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EIGENVALUES OF INDEFINITE ¢-STURM-LIOUVILLE
PROBLEM WITH ¢-COUPLED BOUNDARY CONDITION

XIAOXUE HAN AND FU SUN*

(Communicated by J. Behrndt)

Abstract. The present paper deals with non-real eigenvalues of indefinite ¢-Sturm-Liouville
problems with coupled boundary condition

- }Inqwqw) Fv(x)y(x) = Aw()y(),

<qu,(lly)(1)> =K <qu,(1(;)(0) > :

The upper bounds on the imaginary and real parts of non-real eigenvalues for this indefinite
g-Sturm-Liouville problem are obtained in terms of the coefficients v,w and the g-coupled
boundary conditions. This is a challenging open problem according to the regular indefinite
Sturm-Liouville problems and there has been little research on this problems so far. A priori
bounds on the non-real eigenvalues in this paper can of course be combined with other estimates
of the indefinite g-Sturm-Liouville problems under the assumption in this paper and the methods
partly inspired by the estimates for nonlocal regular indefinite Sturm-Liouville problems with
nonlocal coupled boundary conditions.

1. Introduction

It’s well known that g-difference equations arise g-analogues of differential equa-
tions and this subject has developed into a multidisciplinary subject. The g-difference
equations and their related problems appears in several physical models involving g-
derivatives, g-integrals, g-exponential function, g-trigonometric function, g-Taylor
formula, g-Beta(Gamma) functions (see [4, 7, 8, 9, 11, 12]). This paper is to study a
basic analogue of Sturm-Liouville systems when the differential operator is replaced by
the g-difference operator D, where

10—t

X—qx

Dyf(x) := 0,1]/{0}, g€ (R,(0,1)).

And the g-derivative at zero is defined by

(")~ f(0)
Dyf(0) := J%T’ x€(0,1),
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if the limit exists and does not depend on x. The basic g-Sturm-Liouville system and
classic Sturm-Liouville problems are defined in [9, Chapter 5] [10] and [20, Chapter
4] respectively, and hence the indefinite g-Sturm-Liouville problem with g-coupled
boundary conditions is defined as

- énq,lnqy(@ +v()y(x) = Aw(x)y(x),

(qu(li))(l)> =K (qu(l(;)(O)) )

where the functions g, v,w are real-valued which posses appropriate g-derivatives, v €
Ly(0,1) and w € LZ(0,1) changes sign on [0, 1], which means that

(D

mes{x € [0,1] : w(x) >0} >0, mes{x € [0,1]: w(x) <0} >0

ki1 kiz
and K = <k21 fs
called an eigenvalue of boundary value problem (1) if there is a nontrivial solution
y satisfying the boundary conditions and in this case the corresponding solution y is
called an eigenfunction of A. Since the sign change of the weight function w, the
indefinite g-Sturm-Liouville eigenvalues problem (1) is not self-adjoint in a Hilbert
space but it can be interpreted as self-adjoint with indefinite inner product. Jackson in
[14] introduced an integral denoted by || f f(t)dgt as aright inverse of the g-derivative.
It is defined by

), kij € R, i,j=1,2 and detK = 1. A complex number A is

b b a
| rda= [ rodn= [,
where

[ s =(1-9) rg'staa) @

provided that the series at the right-hand side of (2) converges at x =a and b. The rule
of g-integration by parts is

1 1
|| F0Dag (= F(0)80) = fim £(q")8(a") — | sla)Duf ()

n—oo

and the non-symmetric g-product rule is

Dy(f8)(x) = Dy f(x)8(x) + f(qx)Dgg(x)-

For w > 0 in (1), this basic g-Sturm-Liouville eigenvalue problem have been
proved that all eigenvalues of this system are real in in [9, pp. 164—170] and the eigen-
functions satisfy an orthogonality relation in [9, Eq. (5.1.5)]. Annaby and Mansour
in [3] investigated a self-adjoint g-Sturm-Liouville operator in a Hilbert space and
discussed the properties of eigenvalues and associated eigenfunctions. The singular
g-Sturm-Liouville problem have been studied in [1, 2, 5] including the g-Titchmarsh-
Weyl theory, g-limit-point and g-limit-circle singularities, spectral problems of non-
self-adjoint singular g-Sturm-Liouville problem with an eigenparameter in the bound-
ary condition. Since w changes sign, i.e., the g-Sturm-Liouville problem is indefinite,
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and the indefinite nature is that non-real spectral points may appear. The classic indefi-
nite Sturm-Liouville equation —y” (x) + v(x)y(x) = Aw(x)y(x) with suitable boundary
condition were carried out by Haupt [13] and Richardson [17] which pointed out the
non-real eigenvalues may exist. Determining a priori bounds of these non-real eigen-
values in terms of the coefficients and the boundary conditions is an interesting and
difficult problems in Sturm-Liouville theory. Recently, these open problems have been
solved by Qi et al. in [6, 15, 16, 19]. However, as far as we know, there is no study
of the indefinite g-Sturm-Liouville problem (1) as we do in the present setting. Only
in the very recent past first results in this direction of g-Sturm-Liouville problem with
g-Dirichlet boundary conditions were obtained in [18]. In this paper we investigate the
g-Sturm-Liouville equation with g-coupled self-adjoint boundary conditions and we
prove explicit bounds on the real and imaginary parts of these eigenvalues only restric-
tion on the coefficients of the differential expression. The techniques in the proof of
our main results are inspired by the methods in the estimate of non-real eigenvalues for
regular indefinite Sturm-Liouville problems with arbitrary self-adjoint boundary con-
ditions in [6, 16]. The present paper will focus on the indefinite g-Sturm-Liouville
eigenvalue problem (1), a priori bounds on real and imaginary parts of non-real eigen-
values for this problem are obtained in Theorem 1 of the following Section 2.

