
Operators
and

Matrices

Volume 18, Number 4 (2024), 891–910 doi:10.7153/oam-2024-18-54
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(Communicated by L. Molnár)

Abstract. We introduce the notions of  -approximate fixed point and weak  -approximate fixed
point. We show that for a group of unitary matrices even the existence of a nontrivial weak  -
approximate fixed point for sufficiently small  gives an actual nontrivial common eigenvector.
We give estimates for  in terms of the size n of matrices and prove that the dependence is poly-
nomial. Moreover, we show that the common eigenvector is polynomially close to the starting
weak approximate fixed point.

1. Introduction

Let G be a group of complex matrices. An approximate fixed point  ∈ �n is
defined to be a nonzero vector for which the norm ‖G − ‖ is uniformly small for
all G ∈ G in an appropriate sense. For a general group, given  > 0, one demands
that ‖G − ‖ � ‖G‖‖‖ , for all G ∈ G . (In this paper ‖ · ‖ will always mean Eu-
clidean norm ‖ · ‖2 unless stated otherwise.) Since we will be concerned with groups
of unitary matrices, we might as well assume ‖G‖ = ‖‖ = 1 and simplify our defini-
tions. The above definition then is equivalent to the requirement that the inner product
〈G , 〉 be uniformly close to 1. An obviously weaker condition is to require that the
modulus |〈G , 〉| be uniformly close to 1. That kind of  will then be called a weak
approximate fixed point. The problem of determining groups for which the existence of
weak approximate fixed points in the above sense implies the existence of a nontrivial
invariant subspace of �n for G (i.e., reducibility of G ) doesn’t seem to be easy. In the
present paper we impose additional hypotheses on G to get affirmative results. Moti-
vation behind this problem and some related results are discussed in the next section
entitled Preliminaries.
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2. Preliminaries

Let an integer n > 0, a real number  > 0 and a group G ⊆ Mn(�) be given (all
the groups in this paper will consist of invertible complex matrices of order n so that
they may be seen as subgroups of the general linear group).

We call a point  ∈�n of norm one a fixed point of G if G =  for each G ∈ G ,
and we call it an  -approximate fixed point of G if ‖G −‖�  for all G∈ G . When
 is understood from the context, we call  shortly an approximate fixed point of the
group G . Recall that the existence of an approximate fixed point is closely related to
Kazhdan property T introduced in a seminal paper of Kazhdan [8]; we refer to [1] for
a historical background and a wealth of information on the topic. In particular (see [1,
Proposition 1.1.5]), if a compact unitary subgroup has an  <

√
2 approximate fixed

point  , then it has a fixed point and we have the estimate ‖ −P‖ � 1 where P is
the projection to the span of all fixed points (see [1, Proposition 1.1.9]). Clearly, P
is a common eigenvector of G , but note that in general its norm is less than one, so it
does not qualify as a fixed point according to our definition above. Occasionally, e.g.,
in Proposition 1, we will be satisfied with the existence of a nonzero vector  such that
G =  for every G ∈ G ; the vector with this property will be called a fixed vector
of G . Thus, a fixed point is a norm-one fixed vector.

We call  ∈ �n of norm one a weak  -approximate fixed point of G if 0 <  < 1
and

|〈G , 〉| � 1−  (1)

for all G∈ G . Again, when  is understood from the context, we call  a weak approx-
imate fixed point of the group G . The condition ‖‖= 1 will be tacitly assumed for any
fixed point  in this paper in connection with either of these definitions, approximate
or not, in any of the claims to follow.

The main result of our paper is that for 0 <  < 1
3600n11 , any unitary subgroup

G of Mn(�) with a weak  -approximate fixed point  has a common eigenvector
 that is within 3600n11 of  (see Theorem 22). The existence of an  > 0 for
which existence of weak  -approximate fixed points implies reducibility for unitary
subgroups of Mn(�) follows from a significantly more general result from [9]. There
the authors study continuous multi-variable functions

f : Mn(�)× . . .×Mn(�) → [0,),

that are reducing for unitary groups in the sense that any unitary group G on which f is
identically 0 (that is, f (G, . . . ,G) = {0} ) is reducible. They show that for any fixed n ,
and for any such function f , there is an  > 0 such that any unitary group G on which
f is bounded by  (that is, | f (G, . . . ,G)| <  ) is also reducible. The main ingredient
of establishing this is applying the theory of collections of nonempty compact subsets
of compact metric spaces equipped with the Hausdorff topology to the metric space of
complex matrices with the usual topology. The just mentioned result easily implies that,
for any n , there is an  > 0 such that any unitary subgroup G of Mn(�) with a weak
 -approximate fixed point  has a common eigenvector  . However, the techniques
of [9] do not yield any estimate on the size of  (they do not even guarantee that  will
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depend on 1
n polynomially), nor do they guarantee that the common eigenvector  will

be polynomially close to the starting weak approximate fixed point  .
The paper is organized as follows. In Section 3 we study finite groups generated

by their commutators. We show, in particular, that if every element of the group is a
product of a commutator and a scalar, the existence of a weak  -approximate fixed
point for sufficiently small  implies reducibility (Theorem 6). In Section 4 we study
monomial groups and prove in Theorem 13 that a monomial group of unitary matrices
having a weak  -approximate fixed point has a common eigenvector provided that 
is of the order of magnitude n−11 . (Recall that all our eigenvectors, common, approx-
imate or otherwise, will be of norm 1.) Some important results on decompositions of
unitary groups are presented in Section 5, and in Section 6 we combine the results of
the previous sections to give an analogous result for a general finite group of unitaries.
In Section 7 we present the desired result for connected compact groups using a well-
known result on connected compact Lie groups. Then we use the fact that the connected
component of the identity of a compact group has finite index to extend our finite-group
results to arbitrary compact groups of unitaries via a simple device. Finally, in Section 8
we present the main result (Theorem 22) mentioned above.

