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REDUCING SUBSPACES OF SKEW SYMMETRIC OPERATORS

QINGGANG BU AND YING YAO ∗

(Communicated by V. Bolotnikov)

Abstract. An operator T on a complex, separable Hilbert space H is said to be skew symmetric
if there exists a conjugation C on H such that CTC = −T ∗ . This paper aims to describe
reducing subspaces of skew symmetric operators from the view point of approximation. In
particular, given a skew symmetric operator T , 1 � n � 0 and  > 0 , it is proved that there
exists a compact operator K with ‖K‖ <  such that T +K is skew symmetric and has exactly
n minimal reducing subspaces.

1. Introduction

In this paper, let H be a complex, separable Hilbert space endowed with the
inner product 〈·, ·〉 . Denote by B(H ) the set of all bounded linear operators on H
and K (H ) the ideal of all compact operators in B(H ) .

An operator T ∈ B(H ) is said to be skew symmetric if CTC = −T ∗ for some
conjugation C on H ; in this case, we say T is C-skew-symmetric. Recall that a
conjugate-linearmap C : H →H is called a conjugation if C is invertible with C−1 =
C and 〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H . Denote by SSO the set of all skew symmetric
operators on H . The term skew symmetric stems from the fact that T is a skew
symmetric operator if and only if T can be written as a skew symmetric matrix (i.e.,
those matrices M satisfying M + Mtr = 0, where Mtr denotes the transpose of M )
relative to some orthonormal basis of H [11, Lemma 2.11].

There are several motivations for studying skew symmetric operators. In particu-
lar, skew symmetric operators have many applications in algebra and geometry.

Skew symmetric operators provide an important example of Lie algebra of opera-
tors. Recall that, for a conjugation C on H , the orthogonal Lie algebra of operators
OC is the set of all C -skew-symmetric operators on H . That is,

OC =
{
T ∈ B(H ) : CTC = −T ∗}.

de La Harpe [9] discussed in detail many elementary aspects of OC (and some other
classical Lie algebras of operators). Topics treated include Lie derivations, Lie ideals,
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automorphisms, real forms and so on. Recently, [3] classified Lie ideals of OC and
determined their dual spaces.

Skew symmetric operators play an important role in algebraic geometry. We re-
mark that OC is also called a symplectic type Cartan factor. The Cartan factors derive
from Cartan’s classification of bounded symmetric domains [5, Theorem 2.5.9]. More-
over, OC is a concrete example of JB*-triples which plays a significant role in geome-
try and analysis. Kaup [18] proved that the category of all bounded symmetric domains
with base point is equivalent to the category of JB*-triples.

Recently there has been growing interest in the study of skew symmetric operators.
There are many interesting results being obtained in [1, 2, 19, 24, 26, 28]. In particular,
several special classes of skew symmetric operators are classified, such as normal op-
erators, compact operators, partial isometries and weighted shifts [20, 21, 27]. Also we
remark that skew symmetric operator is closely related to complex symmetric operator,
which is an important class of operators. The reader is referred to [29] for more details.

If T ∈ B(H ) and M is a closed subspace of H , say that M is an invariant
subspace of T if T (M ) ⊂ M ; M is a reducing subspace of T if both M and M⊥
are invariant subspaces of T . An operator T ∈ B(H ) is reducible if it has a non-
trivial reducing subspace; otherwise, T is called irreducible. The study of invariant
subspaces and reducing subspaces for various classes of linear operators has inspired
much deep research and promoted many interesting problems. There are many nice
work on describing the structures of reducing subspaces for Toeplitz operators with fi-
nite Blaschke products symbols on the Bergman space over the unit disk can be found
in [8, 12, 14, 25].