2. Preliminary knowledge and bounds on non-real eigenvalues

In this section we provide a priori bounds on the non-real eigenvalues of (1) in
Theorem 1 (see the below). The following constants will be incorporated into these
bounds. Setting

|koo | + |ki1] +2
_ BT BT 2 ke, £0,
 := max k12| 27
k11| lka1 ], k1o =0, (3)

Sy =K+ -1, A=) A (1 + Hh) + S,

and v_(x) = min{0,v(x)}, x € (0,1). Note that the constants Va gy and Z do
not depend on the weight function w. The norm of Lé(O, 1) will be denoted by || -||».
As usual the L' -norm and L -norm will be denoted by || - ||; and || - ||, respectively.
The following lemmas are the estimates on the fol |Dyf (x)|*dgx and || f]| which play
a key role in the proof of the eigenvalue estimates in this paper. Let A be a non-real
eigenvalue of (1) and f be a corresponding eigenfunction. It is no restriction to assume
that fol |f(x)[?d,x =1 in the following discussion.

LEMMA 1. Let f be the eigenfunction of (1), then we have
Dy f(1)F (1) = Dy f(0)70) < A max{| £(1).[£(0) ),

where z%//\ is defined in (3).
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Proof. Tt follows from
( f(1) ) _ (kn k12) ( 1(0) ) )
D 1 f(1) ka1 ka2 ) \ D1£(0)

f(l) = kllf(O) + klqu—lf(O).

From (4) and detK = 1 one sees that
( k2o —k12> ( f() ) _ ( f(0) )
—ka1 ki D1 f(1) D,1£(0) )’

ko f(1) — k12D, f(1) = £(0).

that

which

And hence . _
kiaDy-1 f(1) f(1) = ki2Dy-1 £(0) £(0)

= [kaaf(1) —
=kan|f(1)

FO)F(1) ~ (1) —kunf (0)1£(0)

[+ ki1l £(0)* — 2Re[£(0) f(1)].
If k15 #0, then

D, f(1)f(1) =D 1 £(0)£(0)
— ki {kaa | F(D)]? + ki | £(0)]2 — 2Re[ £(0) £ (1)]
< ki Hlkaa || £ (D)2 + e [ £(0) P + 21 £(0)|[F ()]} )

Mmaxﬂf(l)lz,lf(oﬂ }-

<
h k12|

If k12 = 0, then from f(1) = k11£(0), D1 f(1) = ka1 f(0) + k22D -1 f(0), ko f(1) =
f(0) and K = ky1kpp = 1, we obtain

D f(1)f(1) =D, f(O)f £(0)
= [k21£(0) + 22D f0)]f(1) - kaoD,-1 f(0 )f(1) ©)
=k £(0)f(1) = kllkzlf(o)ﬂ kiikai|£(0)]?

< [kt |lkat [ max{ | (1), |£(0) 2}

It follows from (5) and (6) that this Lemma holds immediately. [J

LEMMA 2. Let A and f be the non-real eigenvalue and corresponding eigen-
function defined as above, then the following estimates hold

1
|| IPaf@Pdr< 2, AR <2 41,

where J is defined in (3).
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Proof. Multiplying both sides of (1) by f and integrating over the interval [0, 1]

/ )| f(0)dgx = — / =D, 1Dyf (¥) qx+/

= (= 2D DU £0) + [ vlrwran

— =D, (g )FD) + lim (D, f(g" (g} + (D (). Dy () + / () Pdgx
D, f()FTT) 70)+ / Do (0)Pdr+ / SR
= KD, fO)F0) + D, SOTO + [ 1Dy )P+ / ()P,

_/ Dy f () dqx—i—/ )[2dyx.