We will make frequent use of the properties of the elements of the group as matri-
ces and will consequently prefer to see our groups as subsets of Mn(�) . We will also
use the fact that these matrices act as operators on the underlying space �n which will
be equipped with the usual Hilbert space norm, i.e. inner-product norm. As a matter
of fact, most of our groups will consist of unitary matrices and this general assumption
will make our theory work.

3. Commutator groups and fixed points

Let us start with a well-known fact for which we give a simple proof for the sake
of completeness.

PROPOSITION 1. Assume that a compact group G ⊆ Mn(�) of unitaries has an
 -approximate fixed point  (0 <  < 1) . Then G has a fixed vector  	= 0 such that
‖ −‖ �  . Moreover,  ′ := /‖‖ is a fixed point of G and ‖ − ′‖ � 2 .

Proof. Let  be the Haar measure on G and define

 =
∫

G∈G
G d .

Using standard arguments and the fact that the Haar measure is left invariant, we see
that G =  for all G ∈ G , so that  is a fixed vector, provided we show it is nonzero.
Use the fact that  is a positive measure with (G) = 1 to get

‖− ‖= sup
‖‖�1

|〈−  ,〉|= sup
‖‖�1

∣∣∣∣∫
G∈G

〈G −  ,〉d
∣∣∣∣� .
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It follows that 1−  � ‖‖ � 1+  , so  ′ := /‖‖ is a fixed point of G and ‖ ′ −
‖ � |1− 1

‖‖ | · ‖‖+‖− ‖� 2 , as desired. �

Observe that the assumption “of unitaries” is not necessary in the result above.
This is because the existence of the Haar measure is assured solely by the assumption
that G be compact. As a matter of fact we may only assume it is bounded. We can
close a bounded group to make it compact, and using the Haar measure we can find
a similarity after which all members of the group are unitary operators; we will omit
the proof since all this is well known. However, all these assertions are true only up
to simultaneous similarity, while one of our main points is to determine the  as a
polynomial function of n . And this point can be studied only if the groups are assumed
unitary upfront.

We will now show that a weak approximate fixed point may always be seen as an
approximate eigenvector for all elements of the group. So, let G ⊆Mn(�) be a compact
group of unitaries and let  ∈ �n of norm one be a weak approximate fixed point of
G . We want to show that this vector is an approximate eigenvector of every element of
the group with the corresponding eigenvalue depending on the element. Introduce for
every G ∈ G the scalar

G =
〈G , 〉
|〈G , 〉| . (2)

Observe that |G| = 1 and G∗ = G since 〈G∗ , 〉 = 〈 ,G 〉 = 〈G , 〉 .

PROPOSITION 2. Let n ∈� and  > 0 be given. If  ∈�n is a weak  -approxi-
mate fixed point of a compact group G ⊆ Mn(�) of unitaries, then

‖G −G‖ �
√

2 for any G ∈ G.

Proof. A straightforward computation reveals

‖G −G‖2 = 〈G −G ,G −G 〉
= 〈G ,G 〉−2�e(〈G ,G 〉)+ 〈G ,G 〉
= 2−2|〈G , 〉|� 2. �

THEOREM 3. Let n ∈� and  > 0 be given. If  ∈�n is a weak  -approximate
fixed point of a group of unitaries G ⊆Mn(�) , and H is a subset of commutators in G ,
then  is also an  ′ -approximate fixed point of H for  ′ = 4

√
2 .

Recall that an element of the form [G,H] = GHG−1H−1 is called a commutator
for any G,H ∈ G ; since the group under consideration consists of unitary matrices we
may also compute the commutator as [G,H] = GHG∗H∗ . Of course, not every group
of matrices (even if finite) has the property that all of its elements are commutators, the
smallest nonabelian counterexample is the group S3 , seen as a group of permutation
matrices in M3(�) . The smallest counterexample of an abstract perfect group (a group
that equals its derived group, i.e. the group generated by its commutators) in which
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there are elements that are not commutators, is the group G = (C2×C2×C2×C2)�A5

of size 960 (cf. [5]).
Observe that Theorem 3 is a simple corollary of the following lemma.

LEMMA 4. Let G ∈ G be a commutator and  ∈ �n be a weak  -approximate
fixed point of G . Then

‖G − ‖� 4
√

2.

Proof. Write a commutator G ∈ G as G = [A,B] = ABA∗B∗ for some A,B ∈ G .
We estimate ‖G − ‖ using Proposition 2:

‖G − ‖� ‖ABA∗(B∗ −BIn)‖+‖ABA∗B − ‖
�
√

2 +‖ABB(A∗ −AIn)‖+‖ABBA − ‖
� 2

√
2+‖ABA(B−BIn)‖+‖AA − ‖ � 4

√
2. �

The following corollary is a consequence of Theorem 3 and Proposition 1. The
notation is borrowed from Theorem 3, in particular, H⊆G is the set of all commutators
in a group G .