In [27], Zhu described the block structure of skew symmetric operators. More
precisely, each skew symmetric operator can be written as the direct sum of three kinds
of elementary skew symmetric operators (some of which may be absent), that is, com-
pletely reducible ones, irreducible ones and operators of form A⊕ (−CA∗C) , where A
is irreducible, not a skew symmetric operator and C is a conjugation. Let T ∈ B(H )
and M be a nonzero reducing subspace of T . Recall that M is called a minimal re-
ducing subspace of T if T |M is irreducible; and T is said to be completely reducible
if T does not admit any minimal reducing subspace.

In [27], some concrete examples of completely reducible and irreducible skew
symmetric operators were provided. In a recent paper [4], the first author and Zhu
proved that each skew symmetric operator is a small compact perturbation of irreducible
skew symmetric operators.

Inspired by the preceding results, the present paper aims to study reducing sub-
spaces of skew symmetric operators from the view point of approximation. This is
partly because the topic of skew symmetric operators mainly falls into the category of
abstract operator theory, although skew symmetric operators also have many concrete
examples.

We pay more attention on minimal reducing subspaces. For n = 0,1,2 . . . , set

SSOn = {T ∈ SSO : T has n minimal reducing subspaces}.
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In addition, we denote

SSO0 = {T ∈ SSO : T has countably infinitely many minimal reducing subspaces}
and

SSO = {T ∈ SSO : T has uncountably many minimal reducing subspaces}.
Then SSO1 is the set of all irreducible ones in SSO, and SSO0 is the set of all completely
reducible ones in SSO. By [4, Thm. 1.3], SSO1 = SSO.

The main result of this paper is the following theorem, which describes minimal
reducing subspaces of skew symmetric operators from the view point of approximation.

THEOREM 1.1. (i) SSO0 is nowhere dense in SSO.

(ii) SSOn = SSO for 1 � n � 0 .

(iii) SSO = SSO.

REMARK 1. There some similar results for complex symmetric operators in the
literature. [22, 23] showed that those complex symmetric operators having n reduc-
ing subspaces are norm dense in the class of complex symmetric operators. It can be
concluded that the skew symmetric operator and the complex symmetric operator are
consistent in terms of reducibility.

The rest of this paper is organized as follows. In Subsect.2.1, we shall prove
that reducible skew symmetric operators are norm dense in the class of SSOs by Z -
normality. In Subsect.2.2 we will give some results mainly concerning the irreducible
compact perturbations of skew symmetric operators. The Proof of Theorem 1.1 shall
be provided in Subsect. 2.3.

2. Proof of main result

This section is devoted to proving Theorem 1.1.

2.1. Z -normal operators

DEFINITION 2.1. An operator T ∈ B(H ) is called Z -normal if it satisfies

‖p(T,T ∗)‖ = ‖ p̃(−T ∗,−T )‖
for any polynomial p(x,y) in two free variables. Here p̃(x,y) is obtained from p(x,y)
by conjugating each coefficient.

Note that each skew symmetric operator is Z -normal. In fact, if T ∈ B(H ) is
skew symmetric, there exists a conjugation C on H such that CTC = −T ∗ . Since C
is conjugate-linear and isomeric, it is easy to verify that T is Z -normal. Noting that
Z -normality is defined in terms of a norm equality, it implies a C∗ -algebra approach to
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skew symmetric operators. [26] classifies up to approximate unitary equivalence some
skew symmetric operators by Z -normal.

We denote by  : B(H )→A (H ) := B(H )/K (H ) the canonical projection
of B(H ) onto the Calkin algebra and by T̂ the imagine (T ) of T . An operator
T ∈ B(H ) is called essentially Z -normal if T̂ is a Z -normal element of A (H ) .

An operator T ∈ B(H ) is said to be semi-Fredholm, if ranT is closed and either
dimkerT or dimkerT ∗ is finite; in this case, we say indT := dimkerT − dimkerT ∗
is the Fredholm index of T . In particular, if indT is finite, then T is called a Fred-
holm operator. The Wolf spectrum lre(T ) and the essential spectrum e(T ) of T are
defined, respectively, as

lre(T ) = { ∈ C :  −T is not semi-Fredholm}

and
e(T ) = { ∈ C :  −T is not Fredholm}.

