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EIGENVALUES OF INDEFINITE q–STURM–LIOUVILLE

PROBLEM WITH q–COUPLED BOUNDARY CONDITION

XIAOXUE HAN AND FU SUN ∗

(Communicated by J. Behrndt)

Abstract. The present paper deals with non-real eigenvalues of indefinite q -Sturm-Liouville
problems with coupled boundary condition⎧⎪⎪⎨⎪⎪⎩

− 1
q
Dq−1Dqy(x)+ v(x)y(x) = w(x)y(x),(
y(1)

Dq−1y(1)

)
= K

(
y(0)

Dq−1y(0)

)
.

The upper bounds on the imaginary and real parts of non-real eigenvalues for this indefinite
q -Sturm-Liouville problem are obtained in terms of the coefficients v,w and the q -coupled
boundary conditions. This is a challenging open problem according to the regular indefinite
Sturm-Liouville problems and there has been little research on this problems so far. A priori
bounds on the non-real eigenvalues in this paper can of course be combined with other estimates
of the indefinite q -Sturm-Liouville problems under the assumption in this paper and the methods
partly inspired by the estimates for nonlocal regular indefinite Sturm-Liouville problems with
nonlocal coupled boundary conditions.

1. Introduction

It’s well known that q -difference equations arise q -analogues of differential equa-
tions and this subject has developed into a multidisciplinary subject. The q -difference
equations and their related problems appears in several physical models involving q -
derivatives, q -integrals, q -exponential function, q -trigonometric function, q -Taylor
formula, q -Beta(Gamma) functions (see [4, 7, 8, 9, 11, 12]). This paper is to study a
basic analogue of Sturm-Liouville systems when the differential operator is replaced by
the q -difference operator Dq , where

Dq f (x) :=
f (x)− f (qx)

x−qx
, x ∈ [0,1]/{0}, q ∈ (R,(0,1)) .

And the q -derivative at zero is defined by

Dq f (0) := lim
n→

f (xqn)− f (0)
xqn , x ∈ (0,1),
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if the limit exists and does not depend on x . The basic q -Sturm-Liouville system and
classic Sturm-Liouville problems are defined in [9, Chapter 5] [10] and [20, Chapter
4] respectively, and hence the indefinite q -Sturm-Liouville problem with q -coupled
boundary conditions is defined as⎧⎪⎪⎨⎪⎪⎩

− 1
q
Dq−1Dqy(x)+ v(x)y(x) = w(x)y(x),(
y(1)

Dq−1y(1)

)
= K

(
y(0)

Dq−1y(0)

)
,

(1)

where the functions q,v,w are real-valued which posses appropriate q -derivatives, v ∈
L1

q(0,1) and w ∈ L2
q(0,1) changes sign on [0,1] , which means that

mes{x ∈ [0,1] : w(x) > 0} > 0, mes{x ∈ [0,1] : w(x) < 0} > 0

and K =
(

k11 k12

k21 k22

)
, ki j ∈ R, i, j = 1,2 and detK = 1. A complex number  is

called an eigenvalue of boundary value problem (1) if there is a nontrivial solution
y satisfying the boundary conditions and in this case the corresponding solution y is
called an eigenfunction of  . Since the sign change of the weight function w , the
indefinite q -Sturm-Liouville eigenvalues problem (1) is not self-adjoint in a Hilbert
space but it can be interpreted as self-adjoint with indefinite inner product. Jackson in
[14] introduced an integral denoted by

∫ b
a f (t)dqt as a right inverse of the q -derivative.

It is defined by ∫ b

a
f (t)dqt :=

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt,

where ∫ x

0
f (t)dqt := (1−q)




n=0

xqn f (xqn) (2)

provided that the series at the right-hand side of (2) converges at x = a and b . The rule
of q -integration by parts is∫ 1

0
f (x)Dqg(x)dqx = f (x)g(x)− lim

n→
f (qn)g(qn)−

∫ 1

0
g(qx)Dq f (x)dqx,

and the non-symmetric q -product rule is

Dq( f g)(x) = Dq f (x)g(x)+ f (qx)Dqg(x).