COROLLARY 5. Given n ∈� , let 0 <  <
1
32

. If a compact group of unitaries

G ⊆ Mn(�) has a weak  -approximate fixed point  , then H has a fixed vector  	= 0
satisfying ‖− ‖ � 4

√
2 .

THEOREM 6. Let n ∈ � and  > 0 be given, and assume that n � 2 and that

 <
1

32n2 . Let G ⊆ Mn(�) be a subgroup of unitary matrices such that G ⊆ �H .

If G has a weak  -approximate fixed point  ∈ �n , then G has a common eigen-

vector  , such that ‖ −‖ � 4
√

2 <
1
n

.

Proof. Assume with no loss of generality that G =� · G , where �= {z∈� | |z|=
1} and “bar” denotes the closure in the Euclidean topology. Now note that it is sufficient
to prove the result for G0 = {G ∈ G | det(G) = 1} . This is because G0 also satisfies the
assumptions of the theorem and because every element of G is a �-multiple of an
element of G0 .

Choose a G ∈ G0 and write

G =  [A,B] (3)

for some A,B ∈ G and a scalar  . Note that  I = G[A,B]−1 ∈ G0 and hence  n = 1.
By Lemma 4 we have that

‖[A,B] − ‖� 4
√

2
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implying that
‖G −‖= ‖ [A,B] −‖� 4

√
2. (4)

Since the adjacent n -th roots of unity are at the distance

dn =
∣∣∣e2 i/n−1

∣∣∣� 4
n
,

and

4
√

2 < 4

√
2

1
32n2 =

1
n

<
1
2
dn,

we conclude that  defined by (3) is unique. Consequently, we may define a map 
going from G0 to G0 , defined by  : G �→  I . We will show that this map is a group
homomorphism.

Indeed, choose G =  [A,B] for some A,B∈G0 and a scalar  = (G) and choose

G̃ = ̃ [Ã, B̃] for some Ã, B̃ ∈ G0 and a scalar ̃ = (G̃) . Then,

‖GG̃ − ̃‖ = ‖( [A,B]̃ [Ã, B̃] − ̃ )‖ = ‖ ̃([A,B][Ã, B̃] −  )‖
� ‖[A,B]([Ã, B̃] −  )‖+‖[A,B]− ‖� 8

√
2 <

2
n

Hence∣∣∣(GG̃)−(G)(G̃)
∣∣∣= ∥∥∥((GG̃)−(G)(G̃)

)

∥∥∥

�
∥∥∥(GG̃) − (GG̃)

∥∥∥+
∥∥∥(GG̃) −(G)(G̃)

∥∥∥
<

1
n

+
2
n

< dn.

Thus (G)(G̃) =  ̃ = (GG̃) . As in the proof of Proposition 1 let  be the Haar
measure on G0 and introduce

 =
∫

G∈G0

(G)G d ,

so that

H =
∫

G∈G0

(G)HG d = (H)
∫

G∈G0

(HG)HG d = (H)

for all H ∈ G0 , implying that  , if nonzero, is a common eigenvector of all elements
of the group. Also

‖− ‖= sup
‖‖�1

|〈−  |〉|= sup
‖‖�1

∣∣∣∣∫
G∈G0

(G)〈G −(G) |〉d
∣∣∣∣� 4

√
2

as desired. �
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4. Monomial groups

In the following propositionwe need a version of the well-known Hardy-Littlewood-
Pólya theorem [6], given as Theorem 368 on p. 261 of [7] (the inequality is often called
the “Rearrangement Inequality”). Let x1 � x2 � · · ·� xn � 0 and y1 � y2 � · · ·� yn � 0
be two n -tuples of reals and let  be a permutation of n indices. Then,

n


i=1

xiy(i) �
n


i=1

xiyi. (5)

In what follows we will denote by | | the vector whose entries consist of the
absolute values of the corresponding entries of  . Similarly, |G| will denote the matrix
whose entries are equal to the absolute values of the corresponding entries of G ∈
Mn(�) . For a group G ⊆ Mn(�) we will denote by |G| the set of all |G| for G ∈
G . Recall that a unitary group G is monomial whenever |G| consists of permutation
matrices, which implies that it is a permutation group. Furthermore, recall that a group
of matrices is called indecomposable if it has no nontrivial invariant subspace spanned
by a subset of the standard basis vectors.

In the following proposition we will need the vector

 =
1√
n

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠ . (6)

PROPOSITION 7. Let n ∈� and  > 0 be given, and let  be as defined by (6).
If an indecomposable monomial unitary group G ⊆ Mn(�) has a weak  -approximate
fixed point  , then:

(a)  is a fixed point of |G| and ‖−| |‖ � 1 , where 1 = n
√

n ;

(b) if 1 <
1
3

and  = | | , then  is a weak 2 -approximate fixed point of G , where

2 = 31 ;

(c) if 1 <
1
3

then there is a weak 2 -approximate fixed point  of G , where 2 = 31 ,

and | | =  .