In the following, the notion ∼= denotes unitary equivalence, and ∼=a denotes ap-
proximate unitary equivalence. Two operators A1 and A2 are said to be approximately
unitarily equivalent if there exist unitary operators {Un} from H1 onto H2 such that
UnA1U∗

n → A2 as n →  .
The following result can be verified directly by [16, Prop. 4.21(iv)].

LEMMA 2.2. Let A,B ∈ SSO, A ∼=a B and  > 0 , then there exists K ∈ K (H )
with ‖K‖ <  such that A+K ∼= B.

Given a unital C∗ -algebra A and a ∈ A , let C∗(a) be the C∗ -subalgebra of A
generate by a and the identity. For T ∈B(H ) , denote lr(T ) = l(T )∩r(T ) , where
l(T ),r(T ) are the left spectrum and right spectrum of T respectively.

LEMMA 2.3. If T ∈ B(H ) is essentially Z -normal, then T ∼=a T ⊕R for some
skew symmetric operator R with R ∼=a R⊕R,

(R) = e(R) = e(T ) and lre(R) = lre(T ).

Proof. There exists a unital, faithful ∗ -representation  of C∗(T̂ ) on H . Denote
A = (T̂ ) and B = A() , where A() denotes the direct sum of 0 copies of A . Noting
that  is faithful and T̂ is Z -normal, both A and B are Z -normal. By [16, Prop.
4.21(ii)], we have T ∼=a T ⊕B. Since C∗(B) contains no nonzero compact operator, by
[26, Thm. 2.4], B is approximately unitarily equivalent to a skew symmetric operator
R . Thus

T ∼=a T ⊕B ∼=a T ⊕R.

Since B ∼= B⊕B , it is clear that R ∼=a R⊕R.
Since R ∼=a B , we have (R) = (B),e(R) = e(B) and lr(R) = lr(B) . It

follows from B = A() that (A) = (B) and lr(A) = lr(B) . If B is a Fredholm
operator, it is easily verified that A is invertible. Thus (A) ⊂ e(B) . Hence e(B) =
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(A) = (B) . This implies that e(R) = (A) = (R) . Noting that  is faithful, so
(A) = (T̂ ) = e(T ) . Therefore e(R) = (A) = (R) = e(T ) .

Next we shall prove lre(R) = lre(T ) . If  /∈ lre(R) , since R ∼=a B , we have
 /∈ lre(B) . That is, B−  is a semi-Fredholm operator. It follows from B = A()

that A−  is a semi-Fredholm operator. We claim that  /∈ lr(A) . If  ∈ lr(A) ,
then dimker(A− ) > 0 and dimker(A− )∗ > 0. This implies that dimker(B− ) =
dimker(B− )∗ = , a contradiction. Thus lr(A)⊂ lre(R) . Since lr(A) =lr(B) =
lr(R) , we have lr(R) = lre(R) . Noting that  is faithful, so lr(A) = lr(T̂ ) =
lre(T ) . Thus lre(R) = lre(T ) . �

THEOREM 2.4. If T ∈ B(H ) is skew symmetric, then T is approximately uni-
tarily equivalent to a reducible skew symmetric operator.

Proof. Assume that there is a conjugation C on H such that CTC = −T ∗ . In
view of Lemma 2.3, it suffices to prove that T is essentially Z -normal. Fix a polyno-
mial p(x,y) in two free variables x,y . Then

‖ p̃(T̂ , T̂ ∗)‖ = inf{‖ p̃(T,T ∗)+K‖ : K ∈ K (H )}
= inf{‖Cp(−T∗,−T )C+K‖ : K ∈ K (H )}
= inf{‖p(−T∗,−T )+CKC‖ : K ∈ K (H )}
= inf{‖p(−T∗,−T )+K‖ : K ∈ K (H )}
=‖p(−T̂ ∗,−T̂ )‖.

