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Abstract. In this paper, a new class of band matrices is considered where the entries of each non-
zero band form a sequence with two limit points. The compact perturbation technique is used
to study the spectrum over the �p , (1 < p < ) sequence space. Several spectral subdivisions
such as fine spectrum, discrete spectrum, essential spectrum, etc. are obtained. In addition, a
few sufficient conditions on the absence of point spectrum over the essential spectrum are also
discussed.

1. Introduction

The spectral analysis of infinite matrices, in particular band matrices, defined over
sequence spaces has been treated by many researchers worldwide. Over the last few
decades, localization of spectrum and various spectral sub-divisions of band matrices
over sequences spaces generated by difference equations has evolved into a substantial
area of study in the field of spectral theory.

The spectral properties of the double band operator B(r,s) defined by the differ-
ence equation with constant coefficient

(B(r,s)x)n = sxn−1 + rxn, n ∈ N

with x0 = 0 were studied by Altay and Başar [6], Furkan et al. [31], Bilgiç and Furkan
[15] over the sequence spaces c0 and c , l1 and bv , lp and bvp (1 < p < ) respec-
tively. The case r = 1 = s was explored by Altay and Başar [5], Kayaduman and
Furkan [38], Akhmedov and Başar [2] over the sequence spaces c0, c and l1, bv and
bvp (1 � p < ) respectively. B(r,s) was further generalised to the triple band opera-
tor B(r,s, t) and Furkan et al. [29, 30], Bilgiç and Furkan [14] examined the spectrum
and fine spectrum of B(r,s,t) . The fine spectrum of the generalised n -band triangular
Toeplitz operator was studied by Altun [7], Birbonshi and Srivastava [16]. Band ma-
trices with non-constant band are also been considered in the literature. The spectrum
and fine spectrum of the generalised differnece operators �v and �uv were obtained in
[3, 46] and [4, 24, 25, 26, 47] respectively where

(�v x)n = vnxn− vn−1xn−1,

(�uv x)n = unxn − vn−1xn−1
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with x−1 = 0, n ∈ N and certain assumptions on the sequences u and v . Later on, El-
Shabrawy [24, 25] has studied the fine spectrum of the operator �ab on the sequence
space lp (1 < p < ) and c0 respectively. In 2012, the fine spectrum of lower tri-
angular triple band matrix 2

uvw on l1 is studied by Panigrahi and Srivastava [43] and
analogously, the upper triangular case is studied by Altundag and Abay [9]. An impor-
tant class of tridiagonal matrices, known as Jacobi matrices, has been studied by several
researchers. In this context, we refer the readers to the recent works done by J. Dom-
browski [21, 19, 20]. The generalised m+1 banded matrix m, m∈N is considered in
[22]. The spectrum and fine spectrum of the difference operator �r

v over the sequence
spaces c0 and l1 have been studied by Dutta and Baliarsingh (see [10, 23]). Recently
Meng and Mei [41, 42] characterise the spectrum of the generalised difference operator

B(m)
v . Spectra of tridiagonal matrices [13, 27, 37] and symmetric 2n+1 band matrices

[8] are also studied. For a detailed review, one may refer to the survey articles [11, 48]
and the references therein.

An interesting problem is to study the spectrum and fine spectrum of banded ma-
trices acting over sequence spaces where the entries of the band forms oscillatory se-
quences. Recent articles [18, 40, 44] focus in this direction. However, the spectral prop-
erties of symmetric band matrices whose bands are generated by oscillatory sequences
are not much explored. In this article, we attempt to study the spectral properties of a
class of penta-diagonal band matrices defined over the sequence space �p (1 < p < )
where the entries in the non-zero bands form sequences with two limit points. The case
where the entries in the non-zero bands form oscillatory sequences is treated separately.

Let �p represents the Banach space of p -absolutely summable sequences of real
or complex numbers with the norm

‖x‖p =

(



n=1

|xn|p
) 1

p

.

Also let Dp denotes the set of all diagonal operators on �p. For any operator T ∈
Dp, diag(T ) represents the sequence in the diagonal of T. In this work we investigate
the spectral properties of a class of operators T defined over �p represented by the
following form:

T = S2
rD1 +D2S

2
� +D3

where Sr,S� : �p → �p , denotes the right shift operator, left shift operator respectively
and D1,D2,D3 ∈Dp with diag(D1) = {cn} ⊂ C\{0} diag(D2) = {bn} ⊂ C\{0} and
diag(D3) = {an} ⊂ C . We further assume that the subsequences {a2n−1}, {b2n−1} ,
{c2n−1} converges to the non-negative real numbers r1, s1, s1 respectively and {a2n},
{b2n} , {c2n} converges to the non-negative real numbers r2, s2, s2 respectively where
s1 �= 0 and s2 �= 0.

Our focus is to investigate the spectral properties of the operator T using compact
perturbation technique. Let us consider another operator T0 over �p defined by

T0 = S2
rD

′
1 +D′

2S
2
� +D′

3
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where D′
1,D

′
2,D

′
3 ∈ Dp with

diag(D′
1) = diag(D′

2) = {s1,s2,s1,s2, · · ·}, diag(D′
3) = {r1,r2,r1,r2, · · ·}.

Using the properties of compact operators, it can be proved that T −T0 is a compact
operator over �p . Both the operators T and T0 can be represented by the following
penta-diagonal matrices

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 b1 0 0 · · ·
0 a2 0 b2 0 · · ·
c1 0 a3 0 b3 · · ·
0 c2 0 a4 0 · · ·
0 0 c3 0 a5 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, T0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r1 0 s1 0 0 · · ·
0 r2 0 s2 0 · · ·
s1 0 r1 0 s1 · · ·
0 s2 0 r2 0 · · ·
0 0 s1 0 r1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We obtain the spectrum, fine spectrum and the sets of various spectral subdivisions
of the operator T0. It is interesting to note that the spectrum of T0 is given by

[r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2],

which is also its essential spectrum with no eigenvalues. Later we investigate how the
spectrums of T and T0 are related. Few results on the essential spectrum of T (which
is identical to the essential spectrum of T0 ) being devoid of its eigenvalues are also
derived. This helps us to characterize the point spectrum of T. Theory of difference
equations plays an important role in our study. We use various results on the asymptotic
behaviour of solutions of difference equations to demonstrate the findings of our paper.
For more details on difference equations one can refer [28].

The remainder of paper is organized as follows: section 2 is devoted to introduce
some terminologies and results which are relevant to our work. Section 3 contains the
results on the spectrum and fine spectrum of T0 over �p. The spectral properties of T
are discussed in section 4.