Proof. Assume with no loss that  = | | (otherwise use an appropriate unitary
diagonal similarity on the group). Then, assume with no loss that 1 � 2 � · · ·� n � 0
(otherwise use an appropriate permutational similarity which is necessarily unitary).
Now, any G ∈ G is determined by a permutation  of n indices and a choice of n
complex numbers 1,2, . . . ,n of modulus one, so that for any x∈�n we have (Gx)i =
ix(i) . By the definition of a weak approximate fixed point and (6) we get

1−  � |〈G , 〉| �
∣∣∣∣∣ n


i=1

i(i)i

∣∣∣∣∣� 1.
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The fact that G is indecomposable implies that the permutation group corresponding to
|G| acts transitively on the standard basis vectors. So, for any k,1 � k < n , there exists
a permutation  corresponding to a certain |G| ∈ |G| such that (k) = k+1, implying

1−  � kk+1 +
n


i=1
i	=k

i(i) � 2kk+1 +
n


i=1

i	=k,k+1

 2
i .

In the first sum above we use (5) with xi ’s equal to i ’s after omitting k and yi ’s equal
to i ’s after omitting k+1 in order to get the estimate. Recall that n

i=1  2
i = 1 to get,

after rearranging,
 2

k +  2
k+1−2kk+1 � ,

so that 0 � k−k+1 �
√
 . It follows that 0 � 1−n =n−1

k=1(k−k+1) � (n−1)
√
 ,

implying finally
max

1�i, j�n
|i −  j| � (n−1)

√
. (7)

We now want to show that the vector  is close to a fixed point of the group |G| .
Actually, we may choose for that purpose the vector  defined by (6). The simple
observation n 2

1 � n
i=1  2

i = 1 � n 2
n yields 1 � i � n for all i,1 � i � n , so that

(7) implies |i−i|� max
1� j�n

|i− j|� (n−1)
√
 , for all i,1 � i � n , and consequently

‖− ‖ � (n−1)
√

n < n
√

n = 1

yielding (a). This expression also implies that∣∣∣|〈G ,〉|− |〈G , 〉|
∣∣∣� |〈G ,−  〉| � 1

and similarly
∣∣∣|〈G ,〉|− |〈G ,〉|

∣∣∣� 1 . So,∣∣∣|〈G , 〉|− |〈G ,〉|
∣∣∣� 21,

and the fact that  � 1 now implies that

|〈G ,〉| � 1− 2,

where 2 = 31 , thus showing (b). (Note that  = | | was assumed “with no loss” at the
beginning of this proof.) (c) The general case is now obtained using a unitary diagonal
similarity on the group. If this similarity is given by a diagonal U , then  =U yields
the desired result. �

LEMMA 8. Let  ∈ [− , ] . Then

1
2
| | � 2


| | � |ei −1|� | |. (8)
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Proof. Clearly, it suffices to give the proof only for  � 0 since |e−i − 1| =

|ei − 1| . Observe that the function f () = 2sin
(

2

)
is convex upwards on [0, ]

since its second derivative is nonpositive on this interval. This implies that the graph
of the curve lies above the line segment connecting any two points on the graph and,

in particular, the endpoints of this interval. So,
2

 � f () = 2sin

(
2

)
since  � 0,

and the second of the three inequalities in (8) follows. Now, the first one is obvious and
the third follows from the fact that a line segment is shorter than the arc connecting the
same points. �

LEMMA 9. Let  j ∈ [− , ] for j = 1,2, . . . ,k . If∣∣∣∣∣1+
k


j=1

e j i

∣∣∣∣∣� (k+1)(1− ); (0 <  < 1) (9)

then
k


j=1

| j| < 
√

k(k+1)
√


2
. (10)

Proof. Let e j i = x j + iy j , x j,y j ∈ � for j = 1,2, . . . ,k . We first want to show
that (9) implies

2
2

k


j=1

| j|2 � k−
k


j=1

x j. (11)

To this end observe that for any j ∈ {1,2, . . . ,k} and x′j = 1− x j we have 2x′j = x′2j +

y2
j = |e j i−1|2 � 4

2 | j|2 by Lemma 8. We sum these estimates and divide by 2 to get

(11).
Clearly ∣∣∣∣∣1+

k


j=1

e j i

∣∣∣∣∣
2

=

(
1+

k


j=1

x j

)2

+

(
k


j=1

y j

)2

=

(
1+2

k


j=1

x j

)
+

k


j=1

k


l=1

(x jxl + y jyl).

Next, observe that x jxl + y jyl = Re
(
e j iel i

)
� 1 for all j, l = 1,2, . . . ,k , so that∣∣∣∣∣1+

k


j=1

e j i

∣∣∣∣∣
2

− (k+1)2 � 2

(
k


j=1

x j − k

)
.

Combine this estimate with (9) and (11) to get

4
2

k


j=1

| j|2 � (k+1)22, (12)
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where we have also used the simple estimate 1− (1− )2 � 2 . So, finally

k


j=1

| j| �
(

k
k


j=1

| j|2
)1/2

< 
√

k(k+1)
√


2

and the desired Inequality (10) follows. �

In the following proposition we need the standard notations ‖‖1 =
n


i=1

|i| and

‖‖2
2 =

n


i=1

|i|2 for any  ∈�n .

PROPOSITION 10. Let 0 <  <
2
n3 and let g1, . . . ,gn ∈� be such that

g1g2 · · ·gn = 1, and

|g1 + · · ·+gn| � n(1− ).