Thus T is essentially Z -normal. �
By Lemma 2.2 and Theorem 2.4, the following result is clear.

COROLLARY 2.5. Those reducible ones in SSO constitute a norm dense subset of
SSO.

2.2. Irreducible compact perturbations

In this subsection we give an auxiliary result.

THEOREM 2.6. Let T ∈ SSO, n ∈ N and  > 0 . Then there exist K1, . . . ,Kn ∈
K (H ) with n

i=1 ‖Ki‖ <  such that T + K1, · · · ,T + Kn are irreducible skew sym-
metric operators with pairwise distinct spectra.

Before giving the proof of Theorem 2.6, we first introduce some notations and
definitions.

Let T ∈ B(H ) and  be a clopen subset of (T ) . Then there exists an analytic
Cauchy domain  such that  ⊂  and [(T ) \]∩ = /0 . Recall that the Riesz
idempotent of T corresponding to  is

E(;T ) =
1

2 i

∫

(z−T )−1dz,
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where =  positively oriented with respect to  ; in this case, we denote H (;T )=
ran E(;T ) .

Let  be an isolated point of (T ) . The element  is called a normal eigenvalue
of T if dimH ({};T ) <  . We denoted by 0(T ) the set of all normal eigenvalues
of T . The reader is referred to [16, Chapter 1] for more details.

LEMMA 2.7. ([17, Lem. 3.2.6]) Let T ∈ B(H ) and suppose /0 
= ⊂ lre(T ) .
Then, given  > 0 , there exists a compact operator K with ‖K‖ <  such that

T +K =
[
N ∗
0 A

]
H1

H2
,

where N is a diagonal normal operator of uniformly infinite multiplicity with (N) =
and (T ) = (A).

LEMMA 2.8. ([6, page 366]) If T ∈ B(H ) , then (T ) ⊂ [0(T )∪lre(T )] .

If  is a subset of C , we denote by iso the set of all isolated points of  . For
r > 0 and  ∈ C , we set B( ,r) := {z ∈ C : |z− |< r} .

Proof of Theorem 2.6. In view of Lemma 2.2 and Lemma 2.3, it suffices to prove
the result for W := T ⊕R⊕R.

By Lemma 2.8, there exists  ∈ (T )∩lre(T ). Lemma 2.3 implies that  ∈
lre(R) . Thus, given  > 0, by Lemma 2.7, there is a compact operator F with ‖F‖< 

2
such that

R+F =
[
 B
0 A

]
Ce

(Ce)⊥
,

where e ∈ H is a unit vector and (A) = (R) . Since  ∈ (T ) , there are pairwise
distinct points 1, . . . ,n ∈ C \(T ) such that n

i=1 |i −  | < 
4 . Thus we can find

compact operator Gi with n
i=1‖Gi‖ < 

4 such that

Ri := R+F +Gi =
[
i B
0 A

]
Ce

(Ce)⊥
.

Since (A) = (R) ⊂ (T ) , we have i /∈ (A). Thus i ∈ 0(Ri) for i = 1, . . . ,n.
Noting that R is a skew symmetric operator, there exists a conjugation C on H

such that CRC = −R∗ . For 1 � i � n , set

K1,i :=

⎡
⎣0

F +Gi

−C(F∗ +G∗
i )C

⎤
⎦

H

H

H

.

Then K1,i is compact with ‖K1,i‖ < 3
4 and

Wi := W +K1,i =

⎡
⎣T

Ri

R−C(F∗ +G∗
i )C

⎤
⎦ =

⎡
⎣T

Ri

−CR∗
i C

⎤
⎦ .
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It follows from i /∈ (T ) that i ∈ 0(Wi)\(Wj) whenever i 
= j .
Note that R⊕ (−CR∗C) is a skew symmetric operator relative to the following

conjugation [
0 C
C 0

]
H

H
.