This together with ImA # 0 yields that fol w(x)|f(x)|*dx =0, i.e.,

D, fO)F(0) T+ [ 1D 0)Pdet [ vl Page=o.
By Lemma 1 and hence we find
[ 1D4 (0P g =D, FOTTT = Dy FO)T0) -~ [ ()10
1
1Y 2
<D, ST = Dy FO)F0) + /O CICIR TS,
< Amax{ PO + [ v W10 P
< MR+ =)

For every x,y € [0,1], x <y, we obtain

Y
- / D (1F(1)]?)dgt
— [ FODuf @+ [l DF Ot

< ([1rran) " ([ uroras)
([ rara) ([ Bambas)
< [oras) ([ wrar)”
—o( [ Ipur)p 1/2.
() paroPas)

1/2
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Integrating the above inequality over [0, 1] with respect to x gives

1 1 1 /2
/O () Pdgx — /0 |f(x)2dqx<2< /0 qu(t)qut) /O dgr,

this implies that
s 1 5 12 .4 1 s
o <2 ( [ DRy ) [ o [P

1 1/2
:2(/0 qu(t)qut) Y

Hence it follows that
1 1/2
12 <2 ( [ 1Darag )1 ®
Therefore we obtain from (7)

1|D (x)]2dyx < z( I\D (t)2dt)l/2+1 Hy
/O qfx X X /0 qf q kv

This yields
1 1/2 2
[(/O |qu(x)|2dqx> - %{,v] < '%/k,v(l + '%/k,v)7

and hence

1 1/2
([ 1parPa) < \hal1+ i) +

so that the first estimate in this Lemma is proved. The second estimate follows from the
first estimate result and (8) implies

A2 <2 [\/%AH%VH%V} 1,

which completes the proof of Lemma 2. [

Since w changes sign on [0,1] and w(x) # 0 a.e. x € [0, 1], we choose 6 > 0 so
small such that

1
I ={xe[0,1]:w*(x) <0}, 0<u(6)=mes.7 < 3

w9

Then we can state the result of a priori bounds on the non-real eigenvalues for this
indefinite g-Sturm-Liouville problem (1) as follows.
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THEOREM 1. Assume that w € LZ(O7 1). If there exists #} > 0 such that |w(x)|<

Wy a.e.on [0,1] and (9) holds. Then for the non-real eigenvalue A of indefinite q-
Sturm-Liouville problem (1), it holds that

SA|< %\/2%+1 AT T+ W7,
2 -
RAI< 2 {|ex +0) (F+Ivlh) + 22|+ #x V2 +1},
| ) 1/2 _ .
where Wy = (fo |Dyw(x)| dqx> and K, K are defined in (3).

Proof. Multiplying both sides of (1) by w(x)f(x) and integrating over the interval
[0,1], then

11
~ [} LD qx—|—/ W1f (x |dqx—/1/

Using g-integration by parts and non-symmetric g-product rule we obtain
3 [ W19 Pl = w(O)D, 1S OO (1D, F (1))

1 1
+ [ @)Dt (Pdpe+ [ Wl Pdx (10)

2

1 _
+ /O Dw(x)D f (x) F(x)dg
It follows from |w(x)|< #}, Lemma 1 and 2 that
w(0)D,-1£(0)£(0) —w(1)D,-1£(1)f(1)
+/01w(qx)|qu(x)|2dqx+/lw (x)v(x) f(x)|2dqx
<4 |D,- SO0~ Dy T + [ 1Das 0Pt / 10

[T max{ £ O+ / Dyt [ V(o) |dqx}
AR (A + vll) +#2x?

ALK +1) (F+ M) + >,
(11)
2 1 2 1/2 . .
By w e L;(0,1) and %, = (fo |Dgw(x)| dqx> which yields

[ powton, ) ()qx<f||oo</ D) |dqx)1/2(/01|qu<x>|2dqx)

<HEHNIH T 1.

1/2

12)
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The integral at the left-hand side of (10) satisfies

[ @lwPas [ R
0 7 Joans 1

>6h—wu (0)]
> 0[1— (2 +1)u(6)]
>0/2.

This fact together with (10)-(12) can lead

Ol <l [ w? *d
SIRA < 9] [ w2 ) 1) P

<Hi @A +1) (F+ ) + 23] + # 0 V2H F1.

Note that

RYS /Olwz(x)|f(x)\2dqx =3 [W(O)qulf(O)m—w(l)qulf(l)m]
+3 [/Oquw(x)qu(x)mdqx]

by (10). Hence, (11), (12), (13), Lemma 1 and 2 lead us to

BM/ () Pdgx
\%%(2%+1)+%%\/z%+1.

Thus the inequation in Theorem 1 is established and the proof is complete. [J
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