2. Preliminaries

Let X and Y are Banach spaces and for any operator A : X → Y , N(A) and R(A)
denote the null space and range space of A respectively. The operator A∗ : Y ∗ → X∗ is
called the adjoint operator and defined by

(A∗ f )(x) = f (Ax) for all f ∈ Y ∗ and x ∈ X

where X∗ , Y ∗ are the dual spaces of X and Y respectively. B(X) denotes the set of all
bounded linear operators from X to itself. For any A ∈ B(X) , the resolvent set (A,X)
of A is the set of all  in the complex plane such that (A− I) has a bounded inverse
in X where I is the identity operator defined over X . The complement of resolvent set
in the complex plane C is called the spectrum of A and it is denoted by (A,X) . The
spectrum (A,X) can be partitioned into three disjoint sets which are
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(i) the point spectrum, denoted by p(A,X) , is the set of all such  ∈ C for which
(A− I)−1 does not exist. An element  ∈ p(A,X) is called an eigenvalue of
A ,

(ii) the continuous spectrum, denoted by c(A,X) , is the set of all such  ∈ C for
which (A− I)−1 is exists, unbounded and R(A− I) is dense in X but R(A−
 I) �= X ,

(iii) the residual spectrum, denoted by r(A,X) , is the set of all such  ∈C for which
(A− I)−1 exists (and may be bounded or not) but R(A− I) is not dense in X .

These three disjoint sets are together known as fine spectrum and their union becomes
the whole spectrum. There are some other important subdivisions of the spectrum such
as approximate point spectrum app(A,X) , defect spectrum  (A,X) and compression
spectrum co(A,X) , defined by

app(A,X) = { ∈ C : there exists a Weyl sequence for (A− I)},
 (A,X) = { ∈ C : (A− I) is not surjective} ,

co(A,X) =
{
 ∈ C : R(A− I) �= X

}
.

The sets which are defined above also forms subdivisions of spectrum of A (which are
not necessarily disjoint) as follows [12, p. 178]

(A,X) = app(A,X)∪co(A,X),
(A,X) = app(A,X)∪ (A,X).

An operator A∈B(X) is said to be Fredholm operator if R(A) is closed and dim(N(A)) ,
dim(X/R(A)) are finite. In this case the number

dim(N(A))−dim(X/R(A))

is called the index of the Fredholm operator A . The essential spectrum of A is defined
by the set

ess(A, �p) = { ∈ C : (A− I) is not a Fredholm operator} .

If A is a Fredholm operator and K ∈ B(X) is a compact operator then A+K is also a
Fredholm operator with same indices. Since compact perturbation does not effect the
Fredholmness and index of a Fredholm operator, we have

ess(A,X) = ess(A+K,X).

For any isolated eigenvalue  of A, the operator PA which is defined by

PA( ) =
1

2 i

∫

(I−A)−1d ,

is called the Riesz projection of A with respect to  where  is positively orientated
circle centred at  with sufficiently small radius such that it excludes other spectral
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values of A. An eigenvalue  of A is said to be a discrete eigenvalue if it is isolated and
the rank of the associated Riesz projection is finite. The rank of the Riesz projection
is called the algebraic multiplicity of  . The set of all such eigenvalues with finite
multiplicities is called the discrete spectrum of A and it is denoted by d(A,X). This
type of eigenvalues sometimes referred as eigenvalues with finite type.

In the following proposition, we mention some inclusion relation of spectrum of a
bounded linear operator and its adjoint operator.

PROPOSITION 2.1. [12, p. 195] If X is a Banach space and A ∈ B(X) , A∗ ∈
B(X∗) then the spectrum and subspectrum of A and A∗ are related by the following
relations:

(a) (A∗,X∗) = (A,X),

(b) c(A∗,X∗) ⊆ app(A,X),

(c) app(A∗,X∗) =  (A,X),

(d)  (A∗,X∗) = app(A,X),

(e) p(A∗,X∗) = co(A,X),

(f) co(A∗,X∗) ⊇ p(A,X),

(g) (A,X) = app(A,X)∪p(A∗,X∗)=p(A,X)∪app(A∗,X∗).

Here we record few lemmas related to the boundness of an infinite matrix defined
over sequence spaces, which are useful to our research.

LEMMA 2.2. [17, p. 253] The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(�1) from �1 to itself if and only if the supremum of �1 norms of the
columns of A is bounded.

LEMMA 2.3. [17, p. 245] The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(�) from � to itself if and only if the supremum of �1 norms of the
rows of A is bounded.

LEMMA 2.4. [17, p. 254] The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(�p)(1 < p <) if T ∈ B(�1)∩B(�).

3. Spectra of T0

It is already mentioned that we study the spectral properties of T by using the
spectral properties of T0 and compact perturbation technique. In this section we derive
the spectrum and fine spectrum of T0 . The notation ‖T‖p denotes the operator norm
of an operator T ∈ B(�p) where 1 � p �  .
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THEOREM 3.1. The operator T0 : �p → �p is a bounded linear operator which
satisfies the following inequality

( |r1|p + |r2|p + |s1|p + |s2|p
2

) 1
p

� ‖T0‖p �
(
3p−1 (|r1|p +2|s1|p + |r2|p +2|s2|p)

) 1
p .

Proof. As linearity of T0 is trivial, we omit it. Let e = (1,1,0,0, . . .) ∈ �p . Then
T0(e) = (r1,r2,s1,s2,0, . . .) and one can observe that

‖T0(e)‖p

‖e‖p
=
( |r1|p + |r2|p + |s1|p + |s2|p

2

) 1
p

.

This proves ( |r1|p + |r2|p + |s1|p + |s2|p
2

) 1
p

� ‖T0‖p .

Also, let x = {xn} ∈ �p and xn = 0 if n � 0. Then,

‖T0(x)‖p
p =




n=1

|s1x2n−3 + r1x2n−1 + s1x2n+1|p

+



n=1

|s2x2n−2 + r2x2n + s2x2n+2|p

�



n=1

(|s1x2n−3|+ |r1x2n−1|+ |s1x2n+1|)p

+



n=1

(|s2x2n−2|+ |r2x2n|+ |s2x2n+2|)p.

By Jensen’s inequality we get,

‖T0(x)‖p
p �3p−1




n=1

(|s1x2n−3|p + |r1x2n−1|p + |s1x2n+1|p)

+3p−1



n=1

(|s2x2n−2|p + |r2x2n|p + |s2x2n+2|p)

�3p−1 (|r1|p +2|s1|p + |r2|p +2|s2|p)‖x‖p
p.

This implies,

‖T0‖ �
(
3p−1 (|r1|p +2|s1|p + |r2|p +2|s2|p)

) 1
p .