Hence Wi is skew symmetric and 0(Wi) 
= /0 .
Since i ∈ 0(Wi) \(Wj) whenever i 
= j , there is a r > 0 such that B(i,r)∩

(Wi) = {i} and B(i,r)∩(Wj) = /0 whenever i 
= j . Noting that 1, . . . ,n are
pairwise distinct, it can be required in addition that {B(i,r)} are pairwise disjoint. It
follows from the upper semi-continuity of spectrum that there exists  > 0 such that

B(i,r)∩(Wj +S) = /0 (1)

whenever i 
= j and S ∈ B(H ) with ‖S‖ <  .
For 1 � i � n , since i ∈ iso(Wi) , it follows by [16, Cor 1.6] that there exists

i > 0 such that

(Wi +S)∩B(i,r) 
= /0 (2)

for all S ∈ B(H ) with ‖S‖< i .
For 1 � i � n , by [4, Thm. 1.3], there exists a compact operator K2,i with ‖K2,i‖<

min{ 4 , ,i} such that Wi + K2,i is an irreducible skew symmetric operator. In view
of (1) and (2), {(Wi +K2,i)}n

i=1 are pairwise distinct. Set Ki = K1,i +K2,i . Then Ki

is compact with ‖Ki‖ <  and {W +Ki}n
i=1 are irreducible skew symmetric operators

with pairwise distinct spectra. �

From the proof of Theorem 2.6, one can get the following result.

COROLLARY 2.9. Given T ∈ SSO and  > 0 , there exists K ∈ K (H ) with
‖K‖ <  such that T +K ∈ SSO and 0(T +K) 
= /0 .

Next we shall prove the following result, which implies Theorem 1.1(i).

THEOREM 2.10. Given A∈ SSO and  > 0 , there exists K ∈K (H ) with ‖K‖<
 such that A+K ∈ SSO\ SSO0 .

Proof. By Corollary 2.9, given  > 0, there exists K ∈ K (H ) with ‖K‖ < 
such that A+K ∈ SSO and 0(A+K) 
= /0 . So it remains to prove that T := A+K /∈
SSO0 .

For  ∈ 0(T ) , there is a r > 0 such that B( ,r)∩0(T ) = {} . Define an
analytic function f over a neighborhood of (T ) by setting

f (z) =
{

1, |z− |< r,
0, |z− |> r.
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Then f (T ) = E({};T) . Since  ∈ 0(T ) and dimranE({},T ) <  , one can get
that f (T ) is a nonzero, finite-rank and idempotent operator.

It follows from [16, Prop. 1.7] that there exists  > 0 such that

‖ f (T )− f (S)‖ <
1

2(‖ f (T )‖+2)

for all S ∈ B(H ) satisfying ‖T −S‖<  .

Claim. f (S) is a nonzero, finite-rank and idempotent operator for S ∈ B(H )
with ‖T −S‖<  .

Suppose S ∈B(H ) with ‖T −S‖<  . Set A = f (S) and P = f (T ) . Obviously,
A and P are both idempotent. Set W = PA+(I−P)(I−A) . Then

W = I− (P−PA)+ (PA−A)= I−P(P−A)− (P−A)A.

We can deduce that

‖P(P−A)‖+‖(P−A)A‖ � ‖P‖
2(‖P‖+2)

+
‖A‖

2(‖P‖+2)

� ‖P‖
2(‖P‖+2)

+
‖P‖+‖P−A‖

2(‖P‖+2)

� ‖P‖
2(‖P‖+2)

+
‖P‖+1

2(‖P‖+2)
< 1.

Thus W is invertible and PW = PA = WA . Hence A is similar to P . This proves the
claim.

