so ( −  )〈x,y〉 = 0. But  �=  , hence 〈x,y〉 = 0.
Consequently ker(T −) ⊥ ker(T − ). �

The following lemma is very useful in the sequel.

LEMMA 2.7. ([16]) If A,B ∈ B(H) satisfying A � 0 and ‖B‖ � 1, then

(B∗AB) � B∗AB for all  ∈ (0,1] .

THEOREM 2.8. Let T ∈ B(H) belongs to class An . If M is an invariant sub-
space of T and T |M is a normal operator with 0 �∈ p(T |M) , then M reduces T .

Proof. (a). Decompose T into

T =
(

S A
0 B

)
on H = M⊕M⊥

and let S = T |M be a normal operator. Let Q be the orthogonal projection of H onto
M . We remark that TQ = QTQ and

Q|Tn+1|2Q = QT ∗(n+1)Tn+1Q = (QT ∗Q)n+1(QTQ)n+1

=
(

S∗(n+1)Sn+1 0
0 0

)
=
( |S|2(n+1) 0

0 0

)

since S is normal. Then( |S|2 0
0 0

)
=
(
Q(|Tn+1|2Q) 1

n+1 � Q|Tn+1| 2
n+1 Q � Q|T |2Q =

( |S|2 0
0 0

)
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by Lemma 2.7. We can write |Tn+1| 2
n+1 =

( |S|2 C
C∗ D

)
. Since

( |S|4 0
0 0

)
= (Q|Tn+1|2Q)

2
n+1 � Q|Tn+1| 2

n+1 |Tn+1| 2
n+1 Q

=
(

I 0
0 0

)( |S|2 C
C∗ D

)( |S|2 C
C∗ D

)(
I 0
0 0

)

=
( |S|4 +CC∗ 0

0 0

)
.

Hence CC∗ = 0 and so C = 0. Therefore,

|Tn+1| 2
n+1 =

( |S|2 0
0 D

)
.

Since |Tn+1| 2
n+1 � |T |2 = T ∗T ,

|Tn+1| 2
n+1 −T ∗T =

(|S2|− |S2| −S∗A
−A∗S D− (A∗A+B∗B)

)

=
(

0 −S∗A
−A∗S D− (A∗A+B∗B)

)
� 0.

This implies that S∗A = 0. Since S is normal and kerS = {0} , kerS∗ = kerS = {0}
and hence A = 0. Therefor M reduces T and B belongs to class An . �

COROLLARY 2.9. If T belongs to class An and (T ) ⊂ S1 := {z ∈ C : |z| = 1} ,
then T is unitary.

Proof. If T belongs to class An such that (T ) ⊂ S1 , then r(T ) = r(T−1) = 1.

Hence ‖T‖ = r(T ) = 1 and 1 = r(T−1) �
∥∥T−1

∥∥ � r(T−1)
n(n−1)

2 r(T )
(n+1)(n−2)

2 = 1
implies

∥∥T−1
∥∥= 1. It follows that T is invertible and an isometry because

‖x‖ =
∥∥T−1Tx

∥∥� ‖Tx‖ � ‖x‖
for all x ∈H , so T is unitary. �

COROLLARY 2.10. Let T ∈B(H) be a class An operator. Then ker(T )∩ran(Tk)
= {0} for some positive integer k .

Proof. If T ∈ An , then it follows from Theorem 2.3 (iii) that T has finite ascent
and so ker(T ) = ker(Tk) for some positive integer k . If y ∈ ker(T )∩ ran(Tk) , then
Ty = 0 and y = Tkx for some x ∈ H . This implies that Tk+1x = Ty = 0. Since
x ∈ ker(Tk+1) = ker(T ) , we have y = Tkx = 0. Hence ker(T )∩ ran(Tk) = {0} . �

Halmos showed in [14] that a partial isometry is subnormal if and only if it is the
direct sum of an isometry and zero. We generalize this theorem to the case of a class
An operator.
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PROPOSITION 2.11. A partial isometry T is quasinormal (i.e., T ∗T 2 = TT ∗T )
if and only if T belongs to class An operators.