This completes the proof. �

The following theorem proves the non-existence of eigenvalues of the operator T0

in �p .
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THEOREM 3.2. The point spectrum of T0 over �p is given by p(T0, �p) = /0.

Proof. Consider (T0 −  I)x = 0 for  ∈ C and x = {xn} ∈ CN . This gives the
following system of equations

(r1 − )x1 + s1x3 = 0

(r2 − )x2 + s2x4 = 0

s1x1 +(r1− )x3 + s1x5 = 0

s2x2 +(r2− )x4 + s2x6 = 0
...

s1x2n−1 +(r1− )x2n+1 + s1x2n+3 = 0

s2x2n +(r2− )x2n+2 + s2x2n+4 = 0
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

If x1 = 0 then x2n−1 = 0 for all n ∈ N . Similarly x2 = 0 implies x2n = 0 for all n∈ N.
Therefore let (x1,x2) �= (0,0) and consider two sequences {yn} and {zn} where yn =
x2n−1 and zn = x2n , n∈N respectively. Then the system of equations of (T0− I)x = 0
reduces to

yn + p1yn+1 + yn+2 = 0, (3.1)

zn + p2zn+1 + zn+2 = 0, (3.2)

where p1 = r1−
s1

, p2 = r2−
s2

, n ∈ N∪{0} and y0 = z0 = 0. If x1 �= 0, the general
solution of the difference equation (3.1) is given by ([28, p. 75],

yn =

⎧⎪⎨
⎪⎩

(c1 +nc2)(−1)n, if p1 = 2

c1 +nc2, if p1 = −2

c1n
1 + c2n

2 , if p1 /∈ {−2,2}
(3.3)

where c1, c2 are arbitrary constants and 1, 2 are the roots of the polynomial

y2 + p1y+1 = 0 (3.4)

which is called the characteristic polynomial of (3.1). The following two equalities

12 = 1 and 1 +2 = −p1

are useful. Equation (3.3) suggests there are three cases to be considered.

Case 1: If p1 = 2 (i.e.,  = r1 −2s1 ). In this case the general solution of (3.1) is

yn = (c1 + c2n)(−1)n, n ∈ N∪{0}
with the initial condition y0 = 0 which gives c1 = 0. This reduces the solution as
yn = nc2(−1)n. This also implies c2 = −y1 and the solution in this case is

yn = ny1(−1)n+1, n ∈ N.
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Case 2: If p1 = −2 (i.e.,  = r1 +2s1 ). Similar as Case 1, the solution reduces to

yn = ny1, n ∈ N.

Case 3: If p1 /∈ {−2,2}. The general solution of (3.1) is given by

yn = c1n
1 + c2n

2 .

With the help of initial condition y0 = 0 and by using the equalities 12 = 1, 1 +
2 = −p1 , one can obtain that c2 = −c1 and the solution reduces to

yn =
n

1 −n
2

1 −2
y1, n ∈ N.

If y1 �= 0 then {yn} /∈ �p in Case 1 and Case 2. In Case 3 {yn} ∈ �p if and only if
|1|< 1 and |2|< 1 which can not be the case since 12 = 1. Hence in all the three
cases {yn} ∈ �p if and only if y1 = 0 and this leads to the fact that x1 �= 0. Hence there
is no non-trivial solution of (3.1).

Similarly for the difference equation (3.2), if x2 �= 0, the general solution {zn} is
of the form

zn =

⎧⎪⎨
⎪⎩

(d1 +nd2)(−1)n, if p2 = 2

d1 +nd2, if p2 = −2

d1 n
1 +d2 n

2 , if p2 /∈ {−2,2}
(3.5)

where d1, d2 are arbitrary constants and 1, 2 are the roots of the polynomial

z2 + p2z+1 = 0 (3.6)

which is called the characteristic polynomial of difference equation (3.2). In a similar
way, it can be proved that {zn} ∈ �p if and only if z1 = 0 and this leads to the trivial
solution of (3.2). Hence, there does not exist any non-trivial solution of the system
(T0− I)x = 0 such that x ∈ �p. This proves the required result. �

REMARK 3.3. The solution x = {xn} of the system Tx = x, which are obtained
in terms of the sequences {yn} and {zn} in the equations (3.3) and (3.5) respectively,
actually depends on the unknown  . Therefore, instead of writing xn( ), we write xn

for the sake of brevity throughout this paper except in Theorem 4.8 where the depen-
dency of the solutions on  is vital.

The adjoint operator of T0 is T ∗
0 which is defined over sequence space �∗p where

�∗p denotes the dual space of �p which is isomorphic to �q where 1
p + 1

q = 1.

COROLLARY 3.4. The point spectrum of adjoint operator T ∗
0 over the sequence

space �∗p is given by p(T ∗
0 , �∗p) = /0.

Proof. It is well known that the adjoint operator T0
∗ : �∗p → �∗p , is represented by

transpose of the matrix T0 . Since T0 is represented by a symmetric matrix, using the
same argument as Theorem 3.2, it is easy to prove that p(T ∗

0 , �∗p) = /0. �
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COROLLARY 3.5. The residual spectrum of T0 over the sequence space �p is
given by r(T0, �p) = /0 .

Proof. We know that the operator T has a dense range if and only if T ∗ is one to
one [12, p. 197]. Using this we have the following relation

r(T0, �p) = p(T ∗
0 , �∗p)\p(T0, �p).

Hence, r(T0, �p) = /0. �
Following that, we obtain the spectrum of T0 .

THEOREM 3.6. The spectrum of T0 over �p is given by

(T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

Proof. First we prove the inclusion relation

 (T0, �p) ⊆ [r1−2s1,r1 +2s1]∪ [r2 −2s2,r2 +2s2].

Let  /∈ [r1 − 2s1,r1 + 2s1]∪ [r2 − 2s2,r2 + 2s2] . Since point spectrum of T0 over �p

is empty, (T0 −  I)−1 exists for all  ∈ C . Consider the characteristic polynomials
(3.4) and (3.6) as defined in Theorem 3.2 which has the roots 1, 2 and 1, 2

respectively. Since  ∈ C \ ([r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]) , either |1| < 1,
|2| > 1 or |1| > 1, |2| < 1. Similar argument also applies for the roots 1 and 2 .
Without loss of generality, we can assume that |1| < 1 < |2| and |1| < 1 < |2| .
One can check that the infinite matrix B = (bnk) mentioned below is the inverse of
(T0− I) , where

bnk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s1(2

1−1)

(


n+1
2 − k+1

2 +1
1 −

n+1
2 + k+1

2 +1
1

)
, if n,k both are odd and n � k

1
s1(2

1−1)

(


k+1
2 − n+1

2 +1
1 −

k+1
2 + n+1

2 +1
1

)
, if n,k both are odd and n < k

1
s2( 2

1−1)

(


n
2− k

2 +1
1 −

n
2+ k

2 +1
1

)
, if n,k both are even and n � k

1
s2( 2

1−1)

(


k
2− n

2 +1
1 −

k
2+ n

2 +1
1

)
, if n,k both are even and n < k

0, otherwise.