For w � 0 in (1), this basic q -Sturm-Liouville eigenvalue problem have been
proved that all eigenvalues of this system are real in in [9, pp. 164–170] and the eigen-
functions satisfy an orthogonality relation in [9, Eq. (5.1.5)]. Annaby and Mansour
in [3] investigated a self-adjoint q -Sturm-Liouville operator in a Hilbert space and
discussed the properties of eigenvalues and associated eigenfunctions. The singular
q -Sturm-Liouville problem have been studied in [1, 2, 5] including the q -Titchmarsh-
Weyl theory, q -limit-point and q -limit-circle singularities, spectral problems of non-
self-adjoint singular q -Sturm-Liouville problem with an eigenparameter in the bound-
ary condition. Since w changes sign, i.e., the q -Sturm-Liouville problem is indefinite,
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and the indefinite nature is that non-real spectral points may appear. The classic indefi-
nite Sturm-Liouville equation −y′′(x)+ v(x)y(x) = w(x)y(x) with suitable boundary
condition were carried out by Haupt [13] and Richardson [17] which pointed out the
non-real eigenvalues may exist. Determining a priori bounds of these non-real eigen-
values in terms of the coefficients and the boundary conditions is an interesting and
difficult problems in Sturm-Liouville theory. Recently, these open problems have been
solved by Qi et al. in [6, 15, 16, 19]. However, as far as we know, there is no study
of the indefinite q -Sturm-Liouville problem (1) as we do in the present setting. Only
in the very recent past first results in this direction of q -Sturm-Liouville problem with
q -Dirichlet boundary conditions were obtained in [18]. In this paper we investigate the
q -Sturm-Liouville equation with q -coupled self-adjoint boundary conditions and we
prove explicit bounds on the real and imaginary parts of these eigenvalues only restric-
tion on the coefficients of the differential expression. The techniques in the proof of
our main results are inspired by the methods in the estimate of non-real eigenvalues for
regular indefinite Sturm-Liouville problems with arbitrary self-adjoint boundary con-
ditions in [6, 16]. The present paper will focus on the indefinite q -Sturm-Liouville
eigenvalue problem (1), a priori bounds on real and imaginary parts of non-real eigen-
values for this problem are obtained in Theorem 1 of the following Section 2.

2. Preliminary knowledge and bounds on non-real eigenvalues

In this section we provide a priori bounds on the non-real eigenvalues of (1) in
Theorem 1 (see the below). The following constants will be incorporated into these
bounds. Setting

K̂ := max

⎧⎨⎩
|k22|+ |k11|+2

|k12| , k12 �= 0,

|k11||k21|, k12 = 0,

Kk,v := K̂ +‖v−‖1, K :=
√

Kk,v(1+Kk,v)+Kk,v,

(3)

and v−(x) = min{0,v(x)}, x ∈ (0,1) . Note that the constants K̂ , Kk,v and K do
not depend on the weight function w . The norm of L2

q(0,1) will be denoted by ‖ · ‖2 .
As usual the L1 -norm and L -norm will be denoted by ‖ · ‖1 and ‖ · ‖ , respectively.
The following lemmas are the estimates on the

∫ 1
0 |Dq f (x)|2dqx and ‖ f‖ which play

a key role in the proof of the eigenvalue estimates in this paper. Let  be a non-real
eigenvalue of (1) and f be a corresponding eigenfunction. It is no restriction to assume
that

∫ 1
0 | f (x)|2dqx = 1 in the following discussion.

LEMMA 1. Let f be the eigenfunction of (1), then we have

Dq−1 f (1) f (1)−Dq−1 f (0) f (0) � K̂ max{| f (1)|2, | f (0)|2},

where K̂ is defined in (3).
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Proof. It follows from(
f (1)

Dq−1 f (1)

)
=

(
k11 k12

k21 k22

)(
f (0)

Dq−1 f (0)

)
(4)

that
f (1) = k11 f (0)+ k12Dq−1 f (0).

From (4) and detK = 1 one sees that(
k22 −k12

−k21 k11

)(
f (1)

Dq−1 f (1)

)
=

(
f (0)

Dq−1 f (0)

)
,

which
k22 f (1)− k12Dq−1 f (1) = f (0).

And hence
k12Dq−1 f (1) f (1)− k12Dq−1 f (0) f (0)

= [k22 f (1)− f (0)] f (1)− [ f (1)− k11 f (0)] f (0)

= k22| f (1)|2 + k11| f (0)|2 −2Re[ f (0) f (1)].

If k12 �= 0, then

Dq−1 f (1) f (1)−Dq−1 f (0) f (0)

= k−1
12 {k22| f (1)|2 + k11| f (0)|2 −2Re[ f (0) f (1)]}

� |k−1
12 |{|k22|| f (1)|2 + |k11|| f (0)|2 +2| f (0)|| f (1)|}

� |k22|+ |k11|+2
|k12| max{| f (1)|2, | f (0)|2}.