Then there exists  ∈ � such that n = 1 , and

‖(g1, . . . ,gn)−(1, . . . ,1)‖1 < n
√

2n and

‖(g1, . . . ,gn)−(1, . . . ,1)‖2 < n
√

2.

Proof. Write k = n−1, and let  j ∈ (− , ] be such that

g j+1

g1
= e j i

for j = 1, . . . ,k . Moreover, let  ∈ � and  ∈ (−/n,/n] be such that n = 1 and
g1 = ei . By Lemma 9 we have that

k


j=1

| j| < 
√

k(k+1)
√


2

< 
√

n3
2

<  . (13)

From g1 · · ·gn = 1 we then get that n +1 + · · ·+k = 0 (since the inequalities in
(13) and the fact that n| | �  give −2 < n +1 + · · ·+k < 2 ). So, by (13)
again, we get

n| | �
k


j=1

| j| < 
√

n3
2

. (14)

Hence we have

‖(g1, . . . ,gn)−(1,1, . . . ,1)‖1 � | |+
k


j=1

|+ j| � n| |+
k


j=1

| j| < 
√

2n3 ,

where we have first used (8), and then (13) and (14).
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The inequality involving the 2-norm is verified as follows:

‖(g1, . . . ,gn)−(1,1, . . . ,1)‖2
2 � | |2 +

k


j=1

| + j|2

� | |2 +2
k


j=1

(| |2 + | j|2)

= (2n−1)| |2 +2
k


j=1

| j|2 < 22n2.

using (12) (recalling that k+1 = n ) and (14). �

THEOREM 11. Let n ∈� and  > 0 be given. If n � 2 and  <
1

3600n11 then

every indecomposablemonomial unitary group G ⊆Mn(�) with a weak  -approximate

fixed point  has a common eigenvector  such that ‖ − ‖ <
1
n

.

Proof. Assume first with no loss that  = | | . We then use Proposition 7(b) to
see that  defined by (6) is a weak ̃ -approximate fixed point for

̃ = 3n
√

n <
3
60

√
n3

n11 =
1

20n4 .

We assume, with no loss, that G is compact and �-homogeneous, i.e., that G =�G .
Let G0 be the subgroup of G consisting of those elements of G whose weights

multiply to 1, i.e., G0 is the kernel of the group homomorphism G �→ det(G)sign(|G|)
(here we abuse the notation and use sign(|G|) ∈ {±1} to denote the parity of the per-
mutation associated to |G|). One can think of this homomorphism as assigning to every
matrix of G the product of its non-zero entries. Note that G0 is large in the sense that
every element of G is a scalar multiple of an element of G0 .

Next, denote by n the group of all complex n -th roots of unity. We want to prove
the existence and uniqueness of a mapping  : G0 → n such that for all G ∈ G0 we
have that

‖G−(G)‖ <  ′ = n
√

2̃.

Indeed, for any such G there exist g1, . . . ,gn ∈ � such that g1g2 · · ·gn = 1, and G =
Diag(g1, . . . ,gn) |G| by the construction above. By Proposition 7(b) we have

|〈G ,〉| � 1− ̃,

which implies that |g1 + . . .+gn|� n(1− ̃) . By Proposition 10 there exists an (G) ∈
n such that

‖G−(G)‖ <  ′ <
√
10n

<
1
n
.
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Now, if dn is the distance between the adjacent n -th roots of unity, then, by Lemma
8, dn � 4/n . Then  is unique: Indeed, if there were a  (G) ∈ n with the same
property, we would get

|(G)− (G)| = ‖(G)− (G)‖ � ‖G− (G)‖+‖G−(G)‖
< 2 ′ < dn

yielding (G) =  (G) . But this is true for every G .
Next we want to show that  is a group homomorphism. Clearly

‖GH−(G)(H)‖ � ‖G(H−(H))‖+‖(H)(G−(G))‖ < 2 ′

and since also ‖GH−(GH)‖ �  ′ , we get

|(GH)−(G)(H)| < 3 ′ < dn

so that (GH) = (G)(H) as desired.
Let G1 be the kernel of  and note that  is an  ′ -approximate fixed point for G1 .

Hence by Proposition 1 there is a nonzero fixed vector  for G1 with ‖ −‖ <  ′ .
By considerations above, respectively by Proposition 7(a), we have

‖ −‖ �  ′ = 
√

6
4
√

n7 � 
n
√

10
, respectively ‖− ‖ � n

√
n � 1

60n4 .

Since  is n -homogeneous we have that every element of G0 and hence also ev-
ery element of G is a scalar multiple of an element of G1 . Hence  is a common
eigenvector for G . The above two estimates combined give the desired inequality

‖ − ‖ <
1
n

. �

5. Block decompositions

Let G be a group of unitary n×n matrices with a weak  -approximate point  .
Assume that G is either block diagonal or block monomial with respect to orthogonal
decomposition (for the definition of a block-monomial group we refer the reader to the
first paragraph of [11, Section 2.2])

V = V1
⊥⊕V2

⊥⊕ . . .
⊥⊕Vk.

Here, the spaces Vi may be of different dimensions. We do not assume that G is
irreducible. In particular, if G is block-diagonal, it can only be irreducible if k = 1.
For i = 1, . . . ,k we write ni = dim(Vi) , and we let i be the i-th component of  with
respect to this decomposition. Furthermore, introduce

Gii = {G|Vi |G ∈ G,G(Vi) ⊆ Vi} ⊆ Mni(�);

we view the groups Gii either as diagonal blocks of those members of G for which
Vi is invariant or as groups of linear mappings from Vi to itself. Clearly, for some
i ∈ {1, . . . ,k} we have that i 	= 0, since the sum of the squares of their norms equals 1.