From Lemma 2.2 it follows that∥∥(T0− I)−1
∥∥

1 = sup
k




n=1

|bnk|.

Let for each k ∈ N, Sk denotes the sum



n=1
|bnk|. Thus

Sk =
k−1


n=1

|bnk|+



n=k

|bnk|.
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Two cases are considered.

Case 1: (k is odd) In this case

k−1


n=1

|bnk| = |b1k|+ |b3k|+ · · ·+ |bk−2,k|

as bnk = 0 when n is even. Putting n = 2q− 1 where q runs over 1,2, · · · , k−1
2 we

obtain

k−1


n=1

|bnk| =
k−1
2


q=1

|b2q−1,k| = 1

s1(2
1 −1)

k−1
2


q=1

|
k+1
2 −q+1

1 −
k+1
2 +q+1

1 |.

Now,

k−1
2


q=1

|
k+1
2 −q+1

1 −
k+1
2 +q+1

1 | �|1| k+1
2 +1

k−1
2


q=1

|1|−q + |1| k+1
2 +1

k−1
2


q=1

|1|q

=|1| k+3
2

(
|1| 1−k

2 −1
1−|1| +

|1|− |1| k+1
2

1−|1|

)

=
|1|2−|1| k+3

2 + |1| k+5
2 −|1|k+2

1−|1| .

As |1| < 1, the above relation gives us

k−1


n=1

|bnk| < .

Also



n=k

|bnk| =



q=0

|bk+2q,,k|

=
1

s1(2
1 −1)




q=0

∣∣∣∣ k+2q+1
2 − k+1

2 +1
1 −

k+2q+1
2 + k+1

2 +1

∣∣∣∣
=

1

s1(2
1 −1)




q=0

∣∣∣q+1
1 −k+q+2

1

∣∣∣ .
The inequality |q+1

1 −k+q+2
1 | � |1|q+1 + |1|k+q+2 and the fact |1| < 1 provides




q=0

∣∣∣q+1
1 −k+q+2

1

∣∣∣< ,

which proves



n=k
|bnk| <  . Hence we have,




n=1

|bnk| < , for odd k. (3.7)
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Case 2: (k is even) In this case if n is odd then bnk = 0. Let n is even and n = 2q
where q ∈ N. Then

k−1


n=1

|bnk| = |b2k|+ |b4k|+ . . .+ |bn−2,k| =
k−2
2


q=1

|b2q,k|

=
1

s2( 2
1 −1)

k−2
2


q=1

∣∣∣∣ k
2−q+1
1 −

k
2 +q+1
1

∣∣∣∣ .
Since |1| < 1,

k−2
2


q=1

∣∣∣∣ k
2−q+1
1 −

k
2 +q+1
1

∣∣∣∣� |1|
k
2 +1

⎛
⎝ k−2

2


q=1

∣∣∣−q
1

∣∣∣+
k−2
2


q=1

∣∣ q
1

∣∣
⎞
⎠

= |1|
k
2 +1

(
|1|1−

k
2 −1

1−|1| +
|1|− |1| k

2

1−|1|

)

=
|1|2−|1| k

2+1 + |1| k
2 +2−|1|k+1

1−|1| < .

Therefore,

k−1


n=1

|bnk| < .

Now,




n=k

|bnk| =|bkk|+ |bk+2,k|+ |bk+4,k| . . .

=



p=0

|bk+2p,k| = 1

s2( 2
1 −1)




p=0

| p+1
1 − p+k+1

1 | < .

Therefore,



n=k

|bnk| < .

Hence we have,




n=1

|bnk| < , if k is even. (3.8)

By using relations (3.7) and (3.8) we get,

∥∥(T0− I)−1
∥∥

1 = sup
k




n=1

|bnk| = sup
k

Sk < , for all k .
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As the matrix of inverse operator (T0 − I)−1 is symmetric, performing similar calcu-
lations to the rows of B = (bnk) we get,∥∥(T0− I)−1

∥∥
 < .

From Lemma 2.4, it follows

(T0 − I)−1 ∈ B(�p).

Hence it is proved that,

(T0, �p) ⊆ [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

For the reverse inclusion relation let  ∈ [r1 − 2s1,r1 + 2s1]∪ [r2 − 2s2,r2 + 2s2] and
y = (1,1,0,0, · · ·) ∈ �p . Define x = (x1,x2,x3, · · ·) by

x = (T0 − I)−1y.

This implies,

xn =

⎧⎪⎪⎨
⎪⎪⎩

−
n
2

1
s2

, if n is even

−
n+1
2

1
s1

, if n is odd.

Also  ∈ [r1−2s1,r1 +2s1] implies |1|= 1 which also implies
−

n+1
2

1
s1

�→ 0 as n→ .

Similarly  ∈ [r2 − 2s2,r2 + 2s2] implies
−

n
2

1
s2

�→ 0 as n →  . Hence x �∈ �p and
 ∈ (T0, �p) . This proves the following relation

[r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2] ⊆ (T0, �p).

Hence, we conclude that

(T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]. �

COROLLARY 3.7. The continuous spectrum of T0 over �p is given by

c(T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

Proof. It is evident that (T0, �p) is the disjoint union of p(T0, �p) , r(T0, �p)
and c(T0, �p) , we have

(T0, �p) = c(T0, �p).

Hence, c(T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2] . �
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COROLLARY 3.8. Essential spectrum of T0 defined over �p is given by

ess(T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

Proof. It is well-known that c(T0, �p) ⊆ ess(T0, �p) and we have

ess(T0, �p) ⊆ (T0, �p) = c(T0, �p) ⊆ ess(T0, �p).

Hence, the desired result is obvious. �

Using the relations which are mentioned in Proposition 2.1 we can easily obtain
the following results.

COROLLARY 3.9. The compression spectrum, approximate point spectrum and
defect spectrum of T0 over �p are as follows

(i) co(T0, �p) = /0 ,

(ii) app(T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2] ,

(iii)  (T0, �p) = [r1−2s1,r1 +2s1]∪ [r2 −2s2,r2 +2s2] .