Proof. Suppose that T is partial isometry and a class Ak operator. Then

T ∗2T 2 = T ∗(T ∗T )T = T ∗T (T ∗T ) = (T ∗T )2 = T ∗T (∴ T ∗T is a projection)

T ∗3T 3 = T ∗2T 2 = T ∗T, · · · ,T ∗mTm = T ∗T, (T ∗mTm)1/m = T ∗T (∀m � 1).

Hence, T is class Ak for all k � 1. Suppose that T is partial isometry and a class An

operator. Then T is contraction, TT ∗T = T and

T ∗T �
(
T ∗(n+1)Tn+1

) 1
n+1 � (T ∗T )

1
n+1 = T ∗T,

∴ T ∗(n+1)Tn+1 = (T ∗T )n+1 = T ∗T.

T ∗T � T ∗2T 2 � T ∗(n+1)Tn+1 = T ∗T, ∴ T ∗2T 2 = T ∗T.

Hence (TT ∗)(T ∗T −1)(TT ∗) = T{T ∗2T 2 −T ∗T}T ∗ = 0 and T ∗TTT ∗ = TT ∗ . This
implies that TT ∗ � T ∗T and

(T ∗T )T = (T ∗T )(TT ∗T ) = (T ∗T )(TT ∗)T = (TT ∗)T = T (T ∗T ).

Therefore, T is quasinormal. �

3. Weyl’s theorem and the self-adjointness of any Riesz idempotent with respect
to an arbitrary isolated point of (T )

THEOREM 3.1. Let T be a class An and  is an isolated point of (T ) then the
Riesz idempotent E satisfies the followings;

(i) E0(H) = kerT ( = 0)

(ii) E(H) = ker(T − ) = ker(T − )∗, E = E∗
 ( �= 0)

for each n � 2 .

Proof. (i) Both of E0H and (1−E0)H are T -invariant closed subspaces which
satisfy that (T |E0H) = {0} and (T |(1−E0)H = (T ) \ {0} . Since, T ∈ An the re-
strictions T |E0H,T |(1−E0)H ∈ An and ‖T |E0H‖ = r(T |E0H) = 0 by Theorem 2.3(i) and
hence T |E0H = 0. This implies that E0H ⊂ kerT . Conversely, let x = y + z ∈ kerT
be arbitrary where y ∈ E0H and z ∈ (1−E0)H . Since T |E0H = 0 and T |(1−E0)H is
invertible,

0 = Tx = Ty+Tz = T |E0Hx+T |(1−E0)Hy = T |(1−E0)Hz

implies z = 0 and hence x = y ∈ E0H . Therefore E0H = kerT holds.
(ii) Both of EH and (1−E )H are T -invariant closed subspaces which satisfy

that (T |EH) = {} and (T |(1−E )H = (T )\ {} . Since, T ∈ An the restrictions
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T |EH,T |(1−E )H ∈ An and ‖T |EH‖ = r(T |EH) = | | by Theorem 2.3(i) and also

| |−1 �
∥∥∥(T |E0H

)−1
∥∥∥� | |− n(n−1)

2 + (n+1)(n−2)
2 = | |−1 by [30, Theorem 1]. Hence U =

1


T |EH is invertible isometry with the spectrum (U) = {1} , so U is unitary and

U = 1 on EH . This implies that T |E = E and (T −  )E = 0. It follows that
(T −  )∗E = 0 by Theorem 2.3(ii), and hence EH is a reducing subspace of T .

Since (z−T )∗E = (z−)E and (z−T )−1∗E =
(

1
z−

)
E , it follows that

0 � E∗
E = − 1

2 i

∫
|z− |=r

(z−T )∗−1E dz

= − 1
2 i

∫
|z− |=r

(
1

z−

)
E dz =

(
1

2 i

∫
1

z−
dz

)
E = E .

Hence E = E∗
 . Thus T is of the form T =  ⊕T ′ on H = EH⊕ (1−E )H with

 �∈ (T ′) . Therefore the assertion EH = ker(T − ) = ker(T − )∗ holds. �

THEOREM 3.2. Weyl’s theorem hold for any class An operators.