(5)

If k12 = 0, then from f (1) = k11 f (0) , Dq−1 f (1) = k21 f (0)+ k22Dq−1 f (0) , k22 f (1) =
f (0) and K = k11k22 = 1, we obtain

Dq−1 f (1) f (1)−Dq−1 f (0) f (0)

= [k21 f (0)+ k22Dq−1 f (0)] f (1)− k22Dq−1 f (0) f (1)

= k21 f (0) f (1) = k11k21 f (0) f (0) = k11k21| f (0)|2
� |k11||k21|max{| f (1)|2, | f (0)|2}.

(6)

It follows from (5) and (6) that this Lemma holds immediately. �

LEMMA 2. Let  and f be the non-real eigenvalue and corresponding eigen-
function defined as above, then the following estimates hold∫ 1

0
|Dq f (x)|2dqx � K 2, ‖ f‖2

 � 2K +1,

where K is defined in (3).
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Proof. Multiplying both sides of (1) by f and integrating over the interval [0,1]


∫ 1

0
w(x)| f (x)|2dqx = −

∫ 1

0

1
q
Dq−1Dq f (x) f (x)dqx+

∫ 1

0
v(x) f (x) f (x)dqx

=
〈
− 1

q
Dq−1Dq f (x), f (x)

〉
+

∫ 1

0
v(x)| f (x)|2dqx

= −Dq f (q−1) f (1)+ lim
n→

[Dq f (qn−1) f (qn)]+ 〈Dq f (x),Dq f (x)〉+
∫ 1

0
v(x)| f (x)|2dqx

= −Dq−1 f (1) f (1)+Dq−1 f (0) f (0)+
∫ 1

0
|Dq f (x)|2dqx+

∫ 1

0
v(x)| f (x)|2dqx

= −K2Dq−1 f (0) f (0)+Dq−1 f (0) f (0)+
∫ 1

0
|Dq f (x)|2dqx+

∫ 1

0
v(x)| f (x)|2dqx

=
∫ 1

0
|Dq f (x)|2dqx+

∫ 1

0
v(x)| f (x)|2dqx.

This together with Im �= 0 yields that
∫ 1
0 w(x)| f (x)|2dqx = 0, i.e.,

Dq−1 f (0) f (0)−Dq−1 f (1) f (1)+
∫ 1

0
|Dq f (x)|2dqx+

∫ 1

0
v(x)| f (x)|2dqx = 0.

By Lemma 1 and hence we find∫ 1

0
|Dq f (x)|2dqx = Dq−1 f (1) f (1)−Dq−1 f (0) f (0)−

∫ 1

0
v(x)| f (x)|2dqx

� Dq−1 f (1) f (1)−Dq−1 f (0) f (0)+
∫ 1

0
v−(x)| f (x)|2dqx

� K̂ max{| f (1)|2, | f (0)|2}+
∫ 1

0
v−(x)| f (x)|2dqx

� ‖ f‖2
(K̂ +‖v−‖1).

(7)

For every x,y ∈ [0,1], x < y , we obtain

| f (y)|2 −| f (x)|2 =
∫ y

x
Dq(| f (t)|2)dqt

=
∫ y

x
f (t)Dq f (t)dqt +

∫ y

x
f (qt)Dq f (t)dqt

�
(∫ 1

0
| f (t)|2dqt

)1/2 (∫ 1

0
|Dq f (t)|2dqt

)1/2

+
(∫ 1

0
| f (qt)|2dqt

)1/2 (∫ 1

0
|Dq f (t)|2dqt

)1/2

� 2

(∫ 1

0
| f (t)|2dqt

)1/2 (∫ 1

0
|Dq f (t)|2dqt

)1/2

= 2

(∫ 1

0
|Dq f (t)|2dqt

)1/2

.
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Integrating the above inequality over [0,1] with respect to x gives

∫ 1

0
| f (y)|2dqx−

∫ 1

0
| f (x)|2dqx � 2

(∫ 1

0
|Dq f (t)|2dqt

)1/2 ∫ 1

0
dqx,

this implies that

| f (y)|2 � 2

(∫ 1

0
|Dq f (t)|2dqt

)1/2 ∫ 1

0
dqx+

∫ 1

0
| f (x)|2dqx

= 2

(∫ 1

0
|Dq f (t)|2dqt

)1/2

+1.

Hence it follows that

‖ f‖2
 � 2

(∫ 1

0
|Dq f (t)|2dqt

)1/2

+1. (8)

Therefore we obtain from (7)

∫ 1

0
|Dq f (x)|2dqx �

[
2

(∫ 1

0
|Dq f (t)|2dqt

)1/2

+1

]
Kk,v.