In particular, if r1 = r2 = r and s1 = s2 = s then the operator T0 reduces to an
operator with the following matrix representation

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r 0 s 0 0 · · ·
0 r 0 s 0 · · ·
s 0 r 0 s · · ·
0 s 0 r 0 · · ·
0 0 s 0 r · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The following results can be obtained from the previously proved results in this setting.

COROLLARY 3.10. The spectrum and other spectral subdivisions over �p are
given by,

(i) (T0, �p) = c(T0, �p) = app(T0, �p) =  (T0, �p) = [r−2s,r+2s] ,

(ii) p(T0, �p) = r(T0, �p) = p(T ∗
0 , �∗p) = /0.

It is interesting to note that the spectrum and fine spectra mentioned in Corollary
3.10 coincide with the spectrum and fine spectrum of the tridiagonal matrix U(s,r,s)
defined over �p which is obtained in [37].
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4. Spectra of T = T0 +K

In this section, we focus on the spectral properties of the operator T defined over
�p which can be expressed as T = T0 + K where K is represented by the following
matrix

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1− r1 0 b1− s1 0 0 · · ·
0 a2− r2 0 b2− s2 0 · · ·

c1 − s1 0 a3− r1 0 b3− s1 · · ·
0 c2 − s2 0 a4− r2 0 · · ·
0 0 c3 − s1 0 a5− r1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The following result proves the compactness of K on �p .

THEOREM 4.1. The operator K is a compact operator on �p .

Proof. The operator K on �p can be represented by the following infinite matrix

K =

⎛
⎜⎜⎜⎜⎜⎝

u1 0 v1 0 0 · · ·
0 u2 0 v2 0 · · ·
w1 0 u3 0 v3 · · ·
0 w2 0 u4 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where {un} , {vn} and {wn} are null sequences, which are defined as follows,

un =

{
an− r1, n is odd

an− r2, n is even,
vn =

{
bn− s1, n is odd

bn− s2, n is even

and

wn =

{
cn− s1, n is odd

cn− s2, n is even.

Let x = {x1,x2,x3 . . .} ∈ �p . We construct a sequence of compact operators {Kn} such
that for i ∈ N ,

(Kn(x))i =

{
(Kx)i, i = 1,2, . . .n

0, otherwise.

For n � 2,

‖(K−Kn)x‖p =

(



k=n−1

|wkxk +uk+2xk+2 + vk+2xk+4|p
) 1

p

�
(

sup
k�n−1

|wk|
)
‖x‖p +

(
sup

k�n−1
|uk|

)
‖x‖p +

(
sup

k�n−1
|vk|

)
‖x‖p .
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This implies,
‖K−Kn‖p � sup

k�n−1
|wk|+ sup

k�n−1
|uk|+ sup

k�n−1
|vk|.

Thus, {Kn} converges to K as n →  in operator norm and hence K is a compact
operator over �p . �

Hence, the operator T is a compact perturbation of T0 and since T0 ∈ B(�p) , K is
compact on �p, the operator T is an bounded linear operator on �p.

Next we derive an inclusion relation between (T0, �p) and (T, �p) and to prove
this result we require the following Lemma.

LEMMA 4.2. [32, p. 373] Let T : X → X be an operator with a non-empty
resolvent set, and let  be an open connected subset of C\ess(T ) . If ∩(T ) �= /0
then (T )∩ is a finite or countable set, with no accumulation point in  , consisting
of eigenvalues of T of finite type.

THEOREM 4.3. The spectrum of T over �p satisfies the following inclusion rela-
tion

(T0, �p) ⊆ (T, �p)

and (T, �p) \(T0, �p) contains finite or countable number of eigenvalues of T of
finite type with no accumulation point in (T, �p)\(T0, �p) .

Proof. Suppose  �∈ (T, �p) = (T0 +K, �p) . This implies (T0 +K− I)−1 ex-
ists and belongs to B(�p) . Then there exists U ∈ B(�p) such that (T0 +K− I)U = I .
Hence,

KU − I = −(T0− I)U (4.1)

and (KU − I)x = 0 implies (T0 − I)Ux = 0. This gives us Ux ∈ N(T0 − I) = {0}
as (T0, �p) = /0 . Therefore x = 0 and consequently 1 �∈ p(KU) . As K is compact
operator, KU is also a compact operator and it follows that 1 �∈ (KU) . Hence, (KU−
I) is invertible and consequently (T0− I) is invertible by equation (4.1). This implies,
 �∈ (T0) and (T0) ⊆ (T ) .

For the second part we have, (T ) is non-empty as T is a bounded linear operator
and ess(T, �p) = ess(T0, �p) . Let = C\(T0, �p) then ∩(T, �p) �= /0 . The set 
is open connected subset of C \ess(T0, �p) = C \ess(T, �p) . Then by using Lemma
4.2 we have, (T, �p)∩ is a finite or countable set with no accumulation point in 
consisting eigenvalues of finite type. �

COROLLARY 4.4. ess(T, �p) = (T0, �p) = [r1 − 2s1,r1 + 2s1]∪ [r2 − 2s2,r2 +
2s2] .

Proof. Since a compact perturbation does not effect the Fredholmness and index
of a Fredholm operator, it follows ess(T0, �p) = ess(T, �p) . Hence, by using Corollary
3.8, we have

ess(T, �p) = (T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]. �
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We now focus on the point spectrum of T on �p . First we analyze the eigenvalues
of T lying in ess(T, �p) = (T0, �p) , in particular we derive sufficient conditions for
the absence of point spectrum on ess(T, �p) . In Theorem 4.5, sufficient conditions are
provided in terms of the rate of convergence of the sequences {a2n−1}, {a2n}, {b2n−1},
{b2n}, {c2n−1} and {c2n} . Sufficient conditions of absence of point spectrum on
ess(T, �p) are also provided in Theorem 4.6 in terms of the entries of the matrix T .

THEOREM 4.5. If the convergence of the sequences {a2n−1}, {a2n}, {b2n−1},
{b2n}, {c2n−1} and {c2n} are exponentially fast then

ess(T, �p)∩p(T, �p) = /0.

Proof. Let  ∈ ess(T, �p) . The equation Tx = x for some  ∈ C reduces to the
following system

a1x1 +b1x3 = x1

a2x2 +b2x4 = x2

c1x1 +a3x3 +b3x5 = x3

c2x2 +a4x4 +b4x6 = x4
...

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

If we separate the odd and even terms of the sequences {an}, {bn} and {cn} , the above
system of equations can also be expressed as

c2n−1x2n−1 +(a2n+1− )x2n+1 +b2n+1x2n+3 = 0,

c2nx2n +(a2n+2− )x2n+2 +b2n+2x2n+4 = 0,

}
(4.2)

where n ∈ N with the initial conditions

a1x1 +b1x3 = x1,

a2x2 +b2x4 = x2.