Proof. We first show that (T )\w(T ) ⊂ 00(T ) . Let  ∈ (T )\w(T ) be arbi-
trary. Then T − is not invertible Fredholm operator with the index ind(T − ) = 0.

Case (i) .  = 0. Then kerT �= {0} is finite dimension and ranT is closed, thus
T is of the form

T =
(

0 A
0 T ′

)
on kerT ⊕ ranT ∗.

Since A is a finite rank operator, it follows that T ′ is Fredholm with the index ind(T ′) =
ind(T ) = {0} . Let x ∈ kerT ′ be arbitrary. Then T 2(0⊕ x) = T (Ax⊕T ′x) = T (Ax⊕
0) = 0⊕ 0 = 0, so Tn(0⊕ x) = 0. Since T is class An , kerTn = kerT and hence
x ∈ kerT ∩ ranT ∗ = {0} . Therefore T ′ is Weyl with kerT ′ = {0} , so it is invertible.
This implies that 0 is isolated in (T ) = {0}∪(T ′) and 0 ∈ 00(T ) .

Case (ii) .  �= 0. Then ker(T −  ) is finite dimensional subspace which re-
duces T and ran(T − ) is closed, and hence T is of the form T =  ⊕T ′ on H =
ker(T − )⊕ ran(T − )∗ . Since T ′ − is Fredholm with the index ind(T ′ − ) = 0
and ker(T ′ − ) = {0} , it follows that T ′ − is invertible and hence  is isolated in
(T ) = {}∪(T ′) . Therefore  ∈ 00(T ) . Thus (T )\w(T ) ⊂ 00(T ) holds.

Next, we show that 00(T ) ⊂ (T )\w(T ) .
Let  ∈ 00(T ) be arbitraray. Then  is isolated in (T ) and ker(T − ) �= {0}

is finite dimension.

Case (i) .  = 0. Then the Riesz idempotent E0 with respect to 0 for T satisfies
that T |E0H = 0 and T ′ := T |(1−E0)H is invertible (so, it is Weyl) and T ′ ∈ An . And
T = 0+T ′ on H = E0H+(1−E0)H is also Weyl. Therefore 0 ∈ (T )\w(T ) .
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Case (ii) .  �= 0. Then ker(T − ) is finite dimensional subspace which reduces
T and T =  ⊕T ′ on H = ker(T − )⊕ ran(T − )∗ , where T ′ is a class An (hence
T ′ ∈ An ). If  ∈ (T ′) then  is isolated in (T ′) and  ∈ p(T ′) . This contradicts
the fact that ker(T ′ − )⊂ ran(T − )∗ ∩ker(T − ) = {0} . Thus T ′ − is invertible
and T − = 0⊕ (T ′ − ) implies that T − is Fredholm with the index ind(T − ) =
ind(T ′ − ) = 0, so T − is Weyl. Therefore  ∈ (T )\w(T ) holds. �

PROPOSITION 3.3. Let T ∈ B(H) be a class An operator and Tn be a compact
operator for some n ∈ N . Then T is also compact and normal.

Proof. Assume that T is a class An operator. Hence it follows from Theorem 2.5
that

‖Tx‖2 �
∥∥Tn+1x

∥∥ 2
n+1 ‖x‖ 2n

n+1 for every x ∈H . (3.1)

Let {xm} ∈ H be weakly convergent sequence with limit 0 in H . From the compact-
ness of Tn and the relation (3.1) we get the following relation:

‖Txm‖2 → 0, m → .

From the last relation it follows that T is compact. Since T is compact (T ) is finite
set or countable infinite with 0 as the unique limit point of it. Let (T ) \ {0} = {n}
with

|1| � |2| � · · · � |n| � |n+1| � · · · � 0, and n → 0 (n → ).