The following lemma is useful in both situations described above.
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LEMMA 12. (a) If i 	= 0 for some i∈ {1, . . . ,k} and i =


‖i‖2 , then ̃i =
i

‖i‖
is a weak i -approximate fixed point for Gii .

(b) Let a1, . . . ,ak be non-negative real numbers such that a1 + . . .+ak = 1 . Then there
exists an i ∈ {1, . . . ,k} such that ai � (ni/n) .

(c) There always exists an i∈{1, . . . ,k} such that ̃i =
i

‖i‖ 	= 0 is a weak ̃ -approximate

fixed point for Gii , where ̃ =
n
ni
 .

Proof. (a) Let G ∈ G be such that G(Vi) ⊆ Vi and let H = G|Vi . For j 	= i , let
 j 	= i be the unique index such that G(V j) ⊆ V j . Then

(1− ) � |〈G , 〉| �
∣∣∣∣∣〈Hi,i〉+

j 	=i

〈G j, j〉
∣∣∣∣∣

� |〈Hi,i〉|+
j 	=i

‖ j‖ · ‖ j‖

� |〈Hi,i〉|+
j 	=i

‖ j‖2

= |〈Hi,i〉|+1−‖i‖2

(we used the Rearrangement Inequality mentioned at the beginning of Section 3 to go
from the second to the third line). Hence |〈Hi,i〉| � ‖i‖2−  and therefore

|〈H̃i, ̃i〉| � 1− 
‖i‖2 = 1− i.

(b) Suppose, if possible, that for every i we have ai < ni/n . Then a1 + . . .+an <
(n1/n)+ . . .+(nk/n) = 1. A contradiction.

(c) Immediate consequence of (a) and (b). �

THEOREM 13. Let n ∈� and  > 0 be given. If n � 2 and  <
1

3600n11 , then

every monomial unitary group G ⊆ Mn(�) with a weak  -approximate fixed point 
has a common eigenvector  .

Proof. If G ⊆Mn(�) is indecomposable, we are done by Theorem 11. Otherwise,
decompose the space and the group into indecomposable components, and then also
the corresponding weak  -approximate fixed point  . By Lemma 12(c) we choose an

i ∈ {1, . . . ,k} such that ̃i =
i

‖i‖ 	= 0 is a weak ̃ -approximate fixed point for Gii ,

where ̃ =
n
ni
 , and ni is the dimension of the underlying space of the group Gii . We

conclude that

̃ =
n
ni
 � n

3600nin11 =
1

3600nin10 � 1

3600n11
i

,
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so that Gii has a common eigenvector by Theorem 11, denoted by  . Let ̂ be the
vector of the starting space whose i-th component equals  and the rest of whose
components are zero. Clearly, this is a common eigenvector for G . �

REMARK. We will need the following observation about decompositions. As-
sume a decomposition of a finite-dimensional vector space V = �n into a direct sum

V = V1⊕V2⊕·· ·⊕Vr.

Let a unitary group N be block diagonal with respect to this decomposition. Then we
may assume, with no loss of generality, that this sum is orthogonal. Indeed, choose any
basis respecting this decomposition, and then orthogonalize this basis using the Gram-
Schmidt process. Clearly N is still upper-triangular with respect to the associated
“new”, now orthogonal, decomposition

V = V′
1
⊥⊕V′

2
⊥⊕ . . .

⊥⊕V′
r;

since N is unitary we conclude that N must actually be block-diagonal with respect
to this orthogonal decomposition as well.

6. General finite groups

In the proof of the following theorem we need Clifford’s theorem. A version of it
that is close to our point of view is given in [11, Theorem 2.3].

THEOREM 14. Let n ∈� and  > 0 be given. If n � 2 and  <
1

3600n11 , then

every finite unitary group G ⊆ Mn(�) with a weak  -approximate fixed point is re-
ducible.

Proof. We will prove this by contradiction. Assume the contrary, so that there exist

n � 2,  > 0 with  <
1

3600n11 , and an irreducible finite unitary group G ⊆ Mn(�)

with a weak  -approximate fixed point  . Choose the smallest possible n for which
such a group exists. From among all such groups choose one of the smallest possible
order, and call it G .

We want to show that every proper normal subgroup N of G consists of scalars
only. Since N is strictly smaller than G and has  as a weak  -approximate fixed
point, it is reducible by assumption, so we can use [11, Theorem 2.3]. Then V = �n

decomposes into a direct sum

V = V1
⊥⊕V2

⊥⊕·· · ⊥⊕Vr; r � 1,

of invariant subspaces for N , maximal with the property (when translated from the
group-representations language) that for any i = 1, . . . ,r and for any N -irreducible
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subspaces Ui,U′
i ⊆Vi the representations g∈N → g|Ui and g∈N → g|U ′

i
are isomor-

phic. By the cited theorem the spaces Vi are of equal dimension, necessarily ñ =
n
r

.