}
(4.3)

Introducing two sequences {yn} and {zn} such that yn = x2n−1 and zn = x2n for n∈N,
the system (4.2) with the initial conditions (4.3) reduces to

c2n−1yn +(a2n+1− )yn+1 +b2n+1yn+2 = 0, (4.4)

c2nzn +(a2n+2− )zn+1 +b2n+2zn+2 = 0, (4.5)

where n ∈ N∪{0} with y0 = z0 = 0. Using the assumed convergence of the sequences
{a2n−1} , {a2n}, {b2n−1},{b2n} , {c2n−1} , and {c2n}, the characteristic polynomials
of the difference equations (4.4) and (4.5) are

t2 + p1t +1 = 0, (4.6)

t2 + p2t +1 = 0, (4.7)
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where p1 = r1−
s1

and p2 = r2−
s2

. Let 1, 2 and 1, 2 are the pair of roots of
equations (4.6) and (4.7) respectively. Also we have

 ∈ ess(T, �p) = (T0, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

Let  ∈ [r1 −2s1,r1 +2s1] i.e., p1 ∈ [−2,2] . Then the roots 1 , 2 satisfies |1| = 1
and |2| = 1. Since the convergence of {a2n−1},{b2n−1},{c2n−1} are exponentially
fast, if {yn} is a solution of equation (4.4) then by Theorem 2.3 [1], it can be deduced
that, either yn = 0 for large n or there exists  ∈ (0,1) such that

yn = y′n +O((1−)n), for large n (4.8)

where {y′n} is a solution of limiting equation of (4.4) which is given by

yn + p1yn+1 + yn+2 = 0,

and the solution of this limiting equation is already obtained in Case 1, Case 2, Case 3
of Theorem 3.2. Based on equation (4.8), there exists an M > 0 such that

|yn − y′n| � M(1−)n.

Thus,
|y′n|p � (|yn|+M(1−)n)p.

Applying Jensen’s inequality we get,

|y′n|p � 2(p−1)(|yn|p +Mp(1−)np).

As |1| = 1 and |2| = 1, from Theorem 3.2 we have {y′n} �∈ �p . Also 0 < 1− < 1
implies, {yn} �∈ �p . Hence,  �∈ p(T, �p) . In a similar way, if  ∈ [r2 −2s2,r2 +2s2]
we can obtain that  �∈ p(T, �p) . Hence the desired result is proved. �

In the next theorem, we apply transfer matrix approach as discussed in [35, 36].
This enables us to examine the sufficient condition for the absence of point spectrum in
essential spectrum of T in terms of the entries of matrix T .

THEOREM 4.6. If  ∈ ess(T, �p) satisfies either of the following conditions

(i) 
n=1n

j=1

[
1
2

(
Pj( )−

√
Pj( )2 −

∣∣∣ 2c2 j−1
b2 j+1

∣∣∣2
)] p

2

= +

or

(ii) 
n=1

n
j=1

[
1
2

(
Qj( )−

√
Qj( )2−

∣∣∣ 2c2 j
b2 j+2

∣∣∣2
)] p

2

= +

where,

Pj( ) =
∣∣∣∣ c2 j−1

b2 j+1

∣∣∣∣
2

+
∣∣∣∣a2 j+1−

b2 j+1

∣∣∣∣
2

+1, Qj( ) =
∣∣∣∣ c2 j

b2 j+2

∣∣∣∣
2

+
∣∣∣∣a2 j+2−

b2 j+2

∣∣∣∣
2

+1,

then  /∈ p(T, �p) .
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Proof. (i) Let  ∈ ess(T, �p) = (T0, �p). Using Tx = x , we have the following
difference equation

c2n−1x2n−1 +(a2n+1− )x2n+1 +b2n+1x2n+3 = 0

c2nx2n +(a2n+2− )x2n+2 +b2n+2x2n+4 = 0,

}
(4.9)

where n ∈ N with the initial conditions

a1x1 +b1x3 = x1,

a2x2 +b2x4 = x2.

}
(4.10)

The first equation of (4.9) can be written in the following form(
x2n+1

x2n+3

)
= Bn( )

(
x2n−1

x2n+1

)
, n ∈ N∪{0}

where

Bn( ) =

(
0 1
−c2n−1
b2n+1

−(a2n+1− )
b2n+1

)
,

with x−1 = 0 when n = 0. This includes the initial condition

a1x1 +b1x3 = x1.

In this setting, we have (
x2n+1

x2n+3

)
= Bn( )Bn−1( ) · · ·B1( )y (4.11)

where, y =

(
x1
(−a1)

b1
x1

)
. Also

‖BnBn−1 · · ·B1y‖p
p � max

{
2

1
p− 1

2 ,1
}(

‖Bn · · ·B1y‖2
2

)p/2

= max
{

2
1
p− 1

2 ,1
}

(〈Bn · · ·B1y,Bn · · ·B1y〉)
p
2

= M1

( 〈Bn · · ·B1y,Bn · · ·B1y〉
‖y‖2

) p
2

, (4.12)

where M1 = ‖y‖pmax
{

2
1
p− 1

2 ,1
}

. Using the singular value analog of the famous Courant-

Fischer theorem [33, Theorem 7.3.8] and the result

min(AB) � min(A) min(B)

where min(A) denotes the smallest singular value of a matrix A , it follows from the
relation (4.12) that

‖BnBn−1 · · ·B1y‖p
p � M1 p

min (BnBn−1 . . .B1)

� M1 p
min (Bn) p

min (Bn−1) . . . p
min (B1) , n ∈ N.
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From equation (4.11) we obtain that

|x2n+1|p + |x2n+3|p � M1 p
min (Bn) p

min (Bn−1) · · · p
min (B1) .

Taking summation over n , the above relation reduces to

2

[



n=1

|x2n+1|p
]

� M1




n=1

n


j=1

 p
min (Bj) .