By the compactness of T or isoloidness of T , n ∈ p(T ) and dimker(T −n) < 

for all n . Since ker(T −n) ⊂ ker(T −n)∗ , M :=
⊕

n=1

ker(T −n) reduces T , and T

is of the form

T =

(
⊕

n=1

n

)
⊕T ′ on H = M⊕M⊥.

By the construction, T ′ ∈ An and (T ′) = {0} hence T ′ = 0. This shows that

T =

(
⊕

n=1

n

)
⊕0

and it is normal. �

THEOREM 3.4. If T ∈ B(H) belongs to class An with w(T ) = {0} , then T is a
compact normal operator.

Proof. By Theorem 3.2, T satisfies Weyl’s theorem and this implies that each
element in (T ) \w(T ) = (T ) \ {0} is an eigenvalue of T with finite multiplicity,
and is isolated in (T ) . Hence (T )\{0} is a finite set or a countable set with 0 as its
only accumulation point. Put (T )\{n} , where n �= m whenever n �= m and {|n|}
is a non-increasing sequence. Since T is normaloid, we have |1|= ‖T‖ . By Theorem
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2.3(ii), we have (T −1)x = 0 implies (T −1)∗x = 0. Hence ker(T −1) is a reducing
subspace of T . Let E1 be the orthogonal projection onto ker(T −1). Then T = 1⊕
T1 on H= E1H⊕(1−E1)H . Since T1 ∈An by Theorem2.3 (ii) and (T ) =( T1)∪{1} ,
we have 2 ∈( T1) . By the same argument as above, ker(T − 2) = ker(T1 − 2) is
a finite dimensional reducing subspace of T which is included in (1− E1)H . Put
E2 be the othogonal projection onto ker(T − 2) . Then T = 1E1 ⊕ 2E2 ⊕ T2 on
H = E1H⊕E2H⊕ (1−E1−E2)H . By repeating above argument, each ker(T −n)

is a reducing subspace of T and

∥∥∥∥∥T −
n⊕

k=1

kEk

∥∥∥∥∥ = ‖Tn‖ = |n+1| → 0 as n →  .

Here Ek is the orthogonal projection onto ker(T − k) and T = (
n⊕

k=1

kEk)⊕ Tn on

H =
n⊕

k=1

EkH⊕ (1−
n


k=1

Ek)H. Hence T =
⊕

k=1

kEk is compact and normal because

each Ek is a finite rank orthogonal projection which satisfies EkEl = 0 whenever k �= l
by Corollary 2.6 and n → 0 as n →  . �

COROLLARY 3.5. Let T ∈ An . Then T can be written as

T = A⊕S,

where A is normal and S is a class An with w(S)\ {0}= (S)\ {0} .

Proof. By Theorem 3.2, (T )\w(T ) = 00(T ) . Let N be the closed linear sub-
space of H generated by

⋃
 j∈00(T )\{0}

ker(T − j) . Then N is reduced by T . The

decomposition H = N ⊕N⊥ gives T = A⊕ S , where A is normal and S ∈ An . One
can see that (S)\ {0}= w(S)\ {0} . �

THEOREM 3.6. If T belongs to class An with a single limit point of the spectrum,
then T is normal.

Proof. We first show the Case (i) the limit point is zero. By hypothesis, every
non-zero point of the spectrum being isolated is an eigenvalue. class An operator T
implies that each eigenspace of T is reducing and T is normal on that eigenspace. Let
M be the closed linear span of H generated by

⋃
ker(T − j) , where  j runs over

non-zero values in (T ) . M is thus a closed linear subspace of H reducing T and
T |M is normal. But then by the decomposition H = M⊕M⊥ we get T |M⊥ to be
class An quasinilpotent operator and hence is zero. So, T is normal.

We show the Case (ii) the limit point is 0 �= 0. Let M =
⊕

∈(T)\{0}
ker(T − ) .

Here, ker(T − ) reduces T for all  ∈ (T )\{0,0} and ker(T −0) is {0} or non-
zero reducing subspace of T . If M �= H then (T |M⊥) = {0} and hence T |M⊥ =
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0 since T |M⊥ is normaloid. Thus T =

⎛
⎝ ⊕

∈(T)\{0}


⎞
⎠⊕ 0 on H = M⊕M⊥ is

normal. �

THEOREM 3.7. If T belongs to class An with only a finite number of limits points
in its spectrum, then T is normal.