This yields [(∫ 1

0
|Dq f (x)|2dqx

)1/2

−Kk,v

]2

� Kk,v(1+Kk,v),

and hence (∫ 1

0
|Dq f (x)|2dqx

)1/2

�
√

Kk,v(1+Kk,v)+Kk,v,

so that the first estimate in this Lemma is proved. The second estimate follows from the
first estimate result and (8) implies

‖ f‖2
 � 2

[√
Kk,v(1+Kk,v)+Kk,v

]
+1,

which completes the proof of Lemma 2. �

Since w changes sign on [0,1] and w(x) �= 0 a.e. x ∈ [0,1] , we choose  > 0 so
small such that

I = {x ∈ [0,1] : w2(x) � }, 0 < ( ) = mes I � 1
2(2K +1)

. (9)

Then we can state the result of a priori bounds on the non-real eigenvalues for this
indefinite q -Sturm-Liouville problem (1) as follows.
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THEOREM 1. Assume that w ∈ L2
q(0,1) . If there exists Wk > 0 such that |w(x)|�

Wk a.e.on [0,1] and (9) holds. Then for the non-real eigenvalue  of indefinite q-
Sturm-Liouville problem (1), it holds that

| |� 2

√

2K +1
[
WkK̂

√
2K +1+WqK

]
,

| |� 2


{
Wk

[
(2K +1)

(
K̂ +‖v‖1

)
+K 2

]
+WqK

√
2K +1

}
,

where Wq =
(∫ 1

0 |Dqw(x)|2dqx
)1/2

and K , K̂ are defined in (3).

Proof. Multiplying both sides of (1) by w(x) f (x) and integrating over the interval
[0,1] , then

−
∫ 1

0

1
q
Dq−1Dq f (x)w(x) f (x)dqx+

∫ 1

0
w(x)v(x)| f (x)|2dqx = 

∫ 1

0
w2(x)| f (x)|2dqx.

Using q -integration by parts and non-symmetric q -product rule we obtain


∫ 1

0
w2(x)| f (x)|2dqx = w(0)Dq−1 f (0) f (0)−w(1)Dq−1 f (1) f (1)

+
∫ 1

0
w(qx)|Dq f (x)|2dqx+

∫ 1

0
w(x)v(x)| f (x)|2dqx

+
∫ 1

0
Dqw(x)Dq f (x) f (x)dqx.

(10)

It follows from |w(x)|� Wk , Lemma 1 and 2 that

w(0)Dq−1 f (0) f (0)−w(1)Dq−1 f (1) f (1)

+
∫ 1

0
w(qx)|Dq f (x)|2dqx+

∫ 1

0
w(x)v(x)| f (x)|2dqx

� Wk

[∣∣∣Dq−1 f (0) f (0)−Dq−1 f (1) f (1)
∣∣∣+∫ 1

0
|Dq f (x)|2dqx+

∫ 1

0
v(x)| f (x)|2dqx

]
� Wk

[
K̂ max{| f (1)|2, | f (0)|2}+

∫ 1

0
|Dq f (x)|2dqx+

∫ 1

0
v(x)| f (x)|2dqx

]
� Wk‖ f‖2



(
K̂ +‖v‖1

)
+WkK

2

� Wk (2K +1)
(
K̂ +‖v‖1

)
+WkK

2.

(11)

By w ∈ L2
q(0,1) and Wq =

(∫ 1
0 |Dqw(x)|2dqx

)1/2
which yields

∫ 1

0
Dqw(x)Dq f (x) f (x)dqx � ‖ f‖

(∫ 1

0
|Dqw(x)|2dqx

)1/2 (∫ 1

0
|Dq f (x)|2dqx

)1/2

� WqK
√

2K +1.
(12)
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The integral at the left-hand side of (10) satisfies

∫ 1

0
w2(x)| f (x)|2dqx �

∫
[0,1]\I

w2(x)| f (x)|2dqx

� 
(∫ 1

0
| f (x)|2dqx−

∫
I
| f (x)|2dqx

)
� 

[
1−‖ f‖2

( )
]

�  [1− (2K +1)( )]
� /2.

(13)

This fact together with (10)-(12) can lead


2
| | � | |

∫ 1

0
w2(x)| f (x)|2dqx

� Wk

[
(2K +1)

(
K̂ +‖v‖1

)
+K 2

]
+WqK

√
2K +1.

Note that


∫ 1

0
w2(x)| f (x)|2dqx = 

[
w(0)Dq−1 f (0) f (0)−w(1)Dq−1 f (1) f (1)

]
+

[∫ 1

0
Dqw(x)Dq f (x) f (x)dqx

]

by (10). Hence, (11), (12), (13), Lemma 1 and 2 lead us to


2
| | � | |

∫ 1

0
w2(x)| f (x)|2dqx

� WkK̂ (2K +1)+WqK
√

2K +1.

Thus the inequation in Theorem 1 is established and the proof is complete. �
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