This implies, [



n=1

|x2n+1|p
]

� M′
1




n=1

n


j=1

 p
min (Bj) (4.13)

for some constant M′
1 > 0. The lowest singular value of Bj is given by

min(Bj) =

⎡
⎢⎣1

2

⎛
⎜⎝
∣∣∣∣ c2 j−1

b2 j+1

∣∣∣∣
2

+
∣∣∣∣a2 j+1 −

b2 j+1

∣∣∣∣
2

+1−

√√√√(∣∣∣∣ c2 j−1

b2 j+1

∣∣∣∣
2

+
∣∣∣∣a2 j+1 −

b2 j+1

∣∣∣∣
2

+1

)2

−
∣∣∣∣2c2 j−1

b2 j+1

∣∣∣∣
2

⎞
⎟⎠
⎤
⎥⎦

1
2

where we assume
√

a2 = a for some positive a . Hence, if




n=1

n


j=1

⎡
⎣1

2

⎛
⎝Pj( )−

√
Pj( )2−

∣∣∣∣2c2 j−1

b2 j+1

∣∣∣∣
2
⎞
⎠
⎤
⎦

p
2

= +

where,

Pj( ) =
∣∣∣∣ c2 j−1

b2 j+1

∣∣∣∣
2

+
∣∣∣∣a2 j+1−

b2 j+1

∣∣∣∣
2

+1,

then {xn} /∈ �p and consequently  /∈ p(T, �p) . This proves the first part of the result.
(ii) As similar to part (i) the second equation of (4.9) can be written as(

x2n+2

x2n+4

)
= Cn( )

(
x2n

x2n+2

)
, n ∈ N

where

Cn( ) =

(
0 1
−c2n
b2n+2

−(a2n+2− )
b2n+2

)
,

with x0 = 0 when n = 0. This includes the initial condition

a2x2 +b2x4 = x2.

We can obtain the desired result by using the same argument as in first part. �

REMARK 4.7. Instead of calculating the singular value min(Bj) in the relation
(4.13), various lower bounds for the same can be used to obtain a less complicated
expression than min(Bj). Several researchers have been working to refine the lower
bound of lowest singular value. Some of the recent works for the lower bound of
smallest singular value of a matrix can be found in [45, 34, 50, 49, 39].
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Now we focus our study on the point spectrum of T . Under the sufficient condi-
tions as mentioned in previous two results, we have p(T, �p)∩(T0, �p) = /0 . In this
case, all the eigenvalues of T are lying outside the set (T0, �p) . To characterize the
eigenvalues, let Tx = x , x ∈ CN and  ∈ (T0, �p)c where (T0, �p)c denotes the
complement of (T0, �p) . From equations (4.4) and (4.5) in Theorem 4.5, we have the
following system

c2n−1yn +(a2n+1− )yn+1 +b2n+1yn+2 = 0, (4.14)

c2nzn +(a2n+2− )zn+1 +b2n+2zn+2 = 0, (4.15)

where n ∈ N∪{0} with y0 = z0 = 0 and yn = x2n−1 , zn = x2n . Clearly each of the

difference equations (4.14) and (4.15) have two fundamental solutions. Let {y(1)
n ( ),

y(2)
n ( )} and {z(1)

n ( ),z(2)
n ( )} are the sets of fundamental solutions of the equations

(4.14) and (4.15) respectively. Under this setting we have the following result.

THEOREM 4.8. If either of the sufficient conditions mentioned in Theorem 4.5 and
Theorem 4.6 hold true then the point spectrum of T over �p is given by

p(T, �p) =
{
 ∈ C : y(1)

0 ( ) = 0
}
∪
{
 ∈ C : z0

(1)( ) = 0
}

.

Proof. As ess(T, �p)∩p(T, �p) = /0 , we restrict our search for point spectrum
outside the set [r1 − 2s1,r1 + 2s1]∪ [r2 − 2s2,r2 + 2s2]. Let 1, 2 and 1, 2 are the
pair of roots of equations (4.6) and (4.7) respectively which are the characteristic poly-
nomials of equations (4.14) and (4.15) respectively. Since  /∈ [r1 − 2s1,r1 + 2s1]∪
[r2 − 2s2,r2 + 2s2] , we have p1 �∈ [−2,2] , and without loss of generality we assume
that |1| < 1 and |2| > 1. By Perron’s First Theorem [28, p. 344] it can be deduced
that

lim
n→

y(1)
n+1( )

y(1)
n ( )

= 1, lim
n→

y(2)
n+1( )

y(2)
n ( )

= 2.

Hence {y(1)
n ( )} ∈ �p but {y(2)

n ( )} �∈ �p and the general solution of the difference
equation (4.14), which is the linear combination of the fundamental solutions, is given
by

yn( ) = c1y
(1)
n ( )+ c2y

(2)
n ( ), n ∈ N∪{0}

where c1 and c2 are arbitrary constants. In a similar way, we can assume that |1| < 1
and |2| > 1 and by Perron’s First Theorem we have

lim
n→

z(1)
n+1( )

z(1)
n ( )

= 1, lim
n→

z(2)
n+1( )

z(2)
(n)( )

= 2.

This implies {z(1)
n ( )} ∈ �p and {z(2)

n ( )} �∈ �p and the general solution of the differ-
ence equation (4.15) is given by

zn( ) = d1z
(1)
n ( )+d2z

(2)
n ( ), n ∈ N∪{0}
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where d1 and d2 are arbitrary constants and consequently the general solution of the
system Tx = x is given by xn( ) where

x2n−1( ) = c1y
(1)
n ( )+ c2y

(2)
n ( ), n ∈ N

x2n( ) = d1z
(1)
n ( )+d2z

(2)
n ( ), n ∈ N

with x−1( ) = x0( ) = 0. Consider

S1 =
{
 ∈ C : y(1)

0 ( ) = 0
}
∪
{
 ∈ C : z(1)

0 ( ) = 0
}

.

Let  ∈ S1 , then y(1)
0 ( ) = 0 or z(1)

0 ( ) = 0. If y(1)
0 ( ) = 0, we can construct a non-

trivial solution xn( ) of the system Tx = x in the following way.

Let c2 = 0 and d1 = d2 = 0. In this case we have yn( ) = y(1)
n ( ) and zn( ) = 0

for all n . Since, {y(1)
n ( )} ∈ �p , we have xn( ) is a non-trivial solution of Tx = x

and {xn( )} ∈ �p. If z(1)
0 ( ) = 0 then in a similar way we can construct a non-trivial

solution xn( ) of Tx = x where xn( ) = 0, if n is odd and xn( ) = z(1)
n ( ) , if n

is even. Hence,  ∈ p(T, �p) and consequently S1 ⊆ (T, �p) . Now, suppose  �∈ S.

Then y(1)
0 ( ) �= 0 and z(1)

0 ( ) �= 0. Clearly  ∈ p(T, �p) if and only if c2 = 0 and
d2 = 0. Now we consider following cases with the assumption c2 = d2 = 0.

Case 1: If c2 = d2 = 0 and c1 = 0, we have

yn( ) = 0 ∀n and zn( ) = d1z
(1)
n ( ) ∀n.