Furthermore, since N is unitary, we can assume that the decomposition above is or-
thogonal by the remark of Section 5. We decompose  according to this decomposition,
denoting the components by i , and choose an i∈ {1, . . . ,k} by Lemma 12(c) such that

̃ =
i

‖i‖ 	= 0 is a weak ̃ -approximate fixed point for G̃ = Gii , where ̃ =
n
ni
 = r .

Since

̃ = r <
n

3600ñn11 =
1

3600ñn10 � 1
3600ñ11 ,

we have found a group G̃ that satisfies the assumptions of the theorem with ñ and ̃
instead of n and  . The possibility n > ñ implies, by [11, Theorem 2.3 and Proposition
2.2], that G̃ is irreducible. This contradicts the starting assumption of this proof, thus
proving that r = 1.

The decomposition of V into irreducible invariant subspaces of N

V = U1
⊥⊕U2

⊥⊕ . . .
⊥⊕Us,

may be assumed orthogonal with no loss as above. Observe that the representations
g ∈ N �→ g|Ui are isomorphic. Since they act on a strictly smaller dimensional space
than G and satisfy the assumptions of the theorem, these blocks are reducible by the
starting assumption of this proof, so that n/s = 1. Consequently, dim(Ui) = 1 implying
that N is scalar.

We know now that every proper normal subgroup N of G consists of scalars
only. If for such a maximal N , the group G/N is commutative, then by Suprunenko’s
theorem [11, Proposition 3.1] (cf. also [14, Theorem 24, p. 60]) G is unitarily monomi-
alizable, and we come to a contradiction with the irreducibility of G using Theorem 13.
It remains to consider the case that G/N is a noncommutative simple group. The long-
standing Ore conjecture which states that every element of every finite (non-abelian)
simple group is a commutator, was proved to be true in [10]. We apply this result to this
quotient group to see that every element G ∈ G is of the form G =  [A,B] for some
A,B ∈ G and a scalar  . This brings us to a contradiction with the irreducibility of G
by Theorem 6, and we are done. �

7. Connected groups of unitary matrices

LEMMA 15. If G is a connected compact group of unitary matrices, then every
element of its derived subgroup G′ , i.e. the closed subgroup generated by its commuta-
tors, is a commutator of two elements of G .

Proof. Since G′ is a semisimple (cf. [15, Corollary 20.5.5]) connected compact
Lie group, the claim is an immediate consequence of §4, No. 5, Proposition 10, Corol-
lary of [4]. �
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PROPOSITION 16. Let n ∈ � and  > 0 be given. If n � 2 and  <
1
32

, then

every connected compact unitary group G ⊆ Mn(�) with a weak  -approximate fixed
point is reducible.

Proof. Since commutative groups are always reducible, we may assume with no
loss that G is non-commutative. By Lemma 15 every element of G′ is a commutator
of two elements of G . So, by Corollary 5, G′ ⊆ H has a nonzero fixed vector, say  .
Denote by A the linear span of G , which is the same as the algebra generated by G .
Since G′ is a normal subgroup of G , we have that for any three elements G,H,A ∈ G
the element A∗H∗G∗HGA belongs to G′ , so that it fixes the vector  . It follows that

GHA = HGA . (15)

This relation is then true for all A ∈ A . Note that

V := {A |A ∈ A}
is a non-trivial subspace of �n , invariant for G . If we prove that it is a proper subspace,
we are done. Assume the contrary. Then, any two elements G,H ∈ G commute on
V = �n , and G is a commutative group, contradicting the above. �

COROLLARY 17. Let n ∈ � and  > 0 be given. If n � 2 and  <
1

32n
then

every connected compact unitary group G ⊆ Mn(�) with a weak  -approximate fixed
point has a common eigenvector.

Proof. By Proposition 16 the group is reducible and we are able to decompose
the space, the group, and the corresponding weak  -approximate fixed point  as in

Section 5. By Lemma 12(c) there always exists an i ∈ {1, . . . ,k} such that ̃i =
i

‖i‖ 	=

0 is a weak ̃ -approximate fixed point for Gii , where ̃ =
n
ni
 � n

1
32n

=
1
32

. So, by

Proposition 16, such a Gii acts on a one-dimensional subspace, whose unique (modulo
a scalar of absolute value 1) orthonormal basis vector we denote by  . It is clear that
this is also a common eigenvector for G . �

LEMMA 18. Let a compact unitary group G ⊆Mn(�) be given such that G =�G
and G = G0N , where N is a normal connected subgroup and G0 is a finite subgroup

of G . If n � 2 ,  <
1

3600n11 , and G has a weak  -approximate fixed point  , then it

is reducible.

Proof. Towards a contradiction we assume that G is irreducible. By Clifford’s
theorem V = �n decomposes into a direct sum

V = V1
⊥⊕V2

⊥⊕·· · ⊥⊕Vr,
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of invariant subspaces for N , maximal such that for all i = 1, . . . ,r the representations
g ∈ N �→ g|Ui , which restrict to N -irreducible subspaces of Vi , are isomorphic. Ob-
serve that this definition makes each of the spaces Vi unique, and since they could have
been assumed orthogonal to each other by the Remark of Section 5, this decomposition

is indeed orthogonal. Also, the spaces Vi are of equal dimension, necessarily ñ =
n
r

,

the group G is block-monomial with respect to this decomposition, and all the groups
Gii , viewed as groups of linear mappings from Vi to itself, are irreducible.