Proof. Let z1,z2, · · · ,zk be all limit points of (T ) with zk = 0 if 0 is a limit
point of ker(T ) and choose a simple closed curve G which does not intersect (T )
and contains only one limit point z1 �= 0 in its interior.

E1 =
∫

G

1
z−T

dz.

Then E1 is a non-zero projection on H such that E1H is invariant under T . Also then

(T |E1H) = (T )∩G◦,

where G◦ denotes the interior of G . Hence T |E1H can have only one limit point and
therefore is normal by Theorem 3.6. Hence T is reduced by E1H by Theorem 2.8.
Now considering T on (E1H)⊥ and continuing the same process we conclude that
E1,E2, · · · ,Ek−1 are non-zero projections which satisfy EiE j = 0 (i �= j) and T being a
direct sum of normal operators on M = (E1H⊕E2H⊕·· ·⊕Ek−1H) , so it is normal.
By the construction, the limit point of (T |M⊥) is only a single point hence T |M⊥ is
normal by Theorem 3.6. Thus T = T |M⊕T |M⊥ is normal. �

THEOREM 3.8. If T and S are belong to class An , then

S,T : Weyl ⇐⇒ ST : Weyl.

Proof. If S and T are Weyl, then S and T are Fredholm and ind(S)= ind(T ) = 0.
By [8], ST is Weyl and by the index product theorem, ind(ST ) = ind(S)+ ind(T ) = 0.
Hence ST is Weyl.

Conversely, if ST is Weyl, then ST is Fredholm and ind(ST ) = 0. Put T =(
0 A
0 T ′

)
on kerT ⊕ ranT ∗ . Then kerT ′ = {0} . Because if x ∈ kerT ′ then T 2(0⊕x) =

T (Ax⊕T ′x) = T (Ax⊕0) = 0 and T (0⊕x) = 0 since T is class An , hence x ∈ kerT ∩
ranT ∗ = {0} . Since A is a finite rank operator, it is compact, and hence

ind(T ) = dim kerT −dim kerT ∗ = 0−dim kerT ∗ � 0.

We also have ind(S) � 0. Hence

0 = ind(ST ) = ind(S)+ ind(T ) � 0

implies that ind(S) = ind(T ) = 0. Thus T and S are Weyl. �
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A contraction is an operator T such that ‖T‖ � 1; equivalently, ‖Tx‖ � ‖x‖ for
every x ∈ H . A contraction T is said to be a proper contraction if ‖Tx‖ < ‖x‖ for
every nonzero x ∈H . A strict contraction is an operator T such that ‖T‖ < 1. A strict
contraction is a proper contraction, but a proper contraction is not necessarily a strict
contraction, although the concepts of strict and proper contraction coincide for compact
operators. A contraction T is of class C0. if ‖Tnx‖→ 0 when n →  for every x ∈H
(i.e., T is a strongly stable contraction) and it is said to be of class C1. if lim

n→
‖Tnx‖> 0

for every nonzero x ∈ H . Classes C.0 and C.1 are defined by considering T ∗ instead
of T and we define the class C for , = 0,1 by C . ∩C. . An isometry is a
contraction for which ‖Tx‖ = ‖x‖ for every x ∈H .

THEOREM 3.9. Let T be a contraction of class An operators for a positive inte-
ger n. Then T is the direct sum of a unitary and a C.0 completely nonunitary contrac-
tion.

Proof. Since T is a contraction, then the sequence {TkT ∗k} is a decreasing se-
quence of self-adjoint operators, converging strongly to a contraction.