Using the initial condition z0( ) = 0, we have d1z
(1)
0 ( ) = 0. If d1 = 0 then we get a

trivial solution and if d1 �= 0 then z(1)
0 ( ) = 0 and this is a contradiction.

Case 2: If c2 = d2 = 0 and c1 �= 0 we have

yn( ) = c1y
(1)
n ( ) ∀n.

Using the initial condition y0( ) = 0 we have c1y
(1)
0 ( ) = 0, this implies y(1)

0 ( ) = 0
which is a contradiction. Hence there are no solution of the difference equation (4.14).
By Case 1 and Case 2, we can deduce that no non-trivial solution exists for the system
Tx = x . Hence  �∈ p(T, �p). Thus,

p(T, �p) =
{
 ∈ C : y(1)

0 ( ) = 0
}
∪
{
 ∈ C : z0

(1)( ) = 0
}

. �

REMARK 4.9. The adjoint operator T ∗ : �∗p → �∗p , is represented by transpose of
the matrix T and dual of �p is isomorphic to �q where 1

p + 1
q = 1 and 1 < q <  .

Similar as T , the operator T ∗ can also be written as

T ∗ = T0 +Kt ,
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where Kt denotes the transpose of K and Kt is also a compact operator. Since (T, �p)
= (T ∗, �∗p) , Theorem 4.3 implies

(T0, �p) ⊆ (T ∗, �∗p),

and using similar argument of the proof of Theorem 4.3 it can be obtain that (T ∗, �∗p)\
(T0, �p) contains finite or countable number of eigenvalues of T ∗ of finite type with
no accumulation point in (T ∗, �∗p) \(T0, �p) . Assuming similar hypothesis on the
rate of convergence of sequences in Theorem 4.5, we can prove that

ess(T ∗, �∗p)∩p(T ∗, �∗p) = /0

and this implies, the point spectrum of T ∗ is lying outside of the region

[r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

Now similar as Theorem 4.8, let {g(1)
n ( ),g(2)

n ( )} and {h(1)
n ( ),h(2)

n ( )} are the sets
of fundamental solutions of the following difference equations respectively

b2n−1gn +(a2n+1− )gn+1 + c2n+1gn+2 = 0,

b2nhn +(a2n+2− )hn+1 + c2n+2hn+2 = 0,

which are obtained from T ∗ f =  f , f ∈ �∗p and gn( ) = f2n−1( ) , hn( ) = f2n( ) .
Also, g0( ) = h0( ) = 0. This leads us to the following result

p(T ∗, �∗p) =
{
 ∈ C : g(1)

0 ( ) = 0
}
∪
{
 ∈ C : h(1)

0 ( ) = 0
}

.

Eventually, we obtain that

(T ∗, �∗p) = [r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S2

where,
S2 =

{
 ∈ C : g(1)

0 ( ) = 0
}
∪
{
 ∈ C : h(1)

0 ( ) = 0
}

.

Since, (T, �p) = (T ∗, �∗p) and S1,S2 both sets are disjoint from [r1−2s1,r1 +2s1]∪
[r2−2s2,r2 +2s2] we have, S1 = S2 .

Using the observations in Remark 4.9 and Proposition 2.1, we can summarize
all the results of spectrum and various spectral subdivisions of the operator T in the
following theorem.

THEOREM 4.10. If the convergence of the sequences {a2n−1}, {a2n}, {b2n−1},
{b2n}, {c2n−1} and {c2n} are exponentially fast and

S1 =
{
 ∈ C : y(1)

0 ( ) = 0
}
∪
{
 ∈ C : z0

(1)( ) = 0
}

,

then we have the following results.
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(i) The spectrum of T on �p is

(T, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

(ii) The point spectrum of T on �p is

p(T, �p) = S1.

(iii) The residual spectrum of T on �p is

r(T, �p) = /0.

(iv) The continuous spectrum of T on �p is

c(T, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

(v) The essential spectrum of T on �p is

ess(T, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2].

(vi) The discrete spectrum of T on �p is

d(T, �p) = S1.

(vii) The compression spectrum of T on �p is

co(T, �p) = S1.

(viii) The approximate spectrum of T on �p is

app(T, �p) = [r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

(ix) The defect spectrum of T on �p is

 (T, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

Proof. The proofs of the above statements are given below.

(i) It is well known that p(T, �p) ⊆ (T, �p) and (T0, �p) ⊆ (T, �p) . This im-
plies,

[r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1 ⊆ (T, �p).

Also by using Theorem (4.3) we get,

(T, �p) ⊆ [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

Hence,
(T, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.
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(ii) Result has been proved in Theorem 4.8.

(iii) We already aware of that r(T, �p) = p(T ∗, �∗p)\p(T, �p) . Hence,

r(T, �p) = /0.

(iv) Spectrum of an operator is the disjoint union of point spectrum, residual spectrum
and continuous spectrum. By using this result we can obtain the desired result.

(v) The required result has been proved in Corollary 4.4.

(vi) We already proved that the point spectrum of T is disjoint from [r1 − 2s1,r1 +
2s1]∪[r2−2s2,r2 +2s2] , and by Theorem4.3 we have, every element of p(T, �p)
is of finite type. Hence,

d(T, �p) =
{
 ∈ C : y(1)

0 ( ) = 0
}
∪
{
 ∈ C : z0

(1)( ) = 0
}

.

(vii) From part (e) of Proposition 2.1, the desired result is obvious.

(viii) Clearly,

app(T, �p) ⊆ (T, �p) = [r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

Also, we know that point spectrum is always a subset of approximate point spec-
trum. By using this fact and with the help of part (g) of Proposition 2.1, we
have

[r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1 ⊆ app(T, �p).

Hence,

app(T, �p) = (T, �p) = [r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

(ix) From part (c) of Proposition 2.1, we have

app(T ∗, �∗p) =  (T, �p).

Clearly,

app(T ∗, �∗p) ⊆ (T ∗, �∗p) = [r1−2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1.

Then S1 ⊆ app(T ∗, �∗p), follows from the fact that p(T ∗, �∗p) ⊆ app(T ∗, �∗p) .
By using this fact and with the help of part (g) of Proposition 2.1, we have

[r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1 ⊆ app(T ∗, �∗p).

Therefore, app(T ∗, �∗p) = (T, �p) . Hence,

 (T, �p) = [r1 −2s1,r1 +2s1]∪ [r2−2s2,r2 +2s2]∪S1. �

REMARK 4.11. One interesting observation of the above theorem is the relation
p(T, �p) = d(T, �p) = co(T, �p) = S1 holds. In other words, all the eigenvalues are
of finite type and range of T − I is not dense in �p for any eigenvalue  .
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