We also decompose  , denoting its components by i , and choose an i∈{1, . . . ,r}
by Lemma 12(c) such that ̃i =

i

‖i‖ 	= 0 is a weak ̃i -approximate fixed point for Gii

(hence also for N|Vi ), where ̃i =
n
ni
 = r < 1

3600(ni)11 . Thus, N|Vi has a common

eigenvector by Corollary 17, so that the dimension of an N -irreducible subspace in Vi

(and consequently everywhere) is one. It follows that N|Vi consists of scalar multiples
of the identity.

Assume dim(Vi) � 2. Note that the group H0 = {G|Vi |G ∈ G0,G(Vi) ⊆ Vi} is
finite and that Gii = TH0 . Since Gii is irreducible, we have that H0 is also irreducible.
But this contradicts Theorem 14 (since H0 has a weak ̃i -approximate fixed point and
̃i < 1

3600(ni)11 for ni = dim(Vi)).
If dim(Vi) = 1, then G is a monomial unitary group having a weak  -approximate

fixed point and so, by Theorem 13, cannot be irreducible. �

THEOREM 19. Let n ∈� and  > 0 be given. If n � 2 and  <
1

3600n11 , then

every compact unitary group G ⊆ Mn(�) with a weak  -approximate fixed point is
reducible.

Proof. We assume with no loss of generality that G = �G and denote by N the
connected component of the identity. It is well known that there is a finite group G0

such that G = G0N [2, Lemma 3], and hence we are done by Lemma 18. �

8. Common eigenvectors

In this section we present the main results of the paper. Let G be a group of unitary
n× n matrices with a weak  -approximate point  , with ‖‖ = 1 and 0 <  < 1 as
assumed throughout the paper. The following theorem follows easily from Theorem 19
and Lemma 12.

THEOREM 20. Let n � 2 and 0 <  <
1

3600n11 . If a group G of n× n unitary

matrices has a weak  -approximate fixed point, then G has a common eigenvector.

Proof. Assume, using a unitary similarity if necessary, that G is block diagonal
with irreducible blocks. For the corresponding decomposition we recall the notation of
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Section 5. By Lemma 12(c) we choose an i ∈ {1, . . . ,k} such that ̃i =
i

‖i‖ 	= 0 is a

weak ̃ -approximate fixed point for Gii , where

̃ =
n
ni
 <

1

3600n11
i

.

In case ni � 2, this would yield that Gii is reducible by Theorem 19 which is impossible.
Hence ni = 1 and therefore i is a common eigenvector for G . �

LEMMA 21. Let x � y � 0 ,  ∈
[
2
3

,
4
3

]
, and let  = e i . Then |x+  y|� x .

Proof. We can suppose y > 0 otherwise there is nothing to do. With no loss

assume that  ∈
[
 ,

4
3

]
(otherwise replace  by  ). Consider the triangle in �

with vertices 0, x and − y . The lengths of its sides are x,y, and z = |x+  y| . Since

the angle opposite z is  −  � 
3

, we have that z cannot be the longest side of the

triangle. �

THEOREM 22. Let n � 2 , 0 <  <
1

3600n11 , and let a group of n× n unitary

matrices G have a weak  -approximate fixed point  . Then there exists a common
eigenvector  (possibly ‖‖ 	= 1 ) such that ‖ −‖2 < 3600n11 .

Proof. With no loss we assume that G = �G . By Theorem 20 G has a common
eigenvector. Let r be the greatest number of linearly independent eigenvectors of G .
With no loss of generality we assume that G is block diagonal with k = r + 1 blocks,
where the first r blocks are 1× 1 and the k -th block has no common eigenvector (or
that the k -th block is of size 0× 0). For this decomposition recall the notation of
Section 5. We first prove that ‖k‖2 � 3600(n− r)11. If k = 0, then this is obvious.

If k 	= 0, then, by Lemma 12(a), ̃k =
k

‖k‖ is a weak k -approximate fixed point

for Gkk with k = 
‖k‖2 . Hence k � 1

3600(n− r)11 by Theorem 20 and therefore

‖k‖2 � 3600(n− r)11 .
For ai = ‖i‖2 , i ∈ {1,2, . . . ,r}, assume with no loss that a1 � a2 � . . . � ar . Let

G ∈ G , and suppose, if possible, that for some i ∈ {2, . . . ,r} we have that Gii 	= G11 .

Let m be an integer such that an argument  of (GiiG11)m is between
2
3

and
4
3

and let H = (G11G)m ∈ �G = G so that H11 = 1 and an argument of Hii is between
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2
3

and
4
3

. Using Lemma 21 we then get

1−  � |〈H , 〉|
� |〈H111,1〉+ 〈Hiii,i〉|+ 

j 	∈{1,i}
‖ j‖2

= |a1 +Hiiai|+(1−a1−ai)
� a1 +(1−a1−ai) = 1−ai,

and therefore ai �  . If also a1 �  we define s = 1 and  = 1 otherwise we let s
be the largest integer such that as >  and let  = 1 + . . .+ s . Now note that  is
a common eigenvector for G . Indeed, by the above, we have that for every G ∈ G , we
have G11 = . . . = Gss , so 1, . . . ,s are eigenvectors of G corresponding to the same
eigenvalue. Now note that

‖ −‖2 =
k


j=s+1

‖ j‖2

� (r−1) +3600(n− r)11
< 3600n11. �
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