Let A =
(

lim
k→

TkT ∗k
) 1

2

. A is self-adjoint and 0 � A � I and TA2T ∗ = A2 . By

[9] we have that there exists an isometry V : ran(A) → ran(A) such that VA = AT ∗ on
ran(A) . V can be extended to a bounded linear operator on H ; we still denote it by V .
We shall show that A is the orthogonal projection onto ran(A) if T is class An . Let
xk = AVkx , k ∈ N∪{0} . Then for all nonnegative integers m ,

Tmxm+k = TmAVm+kx = AV ∗mV k+mx = AVkx = xk. (3.2)

So we have, for all m � k , Tmxk = xk−m . The sequence {‖xm‖} is a bounded above
increasing sequence.

Firstly we prove that {‖xk‖} is a constant sequence. Suppose that T is a class An

operator for a positive integer n . Then, for all k � 1 and nonzero x ∈ ran(A) ,

‖xk‖2 = ‖Txk+1‖2 �
∥∥Tn+1xk+1

∥∥ 2
n+1 ‖xk+1‖

2n
n+1

=
∥∥xk+1−(n+1)

∥∥ 2
n+1 ‖xk+1‖

2n
n+1

= ‖xk−n‖
2

n+1 ‖xk+1‖
2n

n+1 ,

(3.3)

and so

‖xk‖ � ‖xk−n‖
1

n+1 ‖xk+1‖
n

n+1 � 1
n+1

(‖xk−n‖+n‖xk+1‖) . (3.4)

Therefore

n(‖xk+1‖−‖xk‖) � ‖xk‖−‖xk−n‖
= (‖xk‖−‖xk−1‖)+‖xk−1‖−‖xk−2‖+ · · ·+‖xk−n+1‖−‖xk−n‖ .

(3.5)
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If we let ak = ‖xk‖−‖xk−1‖ , then we have

nak+1 � ak +ak−1 + · · ·+ak−n+1 (3.6)

where ak � 0 and ak → 0 as k→ . Suppose that there exists an integer j � 1 such that

a j > 0; then a j+1,a j+2, · · · ,a j+n � a j

n
> 0 by (3.6), and a j+n+1 >

1
n
(a j+n +a j+n−1 +

· · ·+ a j+1) >
a j

n
by (3.6). We have that ak � a j

n
> 0, for all k > j by an induction

argument. This is contradictory with the fact that ak → 0 as k →  . Consequently, we
have that ak = 0 for all k , which implies that ‖xk−1‖ = ‖xk‖ for all k � 1. This means

that for all x ∈ ran(A) ,
∥∥∥AVkx

∥∥∥= ‖Ax‖ = ‖x‖ . So we have that A2 = I on ran(A) and

hence A = I on ran(A) . Therefore, we A = I⊕ 0 on H = ran(A)⊕ ker(A) . Hence A
is a projection. By [19], we have that if A is a projection, then T has a decomposition:

T = Tu⊕Tc, Tc = S∗⊕T0, (3.7)

where Tu is unitary and the completely nonunitary part Tc of T is the direct sum of
backward unilateral shift S∗ and a C.0 -contraction T0 . We will prove that S∗ is missing
from the direct sum. It is well known that an operator Q = Q1⊕Q2 has SVEP at a point
 if and only if Q1 and Q2 have SVEP at the point  . Since class An operators have
SVEP by Theorem 2.3 (iii), it follows that if S∗ is present in the direct sum of T ,
then it has SVEP. This contradicts the fact that the backward unilateral shift does not
have SVEP anywhere on its spectrum except for the boundary point of its spectrum.
Therefore, T = Tu⊕T0 . So, the proof is achieved. �

4. Hyperinvariant subspace for class An operators

Let T (x) ⊆ C denote the local spectral of T at the point x ∈H , i.e., the comple-
ment of the set T (x) of all  ∈ C for which there exists an open neighborhood U of
 in C and an analytic function f : U →H such that (T − ) f () = x holds for all
 ∈U . Moreover, T (x) ⊆ (T ) . For every closed subset F of C , let

HT (F) = {x ∈H : T (x) ⊆ F}
denote the corresponding analytic spectral subspace of T .