Let S∈B(H ) with ‖T −S‖<  . By the above claim, f (S) is a nonzero compact
operator and belongs to the unital C∗ -algebra C∗(S) generated by S . Thus, by [10,
Lem. 2.5], S is not completely reducible. This completes the proof. �

2.3. Irreducible summands

In this subsection we give the following result, which implies Theorem 1.1(ii).

THEOREM 2.11. Given T ∈ SSO, 1 � n � 0 and  > 0 , there exists K ∈
K (H ) with ‖K‖ <  such that A+K ∈ SSOn .

The proof of the following results can be referred to [15, Prop. 2.3] and [13, Prop.
7.4].

LEMMA 2.12. Let T ∈ B(H ) .

(i) If T = ⊕n
i=1Ti where 1 � n � 0 and Ti ’s are irreducible with distinct spectra,

then {Hi : 1 � i � n} are all minimal reducing subspaces of T .

(ii) T = A⊕B, where A,B are irreducible and A∼= B, then T has uncountably many
minimal reducing subspaces.
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Proof of Theorem 2.11. It is sufficient to give the proof in the case that n = 0 .
The proof is a minor modification of that for n ∈ N .

By Lemma 2.3, there exists R ∈ SSO with R ∼=a R⊕R such that T ∼=a T ⊕R . By
[7, Cor. II.5.5], we have R ∼=a ⊕

i=1R . So T ∼=a T ⊕ (⊕
i=1R) Hence, by Lemma 2.2,

there exists K0 ∈ K (H ) with ‖K0‖ < 
2 such that

T +K0
∼=

⊕
i=1

Ti

where Ti ∈ B(Hi) is skew symmetric and dimHi = , i = 1,2, . . . .
For each i � 1, it follows from Lemma 2.6 that there exist {Ki, j : 1 � j � i} ⊂

K (Hi) with ‖Ki, j‖ < 
2i+1 such that {Ti + Ki, j : 1 � j � i} are irreducible skew

symmetric operators with pairwise distinct spectra.
Denote K1 = K1,1 and A1 = T1 +K1 .
Since (T2 + K2,1) 
= (T2 + K2,2) , we obtain that either (T2 + K2,1) 
= (A1)

or (T2 +K2,2) 
= (A1) . It may be assumed without loss of generality that the former
holds. In this case, set K2 = K2,1 and A2 = T2 +K2 .

Noting that {(T3 + K3, j) : 1 � j � 3} are pairwise distinct, then there exists j
such that (A1),(A2),(T3 + K3, j) are pairwise distinct. Set K3 = K3, j and A3 =
T3 +K3 .

Using this method, we can find there exists {Ki : i � 1} ⊂ K (H ) with ‖Ki‖ <


2i+1 such that Ai := Ti + Ki is an irreducible skew symmetric operator; moreover,
{(Ai) : i � 1} are pairwise distinct. Thus Ai � Aj whenever i 
= j .

Set

K = K0 +
( ⊕

i=1

Ki

)
.

Then K ∈ K (H ) with ‖K‖ � ‖K0‖+maxi�1 ‖Ki‖ <  and

T +K ∼=
⊕

i=1

Ai,

where {Ai : i � 1} are irreducible skew symmetric operators and Ai � Aj whenever
i 
= j . Thus, by Lemma 2.12, T +K ∈ SSO0 . �

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. (i) The result is a direct consequence of Theorem 2.10.
(ii) The result is a direct consequence of Theorem 2.11.
(iii) Let T ∈ SSO , by Lemma 2.3, there exists R ∈ SSO such that T ∼=a T ⊕R⊕R .

For any  > 0, it follows from Theorem 2.6 that there exists F ∈B(H ) with ‖F‖< 
2

such that A := R+F is an irreducible skew symmetric operator. Thus, by Lemma 2.2,
there is K ∈ K (H ) with ‖K‖ <  such that

T +K ∼= T ⊕A⊕A.

By Lemma 2.12, it is easy to see that T + K ∈ SSO has uncountably many minimal
reducing subspaces. Therefore T ∈ SSO . �
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