An operator T ∈ B(H) is said to be decomposable if, for any open covering
{U,V} of the complex plane C there are two closed T -invariant subspaces Y and
Z of H such that H = Y +Z , (T |Y ) ⊆U and (T |Z) ⊆V . For every decomposable
operator T the identity H = HT (U)+HT (V ) holds for every open cover {U,V} of C
[20, Theorem 1.2.23].

An operator Q ∈ B(H,K) is called quasi-affine if it has trivial kernel and has
dense range. An operator L ∈ B(H) is said to be a quasi-affine transform of T ∈ B(K)
if there exists a quasi-affine Q ∈ B(H,K) such that QL = TQ .

THEOREM 4.1. Let T ∈ B(H) be a class An operator such that T �= zI for all
z ∈ C . If L is a decomposable quasi-affine transform of T , then T has a nontrivial
hyperinvariant subspace.
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Proof. If L is a decomposable quasi-affine transform of T , then there exists a
quasi-affine Q such that QL = TQ , where L is decomposable. Assume that T has no
nontrivial hyperinvariant subspace. It follows From [21, Lemma 3.6.1] that p(T ) = /0
and HT (F) = {0} for each closed set F proper in (T ) . Let {U,V} be an open cover
of C such that (T )\U �= /0 and (T )\V �= /0 .

Now, if x ∈ HL(U) , then L(x) ⊂ U . Hence there exists an analytic H -valued
function f defined on C \U such that (L− z) f (z) = x for all z ∈ C \U . So (T −
z)Qf (z) = Q(L− z) f (z) = Qx . Hence C \U ⊂ T (Qx) , this implies Qx ∈ HT (U) .
Thus Q(HL(U)) ⊆HT (U) . A similar argument shows Q(HL(V )) ⊆HT (V ) .

Therefore, since L is decomposable then H = HL(U)+HL(V ) , and finally

Q(H) = Q(HL(U))+Q(HL(V )) ⊆HT (U)+HT (V )

= HT (U ∩(T ))+HT (V ∩(T )) = {0}.
This is a contradiction. Hence, T has a nontrivial hyperinvariant subspace. �

THEOREM 4.2. Let T ∈ B(H) be a class An operator. If there exists a nonzero
vector x ∈ H such that T (x) � (T ) , then T has a nontrivial hyperinvariant sub-
space.

Proof. Assume that W =HT (T (x)) = {y ∈H : T (y) ⊆ T (x)} . Then Theorem
1.2.16 of [20] implies that W is a T -hyperinvariant subspace. Since x ∈W , W �= {0} .
Suppose that W =H . Since T ∈An , T has SVEP by Corollary 2.18 of [27] and hence
it follows from [20, Theorem 1.3.2] that

(T ) =
⋃

{T (y) : y ∈H} ⊆ T (x) � (T )

which is contradiction. Hence W is a nontrivial T -hyperinvariant subspace. �

THEOREM 4.3. Let T ∈ B(H) be a class An operator with T �= I for any  ∈
C . If there exists x ∈ H \ {0} such that ‖Tnx‖ � Crn for all positive integers n,
where C > 0 and 0 < r < r(T ) are constants, then T has a nontrivial hyperinvariant
subspace.

Proof. Put f (z) :=−



n=0

z−(n+1)Tnx which is analytic for |z|> r ; in fact,  = z−1

for |z|> r , then f () =−



n=0

n+1Tnx for 0 < ||< 1/r . Since the hypothesis implies

that lim
n→

sup‖Tnx‖ � r , the radius of convergence for the power series



n=0

n+1Tnx is

at least 1/r . Setting f (0) := 0, we get that f () is analytic for || < 1/r i.e., f (z) is
analytic for |z| > r . Since

(T − z) f (z) = −



n=0

z−(n+1)Tnx+



n=0

z−nT nx = x
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for all z ∈ C with |z| > r , we have T (x) ⊃ {z ∈ C : |z| > r} , i.e.,

T (x) ⊂ {z ∈ C : |z| � r}.

Since r < r(T ) , it holds that T (x) � (T ) . Thus, we conclude from Theorem 4.2 that
T has a nontrivial hyperinvariant subspace. �
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